1
|
Kamrani A, Nasrabadi MH, Halabian R, Ghorbani M. A biomimetic multi-layer scaffold with collagen and zinc doped bioglass as a skin-regeneration agent in full-thickness injuries and its effects in vitro and in vivo. Int J Biol Macromol 2023; 253:127163. [PMID: 37778589 DOI: 10.1016/j.ijbiomac.2023.127163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Due to the multilayer structure of skin tissue, the fabrication of a 3-layer scaffold could result in planned dermal regeneration. Herein, polyurethane (PU) and polycaprolactone (PCL), as a function of their mechanical stability and collagen due to its arginine-glycine-aspartic acid sequences, zinc ions because of overcoming the common problems of biological factors were employed. The scaffolds' physical, mechanical, and biological properties were examined by SEM, FTIR, contact angle, mechanical tensile, bacteriocidal efficacy, and hemolysis. Also, after L-929 fibroblast seeding, their biological activity was determined by SEM, DAPI, and MTT assays. Then, the cell-seeded scaffolds were implanted in full-thickness wounds of rats and evaluated by wound closure, histological, and molecular techniques. The in vivo studies showed better wound closure with the composite scaffold containing zinc ions. While its dermal re-organization was retarded in the presence of zinc ions compared to the composite scaffold containing non-doped bioglass. Despite this, the doped composite scaffold indicated better observations with the histological evaluations than the nontreated and bare scaffold groups. Real-time PCR confirmed the higher expression of FGF2 and FGFR genes in rats treated with the zinc-doped composite scaffold. In conclusion, PU/PCL-collagen/PCL-collagen containing the doped or non-doped nanoparticles showed better potential to heal dermal injuries.
Collapse
Affiliation(s)
- Asefeh Kamrani
- Department of Biology, Parand Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Ghorbani
- Applied Biotechnoiogy Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Egashira Y, Atsuta I, Narimatsu I, Zhang X, Takahashi R, Koyano K, Ayukawa Y. Effect of carbonate apatite as a bone substitute on oral mucosal healing in a rat extraction socket: in vitro and in vivo analyses using carbonate apatite. Int J Implant Dent 2022; 8:11. [PMID: 35254552 PMCID: PMC8901832 DOI: 10.1186/s40729-022-00408-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Background Low bone quantity and quality are serious problems that affect the prognosis of implants in the cosmetic field. Therefore, artificial bone substitutes are frequently used. However, whether there is a difference in the effect of either bone substitute on soft tissue healing is unclear given their greatly different absorbability. In this study, we used hydroxyapatite (HAp) and carbonate apatite (CO3Ap) as bone substitutes to analyze the epithelial and connective tissue healing after tooth extraction. Methods In vitro, oral mucosa-derived epithelial cells (OECs) collected from 4-day-old Wistar rats were seeded on HAp or CO3Ap and evaluated for adhesion, proliferation, migration, apoptosis, and morphology. Fibroblasts (FBs) were also analyzed for their ability to express collagen. In vivo, the extraction of maxillary right first (M1) and second molars (M2) of 6-week-old male Wistar rats was performed, followed by insertion of HAp or CO3Ap granules into the M1 and M2 sites. The oral mucosal healing process was then evaluated histochemically after 7 and 14 days. Results In vitro, high collagen expression by FBs in the CO3Ap group was observed and the surface analysis showed spreading of the FBs on the CO3Ap surface. However, the activity of OECs was suppressed on CO3Ap. Two weeks after CO3Ap implantation, soft tissue healing was observed, and recovery of the connective tissue was observed on the remaining CO3Ap. Conclusions Our results suggest that the formation of soft tissues, including connective tissue, was promoted by CO3Ap in the extraction socket within a short period.
Collapse
|
3
|
Herman K, Zemła J, Ptak A, Lekka M. Single-molecule force spectroscopy reveals structural differences of heparan sulfate chains during binding to vitronectin. Phys Rev E 2021; 104:024409. [PMID: 34525582 DOI: 10.1103/physreve.104.024409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022]
Abstract
The syndecans represent an ongoing research field focused on their regulatory roles in normal and pathological conditions. The role of syndecans in cancer progression is well documented, implicating their importance in diagnosis and even proposing various potential cancer treatments. Thus, the characterization of the unbinding properties at the single-molecule level will appeal to their use as targets for therapeutics. In our study, syndecan-1 and syndecan-4 were measured during the interaction with the vitronectin HEP II binding site. Our findings show that syndecans are calcium ion dependent molecules that reveal distinct, unbinding properties indicating the alterations in the structure of heparan sulfate (HS) chains, possibly in the chain sequence or sulfation pattern. In this way, we suppose that HS chain affinity to extracellular matrix proteins may govern cancer invasion by altering the syndecans' ability to interact with cancer-related receptors present in the tumor microenvironment, thereby promoting the activation of various signaling cascades regulating tumor cell behavior.
Collapse
Affiliation(s)
- Katarzyna Herman
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965 Poznań, Poland
| | - Joanna Zemła
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965 Poznań, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| |
Collapse
|
4
|
Shrestha P, Adepu S, Vivès RR, Masri RE, Klooster A, Kaptein F, Dam W, Bakker SJL, van Goor H, van de Sluis B, van den Born J. Hypercholesterolemia in Progressive Renal Failure Is Associated with Changes in Hepatic Heparan Sulfate - PCSK9 Interaction. J Am Soc Nephrol 2021; 32:1371-1388. [PMID: 33758009 PMCID: PMC8259657 DOI: 10.1681/asn.2020091376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/04/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Dyslipidemia is an important risk factor in CKD. The liver clears triglyceride-rich lipoproteins (TRL) via LDL receptor (LDLR), LDLR-related protein-1 (LRP-1), and heparan sulfate proteoglycans (HSPGs), mostly syndecan-1. HSPGs also facilitate LDLR degradation by proprotein convertase subtilisin/kexin type 9 (PCSK9). Progressive renal failure affects the structure and activity of hepatic lipoprotein receptors, PCSK9, and plasma cholesterol. METHODS Uninephrectomy- and aging-induced CKD in normotensive Wistar rats and hypertensive Munich-Wistar-Frömter (MWF) rats. RESULTS Compared with 22-week-old sex- and strain-matched rats, 48-week-old uninephrectomized Wistar-CKD and MWF-CKD rats showed proteinuria, increased plasma creatinine, and hypercholesterolemia (all P<0.05), which were most apparent in hypertensive MWF-CKD rats. Hepatic PCSK9 expression increased in both CKD groups (P<0.05), with unusual sinusoidal localization, which was not seen in 22-week-old rats. Heparan sulfate (HS) disaccharide analysis, staining with anti-HS mAbs, and mRNA expression of HS polymerase exostosin-1 (Ext-1), revealed elongated HS chains in both CKD groups. Solid-phase competition assays showed that the PCSK9 interaction with heparin-albumin (HS-proteoglycan analogue) was critically dependent on polysaccharide chain length. VLDL binding to HS from CKD livers was reduced (P<0.05). Proteinuria and plasma creatinine strongly associated with plasma cholesterol, PCSK9, and HS changes. CONCLUSIONS Progressive CKD induces hepatic HS elongation, leading to increased interaction with PCSK9. This might reduce hepatic lipoprotein uptake and thereby induce dyslipidemia in CKD. Therefore, PCSK9/HS may be a novel target to control dyslipidemia.
Collapse
Affiliation(s)
- Pragyi Shrestha
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Saritha Adepu
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Romain R. Vivès
- University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique (CEA), Institute of Structural Biology, Grenoble, France
| | - Rana El Masri
- University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique (CEA), Institute of Structural Biology, Grenoble, France
| | - Astrid Klooster
- Department of Pathology, Pathology Friesland, Leeuwarden, The Netherlands
| | - Fleur Kaptein
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wendy Dam
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- Department Pediatrics, Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Shrestha P, Yazdani S, Vivès RR, El Masri R, Dam W, van de Sluis B, van den Born J. Proteinuria converts hepatic heparan sulfate to an effective proprotein convertase subtilisin kexin type 9 enzyme binding partner. Kidney Int 2021; 99:1369-1381. [PMID: 33609572 DOI: 10.1016/j.kint.2021.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
Hepatic uptake of triglyceride-rich remnant lipoproteins is mediated by the low-density lipoprotein receptor, a low-density lipoprotein receptor related protein and the heparan sulfate proteoglycan, syndecan-1. Heparan sulfate proteoglycan also mediates low-density lipoprotein receptor degradation by a regulator of cholesterol homeostasis, proprotein convertase subtilisin kexin type 9 (PCSK9), thereby hampering triglyceride-rich remnant lipoproteins uptake. In this study, we investigated the effects of proteinuria on PCSK9, hepatic heparan sulfate proteoglycan and plasma triglyceride-rich remnant lipoproteins. Adriamycin-injected rats developed proteinuria, elevated triglycerides and total cholesterol (all significantly increased). Proteinuria associated with triglycerides and total cholesterol and serum PCSK9 (all significant associations) without loss of the low-density lipoprotein receptor as evidenced by immunofluorescence staining and western blotting. In proteinuric rats, PCSK9 accumulated in sinusoids, whereas in control rats PCSK9 was localized in the cytoplasm of hepatocytes. Molecular profiling revealed that the heparan sulfate side chains of heparan sulfate proteoglycan to be hypersulfated in proteinuric rats. Competition assays revealed sulfation to be a major determinant for PCSK9 binding. PCSK9 partly colocalized with hypersulfated heparan sulfate in proteinuric rats, but not in control rats. Hence, proteinuria induces hypersulfated hepatic heparan sulfate proteoglycans, increasing their affinity to PCSK9. This might impair hepatic triglyceride-rich remnant lipoproteins uptake, causing proteinuria-associated dyslipidemia. Thus, our study reveals PCSK9/heparan sulfate may be a novel target to control dyslipidemia.
