1
|
Snider CE, Willet AH, Brown HT, Chen JS, Evers JM, Gould KL. Fission yeast Opy1 is an endogenous PI(4,5)P 2 sensor that binds to the phosphatidylinositol 4-phosphate 5-kinase Its3. J Cell Sci 2020; 133:jcs.247973. [PMID: 33172987 DOI: 10.1242/jcs.247973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/29/2020] [Indexed: 11/20/2022] Open
Abstract
Phosphoinositides (PIPs) are a dynamic family of lipids that execute diverse roles in cell biology. PIP levels are regulated by numerous enzymes, but our understanding of how these enzymes are controlled in space and time is incomplete. One role of the PIP phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] is to anchor the cytokinetic ring (CR) to the plasma membrane (PM) in Schizosaccharomyces pombe While examining potential PI(4,5)P2-binding proteins for roles in CR anchoring, we identified the dual pleckstrin homology (PH) domain-containing protein Opy1. Although related proteins are implicated in PIP regulation, we found no role for S. pombe Opy1 in CR anchoring, which would be expected if it modulated PM PI(4,5)P2 levels. Our data indicate that although Opy1 senses PM PI(4,5)P2 levels and binds to the phosphatidylinositol 4-phosphate 5-kinase (PI5-kinase) Its3, Opy1 does not regulate Its3 kinase activity or PM PI(4,5)P2 levels, a striking difference from its Saccharomyces cerevisiae homolog. However, overexpression of Opy1 resulted in cytokinesis defects, as might be expected if it sequestered PI(4,5)P2 Our results highlight the evolutionary divergence of dual PH domain-containing proteins and the need for caution when interpreting results based on their overexpression.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Chloe E Snider
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - HannahSofia T Brown
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Joshua M Evers
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
2
|
|
3
|
The dual PH domain protein Opy1 functions as a sensor and modulator of PtdIns(4,5)P₂ synthesis. EMBO J 2012; 31:2882-94. [PMID: 22562153 DOI: 10.1038/emboj.2012.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 04/11/2012] [Indexed: 11/09/2022] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate, PtdIns(4,5)P(2), is an essential signalling lipid that regulates key processes such as endocytosis, exocytosis, actin cytoskeletal organization and calcium signalling. Maintaining proper levels of PtdIns(4,5)P(2) at the plasma membrane (PM) is crucial for cell survival and growth. We show that the conserved PtdIns(4)P 5-kinase, Mss4, forms dynamic, oligomeric structures at the PM that we term PIK patches. The dynamic assembly and disassembly of Mss4 PIK patches may provide a mechanism to precisely modulate Mss4 kinase activity, as needed, for localized regulation of PtdIns(4,5)P(2) synthesis. Furthermore, we identify a tandem PH domain-containing protein, Opy1, as a novel Mss4-interacting protein that partially colocalizes with PIK patches. Based upon genetic, cell biological, and biochemical data, we propose that Opy1 functions as a coincidence detector of the Mss4 PtdIns(4)P 5-kinase and PtdIns(4,5)P(2) and serves as a negative regulator of PtdIns(4,5)P(2) synthesis at the PM. Our results also suggest that additional conserved tandem PH domain-containing proteins may play important roles in regulating phosphoinositide signalling.
Collapse
|
4
|
Jackson S, Sugiman-Marangos S, Cheung K, Junop M. Crystallization and preliminary diffraction analysis of truncated human pleckstrin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:412-6. [PMID: 21393855 DOI: 10.1107/s174430911005092x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 12/04/2010] [Indexed: 01/11/2023]
Abstract
Pleckstrin is a major substrate of protein kinase C in platelets and leukocytes and appears to play an important role in exocytosis through a currently unknown mechanism. Pleckstrin function is regulated by phosphorylation, which is thought to cause dissociation of pleckstrin dimers, thereby facilitating phosphoinositide interactions and membrane localization. Evidence also exists suggesting that phosphorylation causes a subtle conformational change in pleckstrin. Structural studies of pleckstrin have been initiated in order to characterize these structural changes and ultimately advance understanding of pleckstrin function. Here, the crystallization and preliminary X-ray diffraction analysis of a truncated version of pleckstrin consisting of the N-terminal PH domain, the protein kinase C phosphorylation sites and the DEP domain (NPHDEP) are reported. In addition, the oligomeric state and phospholipid-binding properties of NPHDEP were analyzed. This work demonstrates that NPHDEP behaves as a monomer in solution and suggests that all three pleckstrin domains contribute to the dimerization interface. Furthermore, based on the binding properties of NPHDEP, the C-terminal PH domain appears to increase the specificity of pleckstrin for phosphoinositides. This work represents a significant step towards determining the structure of pleckstrin.
Collapse
Affiliation(s)
- Sean Jackson
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | |
Collapse
|
5
|
Role of phosphoinositide 3-kinase beta in platelet aggregation and thromboxane A2 generation mediated by Gi signalling pathways. Biochem J 2010; 429:369-77. [PMID: 20441566 DOI: 10.1042/bj20100166] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PI3Ks (phosphoinositide 3-kinases) play a critical role in platelet functional responses. PI3Ks are activated upon P2Y12 receptor stimulation and generate pro-aggregatory signals. P2Y12 receptor has been shown to play a key role in the platelet aggregation and thromboxane A2 generation caused by co-stimulation with Gq or Gz, or super-stimulation of Gi pathways. In the present study, we evaluated the role of specific PI3K isoforms alpha, beta, gamma and delta in platelet aggregation, thromboxane A2 generation and ERK (extracellular-signal-regulated kinase) activation. Our results show that loss of the PI3K signal impaired the ability of ADP to induce platelet aggregation, ERK phosphorylation and thromboxane A2 generation. We also show that Gq plus Gi- or Gi plus Gz-mediated platelet aggregation, ERK phosphorylation and thromboxane A2 generation in human platelets was inhibited by TGX-221, a PI3Kbeta-selective inhibitor, but not by PIK75 (a PI3Kalpha inhibitor), AS252424 (a PI3Kgamma inhibitor) or IC87114 (a PI3Kdelta inhibitor). TGX-221 also showed a similar inhibitory effect on the Gi plus Gz-mediated platelet responses in platelets from P2Y1-/- mice. Finally, 2MeSADP (2-methyl-thio-ADP)-induced Akt phosphorylation was significantly inhibited in the presence of TGX-221, suggesting a critical role for PI3Kbeta in Gi-mediated signalling. Taken together, our results demonstrate that PI3Kbeta plays an important role in ADP-induced platelet aggregation. Moreover, PI3Kbeta mediates ADP-induced thromboxane A2 generation by regulating ERK phosphorylation.
