1
|
Shamloo S, Schloßhauer JL, Tiwari S, Fischer KD, Ghebrechristos Y, Kratzenberg L, Bejoy AM, Aifantis I, Wang E, Imig J. RNA Binding of GAPDH Controls Transcript Stability and Protein Translation in Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626357. [PMID: 39677748 PMCID: PMC11642814 DOI: 10.1101/2024.12.02.626357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Dysregulation of RNA binding proteins (RBPs) is a hallmark in cancerous cells. In acute myeloid leukemia (AML) RBPs are key regulators of tumor proliferation. While classical RBPs have defined RNA binding domains, RNA recognition and function in AML by non-canonical RBPs (ncRBPs) remain unclear. Given the inherent complexity of targeting AML broadly, our goal was to uncover potential ncRBP candidates critical for AML survival using a CRISPR/Cas-based screening. We identified the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a pro-proliferative factor in AML cells. Based on cross-linking and immunoprecipitation (CLIP), we are defining the global targetome, detecting novel RNA targets mainly located within 5'UTRs, including GAPDH, RPL13a, and PKM. The knockdown of GAPDH unveiled genetic pathways related to ribosome biogenesis, translation initiation, and regulation. Moreover, we demonstrated a stabilizing effect through GAPDH binding to target transcripts including its own mRNA. The present findings provide new insights on the RNA functions and characteristics of GAPDH in AML.
Collapse
|
2
|
Klein T, Funke F, Rossbach O, Lehmann G, Vockenhuber M, Medenbach J, Suess B, Meister G, Babinger P. Investigating the Prevalence of RNA-Binding Metabolic Enzymes in E. coli. Int J Mol Sci 2023; 24:11536. [PMID: 37511294 PMCID: PMC10380284 DOI: 10.3390/ijms241411536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
An open research field in cellular regulation is the assumed crosstalk between RNAs, metabolic enzymes, and metabolites, also known as the REM hypothesis. High-throughput assays have produced extensive interactome data with metabolic enzymes frequently found as hits, but only a few examples have been biochemically validated, with deficits especially in prokaryotes. Therefore, we rationally selected nineteen Escherichia coli enzymes from such datasets and examined their ability to bind RNAs using two complementary methods, iCLIP and SELEX. Found interactions were validated by EMSA and other methods. For most of the candidates, we observed no RNA binding (12/19) or a rather unspecific binding (5/19). Two of the candidates, namely glutamate-5-kinase (ProB) and quinone oxidoreductase (QorA), displayed specific and previously unknown binding to distinct RNAs. We concentrated on the interaction of QorA to the mRNA of yffO, a grounded prophage gene, which could be validated by EMSA and MST. Because the physiological function of both partners is not known, the biological relevance of this interaction remains elusive. Furthermore, we found novel RNA targets for the MS2 phage coat protein that served us as control. Our results indicate that RNA binding of metabolic enzymes in procaryotes is less frequent than suggested by the results of high-throughput studies, but does occur.
Collapse
Affiliation(s)
- Thomas Klein
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Franziska Funke
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Faculty of Biology and Chemistry, University of Giessen, D-35392 Giessen, Germany
| | - Gerhard Lehmann
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Michael Vockenhuber
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Jan Medenbach
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Beatrix Suess
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
3
|
Ding Y, Fan B, Zhu C, Chen Z. Shared and Related Molecular Targets and Actions of Salicylic Acid in Plants and Humans. Cells 2023; 12:219. [PMID: 36672154 PMCID: PMC9856608 DOI: 10.3390/cells12020219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Salicylic acid (SA) is a phenolic compound produced by all plants that has an important role in diverse processes of plant growth and stress responses. SA is also the principal metabolite of aspirin and is responsible for many of the anti-inflammatory, cardioprotective and antitumor activities of aspirin. As a result, the number of identified SA targets in both plants and humans is large and continues to increase. These SA targets include catalases/peroxidases, metabolic enzymes, protein kinases and phosphatases, nucleosomal and ribosomal proteins and regulatory and signaling proteins, which mediate the diverse actions of SA in plants and humans. While some of these SA targets and actions are unique to plants or humans, many others are conserved or share striking similarities in the two types of organisms, which underlie a host of common biological processes that are regulated or impacted by SA. In this review, we compare shared and related SA targets and activities to highlight the common nature of actions by SA as a hormone in plants versus a therapeutic agent in humans. The cross examination of SA targets and activities can help identify new actions of SA and better explain their underlying mechanisms in plants and humans.
Collapse
Affiliation(s)
- Yuanyuan Ding
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
4
|
Wegener M, Dietz KJ. The mutual interaction of glycolytic enzymes and RNA in post-transcriptional regulation. RNA (NEW YORK, N.Y.) 2022; 28:1446-1468. [PMID: 35973722 PMCID: PMC9745834 DOI: 10.1261/rna.079210.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
About three decades ago, researchers suggested that metabolic enzymes participate in cellular processes that are unrelated to their catalytic activity, and the term "moonlighting functions" was proposed. Recently developed advanced technologies in the field of RNA interactome capture now unveil the unexpected RNA binding activity of many metabolic enzymes, as exemplified here for the enzymes of glycolysis. Although for most of these proteins a precise binding mechanism, binding conditions, and physiological relevance of the binding events still await in-depth clarification, several well explored examples demonstrate that metabolic enzymes hold crucial functions in post-transcriptional regulation of protein synthesis. This widely conserved RNA-binding function of glycolytic enzymes plays major roles in controlling cell activities. The best explored examples are glyceraldehyde 3-phosphate dehydrogenase, enolase, phosphoglycerate kinase, and pyruvate kinase. This review summarizes current knowledge about the RNA-binding activity of the ten core enzymes of glycolysis in plant, yeast, and animal cells, its regulation and physiological relevance. Apparently, a tight bidirectional regulation connects core metabolism and RNA biology, forcing us to rethink long established functional singularities.
Collapse
Affiliation(s)
- Melanie Wegener
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
5
|
Chico V, Salvador-Mira ME, Nombela I, Puente-Marin S, Ciordia S, Mena MC, Perez L, Coll J, Guzman F, Encinar JA, Mercado L, Ortega-Villaizan MDM. IFIT5 Participates in the Antiviral Mechanisms of Rainbow Trout Red Blood Cells. Front Immunol 2019; 10:613. [PMID: 31040842 PMCID: PMC6476978 DOI: 10.3389/fimmu.2019.00613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) infection appears to be halted in rainbow trout nucleated red blood cells (RBCs). Diverse mechanisms are thought to be related to the antiviral immune response of rainbow trout RBCs to VHSV. However, the specific rainbow trout RBC proteins that interact directly with VHSV are still unknown. In an attempt to identify VHSV-RBC protein interactions, we characterized the immunoprecipitated (IP) proteome of RBCs exposed to VHSV using an antibody against the N protein of VHSV. The IP proteomic characterization identified 31 proteins by mass spectrometry analysis. Among them, we identified interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), a protein belonging to a family of proteins that are induced after the production of type I interferon. Importantly, IFIT5 has been implicated in the antiviral immune response. We confirmed the participation of IFIT5 in the rainbow trout RBC antiviral response by examining the expression profile of IFIT5 in RBCs after VHSV exposure at transcriptional and protein levels. We detected a correlation between the highest IFIT5 expression levels and the decline in VHSV replication at 6 h post-exposure. In addition, silencing ifit5 resulted in a significant increase in VHSV replication in RBCs. Moreover, an increase in VHSV replication was observed in RBCs when the IFIT5 RNA-binding pocket cavity was modulated by using a natural compound from the SuperNatural II database. We performed a proximity ligation assay and detected a significant increase in positive cells among VHSV-exposed RBCs compared to unexposed RBCs, indicating protein-protein colocalization between IFIT5 and the glycoprotein G of VHSV. In summary, these results suggest a possible role of IFIT5 in the antiviral response of RBCs against VHSV.