Collapse
Affiliation(s)
- Pragyi Shrestha
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Saleh Yazdani
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium; Vlaams Institute of Biotechnology Leuven Center for Microbiology, Leuven, Belgium
| | - Romain R Vivès
- University Grenoble Alpes, Institute of Structural Biology (IBS), Atomic Energy and Alternative Energies Commission (CEA), French National Centre for Scientific Research (CNRS), Grenoble, France
| | - Rana El Masri
- University Grenoble Alpes, Institute of Structural Biology (IBS), Atomic Energy and Alternative Energies Commission (CEA), French National Centre for Scientific Research (CNRS), Grenoble, France
| | - Wendy Dam
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jacob van den Born
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Lekka M, Herman K, Zemła J, Bodek Ł, Pyka-Fościak G, Gil D, Dulińska-Litewka J, Ptak A, Laidler P. Probing the recognition specificity of α Vβ 1 integrin and syndecan-4 using force spectroscopy. Micron 2020; 137:102888. [PMID: 32554186 DOI: 10.1016/j.micron.2020.102888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
The knowledge on how cells interact with microenvironment is particularly important in understanding the interaction of cancer cells with surrounding stroma, which affects cell migration, adhesion, and metastasis. The main cell surface receptors responsible for the interaction with extracellular matrix (ECM) are integrins, however, they are not the only ones. Integrins are accompanied to other molecules such as syndecans. The role of the latter has not yet been fully established. In our study, we would like to answer the question of whether integrins and syndecans, possessing similar functions, share also similar unbinding properties. By using single molecule force spectroscopy (SMFS), we conducted measurements of the unbinding properties of αVβ1 and syndecan-4 in the interaction with vitronectin (VN), which, as each ECM protein, possesses two binding sites specific to integrins and syndecans. The unbinding force and the kinetic off rate constant derived from SMFS describe the stability of single molecular complex. Obtained data show one barrier transition for each complex. The proposed model shows that the unbinding of αVβ1 from VN proceeds before the unbinding of SDC-4. However, despite different unbinding kinetics, the access to both receptors is needed for cell growth and proliferation.
Collapse
Affiliation(s)
- Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland.
| | - Katarzyna Herman
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
| | - Joanna Zemła
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Łukasz Bodek
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Grażyna Pyka-Fościak
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034, Kraków, Poland
| | - Dorota Gil
- Chair of Medical Biochemistry Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
| | - Piotr Laidler
- Chair of Medical Biochemistry Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| |
Collapse
|
7
|
Ayukawa Y, Oshiro W, Atsuta I, Furuhashi A, Kondo R, Jinno Y, Koyano K. Long Term Retention of Gingival Sealing around Titanium Implants with CaCl 2 Hydrothermal Treatment: A Rodent Study. J Clin Med 2019; 8:jcm8101560. [PMID: 31569492 PMCID: PMC6832415 DOI: 10.3390/jcm8101560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 02/02/2023] Open
Abstract
We previously reported that CaCl2 hydrothermal-treated (Ca-HT) titanium (Ti) implants induced a tight sealing at the interface between the implant and peri-implant epithelium (PIE) after implantation. However, it is not clear how long this improved epithelium sealing can be maintained. We subsequently investigated whether the positive effect of Ca-HT to promote sealing between the PIE and implant was sustained longer term. Maxillary molars were extracted from rats and replaced with either Ca-HT implants (Ca-HT group), distilled water-HT implants (DW-HT group) or non-treated implants (control group). After 16 weeks, the majority of implants in the Ca-HT group remained at the maxillary with no apical extension of the PIE. Conversely, half the number of control implants was lost following down-growth of the PIE. The effect of Ca-HT on migration and proliferation of rat oral epithelial cells (OECs) was also investigated. In OECs cultured on Ca-HT Ti plates, protein expression in relation to cell migration decreased, and proliferation was higher than other groups. Surface analysis indicated HT enhanced the formation of surface TiO2 layer without altering surface topography. Consequently, Ca-HT of Ti reduced PIE down-growth via tight epithelial attachment to the surface, which may enhance implant capability for a longer time post-implantation.
Collapse
Affiliation(s)
- Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8282, Japan.
| | - Wakana Oshiro
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8282, Japan.
| | - Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8282, Japan.
| | - Akihiro Furuhashi
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8282, Japan.
| | - Ryosuke Kondo
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8282, Japan.
| | - Yohei Jinno
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Odontology, Malmö University, Malmö S-20506, Sweden.
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8282, Japan.
| |
Collapse
|
8
|
Herman K, Lekka M, Ptak A. Unbinding Kinetics of Syndecans by Single-Molecule Force Spectroscopy. J Phys Chem Lett 2018; 9:1509-1515. [PMID: 29510059 DOI: 10.1021/acs.jpclett.7b03420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Syndecans are transmembrane proteoglycans that, together with integrins, control cell interactions with extracellular matrix components. Despite structural similarities between all members of the syndecan family, their specific attachment to extracellular matrix proteins is defined by heparan and chondroitin chains. We postulate various unbinding kinetics for each type of single syndecan complex. Force spectroscopy data, recorded by atomic force microscope, were analyzed using two theoretical approaches describing force-induced unbinding, authored by Bell-Evans and Dudko-Hummer-Szabo. Our results reveal distinct unbinding pathways dependent on the syndecan family member. Syndecan-1 unbinds by passing over two energy barriers, inner and outer. Syndecan-4 unbinds by crossing over only one energy barrier. It has already been reported that both syndecans bear heparan chains that are structurally indistinguishable. Our finding reveals that unbinding of single syndecan complexes is family-member-dependent. Distinct unbinding pathways can be attributed to structural differences of heparan and chondroitin chains.
Collapse
Affiliation(s)
- Katarzyna Herman
- Institute of Physics, Faculty of Technical Physics , Poznan University of Technology , Piotrowo 3 , 60-965 Poznań , Poland
| | - Małgorzata Lekka
- Institute of Nuclear Physics Polish Academy of Sciences , PL-31342 Kraków , Poland
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Technical Physics , Poznan University of Technology , Piotrowo 3 , 60-965 Poznań , Poland
| |
Collapse
|
9
|
Investigating the relationship between temperature, conformation and calcium binding in heparin model oligosaccharides. Carbohydr Res 2016; 438:58-64. [PMID: 27987423 DOI: 10.1016/j.carres.2016.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 11/24/2022]
Abstract
Glycosaminoglycans such as heparan sulfate (HS) are major components of the cell surface and extracellular matrix (ECM) of all multicellular animals, connecting cells to each other as well as to their environment. The ECM must, therefore, both sense and accommodate changes to external conditions. Heparin, a model compound for HS, responds to increased temperatures, involving changes in the populations of conformational states with implications for the binding of HS to proteins, cations and, potentially, for its activity. A fully 13C and 15N labelled model octasasccharide; D-GlcNS6S α(1-4) L-IdoA2S [α(1-4) D-GlcNS6S α(1-4) L-IdoA2S]2 α(1-4) D-GlcNS6S α(1-4) L-IdoA1,6an, was studied by 1H, 13C and 15N NMR, revealing complex changes in chemical shifts and conformation, over temperatures (280-305 K), comfortably within the range relevant to terrestrial biology. These complex conformational changes indicated an interaction between the carboxylate group of L-iduronate and D-glucosamine residues that was susceptible to temperature changes in this range, while the well-documented hydrogen bond between the N-sulfamido group of glucosamine and the hydroxyl group at position-3 of iduronate remained intact. Unexpectedly, despite the presence of similar thermally-induced conformational changes in a heparin octasaccharide fraction in the sodium ion form, its subsequent binding to calcium ions and their resulting conformation was stringently maintained, as judged by comparisons of 1H NMR chemical shifts.
Collapse
|
10
|
Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chemical Synthesis of Glycosaminoglycans. Chem Rev 2016; 116:8193-255. [DOI: 10.1021/acs.chemrev.6b00010] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marco Mende
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Christin Bednarek
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Mirella Wawryszyn
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Paul Sauter
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Moritz B. Biskup
- Division
2—Informatics, Economics and Society, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Meneghetti MCZ, Hughes AJ, Rudd TR, Nader HB, Powell AK, Yates EA, Lima MA. Heparan sulfate and heparin interactions with proteins. J R Soc Interface 2016; 12:0589. [PMID: 26289657 DOI: 10.1098/rsif.2015.0589] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro, ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure-activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure-activity relationships and regulation will be discussed.
Collapse
Affiliation(s)
- Maria C Z Meneghetti
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil
| | - Ashley J Hughes
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Timothy R Rudd
- The National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, Hertfordshire EN6 3QC, UK Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Helena B Nader
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil
| | - Andrew K Powell
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil
| | - Marcelo A Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
12
|
Li X, Wang C, Xiao J, McKeehan WL, Wang F. Fibroblast growth factors, old kids on the new block. Semin Cell Dev Biol 2016; 53:155-67. [PMID: 26768548 DOI: 10.1016/j.semcdb.2015.12.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
Abstract
The fibroblast growth factors (FGFs) are a family of cell intrinsic regulatory peptides that control a broad spectrum of cellular activities. The family includes canonic FGFs that elicit their activities by activating the FGF receptor (FGFR) tyrosine kinase and non-canonic members that elicit their activities intracellularly and via FGFR-independent mechanisms. The FGF signaling axis is highly complex due to the existence of multiple isoforms of both ligands and receptors, as well as cofactors that include the chemically heterogeneous heparan sulfate (HS) cofactors, and in the case of endocrine FGFs, the Klotho coreceptors. Resident FGF signaling controls embryonic development, maintains tissue homeostasis, promotes wound healing and tissue regeneration, and regulates functions of multiple organs. However, ectopic or aberrant FGF signaling is a culprit for various diseases, including congenital birth defects, metabolic disorder, and cancer. The molecular mechanisms by which the specificity of FGF signaling is achieved remain incompletely understood. Since its application as a druggable target has been gradually recognized by pharmaceutical companies and translational researchers, understanding the determinants of FGF signaling specificity has become even more important in order to get into the position to selectively suppress a particular pathway without affecting others to minimize side effects.
Collapse
Affiliation(s)
- Xiaokun Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cong Wang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian Xiao
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wallace L McKeehan
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, United States
| | - Fen Wang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, United States.
| |
Collapse
|
13
|
Comps-Agrar L, Dunshee DR, Eaton DL, Sonoda J. Unliganded fibroblast growth factor receptor 1 forms density-independent dimers. J Biol Chem 2015; 290:24166-77. [PMID: 26272615 DOI: 10.1074/jbc.m115.681395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factors receptors (FGFRs) are thought to initiate intracellular signaling cascades upon ligand-induced dimerization of the extracellular domain. Although the existence of unliganded FGFR1 dimers on the surface of living cells has been proposed, this notion remains rather controversial. Here, we employed time-resolved Förster resonance energy transfer combined with SNAP- and ACP-tag labeling in COS7 cells to monitor dimerization of full-length FGFR1 at the cell-surface with or without the coreceptor βKlotho. Using this approach we observed homodimerization of unliganded FGFR1 that is independent of its surface density. The homo-interaction signal observed for FGFR1 was indeed as robust as that obtained for epidermal growth factor receptor (EGFR) and was further increased by the addition of activating ligands or pathogenic mutations. Mutational analysis indicated that the kinase and the transmembrane domains, rather than the extracellular domain, mediate the ligand-independent FGFR1 dimerization. In addition, we observed a formation of a higher order ligand-independent complex by the c-spliced isoform of FGFR1 and βKlotho. Collectively, our approach provides novel insights into the assembly and dynamics of the full-length FGFRs on the cell surface.