Collapse
|
6
|
Baig A, Bao X, Wolf M, Haslam RJ. The platelet protein kinase C substrate pleckstrin binds directly to SDPR protein. Platelets 2010; 20:446-57. [PMID: 19852682 DOI: 10.3109/09537100903137314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pleckstrin is a modular platelet protein consisting of N- and C-terminal pleckstrin homology (PH) domains, a central dishevelled egl10 and pleckstrin (DEP) domain and a phosphorylation region. Following agonist-induced platelet stimulation, dimeric pleckstrin translocates to the plasma membrane, is phosphorylated and then monomerizes. A recent study found that pleckstrin null platelets from a knockout mouse have a defect in granule secretion, actin polymerization and aggregation. However, the mechanism of pleckstrin signaling for this function is unknown. Our recent studies have led to the identification of a novel pleckstrin-binding protein, serum deprivation response protein (SDPR), by co-immunoprecipitation, GST-pulldowns and nanospray quadruple time of flight mass spectrometry. We show that this interaction occurs directly through N-terminal sequences of pleckstrin. Both pleckstrin and SDPR are phosphorylated by protein kinase C (PKC), but the interaction between pleckstrin and SDPR was shown to be independent of PKC inhibition or activation. These results suggest that SDPR may facilitate the translocation of nonphosphorylated pleckstrin to the plasma membrane in conjunction with phosphoinositides that bind to the C-terminal PH domain. After binding of pleckstrin to the plasma membrane, its phosphorylation by PKC exerts downstream effects on platelet aggregation/secretion.
Collapse
Affiliation(s)
- Akeel Baig
- Department of Pathology, McMaster University, Hamilton, ON, Canada.
| | | | | | | |
Collapse
|
7
|
Day KR, Jagadeeswaran P. Microarray analysis of prothrombin knockdown in zebrafish. Blood Cells Mol Dis 2009; 43:202-10. [PMID: 19442542 DOI: 10.1016/j.bcmd.2009.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 04/03/2009] [Indexed: 01/10/2023]
Abstract
The serine protease thrombin is generated from its precursor, prothrombin, in the coagulation cascade and plays a central role in fibrin deposition and platelet activation mediated through the protease activated receptors. Knockdown of prothrombin in the zebrafish was previously shown to recapitulate the phenotype observed in prothrombin knockout mice, such as an absence of blood pericardial edema, and hemorrhage. However, the role of thrombin during embryogenesis is not fully understood. To find genes affected by potential thrombin signaling in embryogenesis before blood circulation, microarray analysis was performed using total RNA prepared from antisense-injected, knockdown embryos versus mismatch-injected at 20 h post fertilization. A total of 63 upregulated and downregulated genes were identified with duplicate microarrays using dye reversal and a two-fold difference limitation. Real time RT-PCR for 10 selected genes identified by the microarray confirmed the expression changes in these genes. One particular gene, phlda3, was at least eleven fold upregulated, and in situ hybridization revealed expansion of phlda3 expression in the central nervous system, branchial arches, and head endoderm in knockdown embryos. The identification of these genes regulated by thrombin according to microarray analysis should provide a greater understanding of the effects of thrombin activity in the early vertebrate embryo.
Collapse
Affiliation(s)
- Kenneth R Day
- Department of Cellular and Structural Biology, the University of Texas Health Science Center at San Antonio, TX 78229, USA
| | | |
Collapse
|
8
|
Abstract
Pleckstrin, the platelet and leukocyte C kinase substrate, is a prominent substrate of PKC in platelets, monocytes, macrophages, lymphocytes, and granulocytes. Pleckstrin accounts for 1% of the total protein in these cells, but it is best known for containing the 2 prototypic Pleckstrin homology, or PH, domains. Overexpressed pleckstrin can affect polyphosphoinositide second messenger-based signaling events; however, its true in vivo role has been unknown. Here, we describe mice containing a null mutation within the pleckstrin gene. Platelets lacking pleckstrin exhibit a marked defect in exocytosis of delta and alpha granules, alphaIIbbeta3 activation, actin assembly, and aggregation after exposure to the PKC stimulant, PMA. Pleckstrin-null platelets aggregate normally in response to thrombin, but they fail to aggregate in response to thrombin in the presence of PI3K inhibitors, suggesting that a PI3K-dependent signaling pathway compensates for the loss of pleckstrin. Although pleckstrin-null platelets merged their granules in response to stimulation of PKC, they failed to empty their contents into the open canalicular system. This might be attributable to impaired actin assembly present in cells lacking pleckstrin. These data show that pleckstrin regulates the fusion of granules to the cell membrane and is an essential component of PKC-mediated exocytosis.
Collapse
|
9
|
Jackson SG, Zhang Y, Haslam RJ, Junop MS. Structural analysis of the carboxy terminal PH domain of pleckstrin bound to D-myo-inositol 1,2,3,5,6-pentakisphosphate. BMC STRUCTURAL BIOLOGY 2007; 7:80. [PMID: 18034889 PMCID: PMC2200656 DOI: 10.1186/1472-6807-7-80] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 11/22/2007] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pleckstrin homology (PH) domains are one of the most prevalent domains in the human proteome and represent the major phosphoinositide-binding module. These domains are often found in signaling proteins and function predominately by targeting their host proteins to the cell membrane. Inositol phosphates, which are structurally similar to phosphoinositides, are not only known to play a role as signaling molecules but are also capable of being bound by PH domains. RESULTS In the work presented here it is shown that the addition of commercial myo-inositol hexakisphosphate (IP6) inhibited the binding of the carboxy terminal PH domain of pleckstrin (C-PH) to phosphatidylinositol 3,4-bisphosphate with an IC50 of 7.5 muM. In an attempt to characterize this binding structurally, C-PH was crystallized in the presence of IP6 and the structure was determined to 1.35 A. Examination of the resulting electron density unexpectedly revealed the bound ligand to be D-myo-inositol 1,2,3,5,6-pentakisphosphate. CONCLUSION The discovery of D-myo-inositol 1,2,3,5,6-pentakisphosphate in the crystal structure suggests that the inhibitory effects observed in the binding studies may be due to this ligand rather than IP6. Analysis of the protein-ligand interaction demonstrated that this myo-inositol pentakisphosphate isomer interacts specifically with protein residues known to be involved in phosphoinositide binding. In addition to this, a structural alignment of other PH domains bound to inositol phosphates containing either four or five phosphate groups revealed that the majority of phosphate groups occupy conserved locations in the binding pockets of PH domains. These findings, taken together with other recently reported studies suggest that myo-inositol pentakisphosphates could act to regulate PH domain-phosphoinositide interactions by directly competing for binding, thus playing an important role as signaling molecules.