Collapse
Affiliation(s)
- Veronica Chico
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Maria Elizabhet Salvador-Mira
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Ivan Nombela
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Sara Puente-Marin
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - María Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Luis Perez
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Julio Coll
- Departamento de Biotecnología, Instituto Nacional de Investigaciones y Tecnologías Agrarias y Alimentarias (INIA), Madrid, Spain
| | - Fanny Guzman
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Jose Antonio Encinar
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Maria Del Mar Ortega-Villaizan
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| |
Collapse
|
6
|
Silva EM, Conde JN, Allonso D, Ventura GT, Coelho DR, Carneiro PH, Silva ML, Paes MV, Rabelo K, Weissmuller G, Bisch PM, Mohana-Borges R. Dengue virus nonstructural 3 protein interacts directly with human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and reduces its glycolytic activity. Sci Rep 2019; 9:2651. [PMID: 30804377 PMCID: PMC6389977 DOI: 10.1038/s41598-019-39157-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Dengue is an important mosquito-borne disease and a global public health problem. The disease is caused by dengue virus (DENV), which is a member of the Flaviviridae family and contains a positive single-stranded RNA genome that encodes a single precursor polyprotein that is further cleaved into structural and non-structural proteins. Among these proteins, the non-structural 3 (NS3) protein is very important because it forms a non-covalent complex with the NS2B cofactor, thereby forming the functional viral protease. NS3 also contains a C-terminal ATPase/helicase domain that is essential for RNA replication. Here, we identified 47 NS3-interacting partners using the yeast two-hybrid system. Among those partners, we highlight several proteins involved in host energy metabolism, such as apolipoprotein H, aldolase B, cytochrome C oxidase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). GAPDH directly binds full-length NS3 and its isolated helicase and protease domains. Moreover, we observed an intense colocalization between the GAPDH and NS3 proteins in DENV2-infected Huh7.5.1 cells, in NS3-transfected BHK-21 cells and in hepatic tissue from a fatal dengue case. Taken together, these results suggest that the human GAPDH-DENV NS3 interaction is involved in hepatic metabolic alterations, which may contribute to the appearance of steatosis in dengue-infected patients. The interaction between GAPDH and full-length NS3 or its helicase domain in vitro as well as in NS3-transfected cells resulted in decreased GAPDH glycolytic activity. Reduced GAPDH glycolytic activity may lead to the accumulation of metabolic intermediates, shifting metabolism to alternative, non-glycolytic pathways. This report is the first to identify the interaction of the DENV2 NS3 protein with the GAPDH protein and to demonstrate that this interaction may play an important role in the molecular mechanism that triggers hepatic alterations.
Collapse
Affiliation(s)
- Emiliana M Silva
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Jonas N Conde
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gustavo T Ventura
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Diego R Coelho
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Pedro Henrique Carneiro
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Manuela L Silva
- Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Marciano V Paes
- Laboratório Interdisciplinar de Pesquisa Médica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Kíssila Rabelo
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gilberto Weissmuller
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Paulo Mascarello Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.
| |
Collapse
|
7
|
Daher M, Widom JR, Tay W, Walter NG. Soft Interactions with Model Crowders and Non-canonical Interactions with Cellular Proteins Stabilize RNA Folding. J Mol Biol 2017; 430:509-523. [PMID: 29128594 DOI: 10.1016/j.jmb.2017.10.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Living cells contain diverse biopolymers, creating a heterogeneous crowding environment, the impact of which on RNA folding is poorly understood. Here, we have used single-molecule fluorescence resonance energy transfer to monitor tertiary structure formation of the hairpin ribozyme as a model to probe the effects of polyethylene glycol and yeast cell extract as crowding agents. As expected, polyethylene glycol stabilizes the docked, catalytically active state of the ribozyme, in part through excluded volume effects; unexpectedly, we found evidence that it additionally displays soft, non-specific interactions with the ribozyme. Yeast extract has a profound effect on folding at protein concentrations 1000-fold lower than found intracellularly, suggesting the dominance of specific interactions over volume exclusion. Gel shift assays and affinity pull-down followed by mass spectrometry identified numerous non-canonical RNA-binding proteins that stabilize ribozyme folding; the apparent chaperoning activity of these ubiquitous proteins significantly compensates for the low-counterion environment of the cell.
Collapse
Affiliation(s)
- May Daher
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Julia R Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Wendy Tay
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
8
|
Maraia RJ, Mattijssen S, Cruz-Gallardo I, Conte MR. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. WILEY INTERDISCIPLINARY REVIEWS. RNA 2017; 8:10.1002/wrna.1430. [PMID: 28782243 PMCID: PMC5647580 DOI: 10.1002/wrna.1430] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Commissioned Corps, U.S. Public Health Service, Rockville, MD USA
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Isabel Cruz-Gallardo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| |
Collapse
|
9
|
Non-Canonical Roles of Dengue Virus Non-Structural Proteins. Viruses 2017; 9:v9030042. [PMID: 28335410 PMCID: PMC5371797 DOI: 10.3390/v9030042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae family comprises a number of human pathogens, which, although sharing structural and functional features, cause diseases with very different outcomes. This can be explained by the plurality of functions exerted by the few proteins coded by viral genomes, with some of these functions shared among members of a same family, but others being unique for each virus species. These non-canonical functions probably have evolved independently and may serve as the base to the development of specific therapies for each of those diseases. Here it is discussed what is currently known about the non-canonical roles of dengue virus (DENV) non-structural proteins (NSPs), which may account for some of the effects specifically observed in DENV infection, but not in other members of the Flaviviridae family. This review explores how DENV NSPs contributes to the physiopathology of dengue, evasion from host immunity, metabolic changes, and redistribution of cellular components during infection.
Collapse
|
10
|
Abstract
Aside from its well-established role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been shown to possess many key functions in cells. These functions are regulated by protein oligomerization , biomolecular interactions, post-translational modifications , and variations in subcellular localization . Several GAPDH functions and regulatory mechanisms overlap with one another and converge around its role in intermediary metabolism. Several structural determinants of the protein dictate its function and regulation. GAPDH is ubiquitously expressed and is found in all domains of life. GAPDH has been implicated in many diseases, including those of pathogenic, cardiovascular, degenerative, diabetic, and tumorigenic origins. Understanding the mechanisms by which GAPDH can switch between its functions and how these functions are regulated can provide insights into ways the protein can be modulated for therapeutic outcomes.
Collapse
|
11
|
Kishimoto N, Onitsuka-Kishimoto A, Iga N, Takamune N, Shoji S, Misumi S. The C-terminal domain of glyceraldehyde 3-phosphate dehydrogenase plays an important role in suppression of tRNA Lys3 packaging into human immunodeficiency virus type-1 particles. Biochem Biophys Rep 2016; 8:325-332. [PMID: 28955972 PMCID: PMC5614461 DOI: 10.1016/j.bbrep.2016.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/03/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) requires the packaging of human tRNALys3 as a primer for effective viral reverse transcription. Previously, we reported that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) suppresses the packaging efficiency of tRNALys3. Although the binding of GAPDH to Pr55gag is important for the suppression mechanism, it remains unclear which domain of GAPDH is responsible for the interaction with Pr55gag. In this study, we show that Asp256, Lys260, Lys263 and Glu267 of GAPDH are important for the suppression of tRNALys3 packaging. Yeast two-hybrid analysis demonstrated that the C-terminal domain of GAPDH (151–335) interacts with both the matrix region (MA; 1–132) and capsid N-terminal domain (CA-NTD; 133–282). The D256R, K263E or E267R mutation of GAPDH led to the loss of the ability to bind to wild-type (WT) MA, and the D256R/K260E double mutation of GAPDH resulted in the loss of detectable binding activity to WT CA-NTD. In contrast, R58E, Q59A or Q63A of MA, and E76R or R82E of CA-NTD abrogated the interaction with the C-terminal domain of GAPDH. Multiple-substituted GAPDH mutant (D256R/K260E/K263E/E267R) retained the oligomeric formation with WT GAPDH in HIV-1 producing cells, but the incorporation level of the hetero-oligomer was decreased in viral particles. Furthermore, the viruses produced from cells expressing the D256R/K260E/K263E/E267R mutant restored tRNALys3 packaging efficiency because the mutant exerted a dominant negative effect by preventing WT GAPDH from binding to MA and CA-NTD and improved the reverse transcription. These findings indicate that the amino acids Asp256, Lys260, Lys263 and Glu267 of GAPDH is essential for the mechanism of tRNALys3-packaging suppression and the D256R/K260E/K263E/E267R mutant of GAPDH acts in a dominant negative manner to suppress tRNALys3 packaging. Yeast two-hybrid analysis revealed that GAPDH interacts with MA and CA region of HIV-1 precursor proteins via its C-terminal domain. Docking simulation predicted that GAPDH helix 10, which is exposed on surface of its tetrameric form surface, interacts with MA and CA. Mutagenesis assay on yeast two-hybrid analysis showed that D256R/K260E/K263E/E267R mutant of GAPDH lacks the binding affinity to both MA and CA. D256R/K260E/K263E/E267R mutant of GAPDH acts as dominant negative effector on the packaging of tRNALys3.
Collapse
Affiliation(s)
- Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Ayano Onitsuka-Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Nozomi Iga
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Nobutoki Takamune
- Innovative Collaboration Organization, Kumamoto University, Kumamoto 860-8555, Japan
| | - Shozo Shoji
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
12
|
Parainfluenza virus chimeric mini-replicons indicate a novel regulatory element in the leader promoter. J Gen Virol 2016; 97:1520-1530. [DOI: 10.1099/jgv.0.000479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
White MR, Garcin ED. The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:53-70. [PMID: 26564736 DOI: 10.1002/wrna.1315] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 01/26/2023]
Abstract
The glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has a vast array of extraglycolytic cellular functions, including interactions with nucleic acids. GAPDH has been implicated in the translocation of transfer RNA (tRNA), the regulation of cellular messenger RNA (mRNA) stability and translation, as well as the regulation of replication and gene expression of many single-stranded RNA viruses. A growing body of evidence supports GAPDH-RNA interactions serving as part of a larger coordination between intermediary metabolism and RNA biogenesis. Despite the established role of GAPDH in nucleic acid regulation, it is still unclear how and where GAPDH binds to its RNA targets, highlighted by the absence of any conserved RNA-binding sequences. This review will summarize our current understanding of GAPDH-mediated regulation of RNA function. WIREs RNA 2016, 7:53-70. doi: 10.1002/wrna.1315 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michael R White
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, USA
| | - Elsa D Garcin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, USA
| |
Collapse
|
14
|
Abstract
Immune cells are highly dynamic in terms of their growth, proliferation, and effector functions as they respond to immunological challenges. Different immune cells can adopt distinct metabolic configurations that allow the cell to balance its requirements for energy, molecular biosynthesis, and longevity. However, in addition to facilitating immune cell responses, it is now becoming clear that cellular metabolism has direct roles in regulating immune cell function. This review article describes the distinct metabolic signatures of key immune cells, explains how these metabolic setups facilitate immune function, and discusses the emerging evidence that intracellular metabolism has an integral role in controlling immune responses.
