1
|
Vernì F. Vitamin B6 and diabetes and its role in counteracting advanced glycation end products. VITAMINS AND HORMONES 2024; 125:401-438. [PMID: 38997171 DOI: 10.1016/bs.vh.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Naturally occurring forms of vitamin B6 include six interconvertible water-soluble compounds: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM), and their respective monophosphorylated derivatives (PNP, PLP, and PMP). PLP is the catalytically active form which works as a cofactor in approximately 200 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. Most of vitamers can counteract the formation of reactive oxygen species and the advanced glycation end-products (AGEs) which are toxic compounds that accumulate in diabetic patients due to prolonged hyperglycemia. Vitamin B6 levels have been inversely associate with diabetes, while vitamin B6 supplementation reduces diabetes onset and its vascular complications. The mechanisms at the basis of the relation between vitamin B6 and diabetes onset are still not completely clarified. In contrast more evidence indicates that vitamin B6 can protect from diabetes complications through its role as scavenger of AGEs. It has been demonstrated that in diabetes AGEs can destroy the functionality of macromolecules such as protein, lipids, and DNA, thus producing tissue damage that result in vascular diseases. AGEs can be in part also responsible for the increased cancer risk associated with diabetes. In this chapter the relationship between vitamin B6, diabetes and AGEs will be discussed by showing the acquired knowledge and questions that are still open.
Collapse
Affiliation(s)
- F Vernì
- Department of Biology and Biotechnology "Charles Darwin" Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Johannsen S, Gierse RM, Krüger A, Edwards RL, Nanna V, Fontana A, Zhu D, Masini T, de Carvalho LP, Poizat M, Kieftenbelt B, Hodge DM, Alvarez S, Bunt D, Lacour A, Shams A, Meissner KA, de Souza EE, Dröge M, van Vliet B, den Hartog J, Hutter MC, Held J, Odom John AR, Wrenger C, Hirsch AKH. High Target Homology Does Not Guarantee Inhibition: Aminothiazoles Emerge as Inhibitors of Plasmodium falciparum. ACS Infect Dis 2024; 10:1000-1022. [PMID: 38367280 PMCID: PMC10928712 DOI: 10.1021/acsinfecdis.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
In this study, we identified three novel compound classes with potent activity against Plasmodium falciparum, the most dangerous human malarial parasite. Resistance of this pathogen to known drugs is increasing, and compounds with different modes of action are urgently needed. One promising drug target is the enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) of the methylerythritol 4-phosphate (MEP) pathway for which we have previously identified three active compound classes against Mycobacterium tuberculosis. The close structural similarities of the active sites of the DXPS enzymes of P. falciparum and M. tuberculosis prompted investigation of their antiparasitic action, all classes display good cell-based activity. Through structure-activity relationship studies, we increased their antimalarial potency and two classes also show good metabolic stability and low toxicity against human liver cells. The most active compound 1 inhibits the growth of blood-stage P. falciparum with an IC50 of 600 nM. The results from three different methods for target validation of compound 1 suggest no engagement of DXPS. All inhibitor classes are active against chloroquine-resistant strains, confirming a new mode of action that has to be further investigated.
Collapse
Affiliation(s)
- Sandra Johannsen
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
| | - Robin M. Gierse
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Arne Krüger
- Unit
for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | - Rachel L. Edwards
- Department
of Pediatrics, Washington University School
of Medicine, Saint
Louis, Missouri 63110, United States
| | - Vittoria Nanna
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
| | - Anna Fontana
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
| | - Di Zhu
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Tiziana Masini
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | | | - Mael Poizat
- Symeres, Kadijk 3, Groningen 9747
AT, The Netherlands
| | | | - Dana M. Hodge
- Department
of Pediatrics, Children’s Hospital
of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sophie Alvarez
- Proteomics
& Metabolomics Facility, Center for Biotechnology, Department
of Agronomy and Horticulture, University
of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Daan Bunt
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Antoine Lacour
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
| | - Atanaz Shams
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
| | - Kamila Anna Meissner
- Unit
for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | - Edmarcia Elisa de Souza
- Unit
for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | | | | | | | - Michael C. Hutter
- Center
for Bioinformatics, Saarland University, Campus Building E2.1, Saarbrücken 66123, Germany
| | - Jana Held
- Institute
of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, Tübingen 72074, Germany
- German
Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72074, Germany
- Centre
de Recherches Médicales de Lambaréné (CERMEL), B.P. 242 Lambaréné, Gabon
| | - Audrey R. Odom John
- Department
of Pediatrics, Children’s Hospital
of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Carsten Wrenger
- Unit
for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | - Anna K. H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| |
Collapse
|
3
|
Brandner L, Müller TJJ. Multicomponent synthesis of chromophores – The one-pot approach to functional π-systems. Front Chem 2023; 11:1124209. [PMID: 37007054 PMCID: PMC10065161 DOI: 10.3389/fchem.2023.1124209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 03/19/2023] Open
Abstract
Multicomponent reactions, conducted in a domino, sequential or consecutive fashion, have not only considerably enhanced synthetic efficiency as one-pot methodology, but they have also become an enabling tool for interdisciplinary research. The highly diversity-oriented nature of the synthetic concept allows accessing huge structural and functional space. Already some decades ago this has been recognized for life sciences, in particular, lead finding and exploration in pharma and agricultural chemistry. The quest for novel functional materials has also opened the field for diversity-oriented syntheses of functional π-systems, i.e. dyes for photonic and electronic applications based on their electronic properties. This review summarizes recent developments in MCR syntheses of functional chromophores highlighting syntheses following either the framework forming scaffold approach by establishing connectivity between chromophores or the chromogenic chromophore approach by de novo formation of chromophore of interest. Both approaches warrant rapid access to molecular functional π-systems, i.e. chromophores, fluorophores, and electrophores for various applications.
Collapse
|
4
|
Pina AF, Sousa SF, Cerqueira NMFSA. The Catalytic Mechanism of Pdx2 Glutaminase Driven by a Cys-His-Glu Triad: A Computational Study. Chembiochem 2021; 23:e202100555. [PMID: 34762772 DOI: 10.1002/cbic.202100555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/10/2021] [Indexed: 11/08/2022]
Abstract
The catalytic mechanism of Pdx2 was studied with atomic detail employing the computational ONIOM hybrid QM/MM methodology. Pdx2 employs a Cys-His-Glu catalytic triad to deaminate glutamine to glutamate and ammonia - the source of the nitrogen of pyridoxal 5'-phosphate (PLP). This enzyme is, therefore, a rate-limiting step in the PLP biosynthetic pathway of Malaria and Tuberculosis pathogens that rely on this mechanism to obtain PLP. For this reason, Pdx2 is considered a novel and promising drug target to treat these diseases. The results obtained show that the catalytic mechanism of Pdx2 occurs in six steps that can be divided into four stages: (i) activation of Cys87 , (ii) deamination of glutamine with the formation of the glutamyl-thioester intermediate, (iii) hydrolysis of the formed intermediate, and (iv) enzymatic turnover. The kinetic data available in the literature (19.1-19.5 kcal mol-1 ) agree very well with the calculated free energy barrier of the hydrolytic step (18.2 kcal.mol-11 ), which is the rate-limiting step of the catalytic process when substrate is readily available in the active site. This catalytic mechanism differs from other known amidases in three main points: i) it requires the activation of the nucleophile Cys87 to a thiolate; ii) the hydrolysis occurs in a single step and therefore does not require the formation of a second tetrahedral reaction intermediate, as it is proposed, and iii) Glu198 does not have a direct role in the catalytic process. Together, these results can be used for the synthesis of new transition state analogue inhibitors capable of inhibiting Pdx2 and impair diseases like Malaria and Tuberculosis.
Collapse
Affiliation(s)
- André F Pina
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Sérgio F Sousa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Nuno M F S A Cerqueira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| |
Collapse
|
5
|
Jumde RP, Guardigni M, Gierse RM, Alhayek A, Zhu D, Hamid Z, Johannsen S, Elgaher WAM, Neusens PJ, Nehls C, Haupenthal J, Reiling N, Hirsch AKH. Hit-optimization using target-directed dynamic combinatorial chemistry: development of inhibitors of the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase. Chem Sci 2021; 12:7775-7785. [PMID: 34168831 PMCID: PMC8188608 DOI: 10.1039/d1sc00330e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 01/12/2023] Open
Abstract
Target-directed dynamic combinatorial chemistry (tdDCC) enables identification, as well as optimization of ligands for un(der)explored targets such as the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). We report the use of tdDCC to first identify and subsequently optimize binders/inhibitors of the anti-infective target DXPS. The initial hits were also optimized for their antibacterial activity against E. coli and M. tuberculosis during subsequent tdDCC runs. Using tdDCC, we were able to generate acylhydrazone-based inhibitors of DXPS. The tailored tdDCC runs also provided insights into the structure-activity relationship of this novel class of DXPS inhibitors. The competition tdDCC runs provided important information about the mode of inhibition of acylhydrazone-based inhibitors. This approach holds the potential to expedite the drug-discovery process and should be applicable to a range of biological targets.