Collapse
Affiliation(s)
- Sean G Jackson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Yi Zhang
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Richard J Haslam
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Murray S Junop
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| |
Collapse
|
10
|
|
11
|
Kahner BN, Shankar H, Murugappan S, Prasad GL, Kunapuli SP. Nucleotide receptor signaling in platelets. J Thromb Haemost 2006; 4:2317-26. [PMID: 17059469 DOI: 10.1111/j.1538-7836.2006.02192.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Upon injury to a vessel wall the exposure of subendothelial collagen results in the activation of platelets. Platelet activation culminates in shape change, aggregation, release of granule contents and generation of lipid mediators. These secreted and generated mediators trigger a positive feedback mechanism potentiating the platelet activation induced by physiological agonists such as collagen and thrombin. Adenine nucleotides, adenosine diphosphate (ADP) and adenosine triphosphate (ATP), released from damaged cells and that are secreted from platelet-dense granules, contribute to the positive feedback mechanism by acting through nucleotide receptors on the platelet surface. ADP acts through two G protein-coupled receptors, the Gq-coupled P2Y1 receptor, and the Gi-coupled P2Y12 receptor. ATP, on the other hand, acts through the ligand-gated channel P2X1. Stimulation of platelets by ADP leads to shape change, aggregation and thromboxane A2 generation. ADP-induced dense granule release depends on generated thromboxane A2. Furthermore, costimulation of both P2Y1 and P2Y12 receptors is required for ADP-induced platelet aggregation. ATP stimulation of P2X1 is involved in platelet shape change and helps to amplify platelet responses mediated by agonists such as collagen. Activation of each of these nucleotide receptors results in unique signal transduction pathways that are important in the regulation of thrombosis and hemostasis.
Collapse
Affiliation(s)
- B N Kahner
- The Cell Signaling Group, Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
12
|
Bach TL, Kerr WT, Wang Y, Bauman EM, Kine P, Whiteman EL, Morgan RS, Williamson EK, Ostap EM, Burkhardt JK, Koretzky GA, Birnbaum MJ, Abrams CS. PI3K regulates pleckstrin-2 in T-cell cytoskeletal reorganization. Blood 2006; 109:1147-55. [PMID: 17008542 PMCID: PMC1785144 DOI: 10.1182/blood-2006-02-001339] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pleckstrin-2 is composed of 2 pleckstrin homology (PH) domains and a disheveled-Egl-10-pleckstrin (DEP) domain. A lipid-binding assay revealed that pleckstrin-2 binds with greatest affinity to D3 and D5 phosphoinositides. Pleckstrin-2 expressed in Jurkat T cells bound to the cellular membrane and enhanced actin-dependent spreading only after stimulation of the T-cell antigen receptor or the integrin alpha4beta1. A pleckstrin-2 variant containing point mutations in both PH domains failed to associate with the Jurkat membrane and had no effect on spreading under the same conditions. Although still membrane bound, a pleckstrin-2 variant containing point mutations in the DEP domain demonstrated a decreased ability to induce membrane ruffles and spread. Pleckstrin-2 also colocalized with actin at the immune synapse and integrin clusters via its PH domains. Although pleckstrin-2 can bind to purified D3 and D5 phosphoinositides, the intracellular membrane association of pleckstrin-2 and cell spreading are dependent on D3 phosphoinositides, because these effects were disrupted by pharmacologic inhibition of phosphatidylinositol 3-kinase (PI3K). Our results indicate that pleckstrin-2 uses its modular domains to bind to membrane-associated phosphatidylinositols generated by PI3K, whereby it coordinates with the actin cytoskeleton in lymphocyte spreading and immune synapse formation.
Collapse
Affiliation(s)
- Tami L Bach
- Department of Medicine, University of Pennsylvania School of Medicine, and Department of Pathology, Children's Hospital of Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shankar H, Kahner BN, Prabhakar J, Lakhani P, Kim S, Kunapuli SP. G-protein-gated inwardly rectifying potassium channels regulate ADP-induced cPLA2 activity in platelets through Src family kinases. Blood 2006; 108:3027-34. [PMID: 16857990 PMCID: PMC1895524 DOI: 10.1182/blood-2006-03-010330] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ADP-induced TXA2 generation requires the costimulation of P2Y1, P2Y12, and the GPIIb/IIIa receptors. Signaling events downstream of the P2Y receptors that contribute to ADP-induced TXA2 generation have not been clearly delineated. In this study, we have investigated the role of G-protein-gated inwardly rectifying potassium channels (GIRKs), a recently identified functional effector for the P2Y12 receptor, in the regulation of ADP-induced TXA2 generation. At 10-microM concentrations, the 2 structurally distinct GIRK channel blockers, SCH23390 and U50488H, caused complete inhibition of ADP-induced cPLA2 phosphorylation and TXA2 generation, without affecting the conversion of AA to TXA2 or ADP-induced primary platelet aggregation in aspirin-treated platelets. In addition, Src family kinase selective inhibitors abolished 2MeSADP-mediated cPLA2 phosphorylation and TXA2 generation. Furthermore, these GIRK channel blockers completely blocked Gi-mediated Src kinase activation, suggesting that GIRK channels are upstream of Src family tyrosine kinase activation. In weaver mouse platelets, which have dysfunctional GIRK2 subunits, ADP-induced TXA2 generation was impaired. However, we did not observe any defect in 2MeSADP-induced platelet functional responses in GIRK2-null mouse platelets, suggesting that functional channels composed of other GIRK subunits contribute to ADP-induced TXA2 generation, via the regulation of the Src and cPLA2 activity.