Collapse
Affiliation(s)
| | - David K Finlay
- From the School of Biochemistry and Immunology and School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
15
|
Glucose, glycolysis and lymphocyte responses. Mol Immunol 2015; 68:513-9. [PMID: 26260211 DOI: 10.1016/j.molimm.2015.07.034] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/15/2015] [Accepted: 07/26/2015] [Indexed: 12/18/2022]
Abstract
Activated lymphocytes engage in robust growth and rapid proliferation. To achieve this, they tend to adopt a form of glucose metabolism termed aerobic glycolysis. This type of metabolism allows for the use of large amounts of glucose to generate energy, but also to support biosynthetic processes. This review article will discuss how aerobic glycolysis supports the biosynthetic demands of activated T cells, B cells and Natural Killer cells, and the emerging concept that glycolysis is integrally linked to the differentiation and function of these lymphocyte populations.
Collapse
|
16
|
Abstract
Natural killer (NK) cells have key roles in anti-viral and anti-tumour immune responses. Recent research demonstrates that cellular metabolism is an important determinant for the function of pro-inflammatory immune cells, including activated NK cells. The mammalian target of rapamcyin (mTOR) complex 1 (mTORC1) has been identified as a key metabolic regulator that promotes glycolytic metabolism in multiple immune cell subsets. Glycolysis is integrally linked to pro-inflammatory immune responses such that activated NK cells and effector T-cell subsets are reliant on sufficient glucose availability for maximal effector function. This article will discuss the regulation of cellular metabolism in NK cells as compared with that of T lymphocytes and discuss the implications for NK cell responses to viral infection and cancer.
Collapse
|
17
|
Abstract
Apurinic/apyrimidinic (AP) sites are some of the most frequent DNA damages and the key intermediates of base excision repair. Certain proteins can interact with the deoxyribose of the AP site to form a Schiff base, which can be stabilized by NaBH4 treatment. Several types of DNA containing the AP site were used to trap proteins in human cell extracts by this method. In the case of single-stranded AP DNA and AP DNA duplex with both 5' and 3' dangling ends, the major crosslinking product had an apparent molecular mass of 45 kDa. Using peptide mass mapping based on mass spectrometry data, we identified the protein forming this adduct as an isoform of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) called "uracil-DNA glycosylase". GAPDH is a glycolytic enzyme with many additional putative functions, which include interaction with nucleic acids, different DNA damages and DNA repair enzymes. We investigated interaction of GAPDH purified from HeLa cells and rabbit muscles with different AP DNAs. In spite of the ability to form a Schiff-base intermediate with the deoxyribose of the AP site, GAPDH does not display the AP lyase activity. In addition, along with the borohydride-dependent adducts with AP DNAs containing single-stranded regions, GAPDH was also shown to form the stable borohydride-independent crosslinks with these AP DNAs. GAPDH was proven to crosslink preferentially to AP DNAs cleaved via the β-elimination mechanism (spontaneously or by AP lyases) as compared to DNAs containing the intact AP site. The level of GAPDH-AP DNA adduct formation depends on oxidation of the protein SH-groups; disulfide bond reduction in GAPDH leads to the loss of its ability to form the adducts with AP DNA. A possible role of formation of the stable adducts with AP sites by GAPDH is discussed.
Collapse
|
18
|
Tian M, Sasvari Z, Gonzalez PA, Friso G, Rowland E, Liu XM, van Wijk KJ, Nagy PD, Klessig DF. Salicylic Acid Inhibits the Replication of Tomato bushy stunt virus by Directly Targeting a Host Component in the Replication Complex. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:379-86. [PMID: 25584724 DOI: 10.1094/mpmi-09-14-0259-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although the plant hormone salicylic acid (SA) plays a central role in signaling resistance to viral infection, the underlying mechanisms are only partially understood. Identification and characterization of SA's direct targets have been shown to be an effective strategy for dissecting the complex SA-mediated defense signaling network. In search of additional SA targets, we previously developed two sensitive approaches that utilize SA analogs in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology to identify and evaluate candidate SA-binding proteins (SABPs) from Arabidopsis. Using these approaches, we have now identified several members of the Arabidopsis glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein family, including two chloroplast-localized and two cytosolic isoforms, as SABPs. Cytosolic GAPDH is a well-known glycolytic enzyme; it also is an important host factor involved in the replication of Tomato bushy stunt virus (TBSV), a single-stranded RNA virus. Using a yeast cell-free extract, an in vivo yeast replication system, and plant protoplasts, we demonstrate that SA inhibits TBSV replication. SA does so by inhibiting the binding of cytosolic GAPDH to the negative (-)RNA strand of TBSV. Thus, this study reveals a novel molecular mechanism through which SA regulates virus replication.
Collapse
Affiliation(s)
- Miaoying Tian
- 1 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kunjithapatham R, Geschwind JF, Devine L, Boronina TN, O'Meally RN, Cole RN, Torbenson MS, Ganapathy-Kanniappan S. Occurrence of a multimeric high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum. J Proteome Res 2015; 14:1645-56. [PMID: 25734908 DOI: 10.1021/acs.jproteome.5b00089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.
Collapse
Affiliation(s)
- Rani Kunjithapatham
- †Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Jean-Francois Geschwind
- †Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Lauren Devine
- ‡Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Tatiana N Boronina
- ‡Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Robert N O'Meally
- ‡Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Robert N Cole
- ‡Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Michael S Torbenson
- §Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Shanmugasundaram Ganapathy-Kanniappan
- †Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
20
|
Zapata JC, Salvato MS. Genomic profiling of host responses to Lassa virus: therapeutic potential from primate to man. Future Virol 2015; 10:233-256. [PMID: 25844088 DOI: 10.2217/fvl.15.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lassa virus infection elicits distinctive changes in host gene expression and metabolism. We focus on changes in host gene expression that may be biomarkers that discriminate individual pathogens or may help to provide a prognosis for disease. In addition to assessing mRNA changes, functional studies are also needed to discriminate causes of disease from mechanisms of host resistance. Host responses that drive pathogenesis are likely to be targets for prevention or therapy. Host responses to Lassa or its related arenaviruses have been monitored in cell culture, in animal models of hemorrhagic fever, in Lassa-infected nonhuman primates and, to a limited extent, in infected human beings. Here, we describe results from those studies and discuss potential targets for reducing virus replication and mitigating disease.
Collapse
Affiliation(s)
- Juan C Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Maria S Salvato
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
White MR, Khan MM, Deredge D, Ross CR, Quintyn R, Zucconi BE, Wysocki VH, Wintrode PL, Wilson GM, Garcin ED. A dimer interface mutation in glyceraldehyde-3-phosphate dehydrogenase regulates its binding to AU-rich RNA. J Biol Chem 2014; 290:1770-85. [PMID: 25451934 DOI: 10.1074/jbc.m114.618165] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme best known for its role in glycolysis. However, extra-glycolytic functions of GAPDH have been described, including regulation of protein expression via RNA binding. GAPDH binds to numerous adenine-uridine rich elements (AREs) from various mRNA 3'-untranslated regions in vitro and in vivo despite its lack of a canonical RNA binding motif. How GAPDH binds to these AREs is still unknown. Here we discovered that GAPDH binds with high affinity to the core ARE from tumor necrosis factor-α mRNA via a two-step binding mechanism. We demonstrate that a mutation at the GAPDH dimer interface impairs formation of the second RNA-GAPDH complex and leads to changes in the RNA structure. We investigated the effect of this interfacial mutation on GAPDH oligomerization by crystallography, small-angle x-ray scattering, nano-electrospray ionization native mass spectrometry, and hydrogen-deuterium exchange mass spectrometry. We show that the mutation does not significantly affect GAPDH tetramerization as previously proposed. Instead, the mutation promotes short-range and long-range dynamic changes in regions located at the dimer and tetramer interface and in the NAD(+) binding site. These dynamic changes are localized along the P axis of the GAPDH tetramer, suggesting that this region is important for RNA binding. Based on our results, we propose a model for sequential GAPDH binding to RNA via residues located at the dimer and tetramer interfaces.