Collapse
Affiliation(s)
| | | | | | - Junichiro Sonoda
- Molecular Biology, Genentech, Inc., South San Francisco, California 94080
| |
Collapse
|
14
|
Zhang F, Liang X, Beaudet JM, Lee Y, Linhardt RJ. The Effects of Metal Ions on Heparin/Heparin Sulfate-Protein Interactions. ACTA ACUST UNITED AC 2014; 1. [PMID: 28890953 DOI: 10.19104/jbtr.2014.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Heparin/heparin sulfate (HS) interacts with a number of proteins thereby playing an essential role in the regulation of many physiological processes. The understanding of heparin/HS-protein interactions at the molecular level is of fundamental importance to biology and will aid in the development of highly specific glycan-based therapeutic agents. The heparin-binding proteins (HBPs) interact with sulfated domains of heparin/HS chains primarily through ionic attraction between negatively charged groups in HS/heparin chains and basic amino acid residues within the protein. Reports in literature have been shown that heparin molecules have a high affinity for a wide range of metal ions. In the present study, we used surface plasmon resonance (SPR) to study the effects of metal ions (under physiological and non-physiological concentrations) on heparin/HS-protein interactions. The results showed that under non-physiological of metal ion concentration, different metal ions showed different effects on heparin binding to fibroblast growth factor-1 (FGF1) and interleakin-7 (IL7). While the effects of individual metal ion at physiological concentrations had little impact on protein binding, the mixed metal ions reduced the FGF1/heparin or IL7/heparin binding affinity, changing its binding profile.
Collapse
Affiliation(s)
- Fuming Zhang
- Department of Chemical and Biological Engineering, Zhejiang Gongshang, University, Hangzhou 310025, China
| | - Xinle Liang
- Department of Bioengineering, School of Food Science and Biotechnology, Zhejiang Gongshang, University, Hangzhou 310025, China
| | - Julie M Beaudet
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yujin Lee
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Zhejiang Gongshang, University, Hangzhou 310025, China.,Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.,Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
15
|
Xiao L, Ueno D, Catros S, Homer-Bouthiette C, Charles L, Kuhn L, Hurley MM. Fibroblast growth factor-2 isoform (low molecular weight/18 kDa) overexpression in preosteoblast cells promotes bone regeneration in critical size calvarial defects in male mice. Endocrinology 2014; 155:965-74. [PMID: 24424065 PMCID: PMC3929728 DOI: 10.1210/en.2013-1919] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Repair of bone defects remains a significant clinical problem. Bone morphogenetic protein 2 (BMP2) is US Food and Drug Administration-approved for fracture healing but is expensive and has associated morbidity. Studies have shown that targeted overexpression of the 18-kDa low-molecular-weight fibroblast growth factor 2 isoform (LMW) by the osteoblastic lineage of transgenic mice increased bone mass. This study tested the hypotheses that overexpression of LMW would directly enhance healing of a critical size calvarial bone defect in mice and that this overexpression would have a synergistic effect with low-dose administration of BMP2 on critical size calvarial bone defect healing. Bilateral calvarial defects were created in LMW transgenic male mice and control/vector transgenic (Vector) male mice and scaffold with or without BMP2 was placed into the defects. New bone formation was assessed by VIVA-computed tomography of live animals over a 27-week period. Radiographic and computed tomography analysis revealed that at all time points, healing of the defect was enhanced in LMW mice compared with that in Vector mice. Although the very low concentration of BMP2 did not heal the defect in Vector mice, it resulted in complete healing of the defect in LMW mice. Histomorphometric and gene analysis revealed that targeted overexpression of LMW in osteoblast precursors resulted in enhanced calvarial defect healing due to increased osteoblast activity and increased canonical Wnt signaling.
Collapse
Affiliation(s)
- Liping Xiao
- Department of Medicine (L.X., C.H.-B., M.M.H.) and Department of Reconstructive Sciences (L.C., L.K.), University of Connecticut Health Center, Farmington, Connecticut 06030; Unit of Oral and Maxillofacial Implantology (D.U.), Tsurumi University School of Dental Medicine, Yokohama 230, Japan; and Inserm U1026 (S.C.), University of Bordeaux Segalen, 33076 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Luo Y, Yang C, Lu W, Xie R, Jin C, Huang P, Wang F, McKeehan WL. Metabolic regulator betaKlotho interacts with fibroblast growth factor receptor 4 (FGFR4) to induce apoptosis and inhibit tumor cell proliferation. J Biol Chem 2010; 285:30069-78. [PMID: 20657013 PMCID: PMC2943257 DOI: 10.1074/jbc.m110.148288] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/16/2010] [Indexed: 11/06/2022] Open
Abstract
In organs involved in metabolic homeostasis, transmembrane α and βklothos direct FGFR signaling to control of metabolic pathways. Coordinate expression of βklotho and FGFR4 is a property of mature hepatocytes. Genetic deletion of FGFR4 or βklotho in mice disrupts hepatic cholesterol/bile acid and lipid metabolism. The deletion of FGFR4 has no effect on the proliferative response of hepatocytes after liver injury. However, its absence results in accelerated progression of dimethynitrosamine-initiated hepatocellular carcinomas, indicating that FGFR4 suppresses hepatoma proliferation. The mechanism underlying the FGFR4-mediated hepatoma suppression has not been addressed. Here we show that βklotho expression is more consistently down-regulated in human and mouse hepatomas than FGFR4. Co-expression and activation by either endocrine FGF19 or cellular FGF1 of the FGFR4 kinase in a complex with βklotho restricts cell population growth through induction of apoptotic cell death in both hepatic and nonhepatic cells. The βklotho-FGFR4 partnership caused a depression of activated AKT and mammalian target of rapamycin while activating ERK1/2 that may underlie the pro-apoptotic effect. Our results show that βklotho not only interacts with heparan sulfate-FGFR4 to form a complex with high affinity for endocrine FGF19 but also impacts the quality of downstream signaling and biological end points activated by either FGF19 or canonical FGF1. Thus the same βklotho-heparan sulfate-FGFR4 partnership that mediates endocrine control of hepatic metabolism plays a role in cellular homeostasis and hepatoma suppression through negative control of cell population growth mediated by pro-apoptotic signaling.
Collapse
Affiliation(s)
- Yongde Luo
- From the IBT Proteomics and Nanotechnology Laboratory and
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A & M Health Science Center and
| | - Chaofeng Yang
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A & M Health Science Center and
| | - Weiqin Lu
- the Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Rui Xie
- From the IBT Proteomics and Nanotechnology Laboratory and
| | - Chengliu Jin
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A & M Health Science Center and
| | - Peng Huang
- the Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Fen Wang
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A & M Health Science Center and
| | - Wallace L. McKeehan
- From the IBT Proteomics and Nanotechnology Laboratory and
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A & M Health Science Center and
| |
Collapse
|
17
|
Luo Y, Yang C, Jin C, Xie R, Wang F, McKeehan WL. Novel phosphotyrosine targets of FGFR2IIIb signaling. Cell Signal 2009; 21:1370-8. [PMID: 19410646 PMCID: PMC2782441 DOI: 10.1016/j.cellsig.2009.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 04/27/2009] [Indexed: 02/07/2023]
Abstract
In partnership exclusively with the epithelial FGFR2IIIb isotype and a structurally-specific heparan sulfate motif, stromal-derived FGF7 delivers both growth-promoting and growth-limiting differentiation signals to epithelial cells that promote cellular homeostasis between stromal and epithelial compartments. Intercompartmental homeostasis supported by FGF7/FGFR2IIIb is subverted in many solid epithelial tumors. The normally mesenchymal-derived homologue FGFR1 drives proliferation and a progressive tumor-associated phenotype when it appears ectopically in epithelial cells. In order to understand the mechanism underlying the unique biological effects of FGFR2IIIb, we developed an inducible FGFR2IIIb expression system that is specifically dependent on FGF7 for activation in an initially unresponsive cell line to avoid selection for only the growth-promoting aspects of FGFR2IIIb signaling. We then determined FGF7/FGFR2IIIb signaling-specific tyrosine phosphorylated proteins within 5 min after FGF7 stimulation by phosphopeptide immunoaffinity purification and nano-LC-MS/MS. The FGF7/FGFR2 pair caused tyrosine phosphorylation of multiple proteins that have been implicated in the growth stimulating activities of FGFR1 that included multi-substrate organizers FRS2alpha and IRS4, ERK2 and phosphatases SHP2 and SHIP2. It uniquely phosphorylated CDK2 and phosphatase PTPN18 on sites involved in the attenuation of cell proliferation, and several factors that maintain nuclear-cytosolic relationships (emerin and LAP2), protein structure and other cellular fine structures as well as some proteins of unknown functions. Several of the FGF7/FGFR2IIIb-specific targets have been associated with maintenance of function and tumor suppression and disruption in tumors. In contrast, a number of pTyr substrates associated with FGF2/FGFR1 that are generally associated with intracellular Ca(2+)-phospholipid signaling, membrane and cytoskeletal plasticity, cell adhesion, migration and the tumorigenic phenotype were not observed with FGF7/FGFR2IIIb. Our findings provide specific downstream targets for dissection of causal relationships underlying the distinct role of FGF7/FGFR2IIIb signaling in epithelial cell homeostasis.
