1
|
Jin F, Chang Z. Uncovering the membrane-integrated SecA N protein that plays a key role in translocating nascent outer membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140865. [PMID: 36272538 DOI: 10.1016/j.bbapap.2022.140865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022]
Abstract
A large number of nascent polypeptides have to get across a membrane in targeting to the proper subcellular locations. The SecYEG protein complex, a homolog of the Sec61 complex in eukaryotic cells, has been viewed as the common translocon at the inner membrane for targeting proteins to three extracytoplasmic locations in Gram-negative bacteria, despite the lack of direct verification in living cells. Here, via unnatural amino acid-mediated protein-protein interaction analyses in living cells, in combination with genetic studies, we unveiled a hitherto unreported SecAN protein that seems to be directly involved in translocationg nascent outer membrane proteins across the plasma membrane; it consists of the N-terminal 375 residues of the SecA protein and exists as a membrane-integrated homooligomer. Our new findings place multiple previous observations related to bacterial protein targeting in proper biochemical and evolutionary contexts.
Collapse
Affiliation(s)
- Feng Jin
- State key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, Peking University, Beijing 100871, China
| | - Zengyi Chang
- State key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Hariharan B, Pross E, Soman R, Kaushik S, Kuhn A, Dalbey RE. Polarity/charge as a determinant of translocase requirements for membrane protein insertion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183502. [PMID: 33130098 DOI: 10.1016/j.bbamem.2020.183502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022]
Abstract
The YidC insertase of Escherichia coli inserts membrane proteins with small periplasmic loops (~20 residues). However, it has difficulty transporting loops that contain positively charged residues compared to negatively charged residues and, as a result, increasing the positive charge has an increased requirement for the Sec machinery as compared to negatively charged loops (Zhu et al., 2013; Soman et al., 2014). This suggested that the polarity and charge of the periplasmic regions of membrane proteins determine the YidC and Sec translocase requirements for insertion. Here we tested this polarity/charge hypothesis by showing that insertion of our model substrate protein procoat-Lep can become YidC/Sec dependent when the periplasmic loop was converted to highly polar even in the absence of any charged residues. Moreover, adding a number of hydrophobic amino acids to a highly polar loop can decrease the Sec-dependence of the otherwise strictly Sec-dependent membrane proteins. We also demonstrate that the length of the procoat-Lep loop is indeed a determinant for Sec-dependence by inserting alanine residues that do not markedly change the overall hydrophilicity of the periplasmic loop. Taken together, the results support the polarity/charge hypothesis as a determinant for the translocase requirement for procoat insertion.
Collapse
Affiliation(s)
- Balasubramani Hariharan
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America
| | - Eva Pross
- Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Raunak Soman
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America
| | - Sharbani Kaushik
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America
| | - Andreas Kuhn
- Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Ross E Dalbey
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America.
| |
Collapse
|
3
|
Jin F. The transmembrane supercomplex mediating the biogenesis of OMPs in Gram-negative bacteria assumes a circular conformational change upon activation. FEBS Open Bio 2020; 10:1698-1715. [PMID: 32602996 PMCID: PMC7396438 DOI: 10.1002/2211-5463.12922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 11/06/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is composed of the inner (plasma) and the outer membrane. In the outer membrane, the outer membrane β-barrel proteins (OMPs) serve multiple functions. They are synthesized in the cytoplasm and finally inserted into the outer membrane through a critical and complex pathway facilitated by many protein factors. Recently, a new model for the biogenesis of OMPs in Gram-negative bacteria was proposed, in which a supercomplex containing multiple proteins spans the inner and outer membrane, to mediate the biogenesis of OMPs. The core part of the transmembrane supercomplex is the inner membrane protein translocon and the outer membrane β-barrel assembly machinery (BAM) complex. Some components of the supercomplex, such as the BamA subunit of the BAM complex, are essential and conserved across species. The other components, for example, the BamB subunit and the primary periplasmic chaperone SurA, are also required for the supercomplex to gain complete function and full efficiency. How BamB and SurA behave in the supercomplex, however, is less well understood. Therefore, the crosstalk between BamA, BamB and SurA was investigated mainly through in vivo protein photo-cross-linking experiments and protein modeling. Moreover, theoretical structures for part of the supercomplex consisting of SurA and the BAM complex were constructed. The modeling data are consistent with the experimental results. The theoretical structures computed in this work provide a more comprehensive view of the mechanism of the supercomplex, demonstrating a circular conformational change of the supercomplex when it is active.