Collapse
Affiliation(s)
- Haripriya Shankar
- Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University, Rm 224OMS, 3420 N Broad St, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
14
|
Ferreira IA, Mocking AIM, Feijge MAH, Gorter G, van Haeften TW, Heemskerk JWM, Akkerman JWN. Platelet inhibition by insulin is absent in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 2005; 26:417-22. [PMID: 16339499 DOI: 10.1161/01.atv.0000199519.37089.a0] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE ADP-induced P2y12 signaling is crucial for formation and stabilization of an arterial thrombus. We demonstrated recently in platelets from healthy subjects that insulin interferes with Ca2+ increases induced by ADP-P2y1 contact through blockade of the G-protein Gi, and thereby with P2y12-mediated suppression of cAMP. METHODS AND RESULTS Here we show in patients with type 2 diabetes mellitus (DM2) that platelets have lost responsiveness to insulin leading to increased adhesion, aggregation, and procoagulant activity on contact with collagen. Using Ser473 phosphorylation of protein kinase B as output for insulin signaling, a 2-fold increase is found in insulin-stimulated normal platelets, but in DM platelets there is no significant response. In addition, DM2 platelets show increased P2y12-mediated suppression of cAMP and decreased P2y12 inhibition by the receptor antagonist AR-C69931MX. CONCLUSIONS The loss of responsiveness to insulin together with increased signaling through P2y12 might explain the hyperactivity of platelets in patients with DM2.
Collapse
Affiliation(s)
- Irlando Andrade Ferreira
- Department of Hematology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Edlich C, Stier G, Simon B, Sattler M, Muhle-Goll C. Structure and phosphatidylinositol-(3,4)-bisphosphate binding of the C-terminal PH domain of human pleckstrin. Structure 2005; 13:277-86. [PMID: 15698571 DOI: 10.1016/j.str.2004.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 11/03/2004] [Accepted: 11/28/2004] [Indexed: 11/20/2022]
Abstract
Pleckstrin is the major target of protein kinase C (PKC) in blood platelets. Its phosphorylation triggers responses that ultimately lead to platelet activation and blood clot formation. Pleckstrin consists of three domains: a pleckstrin homology (PH) domain at both termini and a central DEP (Dishevelled, Egl-1, Pleckstrin) domain. Here, we report the solution nuclear magnetic resonance (NMR) structure of the C-terminal PH domain (C-PH) of human pleckstrin-1. We show that this PH domain binds phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2) with high specificity in protein lipid overlay assays. Using NMR titration experiments and mutational analysis, residues involved in binding to PtdIns(3,4)P2 are identified. The binding site is formed by a patch of basic residues from the beta1 and beta2 strands and the beta1-beta2 loop. Since PtdIns(3,4)P2 is an important signaling molecule in platelets, our data suggest a C-PH dependent regulation of pleckstrin function in response to PtdIns(3,4)P2.
Collapse
|
16
|
Shankar H, Murugappan S, Kim S, Jin J, Ding Z, Wickman K, Kunapuli SP. Role of G protein-gated inwardly rectifying potassium channels in P2Y12 receptor-mediated platelet functional responses. Blood 2004; 104:1335-43. [PMID: 15142872 DOI: 10.1182/blood-2004-01-0069] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the G(i)-coupled platelet P2Y(12) receptor in platelet function has been well established. However, the functional effector or effectors contributing directly to alphaIIbbeta3 activation in human platelets has not been delineated. As the P2Y(12) receptor has been shown to activate G protein-gated, inwardly rectifying potassium (GIRK) channels, we investigated whether GIRK channels mediate any of the functional responses of the platelet P2Y(12) receptor. Western blot analysis revealed that platelets express GIRK1, GIRK2, and GIRK4. In aspirin-treated and washed human platelets, 2 structurally distinct GIRK inhibitors, SCH23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride) and U50488H (trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(pyrrolidinyl)cyclohexyl] benzeneacetamide methanesulfonate), inhibited adenosine diphosphate (ADP)-, 2-methylthioADP (2-MeSADP)-, U46619-, and low-dose thrombin-mediated platelet aggregation. However, the GIRK channel inhibitors did not affect platelet aggregation induced by high concentrations of thrombin, AYPGKF, or convulxin. Furthermore, the GIRK channel inhibitors reversed SFLLRN-induced platelet aggregation, inhibited the P2Y(12)-mediated potentiation of dense granule secretion and Akt phosphorylation, and did not affect the agonist-induced G(q)-mediated platelet shape change and intracellular calcium mobilization. Unlike AR-C 69931MX, a P2Y(12) receptor-selective antagonist, the GIRK channel blockers did not affect the ADP-induced adenlylyl cyclase inhibition, indicating that they do not directly antagonize the P2Y(12) receptor. We conclude that GIRK channels are important functional effectors of the P2Y(12) receptor in human platelets.
Collapse
Affiliation(s)
- Haripriya Shankar
- Department of Physiology, Temple University, 3420 N Broad St, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Sloan DC, Wang P, Bao X, Haslam RJ. Translocation of pleckstrin requires its phosphorylation and newly formed ligands. Biochem Biophys Res Commun 2002; 293:640-6. [PMID: 12054651 DOI: 10.1016/s0006-291x(02)00260-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pleckstrin is the major substrate of protein kinase C (PKC) in platelets. We sought to determine whether pleckstrin phosphorylation is sufficient to target the soluble protein to binding sites. Permeabilization of platelets by streptolysin O (SLO) was used to separate bound and soluble pleckstrin. Platelets were incubated with phorbol 12-myristate 13-acetate (PMA) and/or guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in the presence of [gamma-(32)P]ATP and SLO. PMA stimulated pleckstrin phosphorylation, but this pleckstrin diffused from permeabilized platelets. Addition of GTP[S] with PMA caused up to 40-50% of pleckstrin to be retained within platelets and enhanced secretion of platelet 5-hydroxytryptamine. PKC alpha pseudosubstrate peptide inhibited pleckstrin phosphorylation, the binding of pleckstrin and secretion. After extraction of permeabilized platelets containing bound pleckstrin with Triton X-100, the protein was solubilized. Thus, phosphorylated pleckstrin was retained in platelets only after activation of GTP-binding proteins that stimulate the formation of membrane-bound pleckstrin ligands. Translocation of pleckstrin may facilitate the associated secretion.