Collapse
Affiliation(s)
- Michael R White
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Mohd M Khan
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Christina R Ross
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Royston Quintyn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Beth E Zucconi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Elsa D Garcin
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250,
| |
Collapse
|
22
|
Chen WT, Wu YL, Chen T, Cheng CS, Chan HL, Chou HC, Chen YW, Yin HS. Proteomics analysis of the DF-1 chicken fibroblasts infected with avian reovirus strain S1133. PLoS One 2014; 9:e92154. [PMID: 24667214 PMCID: PMC3965424 DOI: 10.1371/journal.pone.0092154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Avian reovirus (ARV) is a member of the Orthoreovirus genus in the Reoviridae family. It is the etiological agent of several diseases, among which viral arthritis and malabsorption syndrome are the most commercially important, causing considerable economic losses in the poultry industry. Although a small but increasing number of reports have characterized some aspects of ARV infection, global changes in protein expression in ARV-infected host cells have not been examined. The current study used a proteomics approach to obtain a comprehensive view of changes in protein levels in host cells upon infection by ARV. METHODOLOGY AND PRINCIPAL FINDINGS The proteomics profiles of DF-1 chicken fibroblast cells infected with ARV strain S1133 were analyzed by two-dimensional differential-image gel electrophoresis. The majority of protein expression changes (≥ 1.5 fold, p<0.05) occurred at 72 h post-infection. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified 51 proteins with differential expression levels, including 25 that were upregulated during ARV infection and 26 that were downregulated. These proteins were divided into eight groups according to biological function: signal transduction, stress response, RNA processing, the ubiquitin-proteasome pathway, lipid metabolism, carbohydrate metabolism, energy metabolism, and cytoskeleton organization. They were further examined by immunoblotting to validate the observed alterations in protein expression. CONCLUSION/SIGNIFICANCE This is the first report of a time-course proteomic analysis of ARV-infected host cells. Notably, all identified proteins involved in signal transduction, RNA processing, and the ubiquitin-proteasome pathway were downregulated in infected cells, whereas proteins involved in DNA synthesis, apoptosis, and energy production pathways were upregulated. In addition, other differentially expressed proteins were linked with the cytoskeleton, metabolism, redox regulation, and stress response. These proteomics data provide valuable information about host cell responses to ARV infection and will facilitate further studies of the molecular mechanisms underlying ARV pathogenesis.
Collapse
Affiliation(s)
- Wen-Ting Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Le Wu
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Sheng Cheng
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiu-Chuan Chou
- Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan
| | - Yi-Wen Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsien-Sheng Yin
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
23
|
Ganapathy-Kanniappan S, Kunjithapatham R, Geschwind JF. Glyceraldehyde-3-phosphate dehydrogenase: a promising target for molecular therapy in hepatocellular carcinoma. Oncotarget 2013; 3:940-53. [PMID: 22964488 PMCID: PMC3660062 DOI: 10.18632/oncotarget.623] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most highly lethal malignancies ranking as the third leading-cause of cancer-related death worldwide. Although surgical resection and transplantation are effective curative therapies, very few patients qualify for such treatments due to the advanced stage of the disease at diagnosis. In this context, loco-regional therapies provide a viable therapeutic alternative with minimal systemic toxicity. However, as chemoresistance and tumor recurrence negatively impact the success of therapy resulting in poorer patient outcomes it is imperative to identify new molecular target(s) in cancer cells that could be effectively targeted by novel agents. Recent research has demonstrated that proliferation in HCC is associated with increased glucose metabolism. The glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a multifunctional protein primarily recognized for its role in glucose metabolism, has already been shown to affect the proliferative potential of cancer cells. In human HCC, the increased expression of GAPDH is invariably associated with enhanced glycolytic capacity facilitating tumor progression. Though it is not yet known whether GAPDH up-regulation contributes to tumorigenesis sensu stricto, emerging evidence points to the existence of a link between GAPDH up-regulation and the promotion of survival mechanisms in cancer cells as well as chemoresistance. The involvement of GAPDH in several hepatocarcinogenic mechanisms (e.g. viral hepatitis, metabolic alterations) and its sensitivity to a new class of prospective anticancer agents prompted us to review the current understanding of the therapeutic potential of targeting GAPDH in HCC.
Collapse
|
24
|
Roth JP, Li JKK, Morrey JD, Barnard DL, Vollmer AH. Deletion of the D domain of the human parainfluenza virus type 3 (HPIV3) PD protein results in decreased viral RNA synthesis and beta interferon (IFN-β) expression. Virus Genes 2013; 47:10-9. [PMID: 23686695 DOI: 10.1007/s11262-013-0919-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/09/2013] [Indexed: 11/27/2022]
Abstract
The human parainfluenza virus type 3 (HPIV3) phosphoprotein (P) gene is unusual as it contains an editing site where nontemplated ribonucleotide residues can be inserted. This RNA editing can lead to the expression of the viral P, PD, putative W, and theoretical V protein from a single gene. Although the HPIV3 PD protein has been detected, its function and those of the W and V proteins are poorly understood. Therefore, we first used reverse genetics techniques to construct and rescue a recombinant (r)HPIV3 clone with a polyhistidine sequence at the 5' end of the P gene for tagged protein detection. Western blot analysis demonstrated the presence of the P, PD, and W proteins, but no V protein was detected. Then, we functionally studied the D domain of the PD protein by constructing two rHPIV3 knockout clones that are deficient in the expression of the D domain. Results from growth kinetic studies with infected MA-104 and A596 cells showed that viral replication of the two knockout viruses (rHPIV3-ΔES and rHPIV3-ΔD) was comparable to that of the parental virus in both cell lines. However, viral mRNA transcription and genomic replication was significantly reduced. Furthermore, cytokine/chemokine profiles of A549 cells infected with either knockout virus were unchanged or showed lower levels compared to those from cells infected with the parental virus. These data suggest that the D domain of the PD protein may play a luxury role in HPIV3 RNA synthesis and may also be involved in disrupting the expression of beta interferon.
Collapse
Affiliation(s)
- Jason P Roth
- Department of Animal, Dairy, and Veterinary Sciences, Institute for Antiviral Research, Utah State University, 5600 Old Main Hill, Logan, UT 84322-5600, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
There is increasing evidence to support a gene economy model that is fully based on the principles of evolution in which a limited number of proteins does not necessarily reflect a finite number of biochemical processes. The concept of 'gene sharing' proposes that a single protein can have alternate functions that are typically attributed to other proteins. GAPDH appears to play this role quite well in that it exhibits more than one function. GAPDH represents the prototype for this new paradigm of protein multi-functionality. The chapter discusses the diverse functions of GAPDH among three broad categories: cell structure, gene expression and signal transduction. Protein function is curiously re-specified given the cell's unique needs. GAPDH provides the cell with the means of linking metabolic activity to various cellular processes. While interpretations may often lead to GAPDH's role in meeting focal energy demands, this chapter discusses several other very distinct GAPDH functions (i.e. membrane fusogenic properties) that are quite different from its ability to catalyze oxidative phosphorylation of the triose, glyceraldehyde 3-phosphate. It is suggested that a single protein participates in multiple processes in the structural organization of the cell, controls the transmission of genetic information (i.e. GAPDH's involvement may not be finite) and mediates intracellular signaling.
Collapse
|
26
|
Kishimoto N, Onitsuka A, Kido K, Takamune N, Shoji S, Misumi S. Glyceraldehyde 3-phosphate dehydrogenase negatively regulates human immunodeficiency virus type 1 infection. Retrovirology 2012; 9:107. [PMID: 23237566 PMCID: PMC3531276 DOI: 10.1186/1742-4690-9-107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Host proteins are incorporated inside human immunodeficiency virus type 1 (HIV-1) virions during assembly and can either positively or negatively regulate HIV-1 infection. Although the identification efficiency of host proteins is improved by mass spectrometry, how those host proteins affect HIV-1 replication has not yet been fully clarified. RESULTS In this study, we show that virion-associated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) does not allosterically inactivate HIV-1 reverse transcriptase (RT) but decreases the efficiency of reverse transcription reactions by decreasing the packaging efficiency of lysyl-tRNA synthetase (LysRS) and tRNA(Lys3) into HIV-1 virions. Two-dimensional (2D) gel electrophoresis demonstrated that some isozymes of GAPDH with different isoelectric points were expressed in HIV-1-producing CEM/LAV-1 cells, and a proportion of GAPDH was selectively incorporated into the virions. Suppression of GAPDH expression by RNA interference in CEM/LAV-1 cells resulted in decreased GAPDH packaging inside the virions, and the GAPDH-packaging-defective virus maintained at least control levels of viral production but increased the infectivity. Quantitative analysis of reverse transcription products indicated that the levels of early cDNA products of the GAPDH-packaging-defective virus were higher than those of the control virus owing to the higher packaging efficiencies of LysRS and tRNA(Lys3) into the virions rather than the GAPDH-dependent negative allosteric modulation for RT. Furthermore, immunoprecipitation assay using an anti-GAPDH antibody showed that GAPDH directly interacted with Pr55(gag) and p160(gag)-pol and the overexpression of LysRS in HIV-1-producing cells resulted in a decrease in the efficiency of GAPDH packaging in HIV particles. In contrast, the viruses produced from cells expressing a high level of GAPDH showed decreased infectivity in TZM-bl cells and reverse transcription efficiency in TZM-bl cells and peripheral blood mononuclear cells (PBMCs). CONCLUSIONS These findings indicate that GAPDH negatively regulates HIV-1 infection and provide insights into a novel function of GAPDH in the HIV-1 life cycle and a new host defense mechanism against HIV-1 infection.