Collapse
Affiliation(s)
- Feng Jin
- School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Jin F. Structural insights into the mechanism of a novel protein targeting pathway in Gram-negative bacteria. FEBS Open Bio 2020; 10:561-579. [PMID: 32068344 PMCID: PMC7137807 DOI: 10.1002/2211-5463.12813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/05/2020] [Accepted: 02/16/2020] [Indexed: 12/02/2022] Open
Abstract
Many nascent polypeptides synthesized in the cytoplasm are translocated across membranes via a specific ‘translocon’ composed of protein complexes. Recently, a novel targeting pathway for the outer membrane β‐barrel proteins (OMPs) in Gram‐negative bacteria was discovered. The cell envelope of Gram‐negative bacteria is composed of the inner (plasma) membrane (IM) and the outer membrane (OM). In this new pathway, a SecAN protein, which is mainly present in the IM as a homo‐oligomer, translocates nascent OMPs across the IM; at the same time, SecAN directly interacts with the β‐barrel assembly machinery (BAM) complex embedded within the OM. A supercomplex (containing SecAN, the BAM complex and many other proteins) spans the IM and OM, and is involved in the biogenesis of OMPs. Investigation of the function of SecAN and the supercomplex, as well as the translocation mechanism, will require elucidation of their structures. However, no such structures are available. Therefore, here, I describe the use of protein modeling to build homology models for SecAN and theoretical structures for the core‐complex composed of SecAN and the BAM complex, which is a key part of the supercomplex. The modeling data are consistent with previous experimental observations and demonstrated a conformational change of the core‐complex. I conclude by proposing mechanisms for how SecAN and the supercomplex function in the biogenesis of OMPs.
Collapse
Affiliation(s)
- Feng Jin
- School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Wan X. Comparative Genome Analyses Reveal the Genomic Traits and Host Plant Adaptations of Flavobacterium akiainvivens IK-1 T. Int J Mol Sci 2019; 20:4910. [PMID: 31623351 PMCID: PMC6801697 DOI: 10.3390/ijms20194910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 02/05/2023] Open
Abstract
The genus Flavobacterium contains a large group of commensal bacteria identified in diverse terrestrial and aquatic habitats. We compared the genome of a new species Flavobacterium akiainvivens IK-1T to public available genomes of Flavobacterium species to reveal the genomic traits and ecological roles of IK-1T. Principle component analysis (PCA) of carbohydrate-active enzyme classes suggests that IK-1T belongs to a terrestrial clade of Flavobacterium. In addition, type 2 and type 9 secretion systems involved in bacteria-environment interactions were identified in the IK-1T genome. The IK-1T genome encodes eukaryotic-like domain containing proteins including ankyrin repeats, von Willebrand factor type A domain, and major royal jelly proteins, suggesting that IK-1T may alter plant host physiology by secreting eukaryotic-like proteins that mimic host proteins. A novel two-component system FaRpfC-FaYpdB was identified in the IK-1T genome, which may mediate quorum sensing to regulate global gene expressions. Our findings suggest that comparative genome analyses of Flavobacterium spp. reveal that IK-1T has adapted to a terrestrial niche. Further functional characterizations of IK-1T secreted proteins and their regulation systems will shed light on molecular basis of bacteria-plant interactions in environments.
Collapse
Affiliation(s)
- Xuehua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300071, China.
