1
|
Sluzala ZB, Hamati A, Fort PE. Key Role of Phosphorylation in Small Heat Shock Protein Regulation via Oligomeric Disaggregation and Functional Activation. Cells 2025; 14:127. [PMID: 39851555 PMCID: PMC11764305 DOI: 10.3390/cells14020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Heat shock proteins (HSPs) are essential molecular chaperones that protect cells by aiding in protein folding and preventing aggregation under stress conditions. Small heat shock proteins (sHSPs), which include members from HSPB1 to HSPB10, are particularly important for cellular stress responses. These proteins share a conserved α-crystallin domain (ACD) critical for their chaperone function, with flexible N- and C-terminal extensions that facilitate oligomer formation. Phosphorylation, a key post-translational modification (PTM), plays a dynamic role in regulating sHSP structure, oligomeric state, stability, and chaperone function. Unlike other PTMs such as deamidation, oxidation, and glycation-which are often linked to protein destabilization-phosphorylation generally induces structural transitions that enhance sHSP activity. Specifically, phosphorylation promotes the disaggregation of sHSP oligomers into smaller, more active complexes, thereby increasing their efficiency. This disaggregation mechanism is crucial for protecting cells from stress-induced damage, including apoptosis, inflammation, and other forms of cellular dysfunction. This review explores the role of phosphorylation in modulating the function of sHSPs, particularly HSPB1, HSPB4, and HSPB5, and discusses how these modifications influence their protective functions in cellular stress responses.
Collapse
Affiliation(s)
- Zachary B. Sluzala
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
| | - Angelina Hamati
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
| | - Patrice E. Fort
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Hazra J, Vijayakumar A, Mahapatra NR. Emerging role of heat shock proteins in cardiovascular diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:271-306. [PMID: 36858739 DOI: 10.1016/bs.apcsb.2022.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Heat Shock Proteins (HSPs) are evolutionarily conserved proteins from prokaryotes to eukaryotes. They are ubiquitous proteins involved in key physiological and cellular pathways (viz. inflammation, immunity and apoptosis). Indeed, the survivability of the cells under various stressful conditions depends on appropriate levels of HSP expression. There is a growing line of evidence for the role of HSPs in regulating cardiovascular diseases (CVDs) (viz. hypertension, atherosclerosis, atrial fibrillation, cardiomyopathy and heart failure). Furthermore, studies indicate that a higher concentration of circulatory HSP antibodies correlate to CVDs; some are even potential markers for CVDs. The multifaceted roles of HSPs in regulating cellular signaling necessitate unraveling their links to pathophysiology of CVDs. This review aims to consolidate our understanding of transcriptional (via multiple transcription factors including HSF-1, NF-κB, CREB and STAT3) and post-transcriptional (via microRNAs including miR-1, miR-21 and miR-24) regulation of HSPs. The cytoprotective nature of HSPs catapults them to the limelight as modulators of cell survival. Yet another attractive prospect is the development of new therapeutic strategies against cardiovascular diseases (from hypertension to heart failure) by targeting the regulation of HSPs. Moreover, this review provides insights into how genetic variation of HSPs can contribute to the manifestation of CVDs. It would also offer a bird's eye view of the evolving role of different HSPs in the modulation and manifestation of cardiovascular disease.
Collapse
Affiliation(s)
- Joyita Hazra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Anupama Vijayakumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
3
|
PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective. J Cardiovasc Dev Dis 2021; 9:jcdd9010004. [PMID: 35050214 PMCID: PMC8777754 DOI: 10.3390/jcdd9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are important causes of mortality and morbidity worldwide. Vascular smooth muscle cells (SMCs) are major components of blood vessels and are involved in physiologic and pathophysiologic conditions. In healthy vessels, vascular SMCs contribute to vasotone and regulate blood flow by cyclic nucleotide intracellular pathways. However, vascular SMCs lose their contractile phenotype under pathological conditions and alter contractility or signalling mechanisms, including cyclic nucleotide compartmentation. In the present review, we focus on compartmentalized signaling of cyclic nucleotides in vascular smooth muscle. A deeper understanding of these mechanisms clarifies the most relevant axes for the regulation of vascular tone. Furthermore, this allows the detection of possible changes associated with pathological processes, which may be of help for the discovery of novel drugs.
Collapse
|
4
|
Janowska MK, Baughman HER, Woods CN, Klevit RE. Mechanisms of Small Heat Shock Proteins. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034025. [PMID: 30833458 DOI: 10.1101/cshperspect.a034025] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent chaperones that delay formation of harmful protein aggregates. sHSPs' role in protein homeostasis has been appreciated for decades, but their mechanisms of action remain poorly understood. This gap in understanding is largely a consequence of sHSP properties that make them recalcitrant to detailed study. Multiple stress-associated conditions including pH acidosis, oxidation, and unusual availability of metal ions, as well as reversible stress-induced phosphorylation can modulate sHSP chaperone activity. Investigations of sHSPs reveal that sHSPs can engage in transient or long-lived interactions with client proteins depending on solution conditions and sHSP or client identity. Recent advances in the field highlight both the diversity of function within the sHSP family and the exquisite sensitivity of individual sHSPs to cellular and experimental conditions. Here, we will present and highlight current understanding, recent progress, and future challenges.
Collapse
Affiliation(s)
- Maria K Janowska
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Hannah E R Baughman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Christopher N Woods
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
5
|
Clifford PS, Ferguson BS, Jasperse JL, Hill MA. Arteriolar vasodilation involves actin depolymerization. Am J Physiol Heart Circ Physiol 2018; 315:H423-H428. [PMID: 29727217 DOI: 10.1152/ajpheart.00723.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is generally assumed that relaxation of arteriolar vascular smooth muscle occurs through hyperpolarization of the cell membrane, reduction in intracellular Ca2+ concentration, and activation of myosin light chain phosphatase/inactivation of myosin light chain kinase. We hypothesized that vasodilation is related to depolymerization of F-actin. Cremaster muscles were dissected in rats under pentobarbital sodium anesthesia (50 mg/kg). First-order arterioles were dissected, cannulated on glass micropipettes, pressurized, and warmed to 34°C. Internal diameter was monitored with an electronic video caliper. The concentration of G-actin was determined in flash-frozen intact segments of arterioles by ultracentrifugation and Western blot analyses. Arterioles dilated by ~40% of initial diameter in response to pinacidil (1 × 10-6 mM) and sodium nitroprusside (5 × 10-5 mM). The G-actin-to-smooth muscle 22α ratio was 0.67 ± 0.09 in arterioles with myogenic tone and increased significantly to 1.32 ± 0.34 ( P < 0.01) when arterioles were dilated with pinacidil and 1.14 ± 0.18 ( P < 0.01) with sodium nitroprusside, indicating actin depolymerization. Compared with control vessels (49 ± 5%), the percentage of phosphorylated myosin light chain was significantly reduced by pinacidil (24 ± 2%, P < 0.01) but not sodium nitroprusside (42 ± 4%). These findings suggest that actin depolymerization is an important mechanism for vasodilation of resistance arterioles to external agonists. Furthermore, pinacidil produces smooth muscle relaxation via both decreases in myosin light chain phosphorylation and actin depolymerization, whereas sodium nitroprusside produces smooth muscle relaxation primarily via actin depolymerization. NEW & NOTEWORTHY This article adds to the accumulating evidence on the contribution of the actin cytoskeleton to the regulation of vascular smooth muscle tone in resistance arterioles. Actin depolymerization appears to be an important mechanism for vasodilation of resistance arterioles to pharmacological agonists. Dilation to the K+ channel opener pinacidil is produced by decreases in myosin light chain phosphorylation and actin depolymerization, whereas dilation to the nitric oxide donor sodium nitroprusside occurs primarily via actin depolymerization.
Collapse
Affiliation(s)
- Philip S Clifford
- College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois
| | - Brian S Ferguson
- College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois
| | - Jeffrey L Jasperse
- Department of Sports Medicine, Pepperdine University , Malibu, California
| | - Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| |
Collapse
|
6
|
Li H, Shin SE, Seo MS, An JR, Choi IW, Jung WK, Firth AL, Lee DS, Yim MJ, Choi G, Lee JM, Na SH, Park WS. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci 2018; 197:46-55. [PMID: 29409796 DOI: 10.1016/j.lfs.2018.01.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022]
Abstract
AIM Considering the clinical efficacy of dapagliflozin in patients with type 2 DM and the pathophysiological relevance of Kv channels for vascular reactivity. We investigate the vasodilatory effect of dapagliflozin and related mechanisms using phenylephrine (Phe)-induced contracted aortic rings. MATERIAL AND METHODS Arterial tone measurement was performed in aortic smooth muscle. KEY FINDINGS Application of dapagliflozin induced vasodilation in a concentration-dependent manner. Pre-treatment with the BKCa channel inhibitor paxilline, the KATP channel inhibitor glibenclamide, and the Kir channel inhibitor Ba2+ did not change dapagliflozin-induced vasodilation. However, application of the Kv channels inhibitor 4-AP effectively inhibited dapagliflozin-induced vasodilation. Application of the Ca2+ channel inhibitor nifedipine and the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor thapsigargin did not alter the vasodilatory effect of dapagliflozin. Moreover, the adenylyl cyclase inhibitor SQ 22536 and the protein kinase A (PKA) inhibitor KT 5720 had no effect on dapagliflozin-induced vasodilation. Although guanylyl cyclase inhibitors, NS 2028 and ODQ, did not reduce the vasodilatory effect of dapagliflozin, the protein kinase G (PKG) inhibitor KT 5823 effectively inhibited dapagliflozin-induced vasodilation. The vasodilatory effect of dapagliflozin was not affected by elimination of the endothelium. Furthermore, pretreatment with the nitric oxide synthase inhibitor L-NAME or the small-conductance Ca2+-activated K (SKCa) channel inhibitor apamin did not change the vasodilatory effect of dapagliflozin. SIGNIFICANCE We concluded that dapagliflozin induced vasodilation via the activation of Kv channels and PKG, and was independent of other K+ channels, Ca2+ channels, intracellular Ca2+, and the endothelium.