Collapse
Affiliation(s)
- Ravindra P Jumde
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
| | - Melissa Guardigni
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- D3-PharmaChemistry, Istituto Italiano di Tecnologia Via Morego 30 16163 Genoa Italy
| | - Robin M Gierse
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Alaa Alhayek
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Di Zhu
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Zhoor Hamid
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Sandra Johannsen
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Walid A M Elgaher
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
| | - Philipp J Neusens
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Christian Nehls
- RG Biophysics, Research Center Borstel, Leibniz Lung Center Borstel Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
| | - Norbert Reiling
- RG Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center Borstel Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems Borstel Germany
| | - Anna K H Hirsch
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
6
|
Kumar V, Sharma M, Rakesh BR, Malik CK, Neelagiri S, Neerupudi KB, Garg P, Singh S. Pyridoxal kinase: A vitamin B6 salvage pathway enzyme from Leishmania donovani. Int J Biol Macromol 2018; 119:320-334. [DOI: 10.1016/j.ijbiomac.2018.07.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/21/2022]
|
7
|
Wang X, Dowd CS. The Methylerythritol Phosphate Pathway: Promising Drug Targets in the Fight against Tuberculosis. ACS Infect Dis 2018; 4:278-290. [PMID: 29390176 DOI: 10.1021/acsinfecdis.7b00176] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a severe infectious disease in need of new chemotherapies especially for drug-resistant cases. To meet the urgent requirement of new TB drugs with novel modes of action, the TB research community has been validating numerous targets from several biosynthetic pathways. The methylerythritol phosphate (MEP) pathway is utilized by Mtb for the biosynthesis of isopentenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMAPP), the universal five-carbon building blocks of isoprenoids. While being a common biosynthetic pathway in pathogens, the MEP pathway is completely absent in humans. Due to its unique presence in pathogens as well as the essentiality of the MEP pathway in Mtb, the enzymes in this pathway are promising targets for the development of new drugs against tuberculosis. In this Review, we discuss three enzymes in the MEP pathway: 1-deoxy-d-xylulose-5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (IspC/DXR), and 2 C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF), which appear to be the most promising antitubercular drug targets. Structural and mechanistic features of these enzymes are reviewed, as well as selected inhibitors that show promise as antitubercular agents.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington, D.C. 20052, United States
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington, D.C. 20052, United States
| |
Collapse
|
8
|
Haymond A, Dowdy T, Johny C, Johnson C, Ball H, Dailey A, Schweibenz B, Villarroel K, Young R, Mantooth CJ, Patel T, Bases J, Dowd CS, Couch RD. A high-throughput screening campaign to identify inhibitors of DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD). Anal Biochem 2018; 542:63-75. [PMID: 29180070 PMCID: PMC5817008 DOI: 10.1016/j.ab.2017.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022]
Abstract
The rise of antibacterial resistance among human pathogens represents a problem that could change the landscape of healthcare unless new antibiotics are developed. The methyl erythritol phosphate (MEP) pathway represents an attractive series of targets for novel antibiotic design, considering each enzyme of the pathway is both essential and has no human homologs. Here we describe a pilot scale high-throughput screening (HTS) campaign against the first and second committed steps in the pathway, catalyzed by DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD), using compounds present in the commercially available LOPAC1280 library as well as in an in-house natural product extract library. Hit compounds were characterized to deduce their mechanism of inhibition; most function through aggregation. The HTS workflow outlined here is useful for quickly screening a chemical library, while effectively identifying false positive compounds associated with assay constraints and aggregation.
Collapse
Affiliation(s)
- Amanda Haymond
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Tyrone Dowdy
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Chinchu Johny
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Claire Johnson
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Haley Ball
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Allyson Dailey
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Brandon Schweibenz
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Karen Villarroel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Richard Young
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Clark J Mantooth
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Trishal Patel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Jessica Bases
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington DC 20052, USA.
| | - Robin D Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
9
|
Marcozzi A, Masini T, Zhu D, Pesce D, Illarionov B, Fischer M, Herrmann A, Hirsch AKH. Phage Display on the Anti-infective Target 1-Deoxy-d-xylulose-5-phosphate Synthase Leads to an Acceptor-Substrate Competitive Peptidic Inhibitor. Chembiochem 2018; 19:58-65. [PMID: 29119720 PMCID: PMC5814854 DOI: 10.1002/cbic.201700402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Indexed: 01/18/2023]
Abstract
Enzymes of the 2-C-methyl-d-erythritol-4-phosphate pathway for the biosynthesis of isoprenoid precursors are validated drug targets. By performing phage display on 1-deoxy-d-xylulose-5-phosphate synthase (DXS), which catalyzes the first step of this pathway, we discovered several peptide hits and recognized false-positive hits. The enriched peptide binder P12 emerged as a substrate (d-glyceraldehyde-3-phosphate)-competitive inhibitor of Deinococcus radiodurans DXS. The results indicate possible overlap of the cofactor- and acceptor-substrate-binding pockets and provide inspiration for the design of inhibitors of DXS with a unique and novel mechanism of inhibition.
Collapse
Affiliation(s)
- Alessio Marcozzi
- Department Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Tiziana Masini
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Di Zhu
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Department of Drug Design and OptimizationCampus Building E8.166123SaarbrückenGermany
| | - Diego Pesce
- Department Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Boris Illarionov
- Hamburg School of Food ScienceInstitute of Food ChemistryGrindelallee 11720146HamburgGermany
| | - Markus Fischer
- Hamburg School of Food ScienceInstitute of Food ChemistryGrindelallee 11720146HamburgGermany
| | - Andreas Herrmann
- Department Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Department of Drug Design and OptimizationCampus Building E8.166123SaarbrückenGermany
- Department of PharmacyMedicinal ChemistrySaarland UniversityCampus Building E8.166123SaarbrückenGermany
| |
Collapse
|
10
|
Kim JH, Kim J, Kim HJ, Sathiyanarayanan G, Bhatia SK, Song HS, Choi YK, Kim YG, Park K, Yang YH. Biotransformation of pyridoxal 5′-phosphate from pyridoxal by pyridoxal kinase ( pdxY ) to support cadaverine production in Escherichia coli. Enzyme Microb Technol 2017. [DOI: 10.1016/j.enzmictec.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
White JK, Handa S, Vankayala SL, Merkler DJ, Woodcock HL. Thiamin Diphosphate Activation in 1-Deoxy-d-xylulose 5-Phosphate Synthase: Insights into the Mechanism and Underlying Intermolecular Interactions. J Phys Chem B 2016; 120:9922-34. [PMID: 27537621 PMCID: PMC5379999 DOI: 10.1021/acs.jpcb.6b07248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1-Deoxy-d-xylulose 5-phosphate synthase (DXS) is a thiamin diphosphate (TDP) dependent enzyme that marks the beginning of the methylerythritol 4-phosphate isoprenoid biosynthesis pathway. The mechanism of action for DXS is still poorly understood and begins with the formation of a thiazolium ylide. This TDP activation step is thought to proceed through an intramolecular deprotonation by the 4'-aminopyrimidine ring of TDP; however, this step would occur only after an initial deprotonation of its own 4'-amino group. The mechanism of the initial deprotonation has been hypothesized, by analogy to transketolases, to occur via a histidine or an active site water molecule. Results from hybrid quantum mechanical/molecular mechanical (QM/MM) reaction path calculations reveal an ∼10 kcal/mol difference in transition state energies, favoring a water mediated mechanism over direct deprotonation by histidine. This difference was determined to be largely governed by electrostatic changes induced by conformational variations in the active site. Additionally, mutagenesis studies reveal DXS to be an evolutionarily resilient enzyme. Particularly, we hypothesize that residues H82 and H304 may act in a compensatory fashion if the other is lost due to mutation. Further, nucleus-independent chemical shifts (NICSs) and aromatic stabilization energy (ASE) calculations suggest that reduction in TDP aromaticity also serves as a factor for regulating ylide formation and controlling reactivity.
Collapse
Affiliation(s)
- Justin K. White
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - Sumit Handa
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0332, United States
| | - Sai Lakshmana Vankayala
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - David J. Merkler
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| |
Collapse
|
12
|
Nemeria NS, Shome B, DeColli AA, Heflin K, Begley TP, Meyers CF, Jordan F. Competence of Thiamin Diphosphate-Dependent Enzymes with 2'-Methoxythiamin Diphosphate Derived from Bacimethrin, a Naturally Occurring Thiamin Anti-vitamin. Biochemistry 2016; 55:1135-48. [PMID: 26813608 PMCID: PMC4852132 DOI: 10.1021/acs.biochem.5b01300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacimethrin (4-amino-5-hydroxymethyl-2-methoxypyrimidine), a natural product isolated from some bacteria, has been implicated as an inhibitor of bacterial and yeast growth, as well as in inhibition of thiamin biosynthesis. Given that thiamin biosynthetic enzymes could convert bacimethrin to 2'-methoxythiamin diphosphate (MeOThDP), it is important to evaluate the effect of this coenzyme analogue on thiamin diphosphate (ThDP)-dependent enzymes. The potential functions of MeOThDP were explored on five ThDP-dependent enzymes: the human and Escherichia coli pyruvate dehydrogenase complexes (PDHc-h and PDHc-ec, respectively), the E. coli 1-deoxy-D-xylulose 5-phosphate synthase (DXPS), and the human and E. coli 2-oxoglutarate dehydrogenase complexes (OGDHc-h and OGDHc-ec, respectively). Using several mechanistic tools (fluorescence, circular dichroism, kinetics, and mass spectrometry), it was demonstrated that MeOThDP binds in the active centers of ThDP-dependent enzymes, however, with a binding mode different from that of ThDP. While modest activities resulted from addition of MeOThDP to E. coli PDHc (6-11%) and DXPS (9-14%), suggesting that MeOThDP-derived covalent intermediates are converted to the corresponding products (albeit with rates slower than that with ThDP), remarkably strong activity (up to 75%) resulted upon addition of the coenzyme analogue to PDHc-h. With PDHc-ec and PDHc-h, the coenzyme analogue could support all reactions, including communication between components in the complex. No functional substitution of MeOThDP for ThDP was in evidence with either OGDH-h or OGDH-ec, shown to be due to tight binding of ThDP.
