1
|
Bartsch T, Arndt C, Loureiro LR, Kegler A, Puentes-Cala E, Soto JA, Kurien BT, Feldmann A, Berndt N, Bachmann MP. A Small Step, a Giant Leap: Somatic Hypermutation of a Single Amino Acid Leads to Anti-La Autoreactivity. Int J Mol Sci 2021; 22:ijms222112046. [PMID: 34769474 PMCID: PMC8584381 DOI: 10.3390/ijms222112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
The anti-La mab 312B, which was established by hybridoma technology from human-La transgenic mice after adoptive transfer of anti-human La T cells, immunoprecipitates both native eukaryotic human and murine La protein. Therefore, it represents a true anti-La autoantibody. During maturation, the anti-La mab 312B acquired somatic hypermutations (SHMs) which resulted in the replacement of four aa in the complementarity determining regions (CDR) and seven aa in the framework regions. The recombinant derivative of the anti-La mab 312B in which all the SHMs were corrected to the germline sequence failed to recognize the La antigen. We therefore wanted to learn which SHM(s) is (are) responsible for anti-La autoreactivity. Humanization of the 312B ab by grafting its CDR regions to a human Ig backbone confirms that the CDR sequences are mainly responsible for anti-La autoreactivity. Finally, we identified that a single amino acid replacement (D > Y) in the germline sequence of the CDR3 region of the heavy chain of the anti-La mab 312B is sufficient for anti-La autoreactivity.
Collapse
Affiliation(s)
- Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta 681011, Colombia
| | - Javier Andrés Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- BIOGEN Research Group, University of Santander, Faculty of Health Sciences, Cúcuta 540001, Colombia
| | - Biji T. Kurien
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- BIOGEN Research Group, University of Santander, Faculty of Health Sciences, Cúcuta 540001, Colombia
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-3223
| |
Collapse
|
2
|
Berndt N, Bippes CC, Michalk I, Bartsch T, Arndt C, Puentes-Cala E, Soto JA, Loureiro LR, Kegler A, Bachmann D, Gross JK, Gross T, Kurien BT, Scofield RH, Farris AD, James JA, Bergmann R, Schmitz M, Feldmann A, Bachmann MP. And Yet It Moves: Oxidation of the Nuclear Autoantigen La/SS-B Is the Driving Force for Nucleo-Cytoplasmic Shuttling. Int J Mol Sci 2021; 22:9699. [PMID: 34575862 PMCID: PMC8470643 DOI: 10.3390/ijms22189699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
Decades ago, we and many other groups showed a nucleo-cytoplasmic translocation of La protein in cultured cells. This shuttling of La protein was seen after UV irradiation, virus infections, hydrogen peroxide exposure and the Fenton reaction based on iron or copper ions. All of these conditions are somehow related to oxidative stress. Unfortunately, these harsh conditions could also cause an artificial release of La protein. Even until today, the shuttling and the cytoplasmic function of La/SS-B is controversially discussed. Moreover, the driving mechanism for the shuttling of La protein remains unclear. Recently, we showed that La protein undergoes redox-dependent conformational changes. Moreover, we developed anti-La monoclonal antibodies (anti-La mAbs), which are specific for either the reduced form of La protein or the oxidized form. Using these tools, here we show that redox-dependent conformational changes are the driving force for the shuttling of La protein. Moreover, we show that translocation of La protein to the cytoplasm can be triggered in a ligand/receptor-dependent manner under physiological conditions. We show that ligands of toll-like receptors lead to a redox-dependent shuttling of La protein. The shuttling of La protein depends on the redox status of the respective cell type. Endothelial cells are usually resistant to the shuttling of La protein, while dendritic cells are highly sensitive. However, the deprivation of intracellular reducing agents in endothelial cells makes endothelial cells sensitive to a redox-dependent shuttling of La protein.