Collapse
Affiliation(s)
- Hongliang Li
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Sung Eun Shin
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Mi Seon Seo
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin Ryeol An
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan 48516, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan 608-737, South Korea
| | - Amy L Firth
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Keck School of Medicine, Los Angeles CA90033, USA
| | - Dae-Sung Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, South Korea
| | - Mi-Jin Yim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, South Korea
| | - Grace Choi
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, South Korea
| | - Jeong Min Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, South Korea
| | - Sung Hun Na
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| |
Collapse
|
7
|
Lai PF, Tribe RM, Johnson MR. Differential impact of acute and prolonged cAMP agonist exposure on protein kinase A activation and human myometrium contractile activity. J Physiol 2016; 594:6369-6393. [PMID: 27328735 DOI: 10.1113/jp272320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/30/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Over 15 million babies are born prematurely each year with approximately 1 million of these babies dying as a direct result of preterm delivery. β2 -Adrenoreceptor agonists that act via cAMP can reduce uterine contractions to delay preterm labour, but their ability to repress uterine contractions lasts ≤ 48 h and their use does not improve neonatal outcomes. Previous research has suggested that cAMP inhibits myometrial contractions via protein kinase A (PKA) activation, but this has yet to be demonstrated with PKA-specific agonists. We investigated the role of PKA in mediating cAMP-induced human myometrial relaxation, and the impact of prolonged cAMP elevation on myometrial contractility. Our findings suggest that PKA is not the sole mediator of cAMP-induced myometrial relaxation and that prolonged prophylactic elevation of cAMP alone is unlikely to prevent preterm labour (PTL). ABSTRACT Acute cAMP elevation inhibits myometrial contractility, but the mechanisms responsible are not fully elucidated and the long-term effects are uncertain. Both need to be defined in pregnant human myometrium before the therapeutic potential of cAMP-elevating agents in the prevention of preterm labour can be realised. In the present study, we tested the hypotheses that PKA activity is necessary for cAMP-induced myometrial relaxation, and that prolonged cAMP elevation can prevent myometrial contractions. Myometrial tissues obtained from term, pre-labour elective Caesarean sections were exposed to receptor-independent cAMP agonists to determine the relationship between myometrial contractility (spontaneous and oxytocin-induced), PKA activity, HSP20 phosphorylation and expression of contraction-associated and cAMP signalling proteins. Acute (1 h) application of cAMP agonists promoted myometrial relaxation, but this was weakly related to PKA activation. A PKA-specific activator, 6-Bnz-cAMP, increased PKA activity (6.8 ± 2.0 mean fold versus vehicle; P = 0.0313) without inducing myometrial relaxation. Spontaneous myometrial contractility declined after 24 h but was less marked when tissues were constantly exposed to cAMP agonists, especially for 8-bromo-cAMP (4.3 ± 1.2 mean fold versus vehicle; P = 0.0043); this was associated with changes to calponin, cofilin and HSP20 phosphorylated/total protein levels. Oxytocin-induced contractions were unaffected by pre-incubation with cAMP agonists despite treatments being able to enhance PKA activity and HSP20 phosphorylation. These data suggest that cAMP-induced myometrial relaxation is not solely dependent on PKA activity and the ability of cAMP agonists to repress myometrial contractility is lost with prolonged exposure. We conclude that cAMP agonist treatment alone may not prevent preterm labour.
Collapse
Affiliation(s)
- Pei F Lai
- Academic Department of Obstetrics & Gynaecology, Imperial College London, London, SW10 9NH, UK
| | - Rachel M Tribe
- Division of Women's Health, Kings College London and Women's Health Academic Centre, Kings Health Partners, London, SE1 7EH, UK
| | - Mark R Johnson
- Academic Department of Obstetrics & Gynaecology, Imperial College London, London, SW10 9NH, UK.
| |
Collapse
|
8
|
Hocking KM, Putumbaka G, Wise ES, Cheung-Flynn J, Brophy CM, Komalavilas P. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein. PLoS One 2016; 11:e0154460. [PMID: 27136356 PMCID: PMC4852981 DOI: 10.1371/journal.pone.0154460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 04/13/2016] [Indexed: 11/18/2022] Open
Abstract
Objective Papaverine is used to prevent vasospasm in human saphenous veins (HSV) during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i) and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation. Approach and Results HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin) level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6) and the vasodilator stimulated phosphoprotein (VASP), as well as decreased filamentous actin (F-actin) levels suggesting depolymerization of actin. Conclusions These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm.
Collapse
Affiliation(s)
- Kyle M. Hocking
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| | - Gowthami Putumbaka
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric S. Wise
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Joyce Cheung-Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Colleen M. Brophy
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Padmini Komalavilas
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
9
|
Marsh NM, Wareham A, White BG, Miskiewicz EI, Landry J, MacPhee DJ. HSPB8 and the Cochaperone BAG3 Are Highly Expressed During the Synthetic Phase of Rat Myometrium Programming During Pregnancy. Biol Reprod 2015; 92:131. [PMID: 25904010 DOI: 10.1095/biolreprod.114.125401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/09/2015] [Indexed: 12/17/2022] Open
Abstract
The small heat shock protein (HSP) B family of proteins are a group of molecular chaperones that enable tissues to adapt to changes in their local environments during differentiation, stress, or disease conditions. The objective of this research was to characterize the expression of HSPB8 and its cochaperone Bcl2-associated athanogene 3 (BAG3) in nonpregnant (NP) and pregnant rat myometrium during myometrial programming. Rat myometrium was collected from NP and pregnant rats as well as 1 day postpartum (PP) and samples prepared for immunoblot and immunofluorescence analysis. Immunoblot analysis determined that HSPB8 protein expression was significantly elevated at Day (D) 15, D17, and D19 compared to expression at NP and D6, while BAG3 expression was significantly elevated at D15 compared to NP, and D17 compared to NP, D6, D23, and PP time points (P < 0.05). In situ, HSPB8 and BAG3 were predominantly localized to myometrial cells throughout pregnancy, with intense cytoplasmic HSPB8 and BAG3 detection on D15 and D17 in both longitudinal and circular muscle layers. Immunoblot analysis of HSPB8 and BAG3 protein expression in myometrium from unilateral pregnancies also revealed that expression of both proteins was significantly increased at D15 in gravid compared to nongravid horns. Thus, HSPB8 and BAG3 are highly expressed during the synthetic phase of myometrial differentiation marked by initiation of uterine distension and myometrial hypertrophy. HSPB8 and BAG3 could be regulators of the protein quality control required for this process.
Collapse
Affiliation(s)
- Noelle M Marsh
- Division of Biomedical Sciences, Health Sciences Centre, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Angela Wareham
- Division of Biomedical Sciences, Health Sciences Centre, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Bryan G White
- Okanagan College-Salmon Arm Campus, Salmon Arm, British Columbia, Canada
| | - Ewa I Miskiewicz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jacques Landry
- Centre de Recherche en Cancerologie de l'Universite Laval, L'Hotel-Dieu de Quebec, Quebec, Quebec, Canada
| | - Daniel J MacPhee
- One Reproductive Health Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Kostenko S, Jensen KL, Moens U. Phosphorylation of heat shock protein 40 (Hsp40/DnaJB1) by mitogen-activated protein kinase-activated protein kinase 5 (MK5/PRAK). Int J Biochem Cell Biol 2014; 47:29-37. [DOI: 10.1016/j.biocel.2013.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/25/2013] [Accepted: 11/05/2013] [Indexed: 01/08/2023]
|
11
|
Dubińska-Magiera M, Jabłońska J, Saczko J, Kulbacka J, Jagla T, Daczewska M. Contribution of small heat shock proteins to muscle development and function. FEBS Lett 2014; 588:517-30. [PMID: 24440355 DOI: 10.1016/j.febslet.2014.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022]
Abstract
Investigations undertaken over the past years have led scientists to introduce the concept of protein quality control (PQC) systems, which are responsible for polypeptide processing. The PQC system monitors proteostasis and involves activity of different chaperones such as small heat shock proteins (sHSPs). These proteins act during normal conditions as housekeeping proteins regulating cellular processes, and during stress conditions. They also mediate the removal of toxic misfolded polypeptides and thereby prevent development of pathogenic states. It is postulated that sHSPs are involved in muscle development. They could act via modulation of myogenesis or by maintenance of the structural integrity of signaling complexes. Moreover, mutations in genes coding for sHSPs lead to pathological states affecting muscular tissue functioning. This review focuses on the question how sHSPs, still relatively poorly understood proteins, contribute to the development and function of three types of muscle tissue: skeletal, cardiac and smooth.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jadwiga Jabłońska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Teresa Jagla
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| |
Collapse
|
12
|
Lomiwes D, Farouk M, Wiklund E, Young O. Small heat shock proteins and their role in meat tenderness: A review. Meat Sci 2014; 96:26-40. [DOI: 10.1016/j.meatsci.2013.06.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/07/2013] [Indexed: 01/28/2023]
|
13
|
Hedegaard ER, Nielsen BD, Mogensen S, Rembold CM, Frøbert O, Simonsen U. Mechanisms involved in increased sensitivity to adenosine A(2A) receptor activation and hypoxia-induced vasodilatation in porcine coronary arteries. Eur J Pharmacol 2013; 723:216-26. [PMID: 24309216 DOI: 10.1016/j.ejphar.2013.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 01/11/2023]
Abstract
Hypoxia-induced coronary vasorelaxation is a compensatory mechanism increasing blood flow. We hypothesized that hypoxia shares pathways with adenosine and causes vasorelaxation through the adenosine A(2A) receptor and force suppression by increasing cAMP and phosphorylated heat shock protein (HSP)20. Adenosine receptors in porcine left anterior descending coronary arteries (LAD) were examined by RT-PCR and isometric tension recording in myographs. Vasorelaxation was induced by adenosine, 1% oxygen, or both in the absence or presence of ZM241385, an adenosine A(2A) receptor antagonist. cAMP was determined by ELISA and p-HSP20/HSP20 and p-MLC/MLC were determined by immunoblotting and densitometric analyses. In coronary arteries exposed to 1% oxygen, there was increased sensitivity to adenosine, the adenosine A2 selective agonist NECA, and the adenosine A(2A) selective receptor agonist CGS21680. ZM241385 shifted concentration-response curves for CGS21680 to the right, whereas the adenosine A1 antagonist DPCPX, the adenosine A2B receptor antagonist MRS1754 and the adenosine A3 receptor antagonist MRS1523 failed to reduce vasodilatation induced by CGS21680. 1% oxygen or adenosine increased cAMP accumulation and HSP20 phosphorylation without changing T850-MYPT1 and MLC phosphorylation. ZM241385 failed to change 1% oxygen-induced vasodilation, cAMP accumulation, HSP20 phosphorylation and MLC phosphorylation. The PKA inhibitor Rp-8-CPT-cAMPS significantly reduced vasorelaxation induced by 1% oxygen or CGS21680. Our findings suggest that the increased sensitivity to adenosine, NECA, and CGS21680 at 1% oxygen involves adenosine A(2A) receptors. Adenosine and 1% oxygen induce vasorelaxation in PGF2α-contracted porcine coronary arteries partly by force suppression caused by increased cAMP and phosphorylation of HSP20.