Collapse
Affiliation(s)
- Natalia S. Nemeria
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Brateen Shome
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Alicia A. DeColli
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Kathryn Heflin
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Tadhg P. Begley
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Caren Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Frank Jordan
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
13
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
14
|
Joule JA. Natural Products Containing Nitrogen Heterocycles—Some Highlights 1990–2015. ADVANCES IN HETEROCYCLIC CHEMISTRY 2016. [DOI: 10.1016/bs.aihch.2015.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Pattanaik B, Lindberg P. Terpenoids and their biosynthesis in cyanobacteria. Life (Basel) 2015; 5:269-93. [PMID: 25615610 PMCID: PMC4390852 DOI: 10.3390/life5010269] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022] Open
Abstract
Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP) pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids.
Collapse
Affiliation(s)
- Bagmi Pattanaik
- Department of Chemistry-Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden.
| | - Pia Lindberg
- Department of Chemistry-Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
16
|
Masini T, Lacy B, Monjas L, Hawksley D, de Voogd AR, Illarionov B, Iqbal A, Leeper FJ, Fischer M, Kontoyianni M, Hirsch AKH. Validation of a homology model of Mycobacterium tuberculosis DXS: rationalization of observed activities of thiamine derivatives as potent inhibitors of two orthologues of DXS. Org Biomol Chem 2015; 13:11263-77. [DOI: 10.1039/c5ob01666e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We present the a homology model ofM. tuberculosisDXS that we validated by identifying thiamine and thiamine diphosphate analogues as potent inhibitors of DXS.
Collapse
|
17
|
Masini T, Hirsch AKH. Development of Inhibitors of the 2C-Methyl-d-erythritol 4-Phosphate (MEP) Pathway Enzymes as Potential Anti-Infective Agents. J Med Chem 2014; 57:9740-63. [DOI: 10.1021/jm5010978] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tiziana Masini
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh
7, NL-9747
AG Groningen, The Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh
7, NL-9747
AG Groningen, The Netherlands
| |
Collapse
|
18
|
Meng LZ, Xie J, Lv GP, Hu DJ, Zhao J, Duan JA, Li SP. A comparative study on immunomodulatory activity of polysaccharides from two official species of Ganoderma (Lingzhi). Nutr Cancer 2014; 66:1124-31. [PMID: 25204488 DOI: 10.1080/01635581.2014.948215] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two Ganoderma species, G. lucidum and G. sinense, are listed as Lingzhi in Chinese Pharmacopoeia and they are considered to have the same therapeutic effects. Polysaccharides were the main immunomodulatory and anticancer components in Ganoderma. In this study, the chemical characters and the effects of polysaccharides from G. lucidum (GLPS) and G. sinense (GSPS) on macrophage functions were investigated and compared. Chemical studies showed that GLPS and GSPS were different, displaying various molecular weight distribution and ratio of monosaccharide components. In vitro pharmacological studies showed that both GLPS and GSPS had potent effects on macrophage functions, such as promoting macrophage phagocytosis, increasing their release of nitric oxide and cytokines interleukin (IL)-1α, IL-6, IL-10, and tumor necrosis factor-α. Generally, GLPS was more powerful than GSPS. This study is helpful to elucidate the active components and pharmacological variation between the 2 Ganoderma species. The structure-activity relationship of polysaccharides from Ganoderma needs further study.
Collapse
Affiliation(s)
- Lan-Zhen Meng
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences , University of Macau , Macao SAR , China
| | | | | | | | | | | | | |
Collapse
|
19
|
Haymond A, Johny C, Dowdy T, Schweibenz B, Villarroel K, Young R, Mantooth CJ, Patel T, Bases J, Jose GS, Jackson ER, Dowd CS, Couch RD. Kinetic characterization and allosteric inhibition of the Yersinia pestis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase). PLoS One 2014; 9:e106243. [PMID: 25171339 PMCID: PMC4149570 DOI: 10.1371/journal.pone.0106243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022] Open
Abstract
The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive target for novel antibiotic development, necessitated by emerging antibiotic resistance as well as biodefense concerns. The first committed step in the MEP pathway is the reduction and isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to methylerythritol phosphate (MEP), catalyzed by MEP synthase. To facilitate drug development, we cloned, expressed, purified, and characterized MEP synthase from Yersinia pestis. Enzyme assays indicate apparent kinetic constants of KMDXP = 252 µM and KMNADPH = 13 µM, IC50 values for fosmidomycin and FR900098 of 710 nM and 231 nM respectively, and Ki values for fosmidomycin and FR900098 of 251 nM and 101 nM respectively. To ascertain if the Y. pestis MEP synthase was amenable to a high-throughput screening campaign, the Z-factor was determined (0.9) then the purified enzyme was screened against a pilot scale library containing rationally designed fosmidomycin analogs and natural product extracts. Several hit molecules were obtained, most notably a natural product allosteric affector of MEP synthase and a rationally designed bisubstrate derivative of FR900098 (able to associate with both the NADPH and DXP binding sites in MEP synthase). It is particularly noteworthy that allosteric regulation of MEP synthase has not been described previously. Thus, our discovery implicates an alternative site (and new chemical space) for rational drug development.
Collapse
Affiliation(s)
- Amanda Haymond
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Chinchu Johny
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Tyrone Dowdy
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Brandon Schweibenz
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Karen Villarroel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Richard Young
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Clark J. Mantooth
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Trishal Patel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Jessica Bases
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Geraldine San Jose
- Department of Chemistry, George Washington University, Washington DC, United States of America
| | - Emily R. Jackson
- Department of Chemistry, George Washington University, Washington DC, United States of America
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington DC, United States of America
| | - Robin D. Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
20
|
Heider SAE, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF. Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum. Front Bioeng Biotechnol 2014; 2:28. [PMID: 25191655 PMCID: PMC4138558 DOI: 10.3389/fbioe.2014.00028] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/31/2014] [Indexed: 01/21/2023] Open
Abstract
The biotechnologically relevant bacterium Corynebacterium glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate, are synthesized in this organism via the methylerythritol phosphate (MEP) or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various non-native C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encoding the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP, astaxanthin could be produced in the milligrams per gram cell dry weight range when the endogenous genes crtE, crtB, and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4) oxygenase from Brevundimonas aurantiaca.
Collapse
Affiliation(s)
- Sabine A E Heider
- Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University , Bielefeld , Germany
| | - Natalie Wolf
- Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University , Bielefeld , Germany
| | - Arne Hofemeier
- Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University , Bielefeld , Germany
| | - Petra Peters-Wendisch
- Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University , Bielefeld , Germany
| | - Volker F Wendisch
- Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University , Bielefeld , Germany
| |
Collapse
|
21
|
Basta LAB, Patel H, Kakalis L, Jordan F, Meyers CLF. Defining critical residues for substrate binding to 1-deoxy-D-xylulose 5-phosphate synthase--active site substitutions stabilize the predecarboxylation intermediate C2α-lactylthiamin diphosphate. FEBS J 2014; 281:2820-2837. [PMID: 24767541 PMCID: PMC4065394 DOI: 10.1111/febs.12823] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/06/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
Abstract
1-Deoxy-D-xylulose 5-phosphate (DXP) synthase catalyzes the formation of DXP from pyruvate and D-glyceraldehyde 3-phosphate (GraP) in a thiamin diphosphate-dependent manner, and is the first step in the essential pathway to isoprenoids in human pathogens. Understanding the mechanism of this unique enzyme is critical for developing new anti-infective agents that selectively target isoprenoid biosynthesis. The present study used mutagenesis and a combination of protein fluorescence, CD and kinetics experiments to investigate the roles of Arg420, Arg478 and Tyr392 in substrate binding and catalysis. The results support a random sequential, preferred order mechanism, and predict that Arg420 and Arg478 are involved in binding of the acceptor substrate, GraP. D-Glyceraldehyde, an alternative acceptor substrate lacking the phosphoryl group predicted to interact with Arg420 and Arg478, also accelerates decarboxylation of the predecarboxylation intermediate C2α-lactylthiamin diphosphate (LThDP) on DXP synthase, indicating that this binding interaction is not absolutely required, and that the hydroxyaldehyde sufficiently triggers decarboxylation. Unexpectedly, Tyr392 contributes to GraP affinity, and is not required for LThDP formation or its GraP-promoted decarboxylation. Time-resolved CD spectroscopy and NMR experiments indicate that LThDP is significantly stabilized on R420A and Y392F variants as compared with wild-type DXP synthase in the absence of acceptor substrate, but these substitutions do not appear to affect the rate of GraP-promoted LThDP decarboxylation in the presence of high levels of GraP, and LThDP formation remains the rate-limiting step. These results suggest a role of these residues in promoting GraP binding, which in turn facilitates decarboxylation, and also highlight interesting differences between DXP synthase and other thiamin diphosphate-dependent enzymes.
Collapse
Affiliation(s)
- Leighanne A. Brammer Basta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hetalben Patel
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | - Lazaros Kakalis
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | - Frank Jordan
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
22
|
Smith JM, Warrington NV, Vierling RJ, Kuhn ML, Anderson WF, Koppisch AT, Freel Meyers CL. Targeting DXP synthase in human pathogens: enzyme inhibition and antimicrobial activity of butylacetylphosphonate. J Antibiot (Tokyo) 2014; 67:77-83. [PMID: 24169798 PMCID: PMC3946878 DOI: 10.1038/ja.2013.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 11/24/2022]
Abstract
The unique methylerythritol phosphate pathway for isoprenoid biosynthesis is essential in most bacterial pathogens. The first enzyme in this pathway, 1-deoxy-D-xylulose 5-phosphate (DXP) synthase, catalyzes a distinct thiamin diphosphate (ThDP)-dependent reaction to form DXP from D-glyceraldehyde 3-phosphate (D-GAP) and pyruvate and represents a potential anti-infective drug target. We have previously demonstrated that the unnatural bisubstrate analog, butylacetylphosphonate (BAP), exhibits selective inhibition of Escherichia coli DXP synthase over mammalian ThDP-dependent enzymes. Here, we report the selective inhibition by BAP against recombinant DXP synthase homologs from Mycobacterium tuberculosis, Yersinia pestis and Salmonella enterica. We also demonstrate antimicrobial activity of BAP against both Gram-negative and Gram-positive strains (including E. coli, S. enterica and Bacillus anthracis), and several clinically isolated pathogens. Our results suggest a mechanism of action involving inhibition of DXP synthase and show that BAP acts synergistically with established antimicrobial agents, highlighting a potential strategy to combat emerging resistance in bacterial pathogens.