Collapse
Affiliation(s)
- Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Claudia C. Bippes
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Irene Michalk
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta 681011, Colombia
| | - Javier Andrés Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Instituto de Investigación Masira, Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Cúcuta 540001, Colombia
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Dominik Bachmann
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Technische Universität Dresden, 01307 Dresden, Germany;
| | - Joanne K. Gross
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Tim Gross
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Biji T. Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Department of Biophysics and Radiobiology, Semmelweis University, 1094 Budapest, Hungary
| | - Marc Schmitz
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
| |
Collapse
|
3
|
Berndt N, Bippes CC, Michalk I, Bachmann D, Bachmann J, Puentes-Cala E, Bartsch T, Loureiro LR, Kegler A, Bergmann R, Gross JK, Gross T, Kurien BT, Scofield RH, Farris AD, James JA, Schmitz M, Fahmy K, Feldmann A, Arndt C, Bachmann MP. Two Be or Not Two Be: The Nuclear Autoantigen La/SS-B Is Able to Form Dimers and Oligomers in a Redox Dependent Manner. Int J Mol Sci 2021; 22:3377. [PMID: 33806091 PMCID: PMC8036718 DOI: 10.3390/ijms22073377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
According to the literature, the autoantigen La is involved in Cap-independent translation. It was proposed that one prerequisite for this function is the formation of a protein dimer. However, structural analyses argue against La protein dimers. Noteworthy to mention, these structural analyses were performed under reducing conditions. Here we describe that La protein can undergo redox-dependent structural changes. The oxidized form of La protein can form dimers, oligomers and even polymers stabilized by disulfide bridges. The primary sequence of La protein contains three cysteine residues. Only after mutation of all three cysteine residues to alanine La protein becomes insensitive to oxidation, indicating that all three cysteines are involved in redox-dependent structural changes. Biophysical analyses of the secondary structure of La protein support the redox-dependent conformational changes. Moreover, we identified monoclonal anti-La antibodies (anti-La mAbs) that react with either the reduced or oxidized form of La protein. Differential reactivities to the reduced and oxidized form of La protein were also found in anti-La sera of autoimmune patients.
Collapse
Affiliation(s)
- Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Claudia C. Bippes
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Irene Michalk
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Dominik Bachmann
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
| | - Jennifer Bachmann
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta 681011, Colombia
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
- Department of Biophysics and Radiobiology, Semmelweis University, 1094 Budapest, Hungary
| | - Joanne K. Gross
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Tim Gross
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Biji T. Kurien
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - R. Hal Scofield
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - A. Darise Farris
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Judith A. James
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Marc Schmitz
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
| | - Karim Fahmy
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany;
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
| |
Collapse
|
4
|
Bachmann MP, Bartsch T, Bippes CC, Bachmann D, Puentes-Cala E, Bachmann J, Bartsch H, Arndt C, Koristka S, Loureiro LR, Kegler A, Laube M, Gross JK, Gross T, Kurien BT, Scofield RH, Farris AD, James JA, Schmitz M, Feldmann A. T Cell Mediated Conversion of a Non-Anti-La Reactive B Cell to an Autoreactive Anti-La B Cell by Somatic Hypermutation. Int J Mol Sci 2021; 22:1198. [PMID: 33530489 PMCID: PMC7865296 DOI: 10.3390/ijms22031198] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Since the first description of nuclear autoantigens in the late 1960s and early 1970s, researchers, including ourselves, have found it difficult to establish monoclonal antibodies (mabs) against nuclear antigens, including the La/SS-B (Sjögrens' syndrome associated antigen B) autoantigen. To date, only a few anti-La mabs have been derived by conventional hybridoma technology; however, those anti-La mabs were not bona fide autoantibodies as they recognize either human La specific, cryptic, or post-translationally modified epitopes which are not accessible on native mouse La protein. Herein, we present a series of novel murine anti-La mabs including truly autoreactive ones. These mabs were elicited from a human La transgenic animal through adoptive transfer of T cells from non-transgenic mice immunized with human La antigen. Detailed epitope and paratope analyses experimentally confirm the hypothesis that somatic hypermutations that occur during T cell dependent maturation can lead to autoreactivity to the nuclear La/SS-B autoantigen.
Collapse
Affiliation(s)
- Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
| | - Claudia C. Bippes
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (H.B.); (M.S.)
| | - Dominik Bachmann
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta, Santander 681011, Colombia
| | - Jennifer Bachmann
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
| | - Holger Bartsch
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (H.B.); (M.S.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
| | - Stefanie Koristka
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
| | - Markus Laube
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
| | - Joanne K. Gross
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Tim Gross
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Biji T. Kurien
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - R. Hal Scofield
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - A. Darise Farris
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Judith A. James
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Marc Schmitz
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (H.B.); (M.S.)