Collapse
Affiliation(s)
- Naoki Kishimoto
- Department of Pharmaceutical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has long been recognized as an important enzyme for energy metabolism and the production of ATP and pyruvate through anaerobic glycolysis in the cytoplasm. Recent studies have shown that GAPDH has multiple functions independent of its role in energy metabolism. Although increased GAPDH gene expression and enzymatic function is associated with cell proliferation and tumourigenesis, conditions such as oxidative stress impair GAPDH catalytic activity and lead to cellular aging and apoptosis. The mechanism(s) underlying the effects of GAPDH on cellular proliferation remains unclear, yet much evidence has been accrued that demonstrates a variety of interacting partners for GAPDH, including proteins, various RNA species and telomeric DNA. The present mini review summarizes recent findings relating to the extraglycolytic functions of GAPDH and highlights the significant role this enzyme plays in regulating both cell survival and apoptotic death.
Collapse
Affiliation(s)
- Craig Nicholls
- Molecular Signalling Laboratory, Murdoch Childrens Research Institute, Monash University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
28
|
Huang TS, Nagy PD. Direct inhibition of tombusvirus plus-strand RNA synthesis by a dominant negative mutant of a host metabolic enzyme, glyceraldehyde-3-phosphate dehydrogenase, in yeast and plants. J Virol 2011; 85:9090-102. [PMID: 21697488 PMCID: PMC3165801 DOI: 10.1128/jvi.00666-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 06/08/2011] [Indexed: 12/12/2022] Open
Abstract
The replication of plus-strand RNA viruses depends on many cellular factors. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an abundant metabolic enzyme that is recruited to the replicase complex of Tomato bushy stunt virus (TBSV) and affects asymmetric viral RNA synthesis. To further our understanding on the role of GAPDH in TBSV replication, we used an in vitro TBSV replication assay based on recombinant p33 and p92(pol) viral replication proteins and cell-free yeast extract. We found that the addition of purified recombinant GAPDH to the cell extract prepared from GAPDH-depleted yeast results in increased plus-strand RNA synthesis and asymmetric production of viral RNAs. Our data also demonstrate that GAPDH interacts with p92(pol) viral replication protein, which may facilitate the recruitment of GAPDH into the viral replicase complex in the yeast model host. In addition, we have identified a dominant negative mutant of GAPDH, which inhibits RNA synthesis and RNA recruitment in vitro. Moreover, this mutant also exhibits strong suppression of tombusvirus accumulation in yeast and in virus-infected Nicotiana benthamiana. Overall, the obtained data support the model that the co-opted GAPDH plays a direct role in TBSV replication by stimulating plus-strand synthesis by the viral replicase.
Collapse
Affiliation(s)
- Tyng-Shyan Huang
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| |
Collapse
|
29
|
Prasanth KR, Huang YW, Liou MR, Wang RYL, Hu CC, Tsai CH, Meng M, Lin NS, Hsu YH. Glyceraldehyde 3-phosphate dehydrogenase negatively regulates the replication of Bamboo mosaic virus and its associated satellite RNA. J Virol 2011; 85:8829-40. [PMID: 21715476 PMCID: PMC3165797 DOI: 10.1128/jvi.00556-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/21/2011] [Indexed: 01/24/2023] Open
Abstract
The identification of cellular proteins associated with virus replicase complexes is crucial to our understanding of virus-host interactions, influencing the host range, replication, and virulence of viruses. A previous in vitro study has demonstrated that partially purified Bamboo mosaic virus (BaMV) replicase complexes can be employed for the replication of both BaMV genomic and satellite BaMV (satBaMV) RNAs. In this study, we investigated the BaMV and satBaMV 3' untranslated region (UTR) binding proteins associated with these replicase complexes. Two cellular proteins with molecular masses of ∼35 and ∼55 kDa were specifically cross-linked with RNA elements, whereupon the ∼35-kDa protein was identified as the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Gel mobility shift assays confirmed the direct interaction of GAPDH with the 3' UTR sequences, and competition gel shift analysis revealed that GAPDH binds preferentially to the positive-strand BaMV and satBaMV RNAs over the negative-strand RNAs. It was observed that the GAPDH protein binds to the pseudoknot poly(A) tail of BaMV and stem-loop-C poly(A) tail of satBaMV 3' UTR RNAs. It is important to note that knockdown of GAPDH in Nicotiana benthamiana enhances the accumulation of BaMV and satBaMV RNA; conversely, transient overexpression of GAPDH reduces the accumulation of BaMV and satBaMV RNA. The recombinant GAPDH principally inhibits the synthesis of negative-strand RNA in exogenous RdRp assays. These observations support the contention that cytosolic GAPDH participates in the negative regulation of BaMV and satBaMV RNA replication.
Collapse
Affiliation(s)
- K. Reddisiva Prasanth
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Ming-Ru Liou
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Robert Yung-Liang Wang
- Department of Biomedical Sciences and Research Center for Emerging Viral Infections, Chang Gung University, Tao Yuan 33302, Taiwan, Republic of China
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
30
|
Gerlier D, Lyles DS. Interplay between innate immunity and negative-strand RNA viruses: towards a rational model. Microbiol Mol Biol Rev 2011; 75:468-90, second page of table of contents. [PMID: 21885681 PMCID: PMC3165544 DOI: 10.1128/mmbr.00007-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of a new class of cytosolic receptors recognizing viral RNA, called the RIG-like receptors (RLRs), has revolutionized our understanding of the interplay between viruses and host cells. A tremendous amount of work has been accumulating to decipher the RNA moieties required for an RLR agonist, the signal transduction pathway leading to activation of the innate immunity orchestrated by type I interferon (IFN), the cellular and viral regulators of this pathway, and the viral inhibitors of the innate immune response. Previous reviews have focused on the RLR signaling pathway and on the negative regulation of the interferon response by viral proteins. The focus of this review is to put this knowledge in the context of the virus replication cycle within a cell. Likewise, there has been an expansion of knowledge about the role of innate immunity in the pathophysiology of viral infection. As a consequence, some discrepancies have arisen between the current models of cell-intrinsic innate immunity and current knowledge of virus biology. This holds particularly true for the nonsegmented negative-strand viruses (Mononegavirales), which paradoxically have been largely used to build presently available models. The aim of this review is to bridge the gap between the virology and innate immunity to favor the rational building of a relevant model(s) describing the interplay between Mononegavirales and the innate immune system.
Collapse
Affiliation(s)
- Denis Gerlier
- INSERM U758, CERVI, 21 avenue Tony Garnier, 69007 Lyon, France.
| | | |
Collapse
|
31
|
Inoue Y, Sato H, Fujita K, Tsukiyama-Kohara K, Yoneda M, Kai C. Selective translation of the measles virus nucleocapsid mRNA by la protein. Front Microbiol 2011; 2:173. [PMID: 22007186 PMCID: PMC3188812 DOI: 10.3389/fmicb.2011.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/02/2011] [Indexed: 02/05/2023] Open
Abstract
Measles, caused by measles virus (MeV) infection, is the leading cause of death in children because of secondary infections attributable to MeV-induced immune suppression. Recently, we have shown that wild-type MeVs induce the suppression of protein synthesis in host cells (referred to as “shutoff”) and that viral mRNAs are preferentially translated under shutoff conditions in infected cells. To determine the mechanism behind the preferential translation of viral mRNA, we focused on the 5′ untranslated region (UTR) of nucleocapsid (N) mRNA. The La/SSB autoantigen (La) was found to specifically bind to an N-5′UTR probe. Recombinant La enhanced the translation of luciferase mRNA containing the N-5′UTR (N-fLuc), and RNA interference of La suppressed N-fLuc translation. Furthermore, recombinant MeV lacking the La-binding motif in the N-5′UTR displayed delayed viral protein synthesis and growth kinetics at an early phase of infection. These results suggest that La induced predominant translation of N mRNA via binding to its 5′UTR under shutoff conditions. This is the first report on a cellular factor that specifically regulates paramyxovirus mRNA translation.