Collapse
Affiliation(s)
- Yongde Luo
- IBT Proteomics and Nanotechnology Laboratory, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030-3303, USA
| | | | | | | | | | | |
Collapse
|
18
|
Motomura K, Hagiwara A, Komi-Kuramochi A, Hanyu Y, Honda E, Suzuki M, Kimura M, Oki J, Asada M, Sakaguchi N, Nakayama F, Akashi M, Imamura T. An FGF1:FGF2 chimeric growth factor exhibits universal FGF receptor specificity, enhanced stability and augmented activity useful for epithelial proliferation and radioprotection. Biochim Biophys Acta Gen Subj 2008; 1780:1432-40. [PMID: 18760333 DOI: 10.1016/j.bbagen.2008.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 07/18/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
Structural instability of wild-type fibroblast growth factor (FGF)-1 and its dependence on exogenous heparin for optimal activity diminishes its potential utility as a therapeutic agent. Here we evaluated FGFC, an FGF1:FGF2 chimeric protein, for its receptor affinity, absolute heparin-dependence, stability and potential clinical applicability. Using BaF3 transfectants overexpressing each FGF receptor (FGFR) subtype, we found that, like FGF1, FGFC activates all of the FGFR subtypes (i.e., FGFR1c, FGFR1b, FGFR2c, FGFR2b, FGFR3c, FGFR3b and FGFR4) in the presence of heparin. Moreover, FGFC activates FGFRs even in the absence of heparin. FGFC stimulated keratinocytes proliferation much more strongly than FGF2, as would be expected from its ability to activate FGFR2b. FGFC showed greater structural stability, biological activity and resistance to trypsinization, and less loss in solution than FGF1 or FGF2. When FGFC was intraperitoneally administered to BALB/c mice prior to whole body gamma-irradiation, survival of small intestine crypts was significantly enhanced, as compared to control mice. These results suggest that FGFC could be useful in a variety of clinical applications, including promotion of wound healing and protection against radiation-induced damage.
Collapse
Affiliation(s)
- Kaori Motomura
- Signaling Molecules Research Group, Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Over the past decade, since it was first observed in vivo, there has been an explosion in interest in the thin (approximately 500 nm), gel-like endothelial glycocalyx layer (EGL) that coats the luminal surface of blood vessels. In this review, we examine the mechanical and biochemical properties of the EGL and the latest studies on the interactions of this layer with red and white blood cells. This includes its deformation owing to fluid shear stress, its penetration by leukocyte microvilli, and its restorative response after the passage of a white cell in a tightly fitting capillary. We also examine recently discovered functions of the EGL in modulating the oncotic forces that regulate the exchange of water in microvessels and the role of the EGL in transducing fluid shear stress into the intracellular cytoskeleton of endothelial cells, in the initiation of intracellular signaling, and in the inflammatory response.
Collapse
Affiliation(s)
- Sheldon Weinbaum
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA.
| | | | | |
Collapse
|
20
|
Ryu EK, Cho KJ, Kim JK, Harmer NJ, Blundell TL, Kim KH. Expression and purification of recombinant human fibroblast growth factor receptor in Escherichia coli. Protein Expr Purif 2006; 49:15-22. [PMID: 16750394 DOI: 10.1016/j.pep.2006.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 04/11/2006] [Accepted: 04/12/2006] [Indexed: 11/21/2022]
Abstract
Human fibroblast growth factor receptor (FGFR) is responsible for multifunctional signaling that regulates developmental processes. The three immunoglobulin-like extracellular domains of FGFR (D1, D2, and D3) include the determinants of ligand binding and specificity for fibroblast growth factor and heparan sulfate. D1 and the D1-D2 linker with a contiguous stretch of acidic amino acids are known to be involved in auto-inhibitory regulation. In an effort to gain a better understanding of the role of D1 and the linker in FGFR regulation, we have subcloned, overexpressed, and purified the extracellular fragments, D1-D2 and D1-D3, of FGFR1 in Escherichia coli. The recombinant proteins were produced in an insoluble form and were renatured using a dropwise or on-column refolding method. In addition, D2-D3 was coexpressed with chaperones to test the possibility that the presence of chaperones might enhance refolding efficiencies. A combination of immobilized nickel and heparin affinity chromatography and size-exclusion chromatography resulted in the purification of recombinant ectodomain proteins D1-D2 and D1-D3 of high purity for structural studies.
Collapse
Affiliation(s)
- Eui Kyung Ryu
- Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Ricard-Blum S, Beraud M, Raynal N, Farndale RW, Ruggiero F. Structural Requirements for Heparin/Heparan Sulfate Binding to Type V Collagen. J Biol Chem 2006; 281:25195-204. [PMID: 16815843 DOI: 10.1074/jbc.m603096200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen-proteoglycan interactions participate in the regulation of matrix assembly and in cell-matrix interactions. We reported previously that a fragment (Ile824-Pro950) of the collagen alpha1(V) chain, HepV, binds to heparin via a cluster of three major basic residues, Arg912, Arg918, and Arg921, and two additional residues, Lys905 and Arg909 (Delacoux, F., Fichard, A., Cogne, S., Garrone, R., and Ruggiero, F. (2000) J. Biol. Chem. 275, 29377-29382). Here, we further characterized the binding of HepV and collagen V to heparin and heparan sulfate by surface plasmon resonance assays. HepV bound to heparin and heparan sulfate with a similar affinity (KD approximately 18 and 36 nM, respectively) in a cation-dependent manner, and 2-O-sulfation of heparin was shown to be crucial for the binding. An octasaccharide of heparin and a decasaccharide of heparan sulfate were required for HepV binding. Studies with HepV mutants showed that the same basic residues were involved in the binding to heparin, to heparan sulfate, and to the cell surface. The contribution of Lys905 and Arg909 was found to be significant. The triple-helical peptide GPC(GPP)5G904-R918(GPP)5GPC-NH2 and native collagen V molecules formed much more stable complexes with heparin than HepV, and collagen V bound to heparin/heparan sulfate with a higher affinity (in the nanomolar range) than HepV. Heat and chemical denaturation strongly decreased the binding, indicating that the triple helix plays a major role in stabilizing the interaction with heparin. Collagen V and HepV may play different roles in cell-matrix interactions and in matrix assembly or remodeling mediated by their specific interactions with heparan sulfate.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Claude Bernard Lyon 1, Institut Féderatif de Recherche 128 BioSciences Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, Lyon, France
| | | | | | | | | |
Collapse
|
22
|
Luo Y, Ye S, Kan M, McKeehan WL. Structural specificity in a FGF7-affinity purified heparin octasaccharide required for formation of a complex with FGF7 and FGFR2IIIb. J Cell Biochem 2006; 97:1241-58. [PMID: 16315317 DOI: 10.1002/jcb.20724] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Variations in sulfation of heparan sulfate (HS) affect interaction with FGF, FGFR, and FGF-HS-FGFR signaling complexes. Whether structurally distinct HS motifs are at play is unclear. Here we used stabilized recombinant FGF7 as a bioaffinity matrix to purify size-defined heparin oligosaccharides. We show that only 0.2%-4% of 6 to 14 unit oligosaccharides, respectively, have high affinity for FGF7 based on resistance to salt above 0.6M NaCl. The high affinity fractions exhibit highest specific activity for interaction with FGFR2IIIb and formation of complexes of FGF7-HS-FGFR2IIIb. The majority fractions with moderate (0.30-0.6M NaCl), low (0.14-0.30M NaCl) or no affinity at 0.14M NaCl for FGF7 supported no complex formation. The high affinity octasaccharide mixture exhibited predominantly 7- and 8-sulfated components (7,8-S-OctaF7) and formed FGF7-HS-FGFR2IIIb complexes with highest specific activity. Deduced disaccharide analysis indicated that 7,8-S-OctaF7 comprised of DeltaHexA2SGlcN6S in a 2:1 ratio to a trisulfated and a variable unsulfated or monosulfated disaccharide. The inactive octasaccharides with moderate affinity for FGF7 were much more heterogenous and highly sulfated with major components containing 11 or 12 sulfates comprised of predominantly trisulfated disaccharides. This suggests that a rare undersulfated motif in which sulfate groups are specifically distributed has highest affinity for FGF7. The same motif also exhibits structural requirements for high affinity binding to dimers of FGFR2IIIb prior to binding FGF7 to form FGF7-HS-FGFR2IIIb complexes. In contrast, the majority of more highly sulfated HS motifs likely play FGFR-independent roles in stability and control of access of FGF7 to FGFR2IIIb in the tissue matrix.
Collapse
Affiliation(s)
- Yongde Luo
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, The Texas A&M University System Health Science Center, Houston, Texas 77030-3303, USA
| | | | | | | |
Collapse
|
23
|
Luo Y, Ye S, Kan M, McKeehan WL. Control of fibroblast growth factor (FGF) 7- and FGF1-induced mitogenesis and downstream signaling by distinct heparin octasaccharide motifs. J Biol Chem 2006; 281:21052-21061. [PMID: 16728399 DOI: 10.1074/jbc.m601559200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Variation in length, disaccharide composition, and sulfation of heparan sulfate (HS) affects fibroblast growth factor (FGF) signaling. However, it is unclear whether the specific distribution of groups within oligosaccharides or random variations in charge density underlies the effects. Recently we showed that a mixture of undersulfated octasaccharides exhibiting 7 and 8 sulfates (7,8-S-OctaF7) generated from heparin had the highest affinity for FGF7 monitored by salt resistance (>0.60 M salt) of octasaccharide-FGF7 complexes. 7,8-S-OctaF7 also had the highest specific activity for formation of a complex with dimeric FGFR2IIIb competent to bind FGF7. Here we show that when endogenous HS was inhibited by chlorate treatment, 7,8-S-OctaF7 specifically supported FGF7-stimulated DNA synthesis and downstream signaling in FGFR2IIIb-expressing mouse keratinocytes. It failed to support FGF1 signaling in both HS-deficient mouse keratinocytes and 3T3 fibroblasts. In contrast, abundant, more highly sulfated and heterogenous mixtures of octasaccharides with lower affinity (0.30-0.60 M salt) for FGF7 supported FGF1-induced signaling in both cell types. In contrast to the two-component 7,8-S-OctaF7 mixture from FGF7, the high affinity octasaccharide fraction from FGF1 was a heterogeneous mixture with components ranging from 8 to 12 sulfates with 11-S-octasaccharides the most abundant. The high affinity fraction exhibited similar properties to the lower affinity fractions from both FGF1 and FGF7. Octasaccharide mixtures eluting from FGF1 between 0.30 and 0.60 M and above 0.60 M salt were nearly equal in support of FGF1 signaling in fibroblasts and keratinocytes. Both were deficient in support of FGF7-induced signaling in keratinocytes. The results show that both variations in overall charge density and specific distribution of charged groups within HS motifs exhibit FGF-specific control over formation of FGF-HS-FGFR complexes and downstream signaling.