Collapse
Affiliation(s)
- Denis C Sloan
- Department of Biochemistry, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | | | | | | |
Collapse
|
18
|
Schwindinger WF, Robishaw JD. Heterotrimeric G-protein betagamma-dimers in growth and differentiation. Oncogene 2001; 20:1653-60. [PMID: 11313913 DOI: 10.1038/sj.onc.1204181] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterotrimeric G-proteins are components of the signal transduction pathways for the soluble and cell-contact signals that regulate normal growth and differentiation. There is now a greater appreciation of the role of the Gbetagamma-dimer in the regulation of a variety of intracellular effectors, including ion channels, adenylyl cyclase, and phospholipase Cbeta. In many cases, Gbetagamma-dimers are required for the activation of mitogen activated protein kinase (MAPK) pathways that promote cellular proliferation, although the underlying mechanisms have yet to be fully elucidated. Activation of phosphotidylinositol-3-kinase (PI3K) is a critical step in the intracellular transduction of survival signals. Gbetagamma-dimers directly activate PI3Kgamma as well as the more widely distributed PI3Kbeta. The activation of PI3Kgamma by Gbetagamma-dimers likely involves direct binding of specific Gbetagamma-dimers to both subunits of PI3Kgamma. Thus, Gbetagamma-dimers transmit signals from numerous receptors to a variety of intracellular effectors in distinct cellular contexts. Five distinct Gbeta-subunits and 12 distinct Ggamma-subunits have been identified. New experimental approaches are needed to elucidate the specific roles of individual Gbetagamma-dimers in the pathways that transduce signals for proliferation and survival.
Collapse
Affiliation(s)
- W F Schwindinger
- Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822, USA
| | | |
Collapse
|
19
|
Roll RL, Bauman EM, Bennett JS, Abrams CS. Phosphorylated pleckstrin induces cell spreading via an integrin-dependent pathway. J Cell Biol 2000; 150:1461-6. [PMID: 10995449 PMCID: PMC2150702 DOI: 10.1083/jcb.150.6.1461] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Accepted: 08/04/2000] [Indexed: 11/22/2022] Open
Abstract
Pleckstrin is a 40-kD phosphoprotein containing NH(2)- and COOH-terminal pleckstrin homology (PH) domains separated by a disheveled-egl 10-pleckstrin (DEP) domain. After platelet activation, pleckstrin is rapidly phosphorylated by protein kinase C. We reported previously that expressed phosphorylated pleckstrin induces cytoskeletal reorganization and localizes in microvilli along with glycoproteins, such as integrins. Given the role of integrins in cytoskeletal organization and cell spreading, we investigated whether signaling from pleckstrin cooperated with signaling pathways involving the platelet integrin, alphaIIbbeta3. Pleckstrin induced cell spreading in both transformed (COS-1 & CHO) and nontransformed (REF52) cell lines, and this spreading was regulated by pleckstrin phosphorylation. In REF52 cells, pleckstrin-induced spreading was matrix dependent, as evidenced by spreading of these cells on fibrinogen but not on fibronectin. Coexpression with alphaIIbbeta3 did not enhance pleckstrin-mediated cell spreading in either REF52 or CHO cells. However, coexpression of the inactive variant alphaIIbbeta3 Ser753Pro, or beta3 Ser753Pro alone, completely blocked pleckstrin-induced spreading. This implies that alphaIIbbeta3 Ser753Pro functions as a competitive inhibitor by blocking the effects of an endogenous receptor that is used in the signaling pathway involved in pleckstrin-induced cell spreading. Expression of a chimeric protein composed of the extracellular and transmembrane portion of Tac fused to the cytoplasmic tail of beta3 completely blocked pleckstrin-mediated spreading, whereas chimeras containing the cytoplasmic tail of beta3 Ser753Pro or alphaIIb had no effect. This suggests that the association of an unknown signaling protein with the cytoplasmic tail of an endogenous integrin beta-chain is also required for pleckstrin-induced spreading. Thus, expressed phosphorylated pleckstrin promotes cell spreading that is both matrix and integrin dependent. To our knowledge, this is the first example of a mutated integrin functioning as a dominant negative inhibitor.
Collapse
Affiliation(s)
- R L Roll
- Department of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
20
|
Cmarik JL, Hegamyer G, Gerrard B, Dean M, Colburn NH. cDNA cloning and mapping of mouse pleckstrin (Plek), a gene upregulated in transformation-resistant cells. Genomics 2000; 66:204-12. [PMID: 10860665 DOI: 10.1006/geno.2000.6210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes that occur during tumor promotion, the rate-limiting phase of multistep carcinogenesis, may offer the best targets for prevention of cancer or reversal of early disease. The murine epidermal JB6 promotion-sensitive (P+) and -resistant (P-) cell lines provide a cell culture model for tumor promoter-induced neoplastic transformation ideally suited to the identification of molecular events that mediate or inhibit transformation. A differential display comparison of P+ and P- cell mRNAs yielded seven differentially expressed sequences. One of the sequences preferentially expressed in P- cells identified an approximately 3. 6-kb message that was induced to higher levels in P- cells following exposure to the tumor promoter 12-O-tetradecanoylphorbol acetate than in P+ cells. The message was detected in mRNA from heart, lung, and spleen. cDNA cloning of the P- preferential sequence revealed a high degree of identity to human pleckstrin (PLEK), the major PKC substrate in platelets (Tyers et al., 1988, Nature 333: 470). We report the complete mouse cDNA sequence of pleckstrin and the localization of the gene to chromosome 11, its expression in a nonhematopoetic cell line, and its potential role in blocking neoplastic transformation.
Collapse
Affiliation(s)
- J L Cmarik
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, 21702, USA
| | | | | | | | | |
Collapse
|
21
|
Inazu T, Yamada K, Miyamoto K. Cloning and expression of pleckstrin 2, a novel member of the pleckstrin family. Biochem Biophys Res Commun 1999; 265:87-93. [PMID: 10548495 DOI: 10.1006/bbrc.1999.1461] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel member of the pleckstrin family has been identified and designated as mouse pleckstrin 2. The cDNA clone with an insert of 1588 bp contained a 1059-bp open reading frame encoding a polypeptide of 353 amino acid residues. The deduced amino acid sequence predicted that pleckstrin 2 has two pleckstrin homology (PH) domains at the N- and C-termini and a DEP (Dsh, egl-10, and pleckstrin) domain in the central region and showed 35% identity with the sequence of chicken pleckstrin. Northern blot and reverse-transcription polymerase chain reaction analysis revealed that pleckstrin 2 mRNA is ubiquitously expressed. Southern blot analysis indicated that the mouse pleckstrin 2 gene may consisit of two or more exons. To obtain information relative to natural ligand(s) for each of the PH domains in vivo, we employed the green fluorescent protein (GFP) tagged fusion protein system. Distributions of N-terminal and C-terminal PH domains of pleckstrin 2 were quite different from each other, suggesting that these PH domains may interact with distinct factor(s).