Collapse
Affiliation(s)
- Jessica M Smith
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole V Warrington
- Deptartment of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA
| | - Ryan J Vierling
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Misty L Kuhn
- Center for Structural Genomics of Infectious Diseases, Northwestern Feinberg School of Medicine, Department of Molecular Pharmacology and Biological Chemistry, Chicago, IL, USA
| | - Wayne F Anderson
- Center for Structural Genomics of Infectious Diseases, Northwestern Feinberg School of Medicine, Department of Molecular Pharmacology and Biological Chemistry, Chicago, IL, USA
| | - Andrew T Koppisch
- Deptartment of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Masini T, Pilger J, Kroezen BS, Illarionov B, Lottmann P, Fischer M, Griesinger C, Hirsch AKH. De novo fragment-based design of inhibitors of DXS guided by spin-diffusion-based NMR spectroscopy. Chem Sci 2014. [DOI: 10.1039/c4sc00588k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A ligand-based NMR methodology (STI) enabled de novo fragment-based design of inhibitors of the enzyme DXS present in the non-mevalonate pathway in the absence of X-ray co-crystal structures.
Collapse
Affiliation(s)
- T. Masini
- Stratingh Institute for Chemistry
- University of Groningen
- NL-9747 AG Groningen, The Netherlands
| | - J. Pilger
- Max-Planck-Institute for Biophysical Chemisty
- 37077 Göttingen, Germany
| | - B. S. Kroezen
- Stratingh Institute for Chemistry
- University of Groningen
- NL-9747 AG Groningen, The Netherlands
| | - B. Illarionov
- Hamburg School of Food Science
- Institute of Food Chemistry
- Hamburg, Germany
| | - P. Lottmann
- Max-Planck-Institute for Biophysical Chemisty
- 37077 Göttingen, Germany
| | - M. Fischer
- Hamburg School of Food Science
- Institute of Food Chemistry
- Hamburg, Germany
| | - C. Griesinger
- Max-Planck-Institute for Biophysical Chemisty
- 37077 Göttingen, Germany
| | - A. K. H. Hirsch
- Stratingh Institute for Chemistry
- University of Groningen
- NL-9747 AG Groningen, The Netherlands
| |
Collapse
|
24
|
Masini T, Kroezen BS, Hirsch AK. Druggability of the enzymes of the non-mevalonate-pathway. Drug Discov Today 2013; 18:1256-62. [DOI: 10.1016/j.drudis.2013.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/27/2013] [Accepted: 07/04/2013] [Indexed: 12/13/2022]
|
25
|
Morris F, Vierling R, Boucher L, Bosch J, Freel Meyers CL. DXP synthase-catalyzed C-N bond formation: nitroso substrate specificity studies guide selective inhibitor design. Chembiochem 2013; 14:1309-15. [PMID: 23824585 DOI: 10.1002/cbic.201300187] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Indexed: 11/12/2022]
Abstract
1-Deoxy-D-xylulose 5-phosphate (DXP) synthase catalyzes the first step in the nonmammalian isoprenoid biosynthetic pathway to form DXP from pyruvate and D-glyceraldehyde 3-phosphate (D-GAP) in a thiamin diphosphate-dependent manner. Its unique structure and mechanism distinguish DXP synthase from its homologues and suggest that it should be pursued as an anti-infective drug target. However, few reports describe any development of selective inhibitors of this enzyme. Here, we reveal that DXP synthase catalyzes C-N bond formation and exploit aromatic nitroso substrates as active site probes. Substrate specificity studies reveal a high affinity of DXP synthase for aromatic nitroso substrates compared to the related ThDP-dependent enzyme pyruvate dehydrogenase (PDH). Results from inhibition and mutagenesis studies indicate that nitroso substrates bind to E. coli DXP synthase in a manner distinct from that of D-GAP. Our results suggest that the incorporation of aryl acceptor substrate mimics into unnatural bisubstrate analogues will impart selectivity to DXP synthase inhibitors. As a proof of concept, we show selective inhibition of DXP synthase by benzylacetylphosphonate (BnAP).
Collapse
Affiliation(s)
- Francine Morris
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
26
|
Patel H, Nemeria NS, Brammer LA, Freel Meyers CL, Jordan F. Observation of thiamin-bound intermediates and microscopic rate constants for their interconversion on 1-deoxy-D-xylulose 5-phosphate synthase: 600-fold rate acceleration of pyruvate decarboxylation by D-glyceraldehyde-3-phosphate. J Am Chem Soc 2012; 134:18374-9. [PMID: 23072514 DOI: 10.1021/ja307315u] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thiamin diphosphate (ThDP)-dependent enzyme 1-deoxy-D-xylulose 5-phosphate (DXP) synthase carries out the condensation of pyruvate as a 2-hydroxyethyl donor with d-glyceraldehyde-3-phosphate (d-GAP) as acceptor forming DXP. Toward understanding catalysis of this potential anti-infective drug target, we examined the pathway of the enzyme using steady state and presteady state kinetic methods. It was found that DXP synthase stabilizes the ThDP-bound predecarboxylation intermediate formed between ThDP and pyruvate (C2α-lactylThDP or LThDP) in the absence of D-GAP, while addition of D-GAP enhanced the rate of decarboxylation by at least 600-fold. We postulate that decarboxylation requires formation of a ternary complex with both LThDP and D-GAP bound, and the central enzyme-bound enamine reacts with D-GAP to form DXP. This appears to be the first study of a ThDP enzyme where the individual rate constants could be evaluated by time-resolved circular dichroism spectroscopy, and the results could have relevance to other ThDP enzymes in which decarboxylation is coupled to a ligation reaction. The acceleration of the rate of decarboxylation of enzyme-bound LThDP in the presence of D-GAP suggests a new approach to inhibitor design.
Collapse
Affiliation(s)
- Hetalben Patel
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| | | | | | | | | |
Collapse
|
27
|
Heuston S, Begley M, Gahan CGM, Hill C. Isoprenoid biosynthesis in bacterial pathogens. Microbiology (Reading) 2012; 158:1389-1401. [DOI: 10.1099/mic.0.051599-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sinéad Heuston
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Máire Begley
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Cormac G. M. Gahan
- School of Pharmacy, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
Huang S, Zeng H, Zhang J, Wei S, Huang L. Interconversions of different forms of vitamin B6 in tobacco plants. PHYTOCHEMISTRY 2011; 72:2124-9. [PMID: 21855952 DOI: 10.1016/j.phytochem.2011.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 07/18/2011] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
There are six different vitamin B(6) (VB(6)) forms, pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), pyridoxal 5'-phosphate (PLP), pyridoxamine 5'-phosphate (PMP), and pyridoxine 5'-phosphate (PNP), of which PLP is the active form. Although plants are a major source of VB(6) in the human diet, and VB(6) plays an important role in plants, the mechanisms underlying the interconversions of different VB(6) forms are not well understood. In this study, in vitro tobacco plants were grown on Murashige and Skoog (MS) basal media supplemented with 100mg/L of PM, PL or PN and the abundance of the different B(6) vitamers in leaf tissue was quantified by high performance liquid chromatography (HPLC). The total amount of VB(6) was about 3.9 μg/g fresh weight of which PL, PM, PN, PLP and PMP accounted for 23%, 14%, 37%, 20% and 6%, respectively. Tobacco plants contained a trace amount of PNP. Supplementation of the culture medium with any of the non-phosphorylated vitamers resulted in an increase in total VB(6) by about 10-fold, but had very little impact on the concentrations of the endogenous phosphorylated vitamers. Administration of either PM or PN increased their endogenous levels more than the levels of any other endogenous B(6) vitamers. PL supplementation increased the levels of plant PN and PM significantly, but not that of PL, suggesting that efficient conversion pathways from PL to PN and PM are present in tobacco. Additionally, maintenance of a stable level of PLP in the plant is not well-correlated to changes in levels of non-phosphorylated forms.
Collapse
Affiliation(s)
- ShuoHao Huang
- Key Laboratory of Tea Biochemistry & Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Smith JM, Vierling RJ, Meyers CF. Selective inhibition of E. coli 1-deoxy-D-xylulose-5-phosphate synthase by acetylphosphonates(). MEDCHEMCOMM 2011; 3:65-67. [PMID: 23326631 DOI: 10.1039/c1md00233c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DXP synthase catalyzes the formation of 1-deoxy-D-xylulose 5-phosphate, an essential precursor in pathogen isoprenoid biosynthesis. The selective inhibition of this ThDP-dependent transformation is a challenging goal in the development of isoprenoid biosynthesis inhibitors. Potent, selective inhibitors could lead to new anti-infective agents. Here, we demonstrate selective inhibition of E. coli DXP synthase by butylacetylphosphonate.