Collapse
Affiliation(s)
- Yoshihisa Inoue
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Butterfield DA, Hardas SS, Lange MLB. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many pathways to neurodegeneration. J Alzheimers Dis 2010; 20:369-93. [PMID: 20164570 DOI: 10.3233/jad-2010-1375] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recently, the oxidoreductase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has become a subject of interest as more and more studies reveal a surfeit of diverse GAPDH functions, extending beyond traditional aerobic metabolism of glucose. As a result of multiple isoforms and cellular locales, GAPDH is able to come in contact with a variety of small molecules, proteins, membranes, etc., that play important roles in normal and pathologic cell function. Specifically, GAPDH has been shown to interact with neurodegenerative disease-associated proteins, including the amyloid-beta protein precursor (AbetaPP). Studies from our laboratory have shown significant inhibition of GAPDH dehydrogenase activity in Alzheimer's disease (AD) brain due to oxidative modification. Although oxidative stress and damage is a common phenomenon in the AD brain, it would seem that inhibition of glycolytic enzyme activity is merely one avenue in which AD pathology affects neuronal cell development and survival, as oxidative modification can also impart a toxic gain-of-function to many proteins, including GAPDH. In this review, we examine the many functions of GAPDH with respect to AD brain; in particular, the apparent role(s) of GAPDH in AD-related apoptotic cell death is emphasized.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, University of Kentucky, Center of Membrane Sciences, Lexington, KY40506-0055, USA.
| | | | | |
Collapse
|
33
|
Alcaraz-Estrada SL, Yocupicio-Monroy M, del Angel RM. Insights into dengue virus genome replication. Future Virol 2010. [DOI: 10.2217/fvl.10.49] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since many antiviral drugs are designed to interfere with viral genome replication, understanding this step in the viral replicative cycle has gained importance in recent years. Replication for many RNA viruses occurs in cellular compartments mainly originated from the production and reorganization of virus-induced membranes. Dengue virus translates, replicates and assembles new viral particles within virus-induced membranes from endoplasmic reticulum. In these compartments, all of the components required for replication are recruited, making the process efficient. In addition, membranes protect replication complexes from RNAases and proteases, and ultimately make them less visible to cellular defense sensors. Although several aspects in dengue virus replication are known, many others are yet to be understood. This article aims to summarize the advances in the understanding of dengue virus genome replication, highlighting the cis as well as trans elements that may have key roles in this process.
Collapse
Affiliation(s)
- Sofia Lizeth Alcaraz-Estrada
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F. C.P. 07360
| | - Martha Yocupicio-Monroy
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México, D.F. México
| | | |
Collapse
|
34
|
Kong Q, Xue C, Ren X, Zhang C, Li L, Shu D, Bi Y, Cao Y. Proteomic analysis of purified coronavirus infectious bronchitis virus particles. Proteome Sci 2010; 8:29. [PMID: 20534109 PMCID: PMC2909931 DOI: 10.1186/1477-5956-8-29] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/09/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Infectious bronchitis virus (IBV) is the coronavirus of domestic chickens causing major economic losses to the poultry industry. Because of the complexity of the IBV life cycle and the small number of viral structural proteins, important virus-host relationships likely remain to be discovered. Toward this goal, we performed two-dimensional gel electrophoresis fractionation coupled to mass spectrometry identification approaches to perform a comprehensive proteomic analysis of purified IBV particles. RESULTS Apart from the virus-encoded structural proteins, we detected 60 host proteins in the purified virions which can be grouped into several functional categories including intracellular trafficking proteins (20%), molecular chaperone (18%), macromolcular biosynthesis proteins (17%), cytoskeletal proteins (15%), signal transport proteins (15%), protein degradation (8%), chromosome associated proteins (2%), ribosomal proteins (2%), and other function proteins (3%). Interestingly, 21 of the total host proteins have not been reported to be present in virions of other virus families, such as major vault protein, TENP protein, ovalbumin, and scavenger receptor protein. Following identification of the host proteins by proteomic methods, the presence of 4 proteins in the purified IBV preparation was verified by western blotting and immunogold labeling detection. CONCLUSIONS The results present the first standard proteomic profile of IBV and may facilitate the understanding of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Qingming Kong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Myeloma is associated with suppression of osteoblastogenesis, consequentially resulting in increased osteoclast activity and induction of typical osteolytic bone disease. The molecular mechanisms by which myeloma cells suppress osteoblastogenesis and the consequences of increased osteoblast activity on myeloma cell growth have been partially delineated only recently. Reduced osteoblastogenesis is a consequence of abnormal properties and impaired osteogenic potential of osteoprogenitor cells from myeloma patients and is also the result of production of multiple osteoblastogenesis inhibitors by myeloma cells and by microenvironmental cells within the myelomatous bone. Nevertheless, novel osteoblast-activating agents (e.g. proteasome inhibitor bortezomib) are capable of inducing bone formation in myeloma animal models and clinically. These agents induce increased osteoblast activity, often coupled with a concomitant reduction in osteoclastogenesis, that is strongly associated with reduced myeloma tumor burden. In vitro, osteoblasts, in contrast to osteoclasts, attenuate the growth of myeloma cells from a large subset of patients; potential molecular mechanisms are discussed. These studies suggest that myeloma cells suppress osteoblastogenesis to their advantage and that increased osteoblast activity is a promising approach to treat myeloma bone disease and simultaneously control myeloma development and progression.
Collapse
Affiliation(s)
- Shmuel Yaccoby
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
36
|
Nagy PD, Pogany J. Global genomics and proteomics approaches to identify host factors as targets to induce resistance against Tomato bushy stunt virus. Adv Virus Res 2010; 76:123-77. [PMID: 20965073 PMCID: PMC7173251 DOI: 10.1016/s0065-3527(10)76004-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The success of RNA viruses as pathogens of plants, animals, and humans depends on their ability to reprogram the host cell metabolism to support the viral infection cycle and to suppress host defense mechanisms. Plus-strand (+)RNA viruses have limited coding potential necessitating that they co-opt an unknown number of host factors to facilitate their replication in host cells. Global genomics and proteomics approaches performed with Tomato bushy stunt virus (TBSV) and yeast (Saccharomyces cerevisiae) as a model host have led to the identification of 250 host factors affecting TBSV RNA replication and recombination or bound to the viral replicase, replication proteins, or the viral RNA. The roles of a dozen host factors involved in various steps of the replication process have been validated in yeast as well as a plant host. Altogether, the large number of host factors identified and the great variety of cellular functions performed by these factors indicate the existence of a truly complex interaction between TBSV and the host cell. This review summarizes the advantages of using a simple plant virus and yeast as a model host to advance our understanding of virus–host interactions at the molecular and cellular levels. The knowledge of host factors gained can potentially be used to inhibit virus replication via gene silencing, expression of dominant negative mutants, or design of specific chemical inhibitors leading to novel specific or broad-range resistance and antiviral tools against (+)RNA plant viruses.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| | | |
Collapse
|
37
|
Sikora D, Greco-Stewart VS, Miron P, Pelchat M. The hepatitis delta virus RNA genome interacts with eEF1A1, p54(nrb), hnRNP-L, GAPDH and ASF/SF2. Virology 2009; 390:71-8. [PMID: 19464723 DOI: 10.1016/j.virol.2009.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 03/26/2009] [Accepted: 04/29/2009] [Indexed: 02/08/2023]
Abstract
Because of its extremely limited coding capacity, the hepatitis delta virus (HDV) takes over cellular machineries for its replication and propagation. Despite the functional importance of host factors in both HDV biology and pathogenicity, little is known about proteins that associate with its RNA genome. Here, we report the identification of several host proteins interacting with an RNA corresponding to the right terminal stem-loop domain of HDV genomic RNA, using mass spectrometry on a UV crosslinked ribonucleoprotein complex, RNA affinity chromatography, and screening of a library of purified RNA-binding proteins. Co-immunoprecipitation was used to confirm the interactions of eEF1A1, p54(nrb), hnRNP-L, GAPDH and ASF/SF2 with the right terminal stem-loop domain of HDV genomic RNA in vitro, and with both polarities of HDV RNA within HeLa cells. Our discovery that HDV RNA associates with RNA-processing pathways and translation machinery during its replication provides new insights into HDV biology and its pathogenicity.
Collapse
Affiliation(s)
- Dorota Sikora
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 4111A, Ottawa, Ontario, Canada, K1H 8M5
| | | | | | | |
Collapse
|
38
|
Yang SH, Liu ML, Tien CF, Chou SJ, Chang RY. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interaction with 3' ends of Japanese encephalitis virus RNA and colocalization with the viral NS5 protein. J Biomed Sci 2009; 16:40. [PMID: 19368702 PMCID: PMC2673215 DOI: 10.1186/1423-0127-16-40] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 04/15/2009] [Indexed: 01/26/2023] Open
Abstract
Replication of the Japanese encephalitis virus (JEV) genome depends on host factors for successfully completing their life cycles; to do this, host factors have been recruited and/or relocated to the site of viral replication. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cellular metabolic protein, was found to colocalize with viral RNA-dependent RNA polymerase (NS5) in JEV-infected cells. Subcellular fractionation further indicated that GAPDH remained relatively constant in the cytosol, while increasing at 12 to 24 hours postinfection (hpi) and decreasing at 36 hpi in the nuclear fraction of infected cells. In contrast, the redistribution patterns of GAPDH were not observed in the uninfected cells. Co-immunoprecipitation of GAPDH and JEV NS5 protein revealed no direct protein-protein interaction; instead, GAPDH binds to the 3' termini of plus- and minus-strand RNAs of JEV by electrophoretic mobility shift assays. Accordingly, GAPDH binds to the minus strand more efficiently than to the plus strand of JEV RNAs. This study highlights the findings that infection of JEV changes subcellular localization of GAPDH suggesting that this metabolic enzyme may play a role in JEV replication.