Collapse
Affiliation(s)
- T Inazu
- Department of Biochemistry, Fukui Medical University, Matsuoka, Fukui, 910-1193, Japan.
| | | | | |
Collapse
|
22
|
Maier U, Babich A, Nürnberg B. Roles of non-catalytic subunits in gbetagamma-induced activation of class I phosphoinositide 3-kinase isoforms beta and gamma. J Biol Chem 1999; 274:29311-7. [PMID: 10506190 DOI: 10.1074/jbc.274.41.29311] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By using purified preparations we show that nanomolar concentrations of Gbetagamma significantly stimulated lipid kinase activity of phosphatidylinositol 3-kinase (PI3K) beta and PI3Kgamma in the presence as well as in the absence of non-catalytic subunits such as p85alpha or p101. Concomitantly, Gbetagamma stimulated autophosphorylation of the catalytic subunit of PI3Kgamma (EC(50), 30 nM; stoichiometry >/=0.6 mol of P(i)/mol of p110gamma), which also occurred in the absence of p101. Surprisingly, we found that p101 affected the lipid substrate preference of PI3Kgamma in its Gbetagamma-stimulated state. With phosphatidylinositol as substrate, p110gamma but not p101/p110gamma was significantly stimulated by Gbetagamma to form PI-3-phosphate (EC(50), 20 nM). The opposite situation was found when PI-4,5-bisphosphate served as substrate. Gbetagamma efficiently and potently (EC(50), 5 nM) activated the p101/p110gamma heterodimer but negligibly stimulated the p110gamma monomer to form PI-3,4,5-trisphosphate. However, this weak stimulatory effect on p110gamma was overcome by excess concentrations of Gbetagamma (EC(50), 100 nM). This finding is in accordance with the in vivo situation, where activated PI3K catalyzes the formation of PI-3,4,5-trisphosphate but not PI-3-phosphate. We conclude that p101 is responsible for PI-4, 5-bisphosphate substrate selectivity of PI3Kgamma by sensitizing p110gamma toward Gbetagamma in the presence of PI-4,5-P(2).
Collapse
Affiliation(s)
- U Maier
- Institut für Pharmakologie, Freie Universität Berlin, Thielallee 69-73, D-14195 Berlin (Dahlem), Germany
| | | | | |
Collapse
|
23
|
Abstract
Pleckstrin homology (PH) domains are present in over one hundred signaling molecules, where they are thought to mediate membrane targeting by binding to phosphoinositides. They were initially defined at the NH(2) and COOH termini of the molecule, pleckstrin, a major substrate for protein kinase C in platelets. We have previously reported that pleckstrin associates with the plasma membrane, where it induces the formation of villous and ruffled structures from the surface of transfected cells (1). We now show that overexpression of pleckstrin results in reorganization of the actin cytoskeleton. This pleckstrin effect is regulated by its phosphorylation and requires the NH(2)-terminal, but not the COOH-terminal, PH domain. Overexpression of the NH(2)-terminal PH domain alone of pleckstrin is sufficient to induce the cytoskeletal effects. Pleckstrin-induced actin rearrangements are not inhibited by pharmacologic inhibition of phosphatidylinositol 3-kinase, nor are they blocked by co-expression of a dominant negative phosphatidylinositol 3-kinase. The cytoskeletal effects of pleckstrin can be blocked by co-expression of a dominant negative Rac1 variant, but not wild-type Rac and not a dominant negative Cdc42 variant. These data indicate that the NH(2)-terminal PH domain of pleckstrin induces reorganization of the actin cytoskeleton via a pathway dependent on Rac but independent of Cdc42 and phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- A D Ma
- Department of Medicine, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
24
|
Metjian A, Roll RL, Ma AD, Abrams CS. Agonists cause nuclear translocation of phosphatidylinositol 3-kinase gamma. A Gbetagamma-dependent pathway that requires the p110gamma amino terminus. J Biol Chem 1999; 274:27943-7. [PMID: 10488142 DOI: 10.1074/jbc.274.39.27943] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In hematopoietic cells, the signals initiated by activation of the phosphoinositide 3-kinase (PI3K) family have been implicated in cell proliferation and survival, membrane and cytoskeletal reorganization, chemotaxis, and the neutrophil respiratory burst. Of the four isoforms of human PI3K that phosphorylate phosphatidylinositol 4, 5-bisphosphate, only p110gamma (or PI3Kgamma) is associated with the regulatory subunit, p101, and is stimulated by G protein betagamma heterodimers. We performed immunolocalization of transfected p110gamma in HepG2 cells and found that, under resting conditions, p110gamma was present in a diffuse cytoplasmic pattern, but translocated to the cell nucleus after serum stimulation. Serum-stimulated p110gamma translocation was inhibited by pertussis toxin and could also be induced by overexpression of Gbetagamma in the absence of serum. In addition, we found that deletion of the amino-terminal 33 residues of p110gamma had no effect on association with p101 or on its agonist-regulated translocation, but truncation of the amino-terminal 82 residues yielded a p110gamma variant that did not associate with p101 and was constitutively localized in the nucleus. This finding implies that the intracellular localization of p110gamma is regulated by p101 as well as Gbetagamma. The effect of PI3Kgamma in the nucleus is an area of active investigation.
Collapse
Affiliation(s)
- A Metjian
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
25
|
Brumell JH, Howard JC, Craig K, Grinstein S, Schreiber AD, Tyers M. Expression of the Protein Kinase C Substrate Pleckstrin in Macrophages: Association with Phagosomal Membranes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Despite evidence suggesting that protein kinase C (PKC) isoforms are important in phagocytosis by Fcγ receptors, the mechanisms by which the substrates of these kinases act are largely unknown. We have investigated the role of one PKC substrate, pleckstrin, in cells of the monocyte/macrophage lineage. Pleckstrin expression in mouse macrophages was induced severalfold in response to bacterial LPS and IFN-γ. In unstimulated cells, the protein was largely confined to the cytosol. Upon ingestion of IgG-opsonized zymosan particles (OPZ), however, pleckstrin accumulated on the phagosomal membrane. This association was transient, being maximal after 15 min and declining thereafter. Similar kinetics of association was also seen for both filamentous actin and the δ isoform of PKC. Ingestion of OPZ was found to induce phosphorylation of pleckstrin. To examine whether phosphorylation was required for phagosomal association, pleckstrin was expressed in CHO-IIA cells that stably express the FcγRIIA receptor and are competent for phagocytosis of OPZ. In these cells, both wild-type pleckstrin and mutants in which the phosphoacceptor sites had been mutated to either alanine (nonphosphorylatable) or glutamine (pseudophosphorylated) were found to accumulate on OPZ phagosomes. Thus, association of pleckstrin with phagosomes is independent of its phosphorylation. Our findings suggest that pleckstrin may serve as an intracellular adaptor/targeting protein in response to particulate stimuli. By targeting interacting ligands to the phagosomal compartment, pleckstrin may serve to regulate phagocytosis and/or early steps during maturation of the phagosome.