Collapse
Affiliation(s)
- Jessica M Smith
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | | | |
Collapse
|
30
|
Brammer LA, Smith JM, Wade H, Meyers CF. 1-Deoxy-D-xylulose 5-phosphate synthase catalyzes a novel random sequential mechanism. J Biol Chem 2011; 286:36522-31. [PMID: 21878632 DOI: 10.1074/jbc.m111.259747] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emerging resistance of human pathogens to anti-infective agents make it necessary to develop new agents to treat infection. The methylerythritol phosphate pathway has been identified as an anti-infective target, as this essential isoprenoid biosynthetic pathway is widespread in human pathogens but absent in humans. The first enzyme of the pathway, 1-deoxy-D-xylulose 5-phosphate (DXP) synthase, catalyzes the formation of DXP via condensation of D-glyceraldehyde 3-phosphate (D-GAP) and pyruvate in a thiamine diphosphate-dependent manner. Structural analysis has revealed a unique domain arrangement suggesting opportunities for the selective targeting of DXP synthase; however, reports on the kinetic mechanism are conflicting. Here, we present the results of tryptophan fluorescence binding and kinetic analyses of DXP synthase and propose a new model for substrate binding and mechanism. Our results are consistent with a random sequential kinetic mechanism, which is unprecedented in this enzyme class.
Collapse
Affiliation(s)
- Leighanne A Brammer
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
31
|
Tsang A, Seidle H, Jawaid S, Zhou W, Smith C, Couch RD. Francisella tularensis 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase: kinetic characterization and phosphoregulation. PLoS One 2011; 6:e20884. [PMID: 21694781 PMCID: PMC3111433 DOI: 10.1371/journal.pone.0020884] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/11/2011] [Indexed: 11/29/2022] Open
Abstract
Deliberate and natural outbreaks of infectious disease, the prevalence of antibiotic resistant strains, and the ease by which antibiotic resistant bacteria can be intentionally engineered all underscore the necessity of effective vaccines and continued development of novel antimicrobial/antiviral therapeutics. Isoprenes, a group of molecules fundamentally involved in a variety of crucial biological functions, are derived from either the mevalonic acid (MVA) or methylerythritol phosphate (MEP) pathway. While mammals utilize the MVA pathway, many bacteria utilize the MEP pathway, highlighting the latter as an attractive target for antibiotic development. In this report we describe the cloning and characterization of Francisella tularensis MEP cytidylyltransferase, a MEP pathway enzyme and potential target for antibiotic development. Size exclusion chromatography indicates the protein exists as a dimer in solution. Enzyme assays produced an apparentK(MEP)(M) = 178 μM, K(CTP)(M) = 73 μM , k(MEP)(cat) = 1(s-1), k(CTP)(cat) = 0.8( s-1), and a k(MEP)(cat)/ K(MEP)(M) = 3.4 x 10(5) M(-1) min(-1). The enzyme exhibits a strict preference for Mg(+2) as a divalent cation and CTP as the nucleotide. Titanium dioxide chromatography-tandem mass spectrometry identified Thr141 as a site of phosphorylation. T141D and T141E site-directed mutants are catalytically inactive, suggesting a mechanism for post-translational control of metabolic flux through the F. tularensis MEP pathway. Overall, our study suggests that MEP cytidylyltransferase is an excellent target for the development of novel antibiotics against F. tularensis.
Collapse
Affiliation(s)
- Arthur Tsang
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Heather Seidle
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Safdar Jawaid
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Weidong Zhou
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia, United States of America
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Clint Smith
- Geospatial Research and Engineering Division, U.S. Army Engineer Research and Development Center, Alexandria, Virginia, United States of America
| | - Robin D. Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
32
|
|
33
|
Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol 2011; 90:1915-22. [DOI: 10.1007/s00253-011-3199-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
|
34
|
Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5'-phosphate synthesis. Mol Syst Biol 2011; 6:436. [PMID: 21119630 PMCID: PMC3010111 DOI: 10.1038/msb.2010.88] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/30/2010] [Indexed: 11/28/2022] Open
Abstract
Overexpression of seven different genes restores growth of a ΔpdxB strain of E. coli, which cannot make pyridoxal phosphate (PLP), on M9/glucose. None of the enzymes encoded by these genes has a promiscuous 4-phosphoerythronate dehydrogenase activity that can replace the activity of PdxB. Overexpression of these genes restores PLP synthesis by three different serendipitous pathways that feed into the normal PLP synthesis pathway downstream of the blocked step. Reactions in one of these pathways are catalyzed by low-level activities of enzymes of unknown function and a promiscuous activity of an enzyme that normally has a role in another pathway; one reaction appears to be non-enzymatic.
Most metabolic enzymes are prodigious catalysts that have evolved to accelerate chemical reactions with high efficiency and specificity. However, many enzymes have inefficient promiscuous activities, as well, as a result of the assemblage of highly reactive catalytic residues and cofactors in active sites. Although promiscuous activities are generally orders of magnitude less efficient than well-evolved activities (O'Brien and Herschlag, 1998, 2001; Wang et al, 2003; Taylor Ringia et al, 2004), they often enhance reaction rates by orders of magnitude relative to those of uncatalyzed reactions (O'Brien and Herschlag, 1998, 2001). Thus, promiscuous activities provide a reservoir of novel catalytic activities that can be recruited to serve new functions. The evolutionary potential of promiscuous enzymes extends beyond the recruitment of single enzymes to serve new functions. Microbes contain hundreds of enzymes—E. coli contains about 1700 (Freilich et al, 2005)—raising the possibility that promiscuous enzymes can be patched together to generate ‘serendipitous' pathways that are not part of normal metabolism. We distinguish serendipitous pathways from latent or cryptic pathways, which are bona fide pathways involving dedicated enzymes that are produced only under particular environmental circumstances. In contrast, serendipitous pathways are patched together from enzymes that normally serve other functions and are not regulated in a coordinated manner in response to the need to synthesize or degrade a metabolite. In this study, we describe the discovery of three serendipitous pathways that allow synthesis of pyridoxal phosphate (PLP) in a strain of E. coli that lacks 4-phosphoerythronate dehydrogenase (PdxB) when one of the seven different genes is overexpressed. These genes were identified in a multicopy suppression experiment in which a library of E. coli genes (from the ASKA collection) was introduced into a ΔpdxB strain of E. coli that is unable to synthesize PLP. Surprisingly, none of the enzymes encoded by these genes has a promiscuous 4-phosphoerythronate (4PE) dehydrogenase activity that can substitute for the missing PdxB. Rather, overproduction of these enzymes appears to facilitate at least three serendipitous pathways that draw material from other metabolic pathways and feed into the normal PLP synthesis pathway downstream of the blocked step (Figure 1). We have characterized one of these pathways in detail (Figure 3). The first step, dephosphorylation of 3-phosphohydroxypyruvate, is catalyzed by YeaB, a predicted NUDIX hydrolase of unknown function. Although catalysis is inefficient (kcat=5.7×10−5 s−1 and kcat/KM>0.028 M−1 s−1), the enzymatic rate is 4×107-fold faster than the rate of the uncatalyzed reaction, and is sufficient to support PLP synthesis when YeaB is overproduced. The second step in the pathway is decarboxylation of 3-hydroxypyruvate (3HP). Although we found two enzymes (1-deoxyxylulose-5-phosphate synthase and the catalytic domain of α-ketoglutarate dehydrogenase) that catalyze this reaction with low but respectable activity in vitro, their involvement in pathway 1 was ruled out by genetic methods. Surprisingly, the non-enzymatic rate of decarboxylation of 3HP appears to be sufficient to support PLP synthesis. The third step in the pathway, condensation of glycolaldehyde and glycine to form 4-hydroxy-L-threonine, is catalyzed by LtaE, a low-specificity threonine aldolase whose physiological role is not known. The final step, phosphorylation of 4-hydroxy-L-threonine, is catalyzed by homoserine kinase (ThrB), which is required for synthesis of threonine. The promiscuous phosphorylation of 4-hydroxy-L-threonine is 80-fold slower than the physiological phosphorylation of homoserine. The involvement of LtaE and ThrB in pathway 1 was confirmed by genetic experiments showing that overexpression of yeaB no longer restores growth of ΔpdxB strains lacking either ltaE or thrB. Although pathway 1 is inefficient, it provides the ΔpdxB strain with the ability to grow under conditions in which survival is otherwise impossible. In general, serendipitous assembly of an inefficient pathway from promiscuous activities of available enzymes will be important whenever the pathway provides increased fitness. This might occur when a critical metabolite is no longer available from the environment, and survival depends on assembly of a new biosynthetic pathway. A second circumstance in which an inefficient serendipitous pathway might improve fitness is the appearance of a novel compound in the environment that can be exploited as a source of carbon, nitrogen or phosphorous. Finally, chemotherapeutic agents that block metabolic pathways in bacteria or cancer cells could provide selective pressure for assembly of serendipitous pathways that allow synthesis of the end product of the blocked pathway and thus a previously unappreciated source of drug resistance. In all of these cases, even an inefficient pathway can provide a selective advantage over other cells in a particular environmental niche, allowing survival and subsequent mutations that elevate the efficiency of the pathway. Our work is consistent with the hypothesis that the recognized metabolic network of E. coli is underlain by a denser network of reactions due to promiscuous enzymes that use and generate recognized metabolites, but also unusual metabolites that normally have no physiological role. The findings reported here highlight the abundance of cryptic capabilities in the E. coli proteome that can be drawn on to generate novel pathways. Such pathways could provide a starting place for assembly of more efficient pathways, both in nature and in the hands of metabolic engineers. Bacterial genomes encode hundreds to thousands of enzymes, most of which are specialized for particular functions. However, most enzymes have inefficient promiscuous activities, as well, that generally serve no purpose. Promiscuous reactions can be patched together to form multistep metabolic pathways. Mutations that increase expression or activity of enzymes in such serendipitous pathways can elevate flux through the pathway to a physiologically significant level. In this study, we describe the discovery of three serendipitous pathways that allow synthesis of pyridoxal-5′-phosphate (PLP) in a strain of E. coli that lacks 4-phosphoerythronate (4PE) dehydrogenase (PdxB) when one of seven different genes is overexpressed. We have characterized one of these pathways in detail. This pathway diverts material from serine biosynthesis and generates an intermediate in the normal PLP synthesis pathway downstream of the block caused by lack of PdxB. Steps in the pathway are catalyzed by a protein of unknown function, a broad-specificity enzyme whose physiological role is unknown, and a promiscuous activity of an enzyme that normally serves another function. One step in the pathway may be non-enzymatic.