Collapse
Affiliation(s)
- Yongde Luo
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, The Texas A&M University System Health Science Center, Houston, Texas 77030-3303
| | - Sheng Ye
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Mikio Kan
- Zeria Pharmaceutical Co., Ltd., GS PlatZ., 2512-1, Oshikiri, Kohnan-Machi, Ohsato-Gun, Saitama 360-0111, Japan
| | - Wallace L McKeehan
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, The Texas A&M University System Health Science Center, Houston, Texas 77030-3303; Department of Biochemistry and Biophysics, Texas A&M University, Houston, Texas 77030-3303.
| |
Collapse
|
24
|
Abstract
Endothelial cells (ECs) line all blood vessel walls and are exposed to the mechanical forces of blood flow which modulate their function and play a role in vascular regulation, remodelling and disease. The principal mechanical forces sensed by ECs are the shear stress of flowing blood on their apical surface, and the circumferential stress resisting blood pressure, which induces stretch in the cell body. 'Mechanotransduction' refers to the mechanisms by which these forces are transduced into biomolecular responses of the cells. Given the importance of endothelial mechanotransduction in cardiovascular physiology and pathology, numerous research efforts have been dedicated to identifying the mechanosensory component(s) of ECs. This review focuses on mechanotransduction of shear stress by ECs and considers the evidence in support of the surface glycocalyx acting as a mechanotransducer.
Collapse
Affiliation(s)
- J M Tarbell
- Biomedical Engineering Department, The City College of New York, CUNY, New York, NY 10031, USA.
| | | |
Collapse
|
25
|
Jin C, Wang F, Wu X, Yu C, Luo Y, McKeehan WL. Directionally specific paracrine communication mediated by epithelial FGF9 to stromal FGFR3 in two-compartment premalignant prostate tumors. Cancer Res 2004; 64:4555-62. [PMID: 15231666 DOI: 10.1158/0008-5472.can-03-3752] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tissue homeostasis in normal prostate and two-compartment nonmalignant prostate tumors depends on harmonious two-way communications between epithelial and stromal compartments. Within the fibroblast growth factor (FGF) family, signaling to an epithelial cell-specific FGF receptor (FGFR) 2IIIb-heparan sulfate complex from stromal-specific FGF7 and FGF10 delivers directionally specific instruction from stroma to epithelium without autocrine interference. Using a two-compartment transplantable prostate tumor model in which survival of stromal cells in vivo depends on epithelial cells, we show that signaling from epithelial FGF9 to stromal FGFR3 potentially mediates epithelial-to-stromal communication that also is directionally specific. FGF9 mRNA was expressed exclusively in the epithelial cells derived from well-differentiated, two-compartment Dunning R3327 rat prostate tumors. In contrast, FGFR3 was expressed at functionally significant levels only in the derived stromal cells. Competition binding and immunoprecipitation assays revealed that FGF9 only bound to an FGFR on the stromal cells. FGF9 also failed to covalently cross-link to clonal lines of stromal cells devoid of FGFR3 that expressed FGFR1 and FGFR2IIIc. Furthermore, FGF9 specifically stimulated DNA synthesis in stromal cells expressing FGFR3. These results demonstrate a directionally specific paracrine signaling from epithelial FGF9 and stromal FGFR3. Similar to the FGF7/FGF10 to FGFR2IIIb signaling from the stroma to the epithelium, the directional specificity from epithelium to stroma appears set by a combination of cell-specific expression of isoforms and cell-context specificity of FGFR isotypes for FGF.
Collapse
Affiliation(s)
- Chengliu Jin
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston 77030, USA
| | | | | | | | | | | |
Collapse
|
26
|
Fukushima K, Ishiyama C, Yamashita K. Recognition by TNF-alpha of the GPI-anchor glycan induces apoptosis of U937 cells. Arch Biochem Biophys 2004; 426:298-305. [PMID: 15158680 DOI: 10.1016/j.abb.2004.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 02/18/2004] [Indexed: 12/01/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) binds to TNF-alpha receptors (TNFR) to produce a hexameric (TNF-alpha)(3)-(TNFR)(3) structure that stimulates apoptosis. We found by using ELISA that TNF-alpha binds to the glycosylphosphatidylinositol (GPI) anchor glycans of carcinoembryonic antigen, human placental alkaline phosphatase (hAP), and Tamm-Horsfall glycoprotein. These binding abilities were inhibited by 10(-6)M mannose-6-phosphate. Treatment of hAP with mild acid and phosphatase, which releases the N-acetylglucosamine (GlcNAc) beta1 -->phosphate-->6 residue from the GPI-anchor glycan of hAP, abrogated the binding of TNF-alpha to hAP. Thus, TNF-alpha binds to the GlcNAcbeta1-->phosphate-->6Man residue in GPI-anchor glycans. To investigate whether the carbohydrate-binding ability of TNF-alpha is related to its physiological functions, human lymphoma U937 cells were used. TNF-alpha stimulates U937 cell apoptosis in a dose-dependent manner and the presence of mannose-6-phosphate inhibited this. TNF-alpha-dependent tyrosine phosphorylation of several proteins in U937 cells was also diminished by mannose-6-phosphate. Phosphatidylinositol-specific phospholipase C-pretreatment also inhibited this tyrosine phosphorylation. These data suggest that TNF-alpha stimulates U937 cell apoptosis by forming a high-affinity nanomeric (TNF-alpha)(3)-(TNFR)(3)-(GPI-anchored glycan)(3) complex. The GPI-anchored glycoprotein involved remains to be identified.
Collapse
Affiliation(s)
- Keiko Fukushima
- Department of Biochemistry, Sasaki Institute, 2-2 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | |
Collapse
|
27
|
Thomas G, Clayton A, Thomas J, Davies M, Steadman R. Structural and functional changes in heparan sulfate proteoglycan expression associated with the myofibroblastic phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:977-89. [PMID: 12598330 PMCID: PMC3278775 DOI: 10.1016/s0002-9440(10)63892-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The principal cells implicated as the source of the extracellular matrix in areas of progressive fibrosis are fibroblasts with the phenotypic appearance of myofibroblasts. This report describes differences in heparan sulfate proteoglycan expression between myofibroblasts and normal fibroblasts, associated with impaired responses to fibroblast growth factor-2 (FGF-2). Although both cell types responded to platelet-derived growth factor, myofibroblasts, unlike fibroblasts, did not proliferate to FGF-2. A response was acquired, however, when myofibroblasts were incubated with FGF-2 in the presence of heparan sulfate (HS) and heparin. Selective digestion with pronase, NaOH/NaBH(4), heparinase I, or low pH nitrous acid showed that each HS-glycosaminoglycan region comprised a pronase-resistant peptide separating two HS chains. The HS-glycosaminoglycan chains from myofibroblasts were larger (K(av), 0.32; molecular weight, 50 kd) than those from fibroblasts (K(av), 0.4; molecular weight, 33 kd), although their disaccharide composition was identical. The chains from myofibroblasts, however, contained three, compared to two, heparinase 1-resistant sequences separated by larger contiguous areas of low sulfation. Furthermore, although there was no difference in FGF-2-binding affinity between the two cell types, the chains secreted by myofibroblasts had twice the binding capacity of those from fibroblasts. Thus, it is likely that the difference in response to FGF-2 is because of a difference in FGF-2 sequestration and receptor interaction with FGF-2-HS complexes. A comparative investigation into HS fine structure is being undertaken to examine these findings in more detail.
Collapse
Affiliation(s)
- Gareth Thomas
- Institute of Nephrology, University of Wales College of Medicine, Heath Park, Cardiff, Wales, UK
| | | | | | | | | |
Collapse
|
28
|
Powell AK, Fernig DG, Turnbull JE. Fibroblast growth factor receptors 1 and 2 interact differently with heparin/heparan sulfate. Implications for dynamic assembly of a ternary signaling complex. J Biol Chem 2002; 277:28554-63. [PMID: 12034712 DOI: 10.1074/jbc.m111754200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) regulates the kinetics of fibroblast growth factor 2 (FGF2)-stimulated intracellular signaling and differentially activates cell proliferation of cells expressing different FGF receptors (FGFRs). Evidence suggests that HS interacts with both FGFs and FGFRs to form active ternary signaling complexes. Here we compare the interactions of two FGFRs with HS. We show that the ectodomains of FGFR1 IIIc and FGFR2 IIIc exhibit specific interactions with different characteristics for both heparin and porcine mucosal HS. These glycans are both known to activate FGF signaling via these receptors. FGFR2 interacts with a higher apparent affinity than FGFR1 despite both involving 6-O-, 2-O-, and N-sulfates. FGFR1 and FGFR2 bind heparin with mean association rate constants of 1.9 x 10(5) and 2.1 x 10(6) m(-1)s(-1), respectively, and dissociation rate constants of 1.2 x 10(-2) and 2.7 x 10(-2) s(-1), respectively. These produced calculated affinities of 63 and 13 nm, respectively. Hence, FGFR1 and FGFR2 bind to heparin chains with markedly different kinetics and affinities. We propose a mechanistic model where the kinetic parameters of the HS/FGFR interaction are a key element regulating the formation of ternary complexes and the resulting FGF signaling outcomes.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Biotinylation
- Cattle
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Fibroblast Growth Factors/metabolism
- Glycosaminoglycans/metabolism
- Heparin/metabolism
- Heparitin Sulfate/metabolism
- Kinetics
- Lung/metabolism
- Models, Biological
- Protein Binding
- Protein Structure, Tertiary
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction
- Swine
Collapse
Affiliation(s)
- Andrew K Powell
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | |
Collapse
|
29
|
Casu B, Lindahl U. Structure and biological interactions of heparin and heparan sulfate. Adv Carbohydr Chem Biochem 2002; 57:159-206. [PMID: 11836942 DOI: 10.1016/s0065-2318(01)57017-1] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- B Casu
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | | |
Collapse
|
30
|
Wang F. Cell- and receptor isotype-specific phosphorylation of SNT1 by fibroblast growth factor receptor tyrosine kinases. In Vitro Cell Dev Biol Anim 2002; 38:178-83. [PMID: 12026167 DOI: 10.1290/1071-2690(2002)038<0178:carisp>2.0.co;2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A partnership between the ectodomain of the fibroblast growth factor receptor (FGFR) isotypes and the chains of pericellular matrix heparan sulfate determines the fibroblast growth factor (FGF) and cell-type specificitives of the FGFR signaling complex. The contribution of the FGFR intracellular tyrosine kinase domains to the specificity of FGFR signaling is unclear. This report shows that the quantity and quality of phosphorylation of the FGFR kinase substrate SNT1 (also called FGFR substrate 2, FRS2) is both FGFR isotype and cell-type specific in prostate tumor epithelial cells at different stages of malignancy. Epithelial cell-resident FGFR2 that promotes homeostasis yields a low level of phosphorylated 65-kDa SNT1. Phosphorylation by ectopic FGFR1 that promotes malignancy was much more intense and yielded a phosphorylated 85-kDa SNT1. The amount of the 85-kDa SNT1 increased by 20-fold during proliferative aging of FGFR1-expressing cell populations that is required for FGFR1-stimulated mitogenesis and the malignant phenotype. In addition, the receptor-specific differential phosphorylation of SNT1 by FGFR isotypes, both of which are normally anchored to the cell membrane, occurred only in intact cells. Therefore, similar to kinase subunits within the heparan sulfate-FGFR complex, cell membrane and cytoskeletal context likely determine FGFR isotype- and cell-type-specific conformational relationships between FGFR kinases and external substrates. This determines the quantity and quality of SNT1 phosphorylation and differential signaling.
