1
|
Kim CK, He P, Bialkowska AB, Yang VW. SP and KLF Transcription Factors in Digestive Physiology and Diseases. Gastroenterology 2017; 152:1845-1875. [PMID: 28366734 PMCID: PMC5815166 DOI: 10.1053/j.gastro.2017.03.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022]
Abstract
Specificity proteins (SPs) and Krüppel-like factors (KLFs) belong to the family of transcription factors that contain conserved zinc finger domains involved in binding to target DNA sequences. Many of these proteins are expressed in different tissues and have distinct tissue-specific activities and functions. Studies have shown that SPs and KLFs regulate not only physiological processes such as growth, development, differentiation, proliferation, and embryogenesis, but pathogenesis of many diseases, including cancer and inflammatory disorders. Consistently, these proteins have been shown to regulate normal functions and pathobiology in the digestive system. We review recent findings on the tissue- and organ-specific functions of SPs and KLFs in the digestive system including the oral cavity, esophagus, stomach, small and large intestines, pancreas, and liver. We provide a list of agents under development to target these proteins.
Collapse
Affiliation(s)
- Chang-Kyung Kim
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Ping He
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Agnieszka B. Bialkowska
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY,Corresponding Authors: Vincent W. Yang & Agnieszka B. Bialkowska, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Rm. 020; Stony Brook, NY, USA. Tel: (631) 444-2066; Fax: (631) 444-3144; ;
| | - Vincent W. Yang
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY,Corresponding Authors: Vincent W. Yang & Agnieszka B. Bialkowska, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Rm. 020; Stony Brook, NY, USA. Tel: (631) 444-2066; Fax: (631) 444-3144; ;
| |
Collapse
|
2
|
Stein R. Insulin Gene Transcription: Factors Involved in Cell Type–Specific and Glucose‐Regulated Expression in Islet β Cells are Also Essential During Pancreatic Development. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Wang Y, Chen KP, Yao Q. [Progress of studies on bHLH transcription factor families]. YI CHUAN = HEREDITAS 2009; 30:821-30. [PMID: 18779123 DOI: 10.3724/sp.j.1005.2008.00821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
bHLH transcription factors are important players in various developmental processes of eukaryotes. They constitute a large family of transcription factors. bHLH family members have been identified in genomes of 20 organisms including 17 animals, two plants, and one yeast. Animal bHLHs are classified into 45 families based on their different functions in the regulation of gene expression. In addition, they are divided into 6 groups according to target DNA elements they bind and their own structural characteristics. Group A consists of 22 families. They mainly regulate neurogenesis, myogenesis and mesoderm formation. Group B consists of 12 families. They mainly regulate cell proliferation and differentiation, sterol metabolism and adipocyte formation, and expression of glucose-responsive genes. Group C has seven families. They are responsible for the regulation of midline and tracheal development, circadian rhythms, and for the activation of gene transcription in response to environmental toxins. Group D has only one family. It forms inactive heterodimers with group A bHLH proteins. Group E has two families, which regulate embryonic segmentation, somitogenesis and organogenesis etc. Group F also has one family. It regulates head development and formation of olfactory sensory neurons etc. This article presents a brief review on progress achieved in studies related to the classification, origination and functions of bHLH transcription factor families.
Collapse
Affiliation(s)
- Yong Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | | |
Collapse
|
4
|
Li YY, Wu Y, Tsuneyama K, Baba T, Mukaida N. Essential contribution of Ets-1 to constitutive Pim-3 expression in human pancreatic cancer cells. Cancer Sci 2009; 100:396-404. [PMID: 19154409 PMCID: PMC11158210 DOI: 10.1111/j.1349-7006.2008.01059.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We previously demonstrated that the proto-oncogene Pim-3 with serine/threonine kinase activity was aberrantly expressed in cancer cells but not in the normal cells of the pancreas. In order to elucidate the molecular mechanism underlying aberrant Pim-3 expression in pancreatic cancer cells, we constructed luciferase expression vectors linked to 5'-flanking deletion mutants of the human Pim-3 gene and transfected human pancreatic cancer cells with the resultant vectors. The region up to -264 bp was essential for constitutive Pim-3 gene expression, and the mutation in the Ets-1 binding site (between -216 and -211 bp) reduced luciferase activities. Moreover, Ets-1 mRNA and protein were constitutively expressed together with Pim-3 in human pancreatic cancer cell lines. Chromatin immunoprecipitation assay demonstrated constitutive binding of Ets-1 to the 5'-flanking region of human Pim-3 gene between -249 and -183 bp. Pim-3 promoter activity and its protein expression were induced by transfection with wild type-Ets-1 and were reduced by transfection with dominant negative-Ets-1 or Ets-1 small-interfering RNA (siRNA). Furthermore, dominant negative-Ets-1 and Ets-1 siRNA reduced the amount of Bad phosphorylated at its Ser(112) and induced apoptosis, when they were transfected into human pancreatic cancer cells. Finally, Pim-3 cDNA transfection reversed Ets-1 siRNA-induced increase in apoptosis and decrease in Bad phosphorylation at its Ser(112). These observations would indicate that the transcription factor Ets-1 can induce aberrant Pim-3 expression and subsequently prevent apoptosis in human pancreatic cancer cells.