Collapse
|
35
|
Moccand C, Kaufmann M, Fitzpatrick TB. It takes two to tango: defining an essential second active site in pyridoxal 5'-phosphate synthase. PLoS One 2011; 6:e16042. [PMID: 21283685 PMCID: PMC3024981 DOI: 10.1371/journal.pone.0016042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/09/2010] [Indexed: 11/24/2022] Open
Abstract
The prevalent de novo biosynthetic pathway of vitamin B6 involves only two enzymes (Pdx1 and Pdx2) that form an ornate multisubunit complex functioning as a glutamine amidotransferase. The synthase subunit, Pdx1, utilizes ribose 5-phosphate and glyceraldehyde 3-phosphate, as well as ammonia derived from the glutaminase activity of Pdx2 to directly form the cofactor vitamer, pyridoxal 5′-phosphate. Given the fact that a single enzyme performs the majority of the chemistry behind this reaction, a complicated mechanism is anticipated. Recently, the individual steps along the reaction co-ordinate are beginning to be unraveled. In particular, the binding of the pentose substrate and the first steps of the reaction have been elucidated but it is not known if the latter part of the chemistry, involving the triose sugar, takes place in the same or a disparate site. Here, we demonstrate through the use of enzyme assays, enzyme kinetics, and mutagenesis studies that indeed a second site is involved in binding the triose sugar and moreover, is the location of the final vitamin product, pyridoxal 5′-phosphate. Furthermore, we show that product release is triggered by the presence of a PLP-dependent enzyme. Finally, we provide evidence that a single arginine residue of the C terminus of Pdx1 is responsible for coordinating co-operativity in this elaborate protein machinery.
Collapse
Affiliation(s)
- Cyril Moccand
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Markus Kaufmann
- Bio-Molecular Analysis Platform, University of Geneva, Geneva, Switzerland
| | - Teresa B. Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
36
|
Du Q, Wang H, Xie J. Thiamin (vitamin B1) biosynthesis and regulation: a rich source of antimicrobial drug targets? Int J Biol Sci 2011; 7:41-52. [PMID: 21234302 PMCID: PMC3020362 DOI: 10.7150/ijbs.7.41] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/05/2011] [Indexed: 12/24/2022] Open
Abstract
Drug resistance of pathogens has necessitated the identification of novel targets for antibiotics. Thiamin (vitamin B1) is an essential cofactor for all organisms in its active form thiamin diphosphate (ThDP). Therefore, its metabolic pathways might be one largely untapped source of antibiotics targets. This review describes bacterial thiamin biosynthetic, salvage, and transport pathways. Essential thiamin synthetic enzymes such as Dxs and ThiE are proposed as promising drug targets. The regulation mechanism of thiamin biosynthesis by ThDP riboswitch is also discussed. As drug targets of existing antimicrobial compound pyrithiamin, the ThDP riboswitch might serves as alternative targets for more antibiotics.
Collapse
Affiliation(s)
- Qinglin Du
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of Three Gorges Area, School of Life Sciences, Southwest University, Beibei Chongqing, 400715, China
| | | | | |
Collapse
|
37
|
Dick T, Manjunatha U, Kappes B, Gengenbacher M. Vitamin B6 biosynthesis is essential for survival and virulence of Mycobacterium tuberculosis. Mol Microbiol 2010; 78:980-8. [PMID: 20815826 DOI: 10.1111/j.1365-2958.2010.07381.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
With 500000 cases of multidrug-resistant tuberculosis there is an urgent need for attractive targets to enable the discovery of novel antimycobacterials. The biosynthesis of essential cofactors is of particular interest as these pathways are absent in man and their inhibition is expected to affect the metabolism of Mycobacterium tuberculosis at multiple sites. Our data demonstrate that the pathogen synthesizes pyridoxal 5-phosphate (PLP), the bioactive form of vitamin B6, by a heteromeric PLP synthase composed of Pdx1 (Rv2606c) and Pdx2 (Rv2604c). Disruption of the pdx1 gene generated a strictly B6 auxotrophic M. tuberculosis mutant, Δpdx1. Removal of the cofactor during exponential growth or stationary phase demonstrated the essentiality of vitamin B6 biosynthesis for growth and survival of the pathogen in culture. In a tuberculosis dormancy model based on gradual oxygen depletion, de novo biosynthesis of PLP was required for regrowth of the bacillus after direct oxygen exposure. The Δpdx1 mutant showed a severe growth defect in immunocompetent mice: bacilli applied intranasally failed to persist in host tissues and were quickly cleared. We conclude that vitamin B6 biosynthesis is required for survival of M. tuberculosis in vivo and thus might represent a candidate pathway for the development of new antitubercular agents.
Collapse
Affiliation(s)
- Thomas Dick
- Novartis Institute for Tropical Diseases Pte. Ltd., 10 Biopolis Road, #05-01 Chromos, Singapore 138670, Singapore
| | | | | | | |
Collapse
|
38
|
Sakata Y, Nakamura I, Taji T, Tanaka S, Quatrano RS. Regulation of the ABA-responsive Em promoter by ABI3 in the moss Physcomitrella patens: role of the ABA response element and the RY element. PLANT SIGNALING & BEHAVIOR 2010; 5:1061-6. [PMID: 20448474 PMCID: PMC3115069 DOI: 10.4161/psb.5.9.11774] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 05/19/2023]
Abstract
The plant-specific transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3) or the maize ortholog VIVIPAROUS1 (VP1) is known to regulate seed maturation and germination in concert with the phytohormone abscisic acid (ABA) but is also evolutionarily conserved among land plants including non-seed plants. An ABI3/VP1 ortholog (PpABI3A) from the moss Physcomitrella patens can activate ABA-responsive gene promoters in the moss and angiosperms; however, it failed to fully complement the phenotypes of the Arabidopsis abi3-6 mutant, suggesting that some aspects of ABI3/VP1 functions have diverged during the evolution of land plants. To gain insights into the evolution of ABI3/VP1 function, we performed a comparative analysis of the regulatory elements required for ABI3 activation in Physcomitrella using a wheat Em gene promoter, which is induced by ABA and ABI3/VP1 both in Physcomitrella and in angiosperms. Elimination of either the ACGT core motif in the ABA response element (ABRE) or the RY element, to which ABI3/VP1 binds directly, resulted in a drastic reduction of the ABA response in Physcomitrella. Arabidopsis ABI3 could effectively activate the Em promoter either in an ABRE- or RY-dependent manner, as observed in angiosperms. On the other hand, PpABI3A failed to activate an Em promoter lacking the RY element but not the ABRE. These results suggest that RY-mediated transcriptional regulation of ABI3/VP1 is evolutionarily conserved between the moss and angiosperms, whereas angiosperm ABI3/VP1 has evolved to activate ABA-inducible promoters via the ABRE sequence independently from the RY element.
Collapse
Affiliation(s)
- Yoichi Sakata
- Department of BioScience, Tokyo University of Agriculture, Tokyo Japan.
| | | | | | | | | |
Collapse
|
39
|
Jawaid S, Seidle H, Zhou W, Abdirahman H, Abadeer M, Hix JH, van Hoek ML, Couch RD. Kinetic characterization and phosphoregulation of the Francisella tularensis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase). PLoS One 2009; 4:e8288. [PMID: 20011597 PMCID: PMC2788227 DOI: 10.1371/journal.pone.0008288] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 11/19/2009] [Indexed: 11/25/2022] Open
Abstract
Deliberate and natural outbreaks of infectious disease underscore the necessity of effective vaccines and antimicrobial/antiviral therapeutics. The prevalence of antibiotic resistant strains and the ease by which antibiotic resistant bacteria can be intentionally engineered further highlights the need for continued development of novel antibiotics against new bacterial targets. Isoprenes are a class of molecules fundamentally involved in a variety of crucial biological functions. Mammalian cells utilize the mevalonic acid pathway for isoprene biosynthesis, whereas many bacteria utilize the methylerythritol phosphate (MEP) pathway, making the latter an attractive target for antibiotic development. In this report we describe the cloning and characterization of Francisella tularensis MEP synthase, a MEP pathway enzyme and potential target for antibiotic development. In vitro growth-inhibition assays using fosmidomycin, an inhibitor of MEP synthase, illustrates the effectiveness of MEP pathway inhibition with F. tularensis. To facilitate drug development, F. tularensis MEP synthase was cloned, expressed, purified, and characterized. Enzyme assays produced apparent kinetic constants (KMDXP = 104 µM, KMNADPH = 13 µM, kcatDXP = 2 s−1, kcatNADPH = 1.3 s−1), an IC50 for fosmidomycin of 247 nM, and a Ki for fosmidomycin of 99 nM. The enzyme exhibits a preference for Mg+2 as a divalent cation. Titanium dioxide chromatography-tandem mass spectrometry identified Ser177 as a site of phosphorylation. S177D and S177E site-directed mutants are inactive, suggesting a mechanism for post-translational control of metabolic flux through the F. tularensis MEP pathway. Overall, our study suggests that MEP synthase is an excellent target for the development of novel antibiotics against F. tularensis.