Collapse
Affiliation(s)
- Shang-Hua Yang
- Institute of Biotechnology and Department of Life Science, National Dong Hwa University, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
39
|
Role of glyceraldehyde-3-phosphate dehydrogenase binding to hepatitis B virus posttranscriptional regulatory element in regulating expression of HBV surface antigen. Arch Virol 2009; 154:519-24. [PMID: 19225715 DOI: 10.1007/s00705-009-0326-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 01/29/2009] [Indexed: 12/16/2022]
Abstract
The hepatitis B virus (HBV) posttranscriptional regulatory element (HPRE) has been demonstrated to facilitate the cytoplasmic localization of unspliced transcripts. One cellular protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is known to combine with this element. However, its function on HPRE remains unclear. Here, we show that recombinant GAPDH protein binds to HPRE RNA in vitro in streptavidin pull-down assays. Functional analysis demonstrated that GAPDH inhibited HPRE function in a pDM138-HPRE chloramphenicol acetyltransferase reporter assay system. Overexpression of GAPDH depressed the expression of HBs antigen, as detected both in cells transiently expressing HBs-HPRE and in HepG2.2.15 cells. These data indicate that GAPDH may be involved in the posttranscriptional regulation of HBV, which is critical for the life cycle of HBV.
Collapse
|
40
|
Djavani M, Crasta OR, Zhang Y, Zapata JC, Sobral B, Lechner MG, Bryant J, Davis H, Salvato MS. Gene expression in primate liver during viral hemorrhagic fever. Virol J 2009; 6:20. [PMID: 19216742 PMCID: PMC2657139 DOI: 10.1186/1743-422x-6-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 02/12/2009] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Rhesus macaques infected with lymphocytic choriomeningitis virus (LCMV) provide a model for human Lassa fever. Disease begins with flu-like symptoms and progresses rapidly with fatal consequences. Previously, we profiled the blood transcriptome of LCMV-infected monkeys (M. Djavani et al J. Virol. 2007) showing distinct pre-viremic and viremic stages that discriminated virulent from benign infections. In the present study, changes in liver gene expression from macaques infected with virulent LCMV-WE were compared to gene expression in uninfected monkeys as well as to monkeys that were infected but not diseased. RESULTS Based on a functional pathway analysis of differentially expressed genes, virulent LCMV-WE had a broader effect on liver cell function than did infection with non-virulent LCMV-Armstrong. During the first few days after infection, LCMV altered expression of genes associated with energy production, including fatty acid and glucose metabolism. The transcriptome profile resembled that of an organism in starvation: mRNA for acetyl-CoA carboxylase, a key enzyme of fatty acid synthesis was reduced while genes for enzymes in gluconeogenesis were up-regulated. Expression was also altered for genes associated with complement and coagulation cascades, and with signaling pathways involving STAT1 and TGF-beta. CONCLUSION Most of the 4500 differentially expressed transcripts represented a general response to both virulent and mild infections. However, approximately 250 of these transcripts had significantly different expression in virulent infections as compared to mild infections, with approximately 30 of these being differentially regulated during the pre-viremic stage of infection. The genes that are expressed early and differently in mild and virulent disease are potential biomarkers for prognosis and triage of acute viral disease.
Collapse
Affiliation(s)
- Mahmoud Djavani
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Glyceraldehyde-3-phosphate dehydrogenase regulates endothelin-1 expression by a novel, redox-sensitive mechanism involving mRNA stability. Mol Cell Biol 2008; 28:7139-55. [PMID: 18809573 DOI: 10.1128/mcb.01145-08] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The regulation of the synthesis of the endothelial-derived vasoconstrictor endothelin-1 (ET-1) is a complex process encompassing transcriptional as well as mRNA stability mechanisms. We have described recently the existence of a mechanism for the control of ET-1 expression based on the mRNA-destabilizing capacity of specific cytosolic proteins through interaction with AU-rich elements (AREs) present in the 3' untranslated region of the gene. We now identify glyceraldehyde-3'-phosphate dehydrogenase (GAPDH) as a protein which binds to the AREs and is responsible for the destabilization of the mRNA. Oxidant stress alters the binding of GAPDH to the mRNA and its capacity to modulate ET-1 expression, a phenomenon occurring through specific S glutathionylation of the catalytically active residue Cys 152. Finally, we provide data consistent with a role for GAPDH in mRNA unwinding, yielding this molecule more prone to degradation. In contrast, S-thiolated GAPDH appears unable to modify mRNA unwinding, thus facilitating enhanced stability. Taken together, these results describe a novel, redox-based mechanism regulating mRNA stability and add a new facet to the panoply of GAPDH cellular homeostatic actions.
Collapse
|
42
|
Zhou Y, Yi X, Stoffer JB, Bonafe N, Gilmore-Hebert M, McAlpine J, Chambers SK. The Multifunctional Protein Glyceraldehyde-3-Phosphate Dehydrogenase Is Both Regulated and Controls Colony-Stimulating Factor-1 Messenger RNA Stability in Ovarian Cancer. Mol Cancer Res 2008; 6:1375-84. [DOI: 10.1158/1541-7786.mcr-07-2170] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Bitko V, Musiyenko A, Bayfield MA, Maraia RJ, Barik S. Cellular La protein shields nonsegmented negative-strand RNA viral leader RNA from RIG-I and enhances virus growth by diverse mechanisms. J Virol 2008; 82:7977-87. [PMID: 18550659 PMCID: PMC2519562 DOI: 10.1128/jvi.02762-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 05/29/2008] [Indexed: 12/25/2022] Open
Abstract
The La antigen (SS-B) associates with a wide variety of cellular and viral RNAs to affect gene expression in multiple systems. We show that La is the major cellular protein found to be associated with the abundant 44-nucleotide viral leader RNA (leRNA) early after infection with respiratory syncytial virus (RSV), a nonsegmented negative-strand RNA virus. Consistent with this, La redistributes from the nucleus to the cytoplasm in RSV-infected cells. Upon RNA interference knockdown of La, leRNA is redirected to associate with the RNA-binding protein RIG-I, a known activator of interferon (IFN) gene expression, and this is accompanied by the early induction of IFN mRNA. These results suggest that La shields leRNA from RIG-I, abrogating the early viral activation of type I IFN. We mapped the leRNA binding function to RNA recognition motif 1 of La and showed that while wild-type La greatly enhanced RSV growth, a La mutant defective in RSV leRNA binding also did not support RSV growth. Comparative studies of RSV and Sendai virus and the use of IFN-negative Vero cells indicated that La supports the growth of nonsegmented negative-strand RNA viruses by both IFN suppression and a potentially novel IFN-independent mechanism.
Collapse
Affiliation(s)
- Vira Bitko
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, AL 36688-0002, USA
| | | | | | | | | |
Collapse
|
44
|
Cellular proteins in influenza virus particles. PLoS Pathog 2008; 4:e1000085. [PMID: 18535660 PMCID: PMC2390764 DOI: 10.1371/journal.ppat.1000085] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 05/07/2008] [Indexed: 12/04/2022] Open
Abstract
Virions are thought to contain all the essential proteins that govern virus egress from the host cell and initiation of replication in the target cell. It has been known for some time that influenza virions contain nine viral proteins; however, analyses of other enveloped viruses have revealed that proteins from the host cell can also be detected in virions. To address whether the same is true for influenza virus, we used two complementary mass spectrometry approaches to perform a comprehensive proteomic analysis of purified influenza virus particles. In addition to the aforementioned nine virus-encoded proteins, we detected the presence of 36 host-encoded proteins. These include both cytoplasmic and membrane-bound proteins that can be grouped into several functional categories, such as cytoskeletal proteins, annexins, glycolytic enzymes, and tetraspanins. Interestingly, a significant number of these have also been reported to be present in virions of other virus families. Protease treatment of virions combined with immunoblot analysis was used to verify the presence of the cellular protein and also to determine whether it is located in the core of the influenza virus particle. Immunogold labeling confirmed the presence of membrane-bound host proteins on the influenza virus envelope. The identification of cellular constituents of influenza virions has important implications for understanding the interactions of influenza virus with its host and brings us a step closer to defining the cellular requirements for influenza virus replication. While not all of the host proteins are necessarily incorporated specifically, those that are and are found to have an essential role represent novel targets for antiviral drugs and for attenuation of viruses for vaccine purposes. Viruses are released from infected cells in the form of virions, which contain all the essential factors necessary for initiating infection in a new target cell. For influenza virus, it is known that virions contain the viral genome, a lipid envelope, and at least nine viral proteins. We performed a detailed proteomic analysis of purified influenza virus particles using mass spectrometry and database searching for protein identification, and in addition to the nine viral proteins, we identified 36 host proteins. These host proteins are present both inside the influenza virus particle and on the viral envelope. All viruses require host cell factors to complete their replication cycles, and they also have to contend with the antiviral defense mechanisms of the host. Virus–host interactions may therefore provide the key to understanding viral pathogenesis and may also present us with new targets for the design of antiviral drugs. For influenza virus, information on the requirement of cellular factors is limited, but the description of these 36 host proteins that are packaged into the virion provides a foundation for further analysis into the involvement of these cellular pathways in the influenza virus life cycle.