Collapse
Affiliation(s)
- Ying-Yi Li
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | |
Collapse
|
5
|
Berger J, Sansom O, Clarke A, Bird A. MBD2 is required for correct spatial gene expression in the gut. Mol Cell Biol 2007; 27:4049-57. [PMID: 17353267 PMCID: PMC1900015 DOI: 10.1128/mcb.02023-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gene expression in the gut is segmentally regulated, but little is known of the molecular origin of patterning. Analysis of gene expression in colons from mice lacking the methyl-CpG binding repressor MBD2 revealed frequent activation of genes that are normally only expressed in the exocrine pancreas and duodenum. Reduced DNA methylation activated the same gene set in the colon. No significant differences in DNA methylation between the colon and duodenum were detected, but MBD2 was significantly more abundant in the colon. The relevance of MBD2 concentration was tested in a human colon cancer cell line. Depletion of MBD2 was again found to activate exocrine pancreatic genes. Gene activation in this cell culture model was accompanied by loss of promoter-bound MBD2 and increased histone acetylation. The results suggest that modulation of MBD2 during gut development establishes a region-specific gene expression pattern that is essential for establishing correct segmental character.
Collapse
Affiliation(s)
- Jennifer Berger
- Wellcome Trust Centre for Cell Biology, Edinburgh University, The King's Buildings, Mayfield Road, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
6
|
Vasicek R, Meinhardt G, Haidweger E, Rotheneder H, Husslein P, Knöfler M. Expression of the human Hand1 gene in trophoblastic cells is transcriptionally regulated by activating and repressing specificity protein (Sp)-elements. Gene 2003; 302:115-27. [PMID: 12527202 DOI: 10.1016/s0378-1119(02)01096-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The tissue-specific basic helix-loop-helix protein Hand1 is essential for the formation of trophoblast giant cells of the murine placenta. In humans, Hand1 is detectable in trophoblastic tumour cells suggesting an equivalent role in trophoblast differentiation. To understand its mode of expression we have cloned and characterized the human Hand1 gene promoter. Primer extension analyses suggest that transcription initiates 19 nucleotides downstream of the TATA element of the proximal 5' flanking region. Expression of luciferase reporter constructs harboring deletions of the 9.5 kb Hand1 5' flanking sequence defines a promoter region within 274 bp upstream of the transcriptional start site. Compared to a reporter bearing only the TATA box, the proximal promoter activates transcription up to 30-fold. However, transcriptional activity of the region was observed in both Hand1-expressing and non-expressing cell lines. Sequencing, DNAseI footprint analyses and electrophoretic mobility shift assays reveal the presence of four GC-rich sequences, which show different affinities to the endogenous specificity proteins (Sp), and a CCAAT box. In vitro, the Sp-elements mainly interact with Sp1 and Sp3 while the CCAAT element is recognized by the alpha CAAT binding factor protein. Mutant luciferase reporters bearing single active or inactive recognition sites demonstrate that two of the four Sp-binding sites (I and IV) contribute little to the overall transcription rate. The two other Sp-cognate sequences, II and III, downregulate and activate reporter expression 2.3- and 2.6-fold, respectively. Co-transfections of Sp1/Sp3 expression vectors and mutated reporter constructs in Sp-deficient SL2 cells indicate that the Sp-binding site II and III indeed function as repressing and activating enhancer sequences. In summary, the data suggest that constitutive expression of the Hand1 gene in cultured cells is regulated by a complex interplay of Sp-proteins interacting with activator and repressor elements.
Collapse
Affiliation(s)
- Richard Vasicek
- Department of Obstetrics and Gynecology, University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The specialized endocrine and exocrine cells of the pancreas originally derive from a pool of apparently identical cells in the early gut endoderm. Serial changes in their gene expression program, controlled by a hierarchy of pancreatic transcription factors, direct this progression from multipotent progenitor cell to mature pancreatic cell. When the cells differentiate, this hierarchy of factors coalesces into a network of factors that maintain the differentiated phenotype of the cells. As we develop an understanding of the pancreatic transcription factors, we are also acquiring the tools with which we can ultimately control pancreatic cell differentiation.