Collapse
Affiliation(s)
- Elise R Hedegaard
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, MEMBRANES, University of Aarhus, Denmark.
| | - Berit D Nielsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, MEMBRANES, University of Aarhus, Denmark; Department of Rheumatology, Aarhus University Hospital, Denmark
| | - Susie Mogensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, MEMBRANES, University of Aarhus, Denmark
| | - Christopher M Rembold
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Ole Frøbert
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, MEMBRANES, University of Aarhus, Denmark; Department of Cardiology, Örebro University Hospital, Sweden
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, MEMBRANES, University of Aarhus, Denmark
| |
Collapse
|
14
|
Niwa M, Hara A, Taguchi A, Aoki H, Kozawa O, Mori H. Spatiotemporal expression of Hsp20 and its phosphorylation in hippocampal CA1 pyramidal neurons after transient forebrain ischemia. Neurol Res 2013; 31:721-7. [DOI: 10.1179/174313209x380946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Emerging targets for novel therapy of asthma. Curr Opin Pharmacol 2013; 13:324-30. [PMID: 23639507 DOI: 10.1016/j.coph.2013.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 12/27/2022]
Abstract
Significant advances in understanding the cell and molecular biology of inflammation and airway smooth muscle (ASM) contractility have identified several potential novel targets for therapies of asthma. New agents targeting G-protein coupled receptors (GPCRs) including bitter taste receptors (TAS2R) agonists and prostaglandin EP4 receptor agonists elicit ASM relaxation. The cAMP/PKA pathway continues to be a promising drug target with the emergence of new PDE inhibitors and a novel PKA target protein, HSP20, which mediates smooth muscle relaxation via actin depolymerization. Smooth muscle relaxation can also be elicited by inhibitors of the RhoA/Rho kinase pathway via inhibition of myosin light chain phosphorylation and actin depolymerization. Targeting epigenetic processes that control chromatin remodeling and RNA-induced gene silencing in airway cells also holds great potential for novel asthma therapy. Further investigation may identify agents that inhibit smooth muscle contraction and/or restrain or reverse obstructive remodeling of the airways.
Collapse
|
16
|
Hocking KM, Baudenbacher FJ, Putumbaka G, Venkatraman S, Cheung-Flynn J, Brophy CM, Komalavilas P. Role of cyclic nucleotide-dependent actin cytoskeletal dynamics:Ca(2+)](i) and force suppression in forskolin-pretreated porcine coronary arteries. PLoS One 2013; 8:e60986. [PMID: 23593369 PMCID: PMC3625185 DOI: 10.1371/journal.pone.0060986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/06/2013] [Indexed: 11/18/2022] Open
Abstract
Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca(2+)]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca(2+)]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm.
Collapse
Affiliation(s)
- Kyle M. Hocking
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Franz J. Baudenbacher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Gowthami Putumbaka
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sneha Venkatraman
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Joyce Cheung-Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Colleen M. Brophy
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Padmini Komalavilas
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
17
|
Binny Priya S, Saha S, Anishetty R, Anishetty S. A matrix based algorithm for Protein-Protein Interaction prediction using Domain-Domain Associations. J Theor Biol 2013; 326:36-42. [PMID: 23473859 DOI: 10.1016/j.jtbi.2013.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/12/2013] [Accepted: 02/25/2013] [Indexed: 12/30/2022]
Abstract
Protein-Protein Interactions (PPI) are vital to many cellular processes. The availability of high-throughput protein interaction data has provided us with an opportunity to assess domain associations in interacting proteins using computational approaches. High throughput PPI data, wherein the interaction status of every protein in the dataset has been experimentally tested against all the other proteins in the dataset contains information not only on protein interactions but also on proteins which do not interact with each other. We call such datasets "all against all" datasets. In the current study, using these datasets and the Pfam domain composition of the proteins in the sets, we have developed a matrix based method for predicting PPI. We infer positive and negative Domain-Domain Associations (DDA) by our method. We have generated more than a million domain association values which can be utilized for predicting new PPI. The performance of the algorithm was evaluated against a test set and the sensitivity and specificity was found to be 68.1% and 65.3%, respectively. The overall prediction accuracy of the algorithm with individual test sets from IntAct, DIP, 3did, iPfam databases and a literature curated set from Saccharomyces cerevisiae was found to be around 70%. The insights gained in the study have a potential application in providing leads for experimental interaction studies and understanding host pathogen interactions amongst others.
Collapse
Affiliation(s)
- S Binny Priya
- Department of Biotechnology, Anna University, Chennai 600025, India
| | | | | | | |
Collapse
|
18
|
Seit-Nebi AS, Datskevich P, Gusev NB. Commentary on paper: Small heat shock proteins and the cytoskeleton: An essential interplay for cell integrity? (Wettstein et al.). Int J Biochem Cell Biol 2013. [DOI: 10.1016/j.biocel.2012.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
The A-kinase-anchoring protein AKAP-Lbc facilitates cardioprotective PKA phosphorylation of Hsp20 on Ser(16). Biochem J 2012; 446:437-43. [PMID: 22731613 DOI: 10.1042/bj20120570] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hsp20 (heat-shock protein of 20 kDa; HspB6) is a cardioprotective agent which combats a number of pathophysiological processes in the heart, including hypertrophy, apoptosis and ischaemia/reperfusion injury. The cardioprotective actions of Hsp20 require its phosphorylation by PKA (cAMP-dependent protein kinase) on Ser(16). Although the extracellular stimuli that promote cAMP-responsive phosphorylation of Hsp20 are well known, less is understood about the molecular processes that regulate this modification. AKAPs (A-kinase-anchoring proteins) physically compartmentalize PKA to specific locations within a cell to both direct PKA phosphorylation toward selected substrates and to orchestrate downstream signalling events. In the present study we used PKA anchoring disruptor peptides to verify that an AKAP underpins the cardioprotective phosphorylation of Hsp20. Biochemical and immunofluorescence techniques identify the cytosolic protein AKAP-Lbc (AKAP13) as the anchoring protein responsible for directing PKA phosphorylation of Hsp20 on Ser(16). Gene silencing and rescue experiments establish that AKAP-Lbc-mediated PKA phosphorylation of Hsp20 is crucial to the anti-apoptotic effects of the Hsp. Thus AKAP-Lbc may serve an ancillary cardioprotective role by favouring the association of PKA with Hsp20.
Collapse
|
20
|
Morgado M, Cairrão E, Santos-Silva AJ, Verde I. Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle. Cell Mol Life Sci 2012; 69:247-66. [PMID: 21947498 PMCID: PMC11115151 DOI: 10.1007/s00018-011-0815-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/21/2011] [Accepted: 08/23/2011] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle tone is controlled by a balance between the cellular signaling pathways that mediate the generation of force (vasoconstriction) and release of force (vasodilation). The initiation of force is associated with increases in intracellular calcium concentrations, activation of myosin light-chain kinase, increases in the phosphorylation of the regulatory myosin light chains, and actin-myosin crossbridge cycling. There are, however, several signaling pathways modulating Ca(2+) mobilization and Ca(2+) sensitivity of the contractile machinery that secondarily regulate the contractile response of vascular smooth muscle to receptor agonists. Among these regulatory mechanisms involved in the physiological regulation of vascular tone are the cyclic nucleotides (cAMP and cGMP), which are considered the main messengers that mediate vasodilation under physiological conditions. At least four distinct mechanisms are currently thought to be involved in the vasodilator effect of cyclic nucleotides and their dependent protein kinases: (1) the decrease in cytosolic calcium concentration ([Ca(2+)]c), (2) the hyperpolarization of the smooth muscle cell membrane potential, (3) the reduction in the sensitivity of the contractile machinery by decreasing the [Ca(2+)]c sensitivity of myosin light-chain phosphorylation, and (4) the reduction in the sensitivity of the contractile machinery by uncoupling contraction from myosin light-chain phosphorylation. This review focuses on each of these mechanisms involved in cyclic nucleotide-dependent relaxation of vascular smooth muscle under physiological conditions.
Collapse
Affiliation(s)
- Manuel Morgado
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Elisa Cairrão
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - António José Santos-Silva
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ignacio Verde
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
21
|
Mymrikov EV, Seit-Nebi AS, Gusev NB. Large potentials of small heat shock proteins. Physiol Rev 2011; 91:1123-59. [PMID: 22013208 DOI: 10.1152/physrev.00023.2010] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modern classification of the family of human small heat shock proteins (the so-called HSPB) is presented, and the structure and properties of three members of this family are analyzed in detail. Ubiquitously expressed HSPB1 (HSP27) is involved in the control of protein folding and, when mutated, plays a significant role in the development of certain neurodegenerative disorders. HSPB1 directly or indirectly participates in the regulation of apoptosis, protects the cell against oxidative stress, and is involved in the regulation of the cytoskeleton. HSPB6 (HSP20) also possesses chaperone-like activity, is involved in regulation of smooth muscle contraction, has pronounced cardioprotective activity, and seems to participate in insulin-dependent regulation of muscle metabolism. HSPB8 (HSP22) prevents accumulation of aggregated proteins in the cell and participates in the regulation of proteolysis of unfolded proteins. HSPB8 also seems to be directly or indirectly involved in regulation of apoptosis and carcinogenesis, contributes to cardiac cell hypertrophy and survival and, when mutated, might be involved in development of neurodegenerative diseases. All small heat shock proteins play important "housekeeping" roles and regulate many vital processes; therefore, they are considered as attractive therapeutic targets.