Collapse
Affiliation(s)
- Fen Wang
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston 77030-3303, USA.
| |
Collapse
|
31
|
Kan M, Uematsu F, Wu X, Wang F. Directional specificity of prostate stromal to epithelial cell communication via FGF7/FGFR2 is set by cell- and FGFR2 isoform-specific heparan sulfate. In Vitro Cell Dev Biol Anim 2001; 37:575-7. [PMID: 11710433 DOI: 10.1290/1071-2690(2001)037<0575:dsopst>2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Rubin JS, Day RM, Breckenridge D, Atabey N, Taylor WG, Stahl SJ, Wingfield PT, Kaufman JD, Schwall R, Bottaro DP. Dissociation of heparan sulfate and receptor binding domains of hepatocyte growth factor reveals that heparan sulfate-c-met interaction facilitates signaling. J Biol Chem 2001; 276:32977-83. [PMID: 11435444 DOI: 10.1074/jbc.m105486200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a secreted, heparan sulfate (HS) glycosaminoglycan-binding protein that stimulates mitogenesis, motogenesis, and morphogenesis in a wide array of cellular targets, including hepatocytes and other epithelial cells, melanocytes, endothelial cells, and hematopoietic cells. NK1 is an alternative HGF isoform that consists of the N-terminal (N) and first kringle (K1) domains of full-length HGF and stimulates all major HGF biological activities. Within NK1, the N domain retains the HS binding properties of full-length HGF and mediates HS-stimulated ligand oligomerization but lacks significant mitogenic or motogenic activity. In contrast, K1 does not bind HS, but it stimulates receptor and mitogen-activated protein kinase activation, mitogenesis, and motogenesis, demonstrating that structurally distinct and dissociable domains of HGF are the primary mediators of HS binding and receptor activation. Despite the absence of HS-K1 binding, K1 mitogenic activity in HS-negative cells is strictly dependent on added soluble heparin, whereas K1-stimulated motility is not. We also found that, like the receptors for fibroblast growth factors, the HGF receptor c-Met binds tightly to HS. These data suggest that HS can facilitate HGF signaling through interaction with c-Met that is independent of HGF-HS interaction and that the recruitment of specific intracellular effectors that mediate distinct HGF responses such as mitogenesis and motility is regulated by HS-c-Met interaction at the cell surface.
Collapse
Affiliation(s)
- J S Rubin
- Laboratory of Cellular and Molecular Biology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Uematsu F, Jang JH, Kan M, Wang F, Luo Y, McKeehan WL. Evidence that the intracellular domain of FGF receptor 2IIIb affects contact of the ectodomain with two FGF7 ligands. Biochem Biophys Res Commun 2001; 283:791-7. [PMID: 11350054 DOI: 10.1006/bbrc.2001.4850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Models of the oligomeric FGF signaling complex, including those derived from crystal structures, vary in stoichiometry and arrangement of the three subunits comprised of heparin/heparan sulfate chains, FGFR tyrosine kinase and activating FGF. Here, using covalent affinity crosslinking of radiolabeled FGF7 to binary complexes of FGFR2IIIb and heparin, we show that two molecules of FGF7 contact each FGFR2IIIb. This supports models that propose a dimeric complex of two units with stoichiometry 1 FGF:1 FGFR in which each FGF contacts both FGFR. The bivalent FGF7 contact was dependent on the full-length amino terminus of FGF7alpha and the intracellular domain of FGFR2IIIb extending through the juxtamembrane domain and the beta1 and beta2 strands of the kinase which is required for ATP binding. We propose that the differences in crosslinking report differences in relationships among subunits in the ectodomain of the complex that are affected by the amino terminus of FGF and the FGFR intracellular domain. From this, we suggest the corollary that conformational relationships among subunits in the ectodomain are transmitted to the intracellular and ATP binding domains during activation of the complex.
Collapse
Affiliation(s)
- F Uematsu
- Department of Biochemistry and Biophysics, Texas A&M University and Center for Cancer Biology and Nutrition, Houston, Texas 77030-3303, USA
| | | | | | | | | | | |
Collapse
|
34
|
Loo BM, Kreuger J, Jalkanen M, Lindahl U, Salmivirta M. Binding of heparin/heparan sulfate to fibroblast growth factor receptor 4. J Biol Chem 2001; 276:16868-76. [PMID: 11278860 DOI: 10.1074/jbc.m011226200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factors (FGFs) are heparin-binding polypeptides that affect the growth, differentiation, and migration of many cell types. FGFs signal by binding and activating cell surface FGF receptors (FGFRs) with intracellular tyrosine kinase domains. The signaling involves ligand-induced receptor dimerization and autophosphorylation, followed by downstream transfer of the signal. The sulfated glycosaminoglycans heparin and heparan sulfate bind both FGFs and FGFRs and enhance FGF signaling by mediating complex formation between the growth factor and receptor components. Whereas the heparin/heparan sulfate structures involved in FGF binding have been studied in some detail, little information has been available on saccharide structures mediating binding to FGFRs. We have performed structural characterization of heparin/heparan sulfate oligosaccharides with affinity toward FGFR4. The binding of heparin oligosaccharides to FGFR4 increased with increasing fragment length, the minimal binding domains being contained within eight monosaccharide units. The FGFR4-binding saccharide domains contained both 2-O-sulfated iduronic acid and 6-O-sulfated N-sulfoglucosamine residues, as shown by experiments with selectively desulfated heparin, compositional disaccharide analysis, and a novel exoenzyme-based sequence analysis of heparan sulfate oligosaccharides. Structurally distinct heparan sulfate octasaccharides differed in binding to FGFR4. Sequence analysis suggested that the affinity of the interaction depended on the number of 6-O-sulfate groups but not on their precise location.
Collapse
Affiliation(s)
- B M Loo
- Turku Centre for Biotechnology, University of Turku, FIN-20521 Turku, Finland
| | | | | | | | | |
Collapse
|
35
|
Abstract
Despite intensive medical treatment with steroids and immunosuppressants, acute colitis is still associated with a colectomy rate of up to 15%. Following the observation that a patient with severe steroid-resistant colitis went into remission when treated with heparin for a deep vein thrombosis, there have been a number of reports on the use of heparin in acute ulcerative colitis. Although small and uncontrolled, these studies consistently demonstrate the beneficial effects of heparin, with surprisingly few side-effects in a disease characterized by mucosal haemorrhage. The mechanisms by which heparin may ameliorate ulcerative colitis remain unclear. A simple anticoagulant effect may be responsible, but similar effects are not seen with warfarin. As a result of their intense negative charge, the glycosaminoglycans that constitute heparin have diverse biological effects. These include potent anti-inflammatory actions, in vitro and in vivo, and the potentiation of the activity of the peptide growth factors necessary for mucosal regeneration and repair. This review summarizes the clinical reports on heparin treatment for ulcerative colitis and explores the mechanisms by which this novel form of treatment may exert its effects.
Collapse
Affiliation(s)
- N P Michell
- Department of Medicine, Queen Elizabeth Hospital, Edgbaston, Birmingham, UK
| | | | | |
Collapse
|
36
|
Jones RB, Wang F, Luo Y, Yu C, Jin C, Suzuki T, Kan M, McKeehan WL. The nonsense-mediated decay pathway and mutually exclusive expression of alternatively spliced FGFR2IIIb and -IIIc mRNAs. J Biol Chem 2001; 276:4158-67. [PMID: 11042206 DOI: 10.1074/jbc.m006151200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exons IIIb and IIIc of the FGFR2 gene are alternatively spliced in a mutually exclusive manner in different cell types. A switch from expression of FGFR2IIIb to FGFR2IIIc accompanies the transition of nonmalignant rat prostate tumor epithelial cells (DTE) to cells comprising malignant AT3 tumors. Here we used transfection of minigenes with and without alterations in reading frame and with and without introns to examine how translation affects observed FGFR2 splice products. We observed that nonsense mutations in other than the last exon led to a dramatic reduction in mRNA that is abrogated by removal of downstream introns in both DTE and AT3 cells. The mRNA, devoid of both IIIb and IIIc exons (C1-C2), is a major splice product from minigenes lacking an intron downstream of the second common exon C2. From these observations, we suggest that repression of exon IIIc and activation of exon IIIb inclusion in DTE cells lead to the generation of both C1-IIIb-C2 and C1-C2 products. However, the C1-C2 product from the native gene is degraded due to a frameshift and a premature termination codon caused by splicing C1 and C2 together. Derepression of exon IIIc and repression of exon IIIb lead to the generation of both C1-IIIc-C2 and C1-C2 products in AT3 cells, but the C1-C2 product is degraded. The C1-IIIb-IIIc-C2 mRNA containing a premature termination codon in exon IIIc was present, but at apparently trace levels in both cell types. The nonsense-mediated mRNA decay pathway and cell type-dependent rates of inclusion of exons IIIb and IIIc result in the mutually exclusive expression of FGFR2IIIb and IIIc.