Collapse
Affiliation(s)
- John H. Brumell
- *Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jeffrey C. Howard
- †Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karen Craig
- *Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sergio Grinstein
- †Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alan D. Schreiber
- ‡Hematology and Oncology Division, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Mike Tyers
- *Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- §Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Hu MH, Bauman EM, Roll RL, Yeilding N, Abrams CS. Pleckstrin 2, a widely expressed paralog of pleckstrin involved in actin rearrangement. J Biol Chem 1999; 274:21515-8. [PMID: 10419454 DOI: 10.1074/jbc.274.31.21515] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have identified a cDNA for pleckstrin 2 that is 39% identical and 65% homologous to the original pleckstrin. Like the original pleckstrin 1, this protein contains a pleckstrin homology (PH) domain at each end of the molecule as well as a DEP (Dishevelled, Egl-10, and pleckstrin) domain in the intervening sequence. A Northern blot probed with the full-length cDNA reveals that this homolog is ubiquitously expressed and is most abundant in the thymus, large bowel, small bowel, stomach, and prostate. Unlike pleckstrin 1, this newly discovered protein does not contain obvious sites of PKC phosphorylation, and in transfected Cos-7 cells, it is a poor substrate for phosphorylation, even after PMA stimulation. Cells expressing pleckstrin 2 undergo a dramatic shape change associated with actin rearrangement, including a loss of central F-actin and a redistribution of actin toward the cell cortex. Overexpression of pleckstrin 2 causes large lamellipodia and peripheral ruffle formation. A variant of pleckstrin 2 lacking both PH domains still had some membrane binding but did not efficiently induce lamellipodia, suggesting that the PH domains of pleckstrin 2 contribute to lamellipodia formation. This work describes a novel, widely expressed, membrane-associating protein and suggests that pleckstrin 2 may help orchestrate cytoskeletal arrangement.
Collapse
Affiliation(s)
- M H Hu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
27
|
Al-Aoukaty A, Rolstad B, Maghazachi AA. Recruitment of Pleckstrin and Phosphoinositide 3-Kinase γ into the Cell Membranes, and Their Association with Gβγ After Activation of NK Cells with Chemokines. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The role of phosphoinositide 3 kinases (PI 3-K) in chemokine-induced NK cell chemotaxis was investigated. Pretreatment of NK cells with wortmannin inhibits the in vitro chemotaxis of NK cells induced by lymphotactin, monocyte-chemoattractant protein-1, RANTES, IFN-inducible protein-10, or stromal-derived factor-1α. Introduction of inhibitory Abs to PI 3-Kγ but not to PI 3-Kα into streptolysin O-permeabilized NK cells also inhibits chemokine-induced NK cell chemotaxis. Biochemical analysis showed that within 2–3 min of activating NK cells, pleckstrin is recruited into NK cell membranes, whereas PI 3-Kγ associates with these membranes 5 min after stimulation with RANTES. Recruited PI 3-Kγ generates phosphatidylinositol 3,4,5 trisphosphate, an activity that is inhibited upon pretreatment of NK cells with wortmannin. Further analysis showed that a ternary complex containing the βγ dimer of G protein, pleckstrin, and PI 3-Kγ is formed in NK cell membranes after activation with RANTES. The recruitment of pleckstrin and PI 3-Kγ into NK cell membranes is only partially inhibited by pertussis toxin, suggesting that the majority of these molecules form a complex with pertussis toxin-insensitive G proteins. Our results may have application for the migration of NK cells toward the sites of inflammation.
Collapse
Affiliation(s)
- Ala Al-Aoukaty
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bent Rolstad
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Azzam A. Maghazachi
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Robbins SM, Hollenberg MD. Chapter 11 Plasma Membrane-Localized Signal Transduction. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)61049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Exton JH. Phospholipid‐Derived Second Messengers. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Rebecchi MJ, Scarlata S. Pleckstrin homology domains: a common fold with diverse functions. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1998; 27:503-28. [PMID: 9646876 DOI: 10.1146/annurev.biophys.27.1.503] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pleckstrin homology (PH) motifs are approximately 100 amino-acid residues long and have been identified in nearly 100 different eukaryotic proteins, many of which participate in cell signaling and cytoskeletal regulation. Despite minimal sequence homology, the three-dimensional structures are remarkably conserved. This review gives an overview of the PH domain architecture and examines the best-studied examples in an attempt to understand their function.
Collapse
Affiliation(s)
- M J Rebecchi
- Department of Anesthesiology, State University of New York at Stony Brook 11794, USA.