Collapse
Affiliation(s)
- Evgeny V Mymrikov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation
| | | | | |
Collapse
|
22
|
Somara S, Gilmont RR, Varadarajan S, Bitar KN. Phosphorylated HSP20 modulates the association of thin-filament binding proteins: caldesmon with tropomyosin in colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1164-76. [PMID: 20829522 PMCID: PMC2993172 DOI: 10.1152/ajpgi.00479.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Small heat shock proteins HSP27 and HSP20 have been implicated in regulation of contraction and relaxation in smooth muscle. Activation of PKC-α promotes contraction by phosphorylation of HSP27 whereas activation of PKA promotes relaxation by phosphorylation of HSP20 in colonic smooth muscle cells (CSMC). We propose that the balance between the phosphorylation states of HSP27 and HSP20 represents a molecular signaling switch for contraction and relaxation. This molecular signaling switch acts downstream on a molecular mechanical switch [tropomyosin (TM)] regulating thin-filament dynamics. We have examined the role of phosphorylation state(s) of HSP20 on HSP27-mediated thin-filament regulation in CSMC. CSMC were transfected with different HSP20 phosphomutants. These transfections had no effect on the integrity of actin cytoskeleton. Cells transfected with 16D-HSP20 (phosphomimic) exhibited inhibition of acetylcholine (ACh)-induced contraction whereas cells transfected with 16A-HSP20 (nonphosphorylatable) had no effect on ACh-induced contraction. CSMC transfected with 16D-HSP20 cDNA showed significant decreases in 1) phosphorylation of HSP27 (ser78); 2) phosphorylation of PKC-α (ser657); 3) phosphorylation of TM and CaD (ser789); 4) ACh-induced phosphorylation of myosin light chain; 5) ACh-induced association of TM with HSP27; and 6) ACh-induced dissociation of TM from caldesmon (CaD). We thus propose the crucial physiological relevance of molecular signaling switch (phosphorylation state of HSP27 and HSP20), which dictates 1) the phosphorylation states of TM and CaD and 2) their dissociations from each other.
Collapse
Affiliation(s)
- Sita Somara
- Gastrointestinal Molecular Motors Laboratory, Department of Pediatrics, Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Robert R. Gilmont
- Gastrointestinal Molecular Motors Laboratory, Department of Pediatrics, Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Saranyaraajan Varadarajan
- Gastrointestinal Molecular Motors Laboratory, Department of Pediatrics, Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Khalil N. Bitar
- Gastrointestinal Molecular Motors Laboratory, Department of Pediatrics, Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|
23
|
Oxidant sensing by protein kinases a and g enables integration of cell redox state with phosphoregulation. SENSORS 2010; 10:2731-51. [PMID: 22319269 PMCID: PMC3274199 DOI: 10.3390/s100402731] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 12/19/2022]
Abstract
The control of vascular smooth muscle contractility enables regulation of blood pressure, which is paramount in physiological adaptation to environmental challenges. Maintenance of stable blood pressure is crucial for health as deregulation (caused by high or low blood pressure) leads to disease progression. Vasotone is principally controlled by the cyclic nucleotide dependent protein kinases A and G, which regulate intracellular calcium and contractile protein calcium sensitivity. The classical pathways for activation of these two kinases are well established and involve the formation and activation by specific cyclic nucleotide second messengers. Recently we reported that both PKA and PKG can be regulated independently of their respective cyclic nucleotides via a mechanism whereby the kinases sense cellular oxidant production using redox active thiols. This novel redox regulation of these kinases is potentially of physiological importance, and may synergise with the classical regulatory mechanisms.
Collapse
|
24
|
Furnish EJ, Brophy CM, Harris VA, Macomson S, Winger J, Head GA, Shaver EG. Treatment with transducible phosphopeptide analogues of the small heat shock–related protein, HSP20, after experimental subarachnoid hemorrhage: prevention and reversal of delayed decreases in cerebral perfusion. J Neurosurg 2010; 112:631-9. [DOI: 10.3171/2009.7.jns09730] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Delayed vasospasm is a significant cause of morbidity and mortality after subarachnoid hemorrhage (SAH). Proteomic therapeutics offers a new modality in which biologically active proteins or peptides are transduced into cells via covalent linkage to cell permeant peptides (CPPs). The hypothesis of this study was that either intrathecal or intravenous delivery of a phosphopeptide mimetic of the small heat shock–related protein, HSP20, linked to a CPP, would inhibit delayed decreases in cerebral perfusion after experimental SAH in a rat model.
Methods
This study was conducted in 3 parts: 1) prevention and 2) reversal of delayed decreases in cerebral perfusion via either intrathecal or intravenous administration of a CPP linked to phosphopeptide mimetics of HSP20 (AZX100) and 3) determining the effect of intravenous administration of AZX100 on blood pressure and heart rate. Subarachnoid hemorrhage was induced in rats by endovascular perforation. Subsequently, AZX100 was administered intrathecally via a cisternal catheter or intravenously. Cerebral perfusion was determined by laser Doppler monitoring. Blood pressure was monitored by telemetry in a separate group of naïve animals treated with AZX100 for 24 hours.
Results
The maximal decrease in cerebral perfusion occurred 3 days after SAH. Cisternal administration of AZX100 (0.14–0.57 mg/kg) 24 hours after hemorrhage prevented decreases in cerebral perfusion after SAH. Animals receiving lower doses of AZX100 (0.068 mg/kg) or a scrambled sequence of the active HSP20 peptide linked to CPP developed decreases in cerebral perfusion similar to those seen in control animals. Intravenous administration of AZX100 (1.22 mg/kg) 24 hours after hemorrhage prevented the decreases in cerebral perfusion seen in the controls. Intravenous administration (0.175 mg/kg and 1.22 mg/kg) of AZX100 on Days 2 and 3 after SAH reversed decreases in cerebral perfusion as early as Day 3. There was no impact of AZX100 on blood pressure or heart rate at doses up to 2.73 mg/kg.
Conclusions
Cisternal administration of AZX100 24 hours after hemorrhage prevented decreases in cerebral perfusion. Intravenous administration of AZX100 also prevented and reversed decreases in cerebral perfusion at doses that did not induce hypotension. Transduction of biologically active motifs of downstream regulators like HSP20 represents a potential novel treatment for SAH.
Collapse
Affiliation(s)
| | - Colleen M. Brophy
- 2Vascular Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Julia Winger
- 3Neurosurgery, Augusta Veterans Administration Medical Center
| | - Geoffrey A. Head
- 6Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Ellen G. Shaver
- 3Neurosurgery, Augusta Veterans Administration Medical Center
- 4Departments of Neurosurgery and
- 5Medicine (Institute for Molecular Medicine and Genetics), Medical College of Georgia
- 7Neurological Associates of Augusta, Augusta, Georgia; and
| |
Collapse
|
25
|
Dreiza CM, Komalavilas P, Furnish EJ, Flynn CR, Sheller MR, Smoke CC, Lopes LB, Brophy CM. The small heat shock protein, HSPB6, in muscle function and disease. Cell Stress Chaperones 2010; 15:1-11. [PMID: 19568960 PMCID: PMC2866971 DOI: 10.1007/s12192-009-0127-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022] Open
Abstract
The small heat shock protein, HSPB6, is a 17-kDa protein that belongs to the small heat shock protein family. HSPB6 was identified in the mid-1990s when it was recognized as a by-product of the purification of HSPB1 and HSPB5. HSPB6 is highly and constitutively expressed in smooth, cardiac, and skeletal muscle and plays a role in muscle function. This review will focus on the physiologic and biochemical properties of HSPB6 in smooth, cardiac, and skeletal muscle; the putative mechanisms of action; and therapeutic implications.
Collapse
|
26
|
Tsai EJ, Kass DA. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther 2009; 122:216-38. [PMID: 19306895 PMCID: PMC2709600 DOI: 10.1016/j.pharmthera.2009.02.009] [Citation(s) in RCA: 314] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 02/07/2023]
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) mediates a wide spectrum of physiologic processes in multiple cell types within the cardiovascular system. Dysfunctional signaling at any step of the cascade - cGMP synthesis, effector activation, or catabolism - have been implicated in numerous cardiovascular diseases, ranging from hypertension to atherosclerosis to cardiac hypertrophy and heart failure. In this review, we outline each step of the cGMP signaling cascade and discuss its regulation and physiologic effects within the cardiovascular system. In addition, we illustrate how cGMP signaling becomes dysregulated in specific cardiovascular disease states. The ubiquitous role cGMP plays in cardiac physiology and pathophysiology presents great opportunities for pharmacologic modulation of the cGMP signal in the treatment of cardiovascular diseases. We detail the various therapeutic interventional strategies that have been developed or are in development, summarizing relevant preclinical and clinical studies.
Collapse
Affiliation(s)
- Emily J Tsai
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
27
|
Hashimoto R, Yumoto M, Watanabe M, Konishi M, Haraoka J, Miki T. Differential effects of an expected actin-tropomyosin binding region of heat shock protein 20 on the relaxation in skinned carotid artery and taenia cecum from guinea pig. J Smooth Muscle Res 2009; 45:63-74. [DOI: 10.1540/jsmr.45.63] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ryo Hashimoto
- Department of Neurosurgery; Tokyo Medical University
- Department of Physiology; Tokyo Medical University
| | - Masatoshi Yumoto
- Department of Physiology; Tokyo Medical University
- Department of Anesthesiology, The Jikei University School of Medicine
| | | | | | - Jo Haraoka
- Department of Neurosurgery; Tokyo Medical University
| | - Tamotsu Miki
- Department of Neurosurgery; Tokyo Medical University
| |
Collapse
|
28
|
Tyson EK, Macintyre DA, Smith R, Chan EC, Read M. Evidence that a protein kinase A substrate, small heat-shock protein 20, modulates myometrial relaxation in human pregnancy. Endocrinology 2008; 149:6157-65. [PMID: 18755793 DOI: 10.1210/en.2008-0593] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
For a successful human pregnancy, the phasic smooth muscle of the myometrium must remain quiescent until labor. Activation of cAMP/cAMP-dependent protein kinase A (PKA) pathways contributes to this quiescence. The small heat-shock protein 20 (HSP20) is a target of PKA, and phosphorylated HSP20 (pHSP20) modulates relaxation of tonic vascular smooth muscle via interaction with actin, independent of myosin dephosphorylation. Our objective was to determine whether relaxation in human myometrium is associated with changes in phosphorylation of HSP20. Myometrium was obtained at elective cesarean. Elevating cAMP with forskolin or rolipram (a phosphodiesterase inhibitor) caused substantial relaxation of spontaneously contracting human myometrial strips, of 92 +/- 4% (mean +/- sem, n = 10) and 84 +/- 7% (n = 6), respectively. Subsequent two-dimensional electrophoresis with immunoblotting of strip extracts showed a significant 2.6- and 2.1-fold increase in phosphorylated HSP20 (pHSP20) after forskolin (P < 0.01; n = 5) or rolipram treatment (P < 0.05; n = 4). Noncyclic-nucleotide-mediated relaxation, induced by the calcium channel blocker nifedipine, did not alter pHSP20. Inhibition of PKA with H89 significantly attenuated rolipram-induced relaxation (P < 0.01; n = 4), and partially reduced rolipram-stimulated pHSP20. Total and pHSP20 protein was unchanged in term laboring and nonlaboring myometria. Coimmunoprecipitation studies revealed a specific association of HSP20 with alpha-smooth muscle actin and HSP27, a key regulator of actin filament dynamics. Finally, coimmunofluorescence demonstrated moderate colocalization of HSP20 with alpha-smooth muscle actin in the cytoplasm of laboring myometria. Our data support a novel role for pHSP20 in the modulation of cyclic-nucleotide-mediated myometrial relaxation, through interaction with actin. pHSP20 represents an important new target for future tocolytic therapy.