Collapse
Affiliation(s)
- Safdar Jawaid
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Heather Seidle
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Weidong Zhou
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia, United States of America
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Hafsa Abdirahman
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Maher Abadeer
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Joseph H. Hix
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Monique L. van Hoek
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Robin D. Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
- * E-mail:
| |
Collapse
|
40
|
Seetang-Nun Y, Sharkey TD, Suvachittanont W. Isolation and characterization of two distinct classes ofDXSgenes inHevea brasiliensis. ACTA ACUST UNITED AC 2009; 19:291-300. [PMID: 17852343 DOI: 10.1080/10425170701576768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two cDNAs encoding two distinct classes of DXSs were cloned from leaves (HbDXS1) and latex (HbDXS2) of Hevea brasiliensis by RT-PCR based methods. HbDXS1 encodes a protein of 720 amino acids, with a high homology to the class I of plant DXS proteins, and HbDXS2 encodes a protein predicted to contain 711 amino acids and with a high homology to the plant DXS class II proteins. Several important motifs and amino acid positions characteristic of DXS proteins are strictly conserved in both new HbDXS proteins. The two HbDXS genes were differentially expressed in various tissues of H. brasiliensis. The transcriptional levels of HbDXS2 were similar in both a high-yielding rubber clone (RRIM 600) and the wild type. Ethephon increased the latex yield and caused a transient increase of expression of the HbDXS2 gene. The expression of HbDXS2 in latex indicates that it may have a primary function in carotenoid biosynthesis rather than for natural rubber.
Collapse
Affiliation(s)
- Yortyot Seetang-Nun
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | | | | |
Collapse
|
41
|
Mooney S, Leuendorf JE, Hendrickson C, Hellmann H. Vitamin B6: a long known compound of surprising complexity. Molecules 2009; 14:329-51. [PMID: 19145213 PMCID: PMC6253932 DOI: 10.3390/molecules14010329] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/07/2009] [Accepted: 01/09/2009] [Indexed: 12/31/2022] Open
Abstract
In recent years vitamin B6 has become a focus of research describing the compound’s critical function in cellular metabolism and stress response. For many years the sole function of vitamin B6 was considered to be that of an enzymatic cofactor. However, recently it became clear that it is also a potent antioxidant that effectively quenches reactive oxygen species and is thus of high importance for cellular well-being. In view of the recent findings, the current review takes a look back and summarizes the discovery of vitamin B6 and the elucidation of its structure and biosynthetic pathways. It provides a detailed overview on vitamin B6 both as a cofactor and a protective compound. Besides these general characteristics of the vitamin, the review also outlines the current literature on vitamin B6 derivatives and elaborates on recent findings that provide new insights into transport and catabolism of the compound and on its impact on human health.
Collapse
Affiliation(s)
- Sutton Mooney
- School of Biological Sciences, Washington State University, Pullman, WA, USA; E-mail: (S. M.), (C. H.)
| | - Jan-Erik Leuendorf
- Angewandte Genetik, Freie Universität Berlin, 14195 Berlin, Germany E-mail: (J-E. L.)
| | - Christopher Hendrickson
- School of Biological Sciences, Washington State University, Pullman, WA, USA; E-mail: (S. M.), (C. H.)
| | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA, USA; E-mail: (S. M.), (C. H.)
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
42
|
Eoh H, Brennan PJ, Crick DC. The Mycobacterium tuberculosis MEP (2C-methyl-d-erythritol 4-phosphate) pathway as a new drug target. Tuberculosis (Edinb) 2009; 89:1-11. [PMID: 18793870 PMCID: PMC2646905 DOI: 10.1016/j.tube.2008.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/15/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is still a major public health problem, compounded by the human immunodeficiency virus (HIV)-TB co-infection and recent emergence of multidrug-resistant (MDR) and extensively drug resistant (XDR)-TB. Novel anti-TB drugs are urgently required. In this context, the 2C-methyl-d-erythritol 4-phosphate (MEP) pathway of Mycobacterium tuberculosis has drawn attention; it is one of several pathways vital for M. tuberculosis viability and the human host lacks homologous enzymes. Thus, the MEP pathway promises bacterium-specific drug targets and the potential for identification of lead compounds unencumbered by target-based toxicity. Indeed, fosmidomycin is now known to inhibit the second step in the MEP pathway. This review describes the cardinal features of the main enzymes of the MEP pathway in M. tuberculosis and how these can be manipulated in high throughput screening campaigns in the search for new anti-infectives against TB.
Collapse
Affiliation(s)
- Hyungjin Eoh
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A. 80523
| | - Patrick J. Brennan
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A. 80523
| | - Dean C. Crick
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A. 80523
| |
Collapse
|
43
|
Abstract
Thiamin is synthesized by most prokaryotes and by eukaryotes such as yeast and plants. In all cases, the thiazole and pyrimidine moieties are synthesized in separate branches of the pathway and coupled to form thiamin phosphate. A final phosphorylation gives thiamin pyrophosphate, the active form of the cofactor. Over the past decade or so, biochemical and structural studies have elucidated most of the details of the thiamin biosynthetic pathway in bacteria. Formation of the thiazole requires six gene products, and formation of the pyrimidine requires two. In contrast, details of the thiamin biosynthetic pathway in yeast are only just beginning to emerge. Only one gene product is required for the biosynthesis of the thiazole and one for the biosynthesis of the pyrimidine. Thiamin can also be transported into the cell and can be salvaged through several routes. In addition, two thiamin degrading enzymes have been characterized, one of which is linked to a novel salvage pathway.
Collapse
Affiliation(s)
- Christopher T. Jurgenson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | - Tadhg P. Begley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853; ,
| | - Steven E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
44
|
Craig JP, Bekal S, Hudson M, Domier L, Niblack T, Lambert KN. Analysis of a horizontally transferred pathway involved in vitamin B6 biosynthesis from the soybean cyst nematode Heterodera glycines. Mol Biol Evol 2008; 25:2085-98. [PMID: 18586696 DOI: 10.1093/molbev/msn141] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Heterodera glycines is an obligate plant parasite capable of biochemically and developmentally altering its host's cells in order to create a specialized feeding cell. Although the exact mechanism of feeding cell morphogenesis remains a mystery, the nematode's ability to manipulate the plant is thought to be due in part to horizontal gene transfers (HGTs). A bioinformatic screen of the nematode genome has revealed homologues of the genes SNZ and SNO, which comprise a metabolic pathway for the de novo biosynthesis of pyridoxal 5'-phosphate, the active form of vitamin B(6) (VB(6)). Analysis of the 2 genes, HgSNZ and HgSNO, show that they contain nematode-like introns, generate polyadenylated mRNAs, and map to the soybean cyst nematode genetic linkage map, indicating that they are part of the nematode genome. However, gene synteny, protein homology, and phylogenetic evidence suggest prokaryotic origin. This would represent the first case of the HGT of a complete pathway into a nematode or terrestrial animal. VB(6) acts as a cofactor in over 140 different enzymes, and recent studies point toward an important role as a potent quencher of reactive oxygen species. With H. glycines' penchant for acquiring parasitism genes through HGT along with the absence of this pathway in other land-based animals suggests a specific need for VB(6) which may involve the parasite-host interaction.
Collapse
Affiliation(s)
- James P Craig
- Department of Crop Sciences, University of Illinois, Urbana, USA
| | | | | | | | | | | |
Collapse
|
45
|
Mao J, Eoh H, He R, Wang Y, Wan B, Franzblau SG, Crick DC, Kozikowski AP. Structure-activity relationships of compounds targeting mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate synthase. Bioorg Med Chem Lett 2008; 18:5320-3. [PMID: 18783951 DOI: 10.1016/j.bmcl.2008.08.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 08/06/2008] [Accepted: 08/08/2008] [Indexed: 11/18/2022]
Abstract
We report on a target-based approach to identify possible Mycobacterium tuberculosis DXS inhibitors from the structure of a known transketolase inhibitor. A small focused library of analogs was assembled in order to begin elucidating some meaningful structure-activity relationships of 3-(4-chloro-phenyl)-5-benzyl-4H-pyrazolo[1,5-a]pyrimidin-7-one. Ultimately we found that 2-methyl-3-(4-fluorophenyl)-5-(4-methoxy-phenyl)-4H-pyrazolo[1,5-a]pyrimidin-7-one, although still weak, was able to inhibit M. tuberculosis DXS with an IC(50) of 10.6 microM.