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
| |
Collapse
|
5
|
Semsei I, Maier S, Workman-Azbill J, Urbán L, Moser K, Zeher M, Bachmann M, Farris AD. Detection of a rare oligo(A) repeat tract mutation (8As-->7As) in the sequence encoding the La/SS-B autoantigen. Anal Biochem 2007; 370:47-53. [PMID: 17663983 PMCID: PMC2597489 DOI: 10.1016/j.ab.2007.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 06/12/2007] [Accepted: 06/28/2007] [Indexed: 01/27/2023]
Abstract
Several diseases are characterized by the presence of point mutations, which are amenable to molecular detection using a number of methods such as PCR. However, certain mutations are particularly difficult to detect due to factors such as low abundance and the presence of special (e.g., oligonucleotide repeat) sequences. The mutation 7A in the oligoA sequence of exon 7 of the gene encoding the La autoantigen is difficult to detect at the DNA level, and even at the RNA level, due to both its estimated low abundance and its differentiation from the wild-type 8A sequence. This article describes a technique in which amplification of the excess wild-type 8A La sequence is suppressed by a peptide nucleic acid (PNA) during a nested PCR step. Detection of the amplified 7A mutant form was then performed by simple electrophoresis following a final primer extension step with an infrared dye-labeled primer. This technique allowed us to detect the mutation in 3 of 7 individuals harboring serum immunoglobulin G (IgG) antibodies reactive with a neo-B cell epitope in the 7A mutant protein product. We propose that this method is a viable screening test for mutations in regions containing simple polynucleotide repeats.
Collapse
Affiliation(s)
- Imre Semsei
- Molecular Biology Research Laboratory, 3rd Department of Medicine, Medical and Health Science Center, University of Debrecen, H-4004 Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bachmann MP, Bartsch H, Gross JK, Maier SM, Gross TF, Workman JL, James JA, Farris AD, Jung B, Franke C, Conrad K, Schmitz M, Büttner C, Buyon JP, Semsei I, Harley JB, Rieber EP. Autoimmunity as a result of escape from RNA surveillance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:1698-707. [PMID: 16849479 PMCID: PMC2206679 DOI: 10.4049/jimmunol.177.3.1698] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In previous studies, we detected a frame shift mutation in the gene encoding the autoantigen La of a patient with systemic lupus erythematosus. The mutant La mRNA contains a premature termination codon. mRNAs that prematurely terminate translation should be eliminated by RNA quality control mechanisms. As we find Abs specific for the mutant La form in approximately 30% of sera from anti-La-positive patients, we expected that mutant La mRNAs circumvent RNA control and the expression of mutant La protein could become harmful. Indeed, real-time PCR, immunostaining, and immunoblotting data of mice transgenic for the mutant La form show that mutant La mRNAs are not repressed in these animals and are translated to mutant La protein. In addition to the mutant La protein, we detected a minor portion of native human La in the mutant La-transgenic mice. Therefore, ribosomal frame shifting may allow the mutant La mRNA to escape from RNA control. Interestingly, expression of the mutant La mRNA results in a lupus-like disease in the experimental mice. Consequently, escape of mutant La mRNA from RNA control can have two effects: it 1) results in the expression of an immunogenic (neo)epitope, and 2) predisposes to autoimmunity.