Collapse
Affiliation(s)
- Elisa K Tyson
- Department of Endocrinology, Mothers and Babies Research Centre, John Hunter Hospital, Lookout Road, New Lambton Heights, Newcastle 2305, Australia.
| | | | | | | | | |
Collapse
|
29
|
Gilmont RR, Somara S, Bitar KN. VIP induces PKA-mediated rapid and sustained phosphorylation of HSP20. Biochem Biophys Res Commun 2008; 375:552-6. [PMID: 18725196 DOI: 10.1016/j.bbrc.2008.08.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/11/2008] [Indexed: 11/18/2022]
Abstract
The small molecular weight heat shock protein HSP20 has been proposed to regulate smooth muscle relaxation in a manner dependent on its phosphorylated state. We present the first evidence of HSP20 phosphorylation in response to a naturally occurring neurotransmitter. HSP20 was rapidly phosphorylated in colonic circular smooth muscle cells exposed to the physiologically relevant relaxant neuropeptide, Vasoactive Intestinal Peptide (VIP). HSP20 phosphorylation was significantly and substantially increased by 30s following VIP treatment and remained elevated for 30 min. VIP-induced HSP20 phosphorylation was dose dependent. Both basal and VIP-induced HSP20 phosphorylations were solely mediated by Protein Kinase A. Maximal phosphorylation of HSP20 was induced by the same VIP concentration range which induces maximal relaxation. Increased phosphorylation of HSP20 occurred in both cytosolic and particulate cell fractions. Our findings represent evidence for neurogenic modulation of the cyclic molecular regulation of relaxation required for peristalsis via a VIP-PKA-HSP20 pathway.
Collapse
Affiliation(s)
- Robert R Gilmont
- Department of Pediatrics-Gastroenterology, University of Michigan Medical Center, 1150 W. Medical Center Dr., MSRB I, Room A520, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
30
|
Salinthone S, Tyagi M, Gerthoffer WT. Small heat shock proteins in smooth muscle. Pharmacol Ther 2008; 119:44-54. [PMID: 18579210 DOI: 10.1016/j.pharmthera.2008.04.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 04/28/2008] [Indexed: 01/16/2023]
Abstract
The small heat shock proteins (HSPs) HSP20, HSP27 and alphaB-crystallin are chaperone proteins that are abundantly expressed in smooth muscles are important modulators of muscle contraction, cell migration and cell survival. This review focuses on factors regulating expression of small HSPs in smooth muscle, signaling pathways that regulate macromolecular structure and the biochemical and cellular functions of small HSPs. Cellular processes regulated by small HSPs include chaperoning denatured proteins, maintaining cellular redox state and modifying filamentous actin polymerization. These processes influence smooth muscle proliferation, cell migration, cell survival, muscle contraction and synthesis of signaling proteins. Understanding functions of small heat shock proteins is relevant to mechanisms of disease in which dysfunctional smooth muscle causes symptoms, or is a target of drug therapy. One example is that secreted HSP27 may be a useful marker of inflammation during atherogenesis. Another is that phosphorylated HSP20 which relaxes smooth muscle may prove to be highly relevant to treatment of hypertension, vasospasm, asthma, premature labor and overactive bladder. Because small HSPs also modulate smooth muscle proliferation and cell migration they may prove to be targets for developing effective, novel treatments of clinical problems arising from remodeling of smooth muscle in vascular, respiratory and urogenital systems.
Collapse
Affiliation(s)
- Sonemany Salinthone
- Department of Neurology, Oregon Health Sciences University, Portland, OR, USA
| | | | | |
Collapse
|
31
|
Meeks MK, Han S, Tucker AL, Rembold CM. Phospholemman does not participate in forskolin-induced swine carotid artery relaxation. Physiol Res 2007; 57:669-675. [PMID: 17949246 PMCID: PMC2577124 DOI: 10.33549/physiolres.931348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Phosphorylation of phospholemman (PLM) on ser68 has been proposed to at least partially mediate cyclic AMP (cAMP) mediated relaxation of arterial smooth muscle. We evaluated the time course of the phosphorylation of phospholemman (PLM) on ser68, myosin regulatory light chains (MRLC) on ser19, and heat shock protein 20 (HSP20) on ser16 during a transient forskolin-induced relaxation of histamine-stimulated swine carotid artery. We also evaluated the dose response for forskolin- and nitroglycerin-induced relaxation in phenylephrine-stimulated PLM-/- and PLM+/+ mice. The time course for changes in ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation was appropriate to explain the forskolin-induced relaxation and the recontraction observed upon washout of forskolin. However, the time course for changes in ser68 PLM phosphorylation was too slow to explain forskolin-induced changes in force. There was no difference in the phenylephrine contractile dose response or in forskolin-induced relaxation dose response observed in PLM-/- and PLM+/+ aortae. In aortae precontracted with phenylephrine, nitroglycerin induced a slightly, but significantly greater relaxation in PLM-/- compared to PLM+/+ aortae. These data are consistent with the hypothesis that ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation are involved in forskolin-induced relaxation. Our data suggest that PLM phosphorylation is not significantly involved in forskolin-induced arterial relaxation.
Collapse
Affiliation(s)
- M K Meeks
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
32
|
Ihara E, MacDonald JA. The regulation of smooth muscle contractility by zipper-interacting protein kinase. Can J Physiol Pharmacol 2007; 85:79-87. [PMID: 17487247 DOI: 10.1139/y06-103] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Smooth muscle contractility is mainly regulated by phosphorylation of the 20 kDa myosin light chains (LC20), a process that is controlled by the opposing activities of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Recently, intensive research has revealed that various protein kinase networks including Rho-kinase, integrin-linked kinase, zipper-interacting protein kinase (ZIPK), and protein kinase C (PKC) are involved in the regulation of LC20 phosphorylation and have important roles in modulating smooth muscle contractile responses to Ca2+ (i.e., Ca2+ sensitization and Ca2+ desensitization). Here, we review the general background and structure of ZIPK and summarize our current understanding of its involvement in a number of cell processes including cell death (apoptosis), cell motility, and smooth muscle contraction. ZIPK has been found to induce the diphosphorylation of LC20 at Ser-19 and Thr-18 in a Ca2+-independent manner and to regulate MLCP activity directly through its phosphorylation of the myosin-targeting subunit of MLCP or indirectly through its phosphorylation of the PKC-potentiated inhibitory protein of MLCP. Future investigations of ZIPK function in smooth muscle will undoubtably focus on determining the mechanisms that regulate its cellular activity, including the identification of upstream signaling pathways, the characterization of autoinhibitory domains and regulatory phosphorylation sites, and the development of specific inhibitor compounds.
Collapse
Affiliation(s)
- Eikichi Ihara
- Smooth Muscle Research Group and Department of Biochemistry and Molecular Biology, University of Calgary, Faculty of Medicine, 3330 Hospital Drive N.W, Calgary, AB T2N 4N1, Canada
| | | |
Collapse
|
33
|
Abstract
Cyclic nucleotides can relax arterial smooth muscle without reductions in crossbridge phosphorylation, a process termed force suppression. There are two potential mechanisms for force suppression: 1) phosphorylated crossbridges binding to thin filaments could be inhibited or 2) the attachment of thin filaments to anchoring structures could be disrupted. These mechanisms were evaluated by comparing histamine-stimulated swine arterial smooth muscle with and without forskolin-induced force suppression and with and without latrunculin-A-induced actin filament disruption. At matched force, force suppression was associated with higher crossbridge phosphorylation and shortening velocity at low loads when compared with tissues without force suppression. Shortening velocity at high loads, noise temperature, hysteresivity, and stiffness did not differ with and without force suppression. These data suggest that crossbridge phosphorylation regulates the crossbridge cycle during force suppression. Actin disruption with latrunculin-A was associated with higher crossbridge phosphorylation when compared with tissues without actin disruption. Shortening velocity, noise temperature, hysteresivity, and stiffness did not differ with and without actin disruption. These data suggest that actin disruption interferes with regulation of crossbridge cycling by crossbridge phosphorylation. Stiffness was linearly dependent on stress, suggesting that the force per attached crossbridge was not altered with force suppression or actin disruption. These data suggest a difference in the mechanical characteristics observed during force suppression and actin disruption, implying that force suppression does not mechanistically involve actin disruption. These data are most consistent with a model where force suppression involves the inhibition of phosphorylated crossbridge binding to thin filaments.
Collapse
Affiliation(s)
- Christopher M Rembold
- Box 800146, Cardiovascular Division, Univ. of Virginia Health System, Charlottesville, VA 22908-0146, USA.
| |
Collapse
|
34
|
Chernik IS, Seit-Nebi AS, Marston SB, Gusev NB. Small heat shock protein Hsp20 (HspB6) as a partner of 14-3-3gamma. Mol Cell Biochem 2006; 295:9-17. [PMID: 17109079 DOI: 10.1007/s11010-006-9266-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
Interaction of human 14-3-3gamma with the small heat shock protein Hsp20 was analyzed by means of size-exclusion chromatography and chemical crosslinking. Unphosphorylated Hsp20 and its mutant S16D mimicking phosphorylation by cAMP-dependent protein kinase did not interact with 14-3-3. Phosphorylated Hsp20 formed a tight complex with 14-3-3 in which dimer of 14-3-3 was bound to dimer of Hsp20. 14-3-3 did not affect the chaperone activity of unphosphorylated Hsp20 but increased the chaperone activity of phosphorylated Hsp20 if insulin was used as a model substrate. Estimation of the effect of 14-3-3 on the chaperone activity of Hsp20 with other model substrates was complicated by the fact that under in vitro conditions isolated 14-3-3 possessed its own high chaperone activity. Taken into account high content of Hsp20 in different muscles it is supposed that upon phosphorylation Hsp20 might effectively compete with multiple protein targets of 14-3-3 and by this means indirectly affect many intracellular processes.