Collapse
Affiliation(s)
- R B Jones
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Angulo J, De Paz JL, Nieto PM, Martín-Lomas M. Interaction of heparin with Ca2+: A model study with a synthetic heparin-like hexasaccharide. Isr J Chem 2000. [DOI: 10.1560/9rev-7chb-bb93-09uv] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Nurcombe V, Smart CE, Chipperfield H, Cool SM, Boilly B, Hondermarck H. The proliferative and migratory activities of breast cancer cells can be differentially regulated by heparan sulfates. J Biol Chem 2000; 275:30009-18. [PMID: 10862617 DOI: 10.1074/jbc.m003038200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To explore how heparan sulfate (HS) controls the responsiveness of the breast cancer cell lines MCF-7 and MDA-MB-231 to fibroblast growth factors (FGFs), we have exposed them to HS preparations known to have specificity for FGF-1 (HS glycosaminoglycan (HSGAG A)) or FGF-2 (HSGAGB). Proliferation assays confirmed that MCF-7 cells were highly responsive to FGF-2 complexed with GAGB, whereas migration assays indicated that FGF-1/HSGAGA combinations were stimulatory for the highly invasive MDA-MB-231 cells. Quantitative polymerase chain reaction for the levels of FGF receptor (FGFR) isoforms revealed that MCF-7 cells have greater levels of FGFR1 and that MDA-MB-231 cells have greater relative levels of FGFR2. Cross-linking demonstrated that FGF-2/HSGAGB primarily activated FGFR1, which in turn up-regulated the activity of mitogen-activated protein kinase; in contrast, FGF-1/HSGAGA led to the phosphorylation of equal proportions of both FGFR1 and FGFR2, which in turn led to the up-regulation of Src and p125(FAK). MDA-MB-231 cells were particularly responsive to vitronectin substrates in the presence of FGF-1/HSGAGA, and blocking antibodies established that they used the alpha(v)beta(3) integrin to bind to it. These results suggest that the clustering of particular FGFR configurations on breast cancer cells induced by different HS chains leads to distinct phenotypic behaviors.
Collapse
Affiliation(s)
- V Nurcombe
- Department of Anatomical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia.
| | | | | | | | | | | |
Collapse
|
39
|
Kariya Y, Kyogashima M, Suzuki K, Isomura T, Sakamoto T, Horie K, Ishihara M, Takano R, Kamei K, Hara S. Preparation of completely 6-O-desulfated heparin and its ability to enhance activity of basic fibroblast growth factor. J Biol Chem 2000; 275:25949-58. [PMID: 10837484 DOI: 10.1074/jbc.m004140200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although regioselective removal of 6-O-sulfate groups of heparin has been undertaken by several researchers, complete 6-O-desulfation with little side reaction has not been attained successfully. In this work, a modified method with a certain silylating reagent, N-methyl-N-(trimethylsilyl)trifluoroacetamide, has been established to produce completely 6-O-desulfated heparin with few other chemical changes. The degrees of 6-O-desulfation were estimated by means of chemical disaccharide analyses and/or (13)C NMR spectra. Although the completely 6-O-desulfated heparin lost about 20% of 2-O-sulfate groups, any other chemical changes and depolymerization were not detected. The completely 6-O-desulfated heparin displayed strong inhibition of COS-1 cell adhesion to basic fibroblast growth factor (bFGF)-coated well in a dose-dependent manner, as was clarified by the competitive cell-adhesion assay. Furthermore, the completely 6-O-desulfated heparin was shown to promote in vitro A31 fibroblast proliferation in a dose-dependent manner in the presence of bFGF. These results suggest that signal transduction through bFGF/bFGF receptor in A31 cells occurs in the absence of 6-O-sulfate groups in heparin. The involvement of 6-O-sulfate group(s) of heparin/heparan sulfate in the promotion of bFGF mitogenic activity was reported by several groups. This discrepancy between our results and those of other groups would be due to the differences in molecular size of heparin/heparan sulfate derivatives and/or cell species used for the assay.
Collapse
Affiliation(s)
- Y Kariya
- Tokyo Research Institute, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato, Tokyo 207-0021, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 2000; 68:729-77. [PMID: 10872465 DOI: 10.1146/annurev.biochem.68.1.729] [Citation(s) in RCA: 2113] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The heparan sulfate on the surface of all adherent cells modulates the actions of a large number of extracellular ligands. Members of both cell surface heparan sulfate proteoglycan families, the transmembrane syndecans and the glycosylphosphoinositide-linked glypicans, bind these ligands and enhance formation of their receptor-signaling complexes. These heparan sulfate proteoglycans also immobilize and regulate the turnover of ligands that act at the cell surface. The extracellular domains of these proteoglycans can be shed from the cell surface, generating soluble heparan sulfate proteoglycans that can inhibit interactions at the cell surface. Recent analyses of genetic defects in Drosophila melanogaster, mice, and humans confirm most of these activities in vivo and identify additional processes that involve cell surface heparan sulfate proteoglycans. This chapter focuses on the mechanisms underlying these activities and on the cellular functions that they regulate.
Collapse
Affiliation(s)
- M Bernfield
- Division of Developmental and Newborn Biology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Tichelaar JW, Lu W, Whitsett JA. Conditional expression of fibroblast growth factor-7 in the developing and mature lung. J Biol Chem 2000; 275:11858-64. [PMID: 10766812 DOI: 10.1074/jbc.275.16.11858] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Effects of fibroblast growth factor-7 (FGF-7) on lung morphogenesis, respiratory epithelial cell differentiation, and proliferation were assessed in transgenic mice in which the human FGF-7 cDNA was controlled by a conditional promoter under the direction of regulatory elements from either the human surfactant protein-C (SP-C) or rat Clara cell secretory protein (ccsp) genes. Expression of FGF-7 was induced in respiratory epithelial cells of the fetal lung by administration of doxycycline to the dam. Prenatally, doxycycline induced FGF-7 mRNA in respiratory epithelial cells in both Sp-c and Ccsp transgenic lines, increasing lung size and causing cystadenomatoid malformation. Postnatally, mice bearing both Ccsp-rtta and (Teto)(7)-cmv-fgf-7 transgenes survived, and lung morphology was normal. Induction of FGF-7 expression by doxycycline in the Ccsp-rtta x (Teto)(7)-cmv-fgf-7 mice caused marked epithelial cell proliferation, adenomatous hyperplasia, and pulmonary infiltration with mononuclear cells. Epithelial cell hyperplasia caused by FGF-7 was largely resolved after removal of doxycycline. Surfactant proteins, TTF-1, and aquaporin 5 expression were conditionally induced by doxycycline. The Sp-c-rtta and Ccsp-rtta activator mice provide models in which expression is conditionally controlled in respiratory epithelial cells in the developing and mature lung, altering lung morphogenesis, differentiation, and proliferation.
Collapse
Affiliation(s)
- J W Tichelaar
- Children's Hospital Medical Center, Division of Pulmonary Biology, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
42
|
Stolen CM, Griep AE. Disruption of lens fiber cell differentiation and survival at multiple stages by region-specific expression of truncated FGF receptors. Dev Biol 2000; 217:205-20. [PMID: 10625547 DOI: 10.1006/dbio.1999.9557] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine if fibroblast growth factor signaling mechanisms are required for terminal differentiation and survival of lens fiber cells, we evaluated the effects of expressing truncated fibroblast growth factor receptors (tFGFRs) in different regions of the developing lens. Two sets of transgenic mice were generated, one expressing tFGFRs from the alphaA-crystallin promoter (alphaA-tFGFR), which expresses linked genes in fiber cells throughout their differentiation program, and the other expressing tFGFRs from the gammaF-crystallin promoter (gammaF-tFGFR), which expresses linked genes beginning later during their differentiation. Histological and TUNEL analyses of lenses from alphaA-tFGFR and gammaF-tFGFR transgenic mice suggest that FGFR signaling is required for both early and late fiber cell differentiation and/or survival of the terminally differentiated cells. Additionally, multilayering and increased levels of apoptosis were observed in the anterior epithelium after the onset of fiber cell abnormalities. In situ hybridizations suggest that tFGFR transgenes were not expressed at significant levels in the epithelium. Combined with TUNEL and X-gal analyses on the lens epithelium from gammaF-tFGFR/Rosabeta-geo26 and nontransgenic/Rosabeta-geo26 chimeras, these results suggest that the organization and survival of the epithelial cells depend on appropriate structure and/or function of the differentiated fiber cells.
Collapse
Affiliation(s)
- C M Stolen
- Department of Anatomy, University of Wisconsin Medical School, Madison, Wisconsin, 53706, USA
| | | |
Collapse
|
43
|
Reardon W, Smith A, Honour JW, Hindmarsh P, Das D, Rumsby G, Nelson I, Malcolm S, Adès L, Sillence D, Kumar D, DeLozier-Blanchet C, McKee S, Kelly T, McKeehan WL, Baraitser M, Winter RM. Evidence for digenic inheritance in some cases of Antley-Bixler syndrome? J Med Genet 2000; 37:26-32. [PMID: 10633130 PMCID: PMC1734444 DOI: 10.1136/jmg.37.1.26] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Antley-Bixler syndrome has been thought to be caused by an autosomal recessive gene. However, patients with this phenotype have been reported with a new dominant mutation at the FGFR2 locus as well as in the offspring of mothers taking the antifungal agent fluconazole during early pregnancy. In addition to the craniosynostosis and joint ankylosis which are the clinical hallmarks of the condition, many patients, especially females, have genital abnormalities. We now report abnormalities of steroid biogenesis in seven of 16 patients with an Antley-Bixler phenotype. Additionally, we identify FGFR2 mutations in seven of these 16 patients, including one patient with abnormal steroidogenesis. These findings, suggesting that some cases of Antley-Bixler syndrome are the outcome of two distinct genetic events, allow a hypothesis to be formulated under which we may explain all the differing and seemingly contradictory circumstances in which the Antley-Bixler phenotype has been recognised.
Collapse
Affiliation(s)
- W Reardon
- Department of Clinical Genetics, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Park M, Lee ST. The fourth immunoglobulin-like loop in the extracellular domain of FLT-1, a VEGF receptor, includes a major heparin-binding site. Biochem Biophys Res Commun 1999; 264:730-4. [PMID: 10544000 DOI: 10.1006/bbrc.1999.1580] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We found that heparin at low concentrations increases the vascular endothelial growth factor (VEGF)-induced proliferation of human umbilical vein endothelial cells (HUVECs) but at high concentrations decreases it. To examine whether FLT-1, a VEGF receptor, interacts with heparin and which domain of FLT-1 binds to heparin, various extracellular domains of FLT-1 were expressed in a baculovirus/insect cell system: sFLT-1(1-7), sFLT-1(1-4), sFLT-1(1-3), and sFLT-1(1-2) containing immunoglobulin (Ig)-like loop one to seven, one to four, one to three, and one to two, respectively. The sFLT-1(1-7) and sFLT-1(1-4) readily bound heparin at the physiological salt concentration and half-dissociated from heparin at 0.65 M and 0.57 M NaCl, respectively. In contrast, the sFLT-1(1-3) and sFLT-1(1-2) poorly bound heparin at the physiological salt concentration. In addition, the interaction of sFLT-1(1-7) with heparin was not affected by EDTA up to 80 mM. We thus concluded that the fourth Ig-like loop of FLT-1 is a major heparin-binding site and divalent cations are not involved in the interaction of FLT-1 and heparin.