Collapse
Affiliation(s)
- Maria E Wilson
- Department of Medicine, UCSF Diabetes Center, Hormone Research Institute, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0534, USA
| | | | | |
Collapse
|
8
|
Rose SD, Swift GH, Peyton MJ, Hammer RE, MacDonald RJ. The role of PTF1-P48 in pancreatic acinar gene expression. J Biol Chem 2001; 276:44018-26. [PMID: 11562365 DOI: 10.1074/jbc.m106264200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 100-base pair ELA1 transcriptional enhancer drives high level transcription to pancreatic acinar cells of transgenic mice and in transfected pancreatic acinar cells in culture. The A element within the enhancer is the sole positively acting element for acinar specificity. We show that the acinar cell-specific bHLH protein PTF1-P48 and the common bHLH cofactor HEB are part of the PTF1 complex that binds the A element and mediates its activity. Acinar-like activity of the enhancer can be reconstituted in HeLa cells by the introduction of P48, HEB, and the PDX1-containing trimeric homeodomain complex that binds the second pancreatic element of the enhancer. The 5' region of the mouse Ptf1-p48 gene from -12.5 to +0.2 kilobase pairs contains the regulatory information to direct expression in transgenic mice to the pancreas and other organs of the gut that express the endogenous Ptf1-p48 gene. The 5'-flanking sequence contains two activating regions, one of which is specific for acinar cells, and a repressing domain active in non-pancreatic cells. Comparison of the 5'-gene flanking regions of the mouse, rat, and human genes identified conserved sequence blocks containing binding sites for known gut transcription factors within the acinar cell-specific control region.
Collapse
Affiliation(s)
- S D Rose
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | | | | | | | |
Collapse
|
9
|
Krapp A, Knöfler M, Ledermann B, Bürki K, Berney C, Zoerkler N, Hagenbüchle O, Wellauer PK. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 1998; 12:3752-63. [PMID: 9851981 PMCID: PMC317250 DOI: 10.1101/gad.12.23.3752] [Citation(s) in RCA: 399] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have generated a mouse bearing a null allele of the gene encoding basic helix-loop-helix (bHLH) protein p48, the cell-specific DNA-binding subunit of hetero-oligomeric transcription factor PTF1 that directs the expression of genes in the exocrine pancreas. The null mutation, which establishes a lethal condition shortly after birth, leads to a complete absence of exocrine pancreatic tissue and its specific products, indicating that p48 is required for differentiation and/or proliferation of the exocrine cell lineage. p48 is so far the only developmental regulator known to be required exclusively for committing cells to an exocrine fate. The hormone secreting cells of all four endocrine lineages are present in the mesentery that normally harbors the pancreatic organ until day 16 of gestation. Toward the end of embryonic life, cells expressing endocrine functions are no longer detected at their original location but are now found to colonize the spleen, where they persist in a functional state until postnatal death of the organism occurs. These findings suggest that the presence of the exocrine pancreas is required for the correct spatial assembly of the endocrine pancreas and that, in its absence, endocrine cells are directed by default to the spleen, a site that, in some reptiles, harbors part of this particular cellular compartment.
Collapse
Affiliation(s)
- A Krapp
- Swiss Institute for Experimental Cancer Research, CH-1066 Epalinges, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lidberg U, Kannius-Janson M, Nilsson J, Bjursell G. Transcriptional regulation of the human carboxyl ester lipase gene in exocrine pancreas. Evidence for a unique tissue-specific enhancer. J Biol Chem 1998; 273:31417-26. [PMID: 9813053 DOI: 10.1074/jbc.273.47.31417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human carboxyl ester lipase (CEL) is an important enzyme for the intestinal absorption of dietary lipids. The gene is highly expressed in exocrine pancreas and in the mammary gland during pregnancy and lactation. In this paper, we have focused on its transcriptional regulation in exocrine pancreas. Reporter gene analysis in cell cultures reveals that a high level of tissue-specific expression is established by the proximal 839 base pairs of the 5'-flanking region. This is due to a strong enhancer, located at -672 to -637. Transfections in mammary gland-derived cells reveal that the enhancer is pancreas-specific and does not contribute to the mammary gland expression. This indicates that the expression of the CEL gene in the mammary gland and pancreas, respectively, is due to two different regulatory systems. Further characterizations of the enhancer reveal that it is composed of two closely located cis-elements. The proximal element mediates a positive effect, whereas the distal element exerts a silencing effect on the positive proximal element. The functional enhancer complex is composed of ubiquitously expressed factors, since similar interactions are achieved with nuclear extracts from cells derived from other tissues. However, no enhancer activity is achieved in such cells. Hence, the net enhancer activity is the result of a tissue-specific balance between factors interacting with the two elements. Since none of the described cis-elements show any clear homology to known cis-elements, we propose that the interacting complex is composed of yet unidentified transcription factors.
Collapse
Affiliation(s)
- U Lidberg
- Department of Molecular Biology, Göteborg 40 530, Sweden.
| | | | | | | |
Collapse
|