Collapse
Affiliation(s)
- Ivan S Chernik
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119992, Russia
| | | | | | | |
Collapse
|
35
|
Rembold CM, Meeks MK, Ripley ML, Han S. Longer muscle lengths recapitulate force suppression in swine carotid artery. Am J Physiol Heart Circ Physiol 2006; 292:H1065-70. [PMID: 17056671 PMCID: PMC2259221 DOI: 10.1152/ajpheart.00775.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic nucleotide can relax arterial smooth muscle without reductions in myosin regulatory light chain (MRLC) phosphorylation, a process termed force suppression. Smooth muscle contractile force also depends on tissue length. It is not known how tissue length affects force suppression. Swine carotid artery rings were equilibrated at various lengths (as a fraction of L(o), the optimal length for force development). They were then frozen during contractile activation with or without forskolin-induced relaxation. Frozen tissue homogenates were then analyzed for Ser(19)-MRLC phosphorylation and Ser(16)-heat shock protein 20 (HSP20) phosphorylation (HSP20 is the proposed mediator of force suppression). Higher values of MRLC phosphorylation were required to induce a histamine contraction at longer tissue lengths. At 1.4 L(o), the dependence of force on MRLC phosphorylation observed with histamine stimulation alone was shifted to the right, a response similar to that observed during force suppression at 1.0 L(o). The rightward shift in the dependence of force on MRLC phosphorylation seen with histamine stimulation alone at 1.4 L(o) was not associated with increased HSP20 phosphorylation. Addition of forskolin to histamine-stimulated tissues at 1.4 L(o) induced a relaxation associated with increased HSP20 phosphorylation and reduced MRLC phosphorylation, i.e., there was no additional force suppression. At shorter tissue lengths (0.6 L(o)), the dependence of force on MRLC phosphorylation with histamine stimulation alone was steep, a response similar to that observed during normal contractile activation at 1.0 L(o). Addition of forskolin induced force suppression at 0.6 L(o). The sensitivity of swine carotid to the concentration of histamine was greater at longer tissue lengths compared with shorter tissue lengths, suggesting a physiological mechanism to restore optimal tissue length. These data suggest that longer tissue lengths induced a force suppression-like state that was 1) not additive with forskolin and 2) not associated with HSP20 phosphorylation. Further research is required to determine this length-dependent mechanism.
Collapse
Affiliation(s)
- Christopher M Rembold
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22908-0146, USA.
| | | | | | | |
Collapse
|
36
|
Batts TW, Klausner AP, Jin Z, Meeks MK, Ripley ML, Yang SK, Tuttle JB, Steers WD, Rembold CM. Increased Expression of Heat Shock Protein 20 and Decreased Contractile Stress in Obstructed Rat Bladder. J Urol 2006; 176:1679-84. [PMID: 16952713 DOI: 10.1016/j.juro.2006.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Indexed: 10/24/2022]
Abstract
PURPOSE Bladder outlet obstruction induces detrusor hypertrophy and it can eventually lead to decreased bladder smooth muscle contractility. Heat shock protein 20 is the proposed mediator of force suppression in vascular smooth muscle. We investigated whether heat shock protein 20 could also mediate the decreased contractility observed in partially obstructed rat bladders. MATERIALS AND METHODS Female Wistar rats (Harlan Laboratories, Indianapolis, Indiana) were randomized to partial urethral ligation or sham ligation. After 3 weeks the rats were sacrificed, and the bladders were harvested, frozen, homogenized and analyzed for heat shock protein 20 content by Western blot immunoreactivity. The content of myosin regulatory light chain, a constitutively expressed protein, was determined as a control. Bladder smooth muscle strips were dissected from some rats and mounted for force generation measurement. RESULTS At cystectomy obstructed bladders were significantly heavier and had more residual urine compared to sham operated bladders. Heat shock protein 20 immunoreactivity was significantly increased a mean +/- 1 SEM of 1.9 +/- 0.3-fold in obstructed vs sham operated bladders. Control protein myosin regulatory light chain immunoreactivity did not significantly differ in obstructed and sham operated bladders. Maximal stress, that is force per cross-sectional area, was significantly decreased in obstructed vs sham operated bladders. Human bladder was found to express immunoreactive heat shock protein 20. CONCLUSIONS We noted that partially obstructed rat bladders 1) express higher levels of heat shock protein 20 and 2) generate less stress than sham operated bladders. These data suggest the possibility that heat shock protein 20 over expression could at least partially mediate the decreased contractile activity observed with partial bladder outlet obstruction. The mechanism for increased heat shock protein 20 expression is unknown but it may involve increased mechanical stress or hypoxia from urethral obstruction. Human bladder expressed immunoreactive heat shock protein 20, suggesting that a similar mechanism could potentially occur in humans. If confirmed in humans, patients with clinical conditions that result in detrusor hypocontractility could potentially benefit from pharmacological interventions aimed at inhibiting heat shock protein 20.
Collapse
Affiliation(s)
- Timothy W Batts
- Department of Internal Medicine, University of Virginia, Charlottesville, Virginia 22908-1395, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Flynn CR, Smoke CC, Furnish E, Komalavilas P, Thresher J, Yi Z, Mandarino LJ, Brophy CM. Phosphorylation and activation of a transducible recombinant form of human HSP20 in Escherichia coli. Protein Expr Purif 2006; 52:50-8. [PMID: 17084643 PMCID: PMC1839877 DOI: 10.1016/j.pep.2006.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 08/19/2006] [Indexed: 10/24/2022]
Abstract
Protein-based cellular therapeutics have been limited by getting molecules into cells and the fact that many proteins require post-translational modifications for activation. Protein transduction domains (PTDs), including that from the HIV TAT protein (TAT), are small arginine rich peptides that carry molecules across the cell membrane. We have shown that the heat shock-related protein, HSP20 is a downstream-mediator of cyclic nucleotide-dependent relaxation of vascular smooth muscle and is activated by phosphorylation. In this study, we co-expressed in Escherichia coli the cDNAs encoding the catalytic subunit of protein kinase G and a TAT-HSP20 fusion protein composed of the TAT PTD (-YGRKKRRQRRR-) fused to the N-terminus of human HSP20. Immunoblot and HPLC-ESI-MS/MS analysis of the purified TAT-HSP20 demonstrated that it was phosphorylated at serine 40 (equivalent to serine 16 in wild-type human HSP20). This phosphorylated TAT-HSP20 was physiologically active in intact smooth muscles in that it inhibited 5-hydroxytryptamine-induced contractions by 57%+/-4.5. The recombinant phosphorylated protein also led to changes in actin cytoskeletal morphology in 3T3 cells. These results delineate strategies for the expression and activation of therapeutic molecules for intracellular protein based therapeutics.
Collapse
Affiliation(s)
- Charles R Flynn
- Arizona State University, Harrington Department of Bioengineering, Tempe, AZ 85287-9709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
In contrast to striated muscle, both normalized force and shortening velocities are regulated functions of cross-bridge phosphorylation in smooth muscle. Physiologically this is manifested as relatively fast rates of contraction associated with transiently high levels of cross-bridge phosphorylation. In sustained contractions, Ca2+, cross-bridge phosphorylation, and ATP consumption rates fall, a phenomenon termed "latch". This review focuses on the Hai and Murphy (1988a) model that predicted the highly non-linear dependence of force on phosphorylation and a directly proportional dependence of shortening velocity on phosphorylation. This model hypothesized that (i) cross-bridge phosphorylation was obligatory for cross-bridge attachment, but also that (ii) dephosphorylation of an attached cross-bridge reduced its detachment rate. The resulting variety of cross-bridge cycles as predicted by the model could explain the observed dependencies of force and velocity on cross-bridge phosphorylation. New evidence supports modifications for more general applicability. First, myosin light chain phosphatase activity is regulated. Activation of myosin phosphatase is best demonstrated with inhibitory regulatory mechanisms acting via nitric oxide. The second modification of the model incorporates cooperativity in cross-bridge attachment to predict improved data on the dependence of force on phosphorylation. The molecular basis for cooperativity is unknown, but may involve thin filament proteins absent in striated muscle.
Collapse
Affiliation(s)
- Richard A Murphy
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
39
|
Gusev NB, Bukach OV, Marston SB. Structure, properties, and probable physiological role of small heat shock protein with molecular mass 20 kD (Hsp20, HspB6). BIOCHEMISTRY (MOSCOW) 2005; 70:629-37. [PMID: 16038604 DOI: 10.1007/s10541-005-0162-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review is devoted to critical analysis of data concerning the structure and functions of small heat shock proteins with apparent molecular mass 20 kD (Hsp20). We describe the structure of Hsp20, its phosphorylation by different protein kinases, interaction of Hsp20 with other small heat shock proteins, and chaperone activity of Hsp20. The distribution of Hsp20 in different animal tissues and the factors affecting expression of Hsp20 are also described. Data on the possible involvement of Hsp20 in regulation of platelet aggregation and glucose transport are presented and analyzed. Special attention is paid to literature data describing probable regulatory effect of Hsp20 on contraction of smooth muscle. Two hypotheses postulating direct effect of Hsp20 on actomyosin interaction or its effect on cytoskeleton are compared and analyzed. The most recent data on the effect of Hsp20 on apoptosis and contractile activity of cardiomyocytes are also presented.