Collapse
Affiliation(s)
- M Park
- College of Science, Yonsei University, Seoul, 120-749, Korea
| | | |
Collapse
|
45
|
McKeehan WL, Wu X, Kan M. Requirement for anticoagulant heparan sulfate in the fibroblast growth factor receptor complex. J Biol Chem 1999; 274:21511-4. [PMID: 10419453 DOI: 10.1074/jbc.274.31.21511] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A divalent cation-dependent association between heparin or heparan sulfate and the ectodomain of the fibroblast growth factor (FGF) receptor kinase (FGFR) restricts FGF-independent trans-phosphorylation between self-associated FGFR and determines specificity for and mediates binding of activating FGF. Here we show that only the fraction of commercial heparin or rat liver heparan sulfate which binds to immobilized antithrombin formed an FGF-binding binary complex with the ectodomain of the FGFR kinase. Conversely, only the fraction of heparin that binds to immobilized FGFR inhibited Factor Xa in the presence of antithrombin. Only the antithrombin-bound fraction of heparin competed with (3)H-heparin bound to FGFR in absence of FGF, whereas both antithrombin-bound and unretained fractions competed with radiolabeled heparin bound independently to FGF-1 and FGF-2. The antithrombin-bound fraction of heparin was required to support the heparin-dependent stimulation of DNA synthesis of endothelial cells by FGF-1. The requirement for divalent cations and the antithrombin-binding motif distinguish the role of heparan sulfate as an integral subunit of the FGFR complex from the wider range of effects of heparan sulfates and homologues on FGF signaling through FGFR-independent interactions with FGF.
Collapse
Affiliation(s)
- W L McKeehan
- Department of Biochemistry and Biophysics, Texas A&M University, Texas A&M University System Health Science Center, Houston, Texas 77030-3303, USA
| | | | | |
Collapse
|
46
|
Huhtala MT, Pentikäinen OT, Johnson MS. A dimeric ternary complex of FGFR [correction of FGFR1], heparin and FGF-1 leads to an 'electrostatic sandwich' model for heparin binding. Structure 1999; 7:699-709. [PMID: 10404599 DOI: 10.1016/s0969-2126(99)80091-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Fibroblastic growth factors (FGFs) are a family of cytokines involved in regulation of cell growth, differentiation and chemotaxis in a variety of tissue types. High-affinity FGF receptors (FGFRs) are transmembrane proteins that consist of three extracellular immunoglobulin-like domains, a transmembrane helix and an intracellular protein tyrosine kinase signalling domain. FGFRs are activated through ligand-dependent dimerization that allows trans-autophosphorylation of the tyrosine kinase domains. Heparin or heparin-like molecules, such as heparan sulphate proteoglycans, bind to both FGFs and FGFRs and are required for FGF signal transduction. At present no structure of the ternary complex for FGFR, FGF and heparin exists. RESULTS We have used the type-1 interleukin-1 receptor-interleukin-1 beta complex crystal structure, in which both the ligand and the receptor are homologous to those of the FGF-FGFR pair, to identify potential interactions in the FGFR-heparin-FGF ternary complex. A key feature of the modelled complex is the 'electrostatic sandwich' that is formed between the positively charged surfaces of FGF and the receptor, with the negatively charged heparin captured in between. The ternary complex places limits on the range of likely modes of receptor dimerization: one of five different dimeric receptor complexes built from the ternary complex correlates best with the experimental data. CONCLUSIONS The ternary complex of FGFR, FGF and heparin, derived on the basis of the homologous interleukin-1 receptor complex, is in agreement with much of the published experimental data, as is the dimeric receptor complex (FGFR-heparin-FGF)2. This work suggests that the FGF interactions seen in crystal structures, which have previously been used to predict the mode of FGF dimerization, might not be relevant to the biologically active dimeric FGFR-heparin-FGF complex.
Collapse
Affiliation(s)
- M T Huhtala
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| | | | | |
Collapse
|
47
|
Abstract
The number of animal lectins, basically defined upon their interaction with specific carbohydrate structures, is growing considerably during the last few years. Among these proteins the recently identified subfamily of I-type lectins consists of mainly transmembranous glycoproteins belonging to the immunoglobulin superfamily. Most of the I-type lectins participate in cell adhesion events, as are the different sialoadhesins recognizing sialylated glycan structures, which represent the best characterized subgroup. I-type lectins are abundant in the nervous system and have been implicated in a number of morphogenetic processes as fundamental as axon growth, myelin formation and growth factor signaling. In the present review, we summarize the structural and functional properties of I-type lectins expressed in neural tissues with a main focus on the sialoadhesin myelin-associated glycoprotein, the neural cell adhesion molecule and the fibroblast growth factor receptors.
Collapse
Affiliation(s)
- R Probstmeier
- Department of Biochemistry, Institute for Animal Anatomy and Physiology, University of Bonn, Germany
| | | |
Collapse
|
48
|
French MM, Smith SE, Akanbi K, Sanford T, Hecht J, Farach-Carson MC, Carson DD. Expression of the heparan sulfate proteoglycan, perlecan, during mouse embryogenesis and perlecan chondrogenic activity in vitro. J Cell Biol 1999; 145:1103-15. [PMID: 10352025 PMCID: PMC2133131 DOI: 10.1083/jcb.145.5.1103] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of the basement membrane heparan sulfate proteoglycan (HSPG), perlecan (Pln), mRNA, and protein has been examined during murine development. Both Pln mRNA and protein are highly expressed in cartilaginous regions of developing mouse embryos, but not in areas of membranous bone formation. Initially detected at low levels in precartilaginous areas of d 12.5 embryos, Pln protein accumulates in these regions through d 15.5 at which time high levels are detected in the cartilage primordia. Laminin and collagen type IV, other basal lamina proteins commonly found colocalized with Pln, are absent from the cartilage primordia. Accumulation of Pln mRNA, detected by in situ hybridization, was increased in d 14.5 embryos. Cartilage primordia expression decreased to levels similar to that of the surrounding tissue at d 15.5. Pln accumulation in developing cartilage is preceded by that of collagen type II. To gain insight into Pln function in chondrogenesis, an assay was developed to assess the potential inductive activity of Pln using multipotential 10T1/2 murine embryonic fibroblast cells. Culture on Pln, but not on a variety of other matrices, stimulated extensive formation of dense nodules reminiscent of embryonic cartilaginous condensations. These nodules stained intensely with Alcian blue and collagen type II antibodies. mRNA encoding chondrocyte markers including collagen type II, aggrecan, and Pln was elevated in 10T1/2 cells cultured on Pln. Human chondrocytes that otherwise rapidly dedifferentiate during in vitro culture also formed nodules and expressed high levels of chondrocytic marker proteins when cultured on Pln. Collectively, these studies demonstrate that Pln is not only a marker of chondrogenesis, but also strongly potentiates chondrogenic differentiation in vitro.
Collapse
Affiliation(s)
- M M French
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Kan M, Wu X, Wang F, McKeehan WL. Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase. J Biol Chem 1999; 274:15947-52. [PMID: 10336501 DOI: 10.1074/jbc.274.22.15947] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A divalent cation-dependent association between heparin or heparan sulfate and the ectodomain of the FGF receptor kinase (FGFR) restricts FGF-independent trans-phosphorylation and supports the binding of activating FGF to self-associated FGFR. Here we show that in contrast to heparin, cellular heparan sulfate forms a binary complex with FGFR that discriminates between FGF-1 and FGF-2. FGFR type 4 (FGFR4) in liver parenchymal cells binds only FGF-1, whereas FGFR1 binds FGF-1 and FGF-2 equally. Cell-free complexes of heparin and recombinant FGFR4 bound FGF-1 and FGF-2 equally. However, in contrast to FGFR1, when recombinant FGFR4 was expressed back in epithelial cells by transfection, it failed to bind FGF-2 unless heparan sulfate was depressed by chlorate or heparinase treatment. Isolated heparan sulfate proteoglycan (HSPG) from liver cells in cell-free complexes with FGFR4 restored the specificity for FGF-1 and supported the binding of both FGF-1 and FGF-2 when complexed with FGFR1. In contrast, FGF-2 bound equally well to complexes of both FGFR1 and FGFR4 formed with endothelial cell-derived HSPG, but the endothelial HSPG was deficient for the binding of FGF-1 to both FGFR complexes. These data suggest that a heparan sulfate subunit is a cell type- and FGFR-specific determinant of the selectivity of the FGFR signaling complex for FGF. In a physiological context, the heparan sulfate subunit may limit the redundancy among the current 18 FGF polypeptides for the 4 known FGFR.
Collapse
Affiliation(s)
- M Kan
- Department of Biochemistry, Texas A&M University, Texas A&M University System Health Science Center, Houston, Texas 77030-3303, USA
| | | | | | | |
Collapse
|
50
|
Weisenhorn DM, Roback J, Young AN, Wainer BH. Cellular aspects of trophic actions in the nervous system. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 189:177-265. [PMID: 10333580 DOI: 10.1016/s0074-7696(08)61388-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the past three decades the number of molecules exhibiting trophic actions in the brain has increased drastically. These molecules promote and/or control proliferation, differentiation, migration, and survival (sometimes even the death) of their target cells. In this review a comprehensive overview of small diffusible factors showing trophic actions in the central nervous system (CNS) is given. The factors discussed are neurotrophins, epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, insulin-like growth factors, ciliary neurotrophic factor and related molecules, glial-derived growth factor and related molecules, transforming growth factor-beta and related molecules, neurotransmitters, and hormones. All factors are discussed with respect to their trophic actions, their expression patterns in the brain, and molecular aspects of their receptors and intracellular signaling pathways. It becomes evident that there does not exist "the" trophic factor in the CNS but rather a multitude of them interacting with each other in a complicated network of trophic actions forming and maintaining the adult nervous system.
Collapse
Affiliation(s)
- D M Weisenhorn
- Wesley Woods Laboratory for Brain Science, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | | | | | | |
Collapse
|