Collapse
Affiliation(s)
- Michael P Bachmann
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Maraia RJ, Intine RV. Recognition of nascent RNA by the human La antigen: conserved and divergent features of structure and function. Mol Cell Biol 2001; 21:367-79. [PMID: 11134326 PMCID: PMC86573 DOI: 10.1128/mcb.21.2.367-379.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- R J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
8
|
Carter MS, Sarnow P. Distinct mRNAs that encode La autoantigen are differentially expressed and contain internal ribosome entry sites. J Biol Chem 2000; 275:28301-7. [PMID: 10871624 DOI: 10.1074/jbc.m004657200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Analysis by reverse transcription-polymerase chain reaction has suggested the existence of at least two La autoantigen-encoding mRNAs that contain different 5' noncoding regions (NCRs) linked to the same La coding region (Troster, H., Metzger, T. E., Semsei, I., Schwemmle, M., Winterpacht, A., Zabel, B., and Bachmann, M. (1994) J. Exp. Med. 180, 2059-2067). La-encoding transcripts La1 and La1' contain 115- and 483-nucleotide 5' NCRs, respectively. To determine whether the various La transcripts are functional mRNAs, the expression and polysomal association of natural La1 and La1' RNAs were examined. Although La1 transcripts were ubiquitously expressed in human tissues, La1' transcripts were predominantly expressed in peripheral blood leukocytes, especially in B, T, and natural killer cells. Both La1 and La1' transcripts associated with polysomes in natural killer cells, suggesting that these transcripts were functional mRNAs. Upon activation of B cells with the mitogens phorbol 12-myristate 13-acetate and ionomycin, the amount of La1' mRNA, but not La1, declined. In contrast, after chemical activation of T cells, the amount of La 1 mRNA, but not La1', declined. The mechanism by which the La1 and La1' 5' NCRs initiate translation initiation was tested in cultured human HeLa cells and in two different in vitro translation systems. It was found that both 5' NCRs can mediate translation initiation by internal initiation. These findings indicate that the constitutive expression of La1 mRNA and the tissue-specific expression of La1' mRNA can both allow La protein synthesis under conditions when cap-dependent translation is compromised, such as inflammation, apoptosis, or certain viral infections.
Collapse
Affiliation(s)
- M S Carter
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
9
|
Ali N, Pruijn GJ, Kenan DJ, Keene JD, Siddiqui A. Human La antigen is required for the hepatitis C virus internal ribosome entry site-mediated translation. J Biol Chem 2000; 275:27531-40. [PMID: 10856291 DOI: 10.1074/jbc.m001487200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 5'-noncoding region (5'-NCR) of the hepatitis C virus (HCV) RNA genome serves as an internal ribosome entry site (IRES) and mediates translation initiation in a cap-independent manner. Previously, we reported the interaction between La antigen and the HCV IRES, which appeared to occur in the context of initiator AUG. It was further shown that HCV IRES-mediated translation was stimulated in the presence of human La antigen. In this study, we have defined the cis- and trans-acting elements responsible for La-5'-NCR interactions and established the dependence of the HCV IRES efficiency on cellular La antigen. During the La-IRES interaction, initiator AUG but not the neighboring codons was found to be the direct target of La binding. The C terminus effector domain-dependent modulation of La binding to the HCV IRES is demonstrated by deletion and substitution mutagenesis of the protein. An RNA systematic evolution of ligands by exponential enrichment (SELEX), generated against La protein that selectively binds La in HeLa lysates and competes for the protein binding to the 5'-NCR, was used to demonstrate the requirement of La for the HCV IRES function in the context of mono- and dicistronic mRNAs. Sequestration of La antigen by the RNA SELEX in HeLa translation lysates blocked the HCV and poliovirus IRES-mediated translation in vitro. The functional requirement of La protein for the HCV IRES activity was further established in a liver-derived cell line and in an add-back experiment in which the inhibited IRES was rescued by recombinant human La. These results strongly argue for the novel role of La protein during selection of the initiator AUG and its participation during internal initiation of translation of the HCV RNA genome.
Collapse
Affiliation(s)
- N Ali
- Department of Microbiology and Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
10
|
Bachmann M, Deister H, Pautz A, Laubinger J, Schmitz M, Falke D, Podlech J, Grölz D. The human autoantigen La/SS-B accelerates herpes simplex virus type 1 replication in transfected mouse 3T3 cells. Clin Exp Immunol 1998; 112:482-9. [PMID: 9649219 PMCID: PMC1905003 DOI: 10.1046/j.1365-2249.1998.00605.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/1998] [Indexed: 02/05/2023] Open
Abstract
Permanently transfected mouse cell lines which expressed different levels of the human autoantigen La/SS-B were infected with different strains of herpes simplex virus type 1, including the strains ANG, HSZP, 17syn+ and HFEM. During infection the localization of the human La protein was followed using an anti-La MoAb, which recognized only the human La protein but did not cross-react with either the endogenous mouse La protein or any viral encoded protein. After infection La protein was transported from the nucleus to the cytoplasm. The time course of translocation was dependent on the amount of human La protein expressed in the respective cell line. Moreover, acceleration of viral replication was dependent on the level of expression of human La protein, suggesting that La protein is a cellular factor that facilitates virus replication.