Collapse
Affiliation(s)
- N B Gusev
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | | | | |
Collapse
|
40
|
Bukach OV, Marston SB, Gusev NB. Small heat shock protein with apparent molecular mass 20 kDa (Hsp20, HspB6) is not a genuine actin-binding protein. J Muscle Res Cell Motil 2005; 26:175-81. [PMID: 16205842 DOI: 10.1007/s10974-005-9008-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 07/13/2005] [Indexed: 11/29/2022]
Abstract
The interaction of recombinant human small heat shock protein with apparent molecular mass 20 kDa (Hsp20, HspB6) with actin was investigated. Wild type Hsp20 and its S16D mutant mimicking phosphorylation of Hsp20 by cyclic nucleotide-dependent protein kinases do not affect the rate and extent of actin polymerization. Ultracentrifugation of the mixture of Hsp20 (or its S16D mutant) with isolated F-actin or F-actin containing tropomyosin, calponin or alpha-actinin resulted in co-sedimentation of less than 0.04 mol of Hsp20 monomer per mol of actin. Myofibrils of skeletal, cardiac or smooth muscle bound less than 0.04 mol of Hsp20 monomer per mol of actin and this stoichiometry was independent of phosphorylation or mutation of Ser16 of Hsp20. Since Hsp20 is not a genuine actin-binding protein, the earlier described correlation between Hsp20 phosphorylation and smooth muscle relaxation cannot be explained by direct interaction of Hsp20 with actin.
Collapse
Affiliation(s)
- Olesya V Bukach
- Department of Biochemistry, School of Biology, Moscow State University, 119992 Moscow, Russia
| | | | | |
Collapse
|
41
|
McLemore EC, Tessier DJ, Thresher J, Komalavilas P, Brophy CM. Role of the small heat shock proteins in regulating vascular smooth muscle tone. J Am Coll Surg 2005; 201:30-6. [PMID: 15978441 DOI: 10.1016/j.jamcollsurg.2005.03.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 03/01/2005] [Accepted: 03/01/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Vasospasm occurs in conduits used for vascular reconstructions. The small heat shock proteins, HSP20 and HSP27, coordinately regulate vascular smooth muscle tone. Phosphorylated HSP20 is associated with vasorelaxation, and phosphorylated HSP27 inhibits the phosphorylation of HSP20 and relaxation. We hypothesized that the relationship between the phosphorylated states of these two proteins might dictate the tone of a vessel and may contribute to vasospasm. STUDY DESIGN Sodium nitroprusside relaxation of vascular smooth muscle was recorded using pig coronary artery and human saphenous vein. Segments were frozen and homogenized, and extracted proteins were separated by one- and two-dimensional gel electrophoresis, transferred to Immobilon (Millipore), and probed with anti-cGMP-dependent protein kinase (anti-PKG), -HSP20, -HSP27, and -phosphoHSP27 antibodies. Band intensity was estimated using densitometry. RESULTS Pig coronary artery completely relaxed (100%) with SNP (10(-7)M), but human saphenous vein only partially relaxed (20%). The levels of cGMP-dependent protein kinase and HSP20 were similar in the two tissue types. Human saphenous vein had significantly higher levels of HSP27 versus pig coronary artery (30.14 +/- 0.8 versus 6.62 +/- 0.2 pixels/mg; p < or = 0.001) and phosphoHSP27 (8.29 +/- 3.43 versus 0.012 +/- 0.008 pixels/mg; p < or = 0.001). CONCLUSIONS Human saphenous vein contained significantly higher levels of HSP27 and pHSP27. Increased levels of phosphorylated HSP27 might contribute to vasospasm in human saphenous vein.
Collapse
|
42
|
Flynn CR, Brophy CM, Furnish EJ, Komalavilas P, Tessier D, Thresher J, Joshi L. Transduction of phosphorylated heat shock-related protein 20, HSP20, prevents vasospasm of human umbilical artery smooth muscle. J Appl Physiol (1985) 2005; 98:1836-45. [PMID: 15829720 DOI: 10.1152/japplphysiol.01043.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of cyclic nucleotide-dependent signaling pathways inhibits agonist-induced contraction of most vascular smooth muscles except human umbilical artery smooth muscle (HUASM). This impaired vasorelaxation may contribute to complications associated with preeclampsia, intrauterine growth restriction, and preterm delivery. Cyclic nucleotide-dependent signaling pathways converge at the phosphorylation of the small heat shock-related protein HSP20, causing relaxation of vascular smooth muscle. We produced recombinant proteins containing a protein transduction domain linked to HSP20 (rTAT-HSP20). Pretreatment of HUASM with in vitro phosphorylated rTAT-HSP20 (rTAT-pHSP20) significantly inhibited serotonin-induced contraction, without a decrease in myosin light chain phosphorylation. rTAT-pHSP20 remained phosphorylated upon transduction into isolated HUASM as demonstrated by two-dimensional gel electrophoresis. Transduction of peptide analogs of phospho-HSP20 containing the phosphorylation site on HSP20 and phosphatase-resistant mimics of the phosphorylation site (S16E) also inhibited HUASM contraction. These data suggest that impaired relaxation of HUASM may result from decreased levels of phosphorylated HSP20. Protein transduction can be used to restore intracellular expression levels and the associated physiological response. Transduction of posttranslationally modified substrate proteins represents a proteomic-based therapeutic approach that may be particularly useful when the expression of downstream substrate proteins is downregulated.
Collapse
Affiliation(s)
- Charles R Flynn
- The Biodesign Institute, Arizona State Univeristy, Tempe, AZ 85287-9709, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Thorne GD, Ishida Y, Paul RJ. Hypoxic vasorelaxation: Ca2+-dependent and Ca2+-independent mechanisms. Cell Calcium 2005; 36:201-8. [PMID: 15261476 DOI: 10.1016/j.ceca.2004.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 02/18/2004] [Indexed: 11/23/2022]
Abstract
The mechanisms of oxygen sensing in vascular smooth muscle have been studied extensively in a variety of tissue types and the results of these studies indicate that the mechanism of hypoxia-induced vasodilation probably involves several mechanisms that combined to assure the appropriate response. After a short discussion of the regulatory mechanisms for smooth muscle contractility, we present the evidence indicating that hypoxic vasorelaxation involves both Ca2+-dependent and Ca2+-independent mechanisms. More recent experiments using proteomic approaches in organ cultures of porcine coronary artery reveal important changes evoked by hypoxia in both Ca2+-dependent and Ca2+-independent pathways.
Collapse
Affiliation(s)
- George D Thorne
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | |
Collapse
|
44
|
Dreiza CM, Brophy CM, Komalavilas P, Furnish EJ, Joshi L, Pallero MA, Murphy-Ullrich JE, von Rechenberg M, Ho YSJ, Richardson B, Xu N, Zhen Y, Peltier JM, Panitch A. Transducible heat shock protein 20 (HSP20) phosphopeptide alters cytoskeletal dynamics. FASEB J 2004; 19:261-3. [PMID: 15598710 DOI: 10.1096/fj.04-2911fje] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activation of cyclic nucleotide dependent signaling pathways leads to relaxation of smooth muscle, alterations in the cytoskeleton of cultured cells, and increases in the phosphorylation of HSP20. To determine the effects of phosphorylated HSP20 on the actin cytoskeleton, phosphopeptide analogs of HSP20 were synthesized. These peptides contained 1) the amino acid sequence surrounding the phosphorylation site of HSP20, 2) a phosphoserine, and 3) a protein transduction domain. Treatment of Swiss 3T3 cells with phosphopeptide analogs of HSP20 led to loss of actin stress fibers and focal adhesion complexes as demonstrated by immunocytochemistry, interference reflection microscopy, and biochemical quantitation of globular-actin. Treatment with phosphopeptide analogs of HSP20 also led to dephosphorylation of the actin depolymerizing protein cofilin. Pull-down assays demonstrated that 14-3-3 proteins associated with phosphopeptide analogs of HSP20 (but not peptide analogs in which the serine was not phosphorylated). The binding of 14-3-3 protein to phosphopeptide analogs of HSP20 prevented the association of cofilin with 14-3-3. These data suggest that HSP20 may modulate actin cytoskeletal dynamics by competing with the actin depolymerizing protein cofilin for binding to the scaffolding protein 14-3-3. Interestingly, the entire protein was not needed for this effect, suggesting that the association is modulated by phosphopeptide motifs of HSP20. These data also suggest the possibility that cyclic nucleotide dependent relaxation of smooth muscle may be mediated by a thin filament (actin) regulatory process. Finally, these data suggest that protein transduction can be used as a tool to elucidate the specific function of peptide motifs of proteins.
Collapse
Affiliation(s)
- Catherine M Dreiza
- The Biodesign Institute at Arizona State University, Tempe, Arizona, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Meeks MK, Ripley ML, Jin Z, Rembold CM. Heat shock protein 20-mediated force suppression in forskolin-relaxed swine carotid artery. Am J Physiol Cell Physiol 2004; 288:C633-9. [PMID: 15509660 DOI: 10.1152/ajpcell.00269.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increases in cyclic nucleotide levels induce smooth muscle relaxation by deactivation [reductions in myosin regulatory light chain (MRLC) phosphorylation (e.g., by reduced [Ca(2+)])] or force suppression (reduction in force without reduction in MRLC phosphorylation). Ser(16)-heat shock protein 20 (HSP20) phosphorylation is the proposed mediator of force suppression. We evaluated three potential hypotheses whereby Ser(16)-HSP20 phosphorylation could regulate smooth muscle force: 1) a threshold level of HSP20 phosphorylation could inactivate a thin filament as a whole, 2) phosphorylation of a single HSP20 could fully inactivate a small region of a thin filament, or 3) HSP20 phosphorylation could weakly inhibit myosin binding at either the thin- or thick-filament level. We tested these hypotheses by analyzing the dependence of force on Ser(16)-HSP20 phosphorylation in swine carotid media. First, we determined that swine HSP20 has a second phosphorylation site at Ser(157). Ser(157)-HSP20 phosphorylation values were high and did not change during contractile activation or forskolin-induced relaxation. Forskolin significantly increased Ser(16)-HSP20 phosphorylation. The relationship between Ser(16)-HSP20 phosphorylation and force remained linear and was shifted downward in partially activated muscles relaxed with forskolin. Neither forskolin nor nitroglycerin induced actin depolymerization as detected using the F/G-actin ratio method in smooth muscle homogenates. These results suggest that force suppression does not occur in accordance with the first hypothesis (inactivation of a thin filament as a whole). Our data are more consistent with the second and third hypotheses that force suppression is mediated by full or partial inhibition of local myosin binding at the thin- or thick-filament level.