| | | |
Collapse
|
31
|
Sloan DC, Haslam RJ. Protein kinase C-dependent and Ca2+-dependent mechanisms of secretion from streptolysin O-permeabilized platelets: effects of leakage of cytosolic proteins. Biochem J 1997; 328 ( Pt 1):13-21. [PMID: 9359828 PMCID: PMC1218881 DOI: 10.1042/bj3280013] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human platelets containing dense granules labelled with 5-hydroxy[14C]tryptamine ([14C]5-HT) were permeabilized by exposure to streptolysin O (SLO) in the presence of 4 mM [gamma-32P]ATP. Addition of either 100 nM phorbol 12-myristate 13-acetate (PMA) or of Ca2+ (pCa 5) at the same time as SLO induced secretion of dense-granule [14C]5-HT and the phosphorylation of pleckstrin by protein kinase C (PKC). Ca2+ also induced phosphorylation of myosin P-light chains. Guanosine 5'-[gamma-thio]triphosphate (GTP[S], 100 microM) did not stimulate secretion from SLO-permeabilized platelets in the absence of Ca2+ (pCa>9), but greatly potentiated secretion in the presence of low PMA (10 nM) or low Ca2+ (pCa 6). However, GTP[S] did stimulate myosin P-light-chain phosphorylation in the absence of Ca2+, an effect that was associated with morphological changes, including granule centralization. Inhibition of PKC and of pleckstrin phosphorylation by Ro 31-8220 blocked secretion induced by PMA or by GTP[S] and PMA in the absence of Ca2+, but did not prevent the GTP[S]-induced phosphorylation of myosin P-light chains or secretion induced by Ca2+ at pCa 5. When the time period between exposure of platelets to SLO and challenge at pCa>9 with PMA or with GTP[S] and PMA was increased, there were rapid and parallel decreases in the secretion and pleckstrin phosphorylation responses, which were lost after 3-5 min. In contrast, the responsiveness of secretion to Ca2+ (pCa 5) or to GTP[S] and Ca2+ (pCa 6) persisted for at least 10 min after exposure of platelets to SLO, although the ability of pleckstrin to undergo phosphorylation was still lost after 3-5 min. Both PKC and pleckstrin were undetectable within platelets after 5 min exposure to SLO. The results suggest that the loss of responsiveness to PMA or to GTP[S] and PMA is attributable to the leakage of PKC (and possibly pleckstrin) from the platelets, whereas secretion stimulated by Ca2+ or by GTP[S] and Ca2+ utilizes membrane-associated Ca2+- and GTP-binding proteins and occurs independently of PKC activation.
Collapse
Affiliation(s)
- D C Sloan
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | |
Collapse
|
32
|
Tang X, Downes CP. Purification and characterization of Gbetagamma-responsive phosphoinositide 3-kinases from pig platelet cytosol. J Biol Chem 1997; 272:14193-9. [PMID: 9162050 DOI: 10.1074/jbc.272.22.14193] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A G-protein betagamma subunit (Gbetagamma)-responsive phosphoinositide 3-kinase (PI 3-kinase) was purified approximately 5000-fold from pig platelet cytosol. The enzyme was purified by polyethylene glycol precipitation of the cytosol followed by column chromatography on Q-Sepharose fast flow, gel filtration, heparin-Sepharose, and hydroxyapatite. The major Gbetagamma-responsive PI 3-kinase is distinct from p85 containing PI 3-kinase as the activities can be distinguished chromatographically and immunologically and is related to p110gamma as it cross-reacts with anti-p110gamma-specific antibodies. The p110gamma-related PI 3-kinase cannot be activated by G-protein alphai/o subunits, and it has an apparent native molecular mass of 210 kDa. The p110gamma-related PI 3-kinase phosphorylates phosphatidylinositol (PtdIns), phosphatidylinositol 4-phosphate (PtdIns4P), and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). The apparent Km values for ATP were found to be 25 microM with PtdIns, 44 microM with PtdIns4P, and 37 microM with PtdIns(4,5)P2 as the substrate. Gbetagamma subunits did not alter the Km of the enzyme for ATP; however, Vmax increased 2-fold with PtdIns as substrate, 3.5-fold with PtdIns4P, and 10-fold with PtdIns(4,5)P2. Under basal conditions the apparent Km values for lipid substrates were 64, 10, and 15 microM for PtdIns, PtdIns4P, and PtdIns(4,5)P2, respectively. In the presence of Gbetagamma subunits the dependence of PI 3-kinase activity on the concentrations of lipid substrates became complex with the highest level of stimulation occurring at high substrate concentration, suggesting that the binding of Gbetagamma and lipid substrate (particularly PtdIns(4,5)P2) may be mutually cooperative. Wortmannin and LY294002 inhibit the Gbetagamma-responsive PI 3-kinase activity with IC50 values of 10 nM and 2 microM, respectively. Unlike the p85 containing PI 3-kinase in platelets, the p110gamma-related PI 3-kinase is not associated with a PtdIns(3,4,5)P3 specific 5-phosphatase. The p85-associated PI 3-kinase was not activated by Gbetagamma alone but could be synergistically activated by Gbetagamma and phosphotyrosyl platelet-derived growth factor receptor peptides. This may represent a form of coincidence detection through which the effects of tyrosine kinase and G-protein-linked receptors might be coordinated.
Collapse
Affiliation(s)
- X Tang
- Department of Biochemistry, University of Dundee, Dundee DD1 4HN, Scotland
| | | |
Collapse
|
33
|
Ma AD, Brass LF, Abrams CS. Pleckstrin associates with plasma membranes and induces the formation of membrane projections: requirements for phosphorylation and the NH2-terminal PH domain. J Cell Biol 1997; 136:1071-9. [PMID: 9060471 PMCID: PMC2132483 DOI: 10.1083/jcb.136.5.1071] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/1996] [Revised: 11/14/1996] [Indexed: 02/03/2023] Open
Abstract
Pleckstrin homology (PH) domains are sequences of approximately 100 amino acids that form "modules" that have been proposed to facilitate protein/protein or protein/lipid interactions. Pleckstrin, first described as a substrate for protein kinase C in platelets and leukocytes, is composed of two PH domains, one at each end of the molecule, flanking an intervening sequence of 147 residues. Evidence is accumulating to support the hypothesis that PH domains are structural motifs that target molecules to membranes, perhaps through interactions with G betagamma or phosphatidylinositol 4,5-bisphosphate (PIP2), two putative PH domain ligands. In the present studies, we show that pleckstrin associates with membranes in human platelets. We further demonstrate that, in transfected Cos-1 cells, pleckstrin associates with peripheral membrane ruffles and dorsal membrane projections. This association depends on phosphorylation of pleckstrin and requires the presence of its NH2-terminal, but not its COOH-terminal, PH domain. Moreover, PH domains from other molecules cannot effectively substitute for pleckstrin's NH2-terminal PH domain in directing membrane localization. Lastly, we show that wild-type pleckstrin actually promotes the formation of membrane projections from the dorsal surface of transfected cells, and that this morphologic change is similarly PH domain dependent. Since we have shown previously that pleckstrin-mediated inhibition of PIP2 metabolism by phospholipase C or phosphatidylinositol 3-kinase also requires pleckstrin phosphorylation and an intact NH2-terminal PH domain, these results suggest that: (a) pleckstrin's NH2-terminal PH domain may regulate pleckstrin's activity by targeting it to specific areas within the cell membrane; and (b) pleckstrin may affect membrane structure, perhaps via interactions with PIP2 and/or other membrane-bound ligands.
Collapse
Affiliation(s)
- A D Ma
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | |
Collapse
|