Collapse
Affiliation(s)
- Jialin Mao
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Khayat M, Korman SH, Frankel P, Weintraub Z, Hershckowitz S, Sheffer VF, Elisha MB, Wevers RA, Falik-Zaccai TC. PNPO deficiency: an under diagnosed inborn error of pyridoxine metabolism. Mol Genet Metab 2008; 94:431-434. [PMID: 18485777 DOI: 10.1016/j.ymgme.2008.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/14/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
The rare autosomal recessive disorder pyridoxine 5'-phosphate oxidase (PNPO) deficiency is a recently described cause of neonatal and infantile seizures. Clinical evaluation, and biochemical and genetic testing, were performed on a neonate with intractable seizures who did not respond to anticonvulsant drugs and pyridoxine. Sequencing of the PNPO gene revealed a novel homozygous c.284G>A transition in exon 3, resulting in arginine to histidine substitution and reduced activity of the PNPO mutant to 18% relative to the wild type. This finding enabled molecular prenatal diagnosis in a subsequent pregnancy, accurate genetic counseling in the large inbred family, and population screening.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Brain Diseases, Metabolic, Inborn/diagnosis
- Brain Diseases, Metabolic, Inborn/enzymology
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- CHO Cells
- Codon, Nonsense
- Consanguinity
- Cricetinae
- Cricetulus
- DNA Mutational Analysis
- Exons
- Female
- Gene Expression
- Genetic Testing
- Humans
- Infant, Newborn
- Male
- Mutagenesis, Site-Directed
- Pedigree
- Point Mutation
- Prenatal Diagnosis
- Pyridoxaminephosphate Oxidase/deficiency
- Pyridoxaminephosphate Oxidase/genetics
- Pyridoxine/metabolism
- Seizures/diagnosis
- Seizures/enzymology
- Seizures/genetics
- Seizures/metabolism
Collapse
Affiliation(s)
- Morad Khayat
- Institute of Medical Genetics, Western Galilee Hospital, Nahariya, P.O. Box 21, 22100 Nahariya, Israel
| | - Stanley H Korman
- Metabolic Diseases Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Pnina Frankel
- Institute of Medical Genetics, Western Galilee Hospital, Nahariya, P.O. Box 21, 22100 Nahariya, Israel
| | - Zalman Weintraub
- Department of Neonatology, Western Galilee Hospital, Nahariya, Israel; Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | | | | | | | - Ronald A Wevers
- Laboratory of Pediatrics and Neurology, Radboud University Nijmegen Medical Centre, The Netherlands
| | - Tzipora C Falik-Zaccai
- Institute of Medical Genetics, Western Galilee Hospital, Nahariya, P.O. Box 21, 22100 Nahariya, Israel; Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
47
|
Seetang-Nun Y, Sharkey TD, Suvachittanont W. Molecular cloning and characterization of two cDNAs encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Hevea brasiliensis. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:991-1002. [PMID: 17936410 DOI: 10.1016/j.jplph.2007.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 06/26/2007] [Accepted: 06/26/2007] [Indexed: 05/09/2023]
Abstract
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, EC: 1.1.1.267) is the second enzyme in the 2C-methyl-d-erythritol 4-phosphate (MEP) pathway, one of the two pathways in plants that can produce isoprenoids. The MEP pathway is the source of isoprene emitted from leaves, but rubber production is believed to result primarily from the mevalonic acid (MVA) pathway. Two cDNAs for DXR designated HbDXR1 and HbDXR2 were isolated from leaves and latex of rubber tree using RT-PCR based methods. Both cDNAs contain an open reading frame (ORF) of 1416bp encoding 471 amino acids with a molecular mass of about 51kDa. The deduced HbDXRs show extensive sequence similarities to that of other plant DXRs (73-87% identity). Molecular modeling revealed that the two HbDXRs contain all typical characteristics of DXR and share spatial structures, which are very similar to that of Escherichia coli DXR. Phylogenetic and DNA gel blot analyses suggested that a duplication of the DXR gene has occurred in the rubber tree. Semi-quantitative RT-PCR analysis showed that the HbDXR genes are differentially regulated in various tissues of the rubber tree. The HbDXR2 was more highly expressed in clone RRIM 600 than in the wild type, and this is consistent with higher rubber content of this clone. While 2-chloroethane phosphonic acid (ethephon) significantly increased latex yield, it only transiently induced the HbDXR2 gene. The expression of HbDXR2 in the latex suggests its important role in isoprenoid biosynthesis by substrate molecules, indicating that the MEP pathway may have some indirect roles in the biosynthesis of rubber.
Collapse
Affiliation(s)
- Yortyot Seetang-Nun
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | | | | |
Collapse
|
48
|
Müller IB, Knöckel J, Groves MR, Jordanova R, Ealick SE, Walter RD, Wrenger C. The assembly of the plasmodial PLP synthase complex follows a defined course. PLoS One 2008; 3:e1815. [PMID: 18350152 PMCID: PMC2266796 DOI: 10.1371/journal.pone.0001815] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 02/14/2008] [Indexed: 11/26/2022] Open
Abstract
Background Plants, fungi, bacteria and the apicomplexan parasite Plasmodium falciparum are able to synthesize vitamin B6 de novo, whereas mammals depend upon the uptake of this essential nutrient from their diet. The active form of vitamin B6 is pyridoxal 5-phosphate (PLP). For its synthesis two enzymes, Pdx1 and Pdx2, act together, forming a multimeric complex consisting of 12 Pdx1 and 12 Pdx2 protomers. Methodology/Principal Findings Here we report amino acid residues responsible for stabilization of the structural and enzymatic integrity of the plasmodial PLP synthase, identified by using distinct mutational analysis and biochemical approaches. Residues R85, H88 and E91 (RHE) are located at the Pdx1:Pdx1 interface and play an important role in Pdx1 complex assembly. Mutation of these residues to alanine impedes both Pdx1 activity and Pdx2 binding. Furthermore, changing D26, K83 and K151 (DKK), amino acids from the active site of Pdx1, to alanine obstructs not only enzyme activity but also formation of the complex. In contrast to the monomeric appearance of the RHE mutant, alteration of the DKK residues results in a hexameric assembly, and does not affect Pdx2 binding or its activity. While the modelled position of K151 is distal to the Pdx1:Pdx1 interface, it affects the assembly of hexameric Pdx1 into a functional dodecamer, which is crucial for PLP synthesis. Conclusions/Significance Taken together, our data suggest that the assembly of a functional Pdx1:Pdx2 complex follows a defined pathway and that inhibition of this assembly results in an inactive holoenzyme.
Collapse
Affiliation(s)
- Ingrid B. Müller
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Julia Knöckel
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Matthew R. Groves
- European Molecular Biology Laboratory-Hamburg Outstation, Hamburg, Germany
| | - Rositsa Jordanova
- European Molecular Biology Laboratory-Hamburg Outstation, Hamburg, Germany
| | - Steven E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Rolf D. Walter
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carsten Wrenger
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- * E-mail:
| |
Collapse
|
49
|
Fitzpatrick TB, Amrhein N, Kappes B, Macheroux P, Tews I, Raschle T. Two independent routes of de novo vitamin B6 biosynthesis: not that different after all. Biochem J 2007; 407:1-13. [PMID: 17822383 DOI: 10.1042/bj20070765] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vitamin B6 is well known in its biochemically active form as pyridoxal 5'-phosphate, an essential cofactor of numerous metabolic enzymes. The vitamin is also implicated in numerous human body functions ranging from modulation of hormone function to its recent discovery as a potent antioxidant. Its de novo biosynthesis occurs only in bacteria, fungi and plants, making it an essential nutrient in the human diet. Despite its paramount importance, its biosynthesis was predominantly investigated in Escherichia coli, where it is synthesized from the condensation of deoxyxylulose 5-phosphate and 4-phosphohydroxy-L-threonine catalysed by the concerted action of PdxA and PdxJ. However, it has now become clear that the majority of organisms capable of producing this vitamin do so via a different route, involving precursors from glycolysis and the pentose phosphate pathway. This alternative pathway is characterized by the presence of two genes, Pdx1 and Pdx2. Their discovery has sparked renewed interest in vitamin B6, and numerous studies have been conducted over the last few years to characterize the new biosynthesis pathway. Indeed, enormous progress has been made in defining the nature of the enzymes involved in both pathways, and important insights have been provided into their mechanisms of action. In the present review, we summarize the recent advances in our knowledge of the biosynthesis of this versatile molecule and compare the two independent routes to the biosynthesis of vitamin B6. Surprisingly, this comparison reveals that the key biosynthetic enzymes of both pathways are, in fact, very similar both structurally and mechanistically.
Collapse
|
50
|
González E, Danehower D, Daub ME. Vitamer levels, stress response, enzyme activity, and gene regulation of Arabidopsis lines mutant in the pyridoxine/pyridoxamine 5'-phosphate oxidase (PDX3) and the pyridoxal kinase (SOS4) genes involved in the vitamin B6 salvage pathway. PLANT PHYSIOLOGY 2007; 145:985-96. [PMID: 17873088 PMCID: PMC2048783 DOI: 10.1104/pp.107.105189] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 09/08/2007] [Indexed: 05/17/2023]
Abstract
PDX3 and SALT OVERLY SENSITIVE4 (SOS4), encoding pyridoxine/pyridoxamine 5'-phosphate oxidase and pyridoxal kinase, respectively, are the only known genes involved in the salvage pathway of pyridoxal 5'-phosphate in plants. In this study, we determined the phenotype, stress responses, vitamer levels, and regulation of the vitamin B(6) pathway genes in Arabidopsis (Arabidopsis thaliana) plants mutant in PDX3 and SOS4. sos4 mutant plants showed a distinct phenotype characterized by chlorosis and reduced plant size, as well as hypersensitivity to sucrose in addition to the previously noted NaCl sensitivity. This mutant had higher levels of pyridoxine, pyridoxamine, and pyridoxal 5'-phosphate than the wild type, reflected in an increase in total vitamin B(6) observed through HPLC analysis and yeast bioassay. The sos4 mutant showed increased activity of PDX3 as well as of the B(6) de novo pathway enzyme PDX1, correlating with increased total B(6) levels. Two independent lines with T-DNA insertions in the promoter region of PDX3 (pdx3-1 and pdx3-2) had decreased PDX3 activity. Both also had decreased activity of PDX1, which correlated with lower levels of total vitamin B(6) observed using the yeast bioassay; however, no differences were noted in levels of individual vitamers by HPLC analysis. Both pdx3 mutants showed growth reduction in vitro and in vivo as well as an inability to increase growth under high light conditions. Increased expression of salvage and some of the de novo pathway genes was observed in both the pdx3 and sos4 mutants. In all mutants, increased expression was more dramatic for the salvage pathway genes.
Collapse
Affiliation(s)
- Eugenia González
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695-7612, USA
| | | | | |
Collapse
|