Collapse
Affiliation(s)
- M Bachmann
- Institut für Physiologische Chemie, Johannes-Gutenberg Universität, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Grölz D, Tröster H, Semsei I, Bachmann M. Analysis of expression of the gene encoding for the nuclear autoantigen La/SS-B using reporter gene constructs. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1396:278-93. [PMID: 9545582 DOI: 10.1016/s0167-4781(97)00201-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In earlier studies mRNA isoforms encoding for the nuclear autoantigen La were identified. In an alternative La mRNA form the exon 1 was replaced with the exon 1'. Moreover, exon 1' La mRNAs were found to start at different 5'-regions. In dependence on the 5'-start the exon 1' La mRNAs encoded for up to three open reading frames upstream of the La frame, which starts in the exon 2. The exon 1' was located in the intron about 70 nts downstream of the exon 1. The exon 1' La mRNA was proposed to be the result of a promoter switch in combination with an alternative splicing mechanism. The commonly used technique to study the expression of a eucaryotic gene is to fuse a reportergene immediately downstream of the proposed regulatory elements. Due to (i) the short distance between exon 1 and exon 1', (ii) the varying 5'-starts of the exon 1' La mRNAs, and (iii) the upstream open reading frames in the exon 1' La mRNAs this technique appeared to be difficult to apply to the La gene. In order to overcome these problems a luciferase reportergene construct was cloned which started about 2500 nts upstream of the exon 1 and contained the exon 1, the intron including the exon 1', and a portion of the exon 2. Luciferase was fused into the exon 2. This construct was used to prepare 5'-deletion mutants. The constructs were transiently transfected into HeLa cells. RNAs were isolated from the transiently transfected cells and analyzed using the 5'-Rapid Amplification of cDNA End technique. The PCR products were subcloned and sequenced. This analysis showed that exon 1 and exon 1' transcripts were correctly transcribed and spliced from the La luciferase fusion construct. Moreover, the 5'-start of the respective transcript allowed to identify those genomic regions in the La gene that were most likely being involved in determining the respective transcription initiation site. In parallel to the estimation of the 5'-start of the transcripts, the luciferase activity was measured. Thereby we detected a cryptic promoter element in the intron between the exon 1 and exon 2.
Collapse
Affiliation(s)
- D Grölz
- Institut für Physiologische Chemie, Joh.-Gutenberg Universität, Mainz, Germany
| | | | | | | |
Collapse
|
12
|
Grölz D, Bachmann M. An altered intracellular distribution of the autoantigen La/SS-B when translated from a La mRNA isoform. Exp Cell Res 1997; 234:329-35. [PMID: 9260901 DOI: 10.1006/excr.1997.3608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcription of the gene encoding for the nuclear autoantigen La resulted in La mRNA isoforms. A promoter switching combined with an alternative splicing pathway replaced exon 1 with exon 1'. Similar to mRNAs encoding for ribosomal proteins, exon 1' started with a pyrimidine-rich 5'-terminus. Moreover, exon 1' contained 5'-GC-rich regions and an oligo(U)-tail of 23 uridine residues. Exon 1' encoded for three open reading frames upstream of the La protein reading frame. In spite of this unusual structure, exon 1' La mRNAs were translated not only in vitro but also in transiently transfected cells. The translational efficiency of exon 1' La mRNA was about 14% of exon 1 La mRNA using rabbit reticulolysate for in vitro translation. Finally, we established permanently transfected mouse cell lines expressing the human exon 1 or exon 1' La mRNA isoform. In all cell lines the respective La mRNAs were translated to La protein. The exon 1 La mRNA-expressing cell lines displayed a mostly nuclear staining pattern. In contrast, a major portion of La protein was found in the cytoplasm of cell lines expressing exon 1' La mRNA.
Collapse
Affiliation(s)
- D Grölz
- Institut für Physiologische Chemie, Johannes-Gutenberg Universitat, Mainz, Germany
| | | |
Collapse
|