Collapse
|
45
|
Wang RYL, Nagy PD. Tomato bushy stunt virus co-opts the RNA-binding function of a host metabolic enzyme for viral genomic RNA synthesis. Cell Host Microbe 2008; 3:178-87. [PMID: 18329617 DOI: 10.1016/j.chom.2008.02.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 12/31/2007] [Accepted: 02/14/2008] [Indexed: 02/03/2023]
Abstract
Tomato bushy stunt virus (TBSV), a plus-stranded [(+)] RNA plant virus, incorporates the host metabolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) into the viral replicase complex. Here, we show that, during TBSV replication in yeast, the yeast GAPDH Tdh2p moves from the cytosol to the peroxisomal membrane surface, the site of viral RNA synthesis. In yeast cells lacking Tdh2p, decreasing the levels of its functionally redundant homolog Tdh3p inhibited TBSV replication and resulted in equivalent levels of (+) and minus-stranded [(-)] viral RNA, in contrast to the hallmark excess of (+)RNA. Tdh2p specifically bound an AU pentamer sequence in the (-)RNA, suggesting that GAPDH promotes asymmetric RNA synthesis by selectively retaining the (-)RNA template in the replicase complex. Downregulation of GAPDH in a natural plant host decreased TBSV genomic RNA accumulation. Thus, TBSV co-opts the RNA-binding function of a metabolic protein, helping convert the host cell into a viral factory.
Collapse
|
46
|
Abstract
Genome synthesis in paramyxoviruses, including Nipah virus (NiV), is controlled by sequence elements that reside in the non-coding nucleotides at the 5'-trailer (3'-antigenomic) end that make up the antigenomic promoter (AGP). Using a chloramphenicol acetyl transferase-based plasmid-driven minigenome system, the terminal 96 nt of NiV AGP were first mutagenized in blocks of three hexamers to enable broad mapping of the minigenome functional regions. This was followed by further dissection of these functional regions to define the cis-acting elements contained therein. Results based on RNA analysis and reporter gene activity identified a bipartite promoter structure similar to that seen in related viruses, but with some distinct differences: in NiV, each of the two discrete replication control elements was bimodal, characterized by a critical conserved region (nt 1-12 and 79-91) and a contiguous non-conserved region (nt 13-36 and 73-78), which appeared less important. The regulatory role of these less critical regions was underscored by the use of a two-step mutation strategy, which revealed the additive detrimental effect of substitutions in this part of the terminal element. The structure and sequence characteristics of the internal control element was also different: it involved four contiguous hexamers, and the region encompassing three of these (nt 79-96, corresponding to hexamers 14, 15 and 16), although analogous in position to the equivalent element in the Sendai virus AGP, was characterized by the distinct 5'-(GNNNUG)(14-15)(GNNNNN)(16) motif.
Collapse
Affiliation(s)
- Pramila Walpita
- Departments of Pathology, and Microbiology and Immunology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Clarence J Peters
- Departments of Pathology, and Microbiology and Immunology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
47
|
Kim S, Lee J, Kim J. Regulation of oncogenic transcription factor hTAF(II)68-TEC activity by human glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem J 2007; 404:197-206. [PMID: 17302560 PMCID: PMC1868794 DOI: 10.1042/bj20061297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumour-specific chromosomal rearrangements are known to create chimaeric products with the ability to generate many human cancers. hTAF(II)68-TEC (where hTAF(II)68 is human TATA-binding protein-associated factor II 68 and TEC is translocated in extraskeletal chondrosarcoma) is such a fusion product, resulting from a t(9;17) chromosomal translocation found in extraskeletal myxoid chondrosarcomas, where the hTAF(II)68 NTD (N-terminal domain) is fused to TEC protein. To identify proteins that control hTAF(II)68-TEC function, we used affinity chromatography on immobilized hTAF(II)68 (NTD) and MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS and isolated a novel hTAF(II)68-TEC-interacting protein, GAPDH (glyceraldehyde-3-phosphate dehydrogenase). GAPDH is a glycolytic enzyme that is also involved in the early steps of apoptosis, nuclear tRNA export, DNA replication, DNA repair and transcription. hTAF(II)68-TEC and GAPDH were co-immunoprecipitated from cell extracts, and glutathione S-transferase pull-down assays revealed that the C-terminus of hTAF(II)68 (NTD) was required for interaction with GAPDH. In addition, three independent regions of GAPDH (amino acids 1-66, 67-160 and 160-248) were involved in binding to hTAF(II)68 (NTD). hTAF(II)68-TEC-dependent transcription was enhanced by GAPDH, but not by a GAPDH mutant defective in hTAF(II)68-TEC binding. Moreover, a fusion of GAPDH with the GAL4 DNA-binding domain increased the promoter activity of a reporter containing GAL4 DNA-binding sites, demonstrating the presence of a transactivation domain(s) in GAPDH. The results of the present study suggest that the transactivation potential of the hTAF(II)68-TEC oncogene product is positively modulated by GAPDH.
Collapse
Affiliation(s)
- Sol Kim
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Jungwoon Lee
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Jungho Kim
- Department of Life Science, Sogang University, Seoul 121-742, Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
48
|
Medvedev A, Buneeva O, Gnedenko O, Fedchenko V, Medvedeva M, Ivanov Y, Glover V, Sandler M. Isatin interaction with glyceraldehyde-3-phosphate dehydrogenase, a putative target of neuroprotective drugs: partial agonism with deprenyl. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:97-103. [PMID: 17447420 DOI: 10.1007/978-3-211-33328-0_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is evidence that the binding of deprenyl, a monoamine oxidase (MAO) B inhibitor, and other propargylamines to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is primarily responsible for their neuroprotective and antiapoptotic effects. Thus, GAPDH may be a target for other neuroprotective drugs. Using two independent approaches, radioligand analysis and an optical biosensor technique, we demonstrate here that GAPDH also interacts with the endogenous, reversible MAO B inhibitor, isatin. Deprenyl inhibited both [3H]isatin binding to GAPDH, and the binding of this enzyme to an isatin analogue, 5-aminoisatin, immobilized on to an optical biosensor cell. Another MAO inhibitor, tranylcypromine, was ineffective. Both deprenyl and isatin inhibited GAPDH-mediated cleavage of E. coli tRNA, and their effects were not additive. We suggest that isatin may be an endogenous partial functional agonist of deprenyl in its effect on GAPDH and GAPDH-mediated RNA cleavage. Changes in level of endogenous isatin may influence the neuroprotective effect of deprenyl in vivo.
Collapse
Affiliation(s)
- A Medvedev
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chelobanov BP, Laktionov PP, Vlasov VV. Proteins involved in binding and cellular uptake of nucleic acids. BIOCHEMISTRY (MOSCOW) 2006; 71:583-96. [PMID: 16827649 DOI: 10.1134/s0006297906060010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The study of mechanisms of nucleic acid transport across the cell membrane is valuable both for understanding the biological function of extracellular nucleic acids and the practical use of nucleic acids in gene therapy. It has been clearly demonstrated that cell surface proteins are necessary for transport of nucleic acids into cells. A large amount of data has now been accumulated about the proteins that participate in nucleic acid transport. The methods for revealing and identification of these proteins, possible mechanisms of protein-mediated transport of nucleic acids, and cellular functions of these proteins are described.
Collapse
Affiliation(s)
- B P Chelobanov
- Institute of Biochemistry, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, 630117, Russia.
| | | | | |
Collapse
|
50
|
Yocupicio-Monroy M, Padmanabhan R, Medina F, del Angel RM. Mosquito La protein binds to the 3' untranslated region of the positive and negative polarity dengue virus RNAs and relocates to the cytoplasm of infected cells. Virology 2006; 357:29-40. [PMID: 16962153 DOI: 10.1016/j.virol.2006.07.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 03/13/2006] [Accepted: 07/10/2006] [Indexed: 02/05/2023]
Abstract
The untranslated regions (UTRs) of the positive and negative strand RNAs of several viruses are major binding sites for cellular and viral proteins. Human La autoantigen is one of the cellular proteins that interacts with various positive strand RNA viral genomes including that of dengue virus (DEN) within the 5'- and 3'-UTRs of positive (+) and the 3'-UTR of negative strand (-) RNA, and with the nonstructural proteins NS3 and NS5, that form DEN replicase complex. Since DEN replicates in human and mosquito cells, some functional interactions have to be conserved in both hosts. In the present report, we demonstrate that mosquito La protein interacts with the 3'-UTRs of (+) and (-) polarity viral RNAs. The localization of La protein, examined by confocal microscopy, indicates that La protein is redistributed in DEN-infected cells. Furthermore, the presence of La protein in an in vitro replication system inhibited RNA synthesis in a dose-dependent manner, suggesting that La protein plays an important role in dengue virus replicative cycle.
Collapse
Affiliation(s)
- Martha Yocupicio-Monroy
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México City 03100, México
| | | | | | | |
Collapse
|