Collapse
Affiliation(s)
- Melissa K Meeks
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA 22908-1395, USA
| | | | | | | |
Collapse
|
46
|
Borman MA, MacDonald JA, Haystead TAJ. Modulation of smooth muscle contractility by CHASM, a novel member of the smoothelin family of proteins. FEBS Lett 2004; 573:207-13. [PMID: 15327999 DOI: 10.1016/j.febslet.2004.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/23/2004] [Accepted: 08/01/2004] [Indexed: 11/15/2022]
Abstract
Cyclic nucleotides acting through their associated protein kinases, the cGMP- and cAMP-dependent protein kinases, can relax smooth muscles without a change in free intracellular calcium concentration ([Ca2+]i), a phenomenon referred to as Ca2+ desensitization. The molecular mechanisms by which these kinases bring about Ca2+ desensitization are unknown and an understanding of this phenomenon may lead to better therapies for treating diseases involving defects in the contractile response of smooth muscles such as hypertension, bronchospasm, sexual dysfunction, gastrointestinal disorders and glaucoma. Utilizing a combination of real-time proteomics and smooth muscle physiology, we characterized a distinct subset of protein targets for cGMP-dependent protein kinase in smooth muscle. Among those phosphoproteins identified was calponin homology-associated smooth muscle (CHASM), a novel protein that contains a calponin homology domain and shares sequence similarity with the smoothelin family of smooth muscle specific proteins. Recombinant CHASM was found to evoke relaxation in a concentration dependent manner when added to permeabilized smooth muscle. A co-sedimentation assay with actin demonstrated that CHASM does not possess actin binding activity. Our findings indicate that CHASM is a novel member of the smoothelin protein family that elicits Ca2+ desensitization in smooth muscle.
Collapse
Affiliation(s)
- Meredith A Borman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
47
|
McLemore EC, Tessier DJ, Flynn CR, Furnish EJ, Komalavilas P, Thresher JS, Joshi L, Stone WM, Fowl RJ, Brophy CM. Transducible recombinant small heat shock-related protein, HSP20, inhibits vasospasm and platelet aggregation. Surgery 2004; 136:573-8. [PMID: 15349104 DOI: 10.1016/j.surg.2004.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Human saphenous vein (HSV) is the autologous conduit of choice for peripheral vascular reconstruction. Injury during harvest leads to vasospasm and a thrombogenic endoluminal surface. A proteomic transduction approach was developed to prevent vein graft vasospasm and thrombosis. METHODS Recombinant HSP20 protein linked to the TAT protein transduction domain was generated in a bacterial expression system (TAT-HSP20). The effect of this protein on the inhibition of smooth muscle contraction was determined using rings of rabbit aorta and HSV in a muscle bath. In addition, the effects of TAT-HSP20 on platelet aggregation were determined in vitro using human citrated whole blood. RESULTS Recombinant TAT-HSP20 inhibited norepinephrine-induced contraction of rabbit aortic and HSV segments. Similarly, TAT-HSP20 induced smooth muscle relaxation in HSV segments precontracted with norepinephrine. In human-citrated whole blood, platelet aggregation was significantly inhibited by TAT-HSP20 in a dose-dependent manner. CONCLUSIONS The results of this study demonstrate that recombinant TAT-HSP20 inhibits vascular smooth muscle contraction and platelet aggregation. This suggests that HSP20 may be an ideal effector molecule to target as a proteomic approach to enhance early vein graft patency rates by preventing acute vasospasm and thrombosis.
Collapse
|
48
|
Wooldridge AA, MacDonald JA, Erdodi F, Ma C, Borman MA, Hartshorne DJ, Haystead TAJ. Smooth Muscle Phosphatase Is Regulated in Vivo by Exclusion of Phosphorylation of Threonine 696 of MYPT1 by Phosphorylation of Serine 695 in Response to Cyclic Nucleotides. J Biol Chem 2004; 279:34496-504. [PMID: 15194681 DOI: 10.1074/jbc.m405957200] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of smooth muscle myosin phosphatase (SMPP-1M) is thought to be a primary mechanism for explaining Ca(2+) sensitization/desensitization in smooth muscle. Ca(2+) sensitization induced by activation of G protein-coupled receptors acting through RhoA involves phosphorylation of Thr-696 (of the human isoform) of the myosin targeting subunit (MYPT1) of SMPP-1M inhibiting activity. In contrast, agonists that elevate intracellular cGMP and cAMP promote Ca(2+) desensitization in smooth muscle through apparent activation of SMPP-1M. We show that cGMP-dependent protein kinase (PKG)/cAMP-dependent protein kinase (PKA) efficiently phosphorylates MYPT1 in vitro at Ser-692, Ser-695, and Ser-852 (numbering for human isoform). Although phosphorylation of MYPT1 by PKA/PKG has no direct effect on SMPP-1M activity, a primary site of phosphorylation is Ser-695, which is immediately adjacent to the inactivating Thr-696. In vitro, phosphorylation of Ser-695 by PKA/PKG appeared to prevent phosphorylation of Thr-696 by MYPT1K. In ileum smooth muscle, Ser-695 showed a 3-fold increase in phosphorylation in response to 8-bromo-cGMP. Addition of constitutively active recombinant MYPT1K to permeabilized smooth muscles caused phosphorylation of Thr-696 and Ca(2+) sensitization; however, this phosphorylation was blocked by preincubation with 8-bromo-cGMP. These findings suggest a mechanism of Ca(2+) desensitization in smooth muscle that involves mutual exclusion of phosphorylation, whereby phosphorylation of Ser-695 prevents phosphorylation of Thr-696 and therefore inhibition of SMPP-1M.
Collapse
Affiliation(s)
- Anne A Wooldridge
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Tessier DJ, Komalavilas P, Liu B, Kent CK, Thresher JS, Dreiza CM, Panitch A, Joshi L, Furnish E, Stone W, Fowl R, Brophy CM. Transduction of peptide analogs of the small heat shock-related protein HSP20 inhibits intimal hyperplasia. J Vasc Surg 2004; 40:106-14. [PMID: 15218470 DOI: 10.1016/j.jvs.2004.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Human saphenous vein (HSV) is the autologous conduit of choice for peripheral vascular reconstructions. However, vasospasm can lead to early graft failure. The leading cause of delayed graft failure is intimal hyperplasia. OBJECTIVE To develop a proteomic approach to prevent vein-graft spasm and intimal hyperplasia. METHODS Biomimetic peptide analogs of the small heat shock-related protein HSP20, containing a protein transduction domain (PTD), a phosphorylated serine, and a sequence of HSP20 surrounding the phosphorylation site (PTD-pHSP20), or a scrambled sequence of the same amino acids surrounding the phosphorylation site (PTD-scHSP20) were synthesized. The peptides were used in muscle bath and organ culture experiments with human saphenous vein (HSV) segments. Cultured smooth muscle cell lines were used to determine the effect of the peptides on proliferation and migration. RESULTS In HSV rings precontracted with norepinephrine, PTD-pHSP20 but not PTD-scHSP20 led to relaxation. There was no significant difference in smooth muscle cell proliferation in cells treated with PTD-pHSP20 compared with PTD-scHSP20. Treatment with PTD-pHSP20 significantly inhibited cellular migration compared with PTD-scHSP20. Control, untreated, and PTD-scHSP20-treated saphenous veins had significant increases in intimal thickness after culture. This intimal thickening was completely inhibited by treatment with PTD-pHSP20. CONCLUSIONS Protein transduction of biologically active motifs of HSP20 can affect pathologic and physiologic responses of HSV and represents a novel proteomic-based therapeutic approach. CLINICAL RELEVANCE We have been a part of the genomics era and are now viewing the emergence of "proteomics." The genome is linear and relatively easy to examine; however the proteome is much more complex and dynamic. In essence, the purpose of gene therapy is to manipulate the genome to produce a particular protein. This manuscript describes a new proteomic approach in which the biologically active part of a protein is directly introduced into vascular cells. Peptides were synthesized which contained a total of 24 amino acids, 11 of which represent a protein transduction domain or "carrier" while the other 13 are the biologically active "cargo." These synthetic peptides prevent spasm (contraction) and intimal hyperplasia in segments of human saphenous vein treated ex vivo. Preclinical development is currently underway to develop these molecules as a proteomic-based vein harvest solution to enhance vein-graft patency.
Collapse
|
50
|
Tessier DJ, Komalavilas P, McLemore E, Thresher J, Brophy CM. Sildenafil-induced vasorelaxation is associated with increases in the phosphorylation of the heat shock-related protein 20 (HSP20). J Surg Res 2004; 118:21-5. [PMID: 15093712 DOI: 10.1016/j.jss.2004.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2003] [Indexed: 11/21/2022]
Abstract
PURPOSE Sildenafil is an oral phosphodiesterase type 5 inhibitor that is a vasodilator used in the treatment of erectile dysfunction. Cyclic nucleotide-dependent vasorelaxation is associated with increases in the phosphorylation of the heat shock related protein 20 (HSP20). The purpose of this study was to determine if sildenafil-induced vasorelaxation is associated with increases in the phosphorylation of HSP20. MATERIALS AND METHODS Peptides containing an 11 amino acid enhanced protein transduction domain (PTD) and the functional 13 amino acid sequence of HSP20 with a phosphoserine (PTD-pHSP20) were synthesized using F-MOC technology. Rings of porcine coronary artery were suspended in a muscle bath and sub-maximally contracted with serotonin. Increasing concentrations of sodium nitroprusside (SNP; 0.01-10 microM), sildenafil (0.01-100 microM), or PTD-pHSP20 (0.1-1.0 mM) were added to the baths and the percent relaxation was recorded. To determine if sildenafil-induced vasorelaxation was associated with increases in the phosphorylation of HSP20, rings of porcine coronary artery were untreated (control) or treated with SNP (10 microM) or sildenafil (100 microM) for 2, 5, and 10 min and then snap frozen. Extracted proteins were then separated using two-dimensional SDS-PAGE, transferred to a membrane, and probed for HSP20. RESULTS Sildenafil induced vasorelaxation of pre-contracted coronary artery in a dose-dependent manner. Sildenafil-induced vasorelaxation was associated with an increase in the phosphorylation of HSP20. Transduction of peptide analogues of pHSP20 led to a dose-dependent relaxation of pre-contracted porcine coronary artery. CONCLUSIONS These findings suggest that sildenafil-induced vasorelaxation is associated with increases in the phosphorylation of HSP20 and that transduction of phosphopeptide analogues of HSP20 is sufficient for relaxation of vascular smooth muscle.
Collapse
Affiliation(s)
- Deron J Tessier
- Department of Kinesiology, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | |
Collapse
|