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Jin J, Hsieh YH, Chaudhary AS, Cui J, Houghton JE, Sui SF, Wang B, Tai PC. SecA inhibitors as potential antimicrobial agents: differential actions on SecA-only and SecA-SecYEG protein-conducting channels. FEMS Microbiol Lett 2018; 365:5037921. [PMID: 30007321 PMCID: PMC7190897 DOI: 10.1093/femsle/fny145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Sec-dependent protein translocation is an essential process in bacteria. SecA is a key component of the translocation machinery and has multiple domains that interact with various ligands. SecA acts as an ATPase motor to drive the precursor protein/peptide through the SecYEG protein translocation channels. As SecA is unique to bacteria and there is no mammalian counterpart, it is an ideal target for the development of new antimicrobials. Several reviews detail the assays for ATPase and protein translocation, as well as the search for SecA inhibitors. Recent studies have shown that, in addition to the SecA-SecYEG translocation channels, there are SecA-only channels in the lipid bilayers, which function independently from the SecYEG machinery. This mini-review focuses on recent advances on the newly developed SecA inhibitors that allow the evaluation of their potential as antimicrobial agents, as well as a fundamental understanding of mechanisms of SecA function(s). These SecA inhibitors abrogate the effects of efflux pumps in both Gram-positive and Gram-negative bacteria. We also discuss recent findings that SecA binds to ribosomes and nascent peptides, which suggest other roles of SecA. A model for the multiple roles of SecA is presented.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Arpana S Chaudhary
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Jianmei Cui
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - John E Houghton
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Sen-fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Binghe Wang
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
7
|
Hsieh YH, Huang YJ, Zhang H, Liu Q, Lu Y, Yang H, Houghton J, Jiang C, Sui SF, Tai PC. Dissecting structures and functions of SecA-only protein-conducting channels: ATPase, pore structure, ion channel activity, protein translocation, and interaction with SecYEG/SecDF•YajC. PLoS One 2017; 12:e0178307. [PMID: 28575061 PMCID: PMC5456053 DOI: 10.1371/journal.pone.0178307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/10/2017] [Indexed: 11/30/2022] Open
Abstract
SecA is an essential protein in the major bacterial Sec-dependent translocation pathways. E. coli SecA has 901 aminoacyl residues which form multi-functional domains that interact with various ligands to impart function. In this study, we constructed and purified tethered C-terminal deletion fragments of SecA to determine the requirements for N-terminal domains interacting with lipids to provide ATPase activity, pore structure, ion channel activity, protein translocation and interactions with SecYEG-SecDF•YajC. We found that the N-terminal fragment SecAN493 (SecA1-493) has low, intrinsic ATPase activity. Larger fragments have greater activity, becoming highest around N619-N632. Lipids greatly stimulated the ATPase activities of the fragments N608-N798, reaching maximal activities around N619. Three helices in amino-acyl residues SecA619-831, which includes the "Helical Scaffold" Domain (SecA619-668) are critical for pore formation, ion channel activity, and for function with SecYEG-SecDF•YajC. In the presence of liposomes, N-terminal domain fragments of SecA form pore-ring structures at fragment-size N640, ion channel activity around N798, and protein translocation capability around N831. SecA domain fragments ranging in size between N643-N669 are critical for functional interactions with SecYEG-SecDF•YajC. In the presence of liposomes, inactive C-terminal fragments complement smaller non-functional N-terminal fragments to form SecA-only pore structures with ion channel activity and protein translocation ability. Thus, SecA domain fragment interactions with liposomes defined critical structures and functional aspects of SecA-only channels. These data provide the mechanistic basis for SecA to form primitive, low-efficiency, SecA-only protein-conducting channels, as well as the minimal parameters for SecA to interact functionally with SecYEG-SecDF•YajC to form high-efficiency channels.
Collapse
Affiliation(s)
- Ying-hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Ying-ju Huang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Qian Liu
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Yang Lu
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Hsiuchin Yang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - John Houghton
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Chun Jiang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing China
| | - Phang C. Tai
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| |
Collapse
|
8
|
Hsieh YH, Zhang H, Jin J, Dai C, Jiang C, Wang B, Tai PC. Biphasic actions of SecA inhibitors on Prl/Sec suppressors: Possible physiological roles of SecA-only channels. Biochem Biophys Res Commun 2017; 482:296-300. [PMID: 27856243 DOI: 10.1016/j.bbrc.2016.11.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 11/30/2022]
Abstract
SecA is an essential component in the bacterial Sec-dependent protein translocation process. We previously showed that in addition to the ubiquitous, high-affinity SecYEG-SecDF·YajC protein translocation channel, there is a low-affinity SecA-only channel that elicits ion channel activity and promotes protein translocation. The SecA-only channels are less efficient, and like Prl suppressors, lack signal peptide specificity; they function in the absence of signal peptides. The presence of SecYEG-SecDF·YajC alters the sensitivity of ATPase inhibitor Rose Bengal. In this study, we found that the suppressor membranes are much more resistant to inhibition by Rose Bengal. Similar results have been found for a SecA-specific inhibitor. Moreover, biphasic responses of inhibition of ion current and protein translocation activities were observed for many PrlA/SecY and PrlG/SecE suppressor membranes, with a low IC50 value similar to that of the SecA-only channels and a very high IC50. However, the suppressor strains are as sensitive to the inhibitor as the parental strain, suggesting that SecA-only channels have some essential physiological function(s) in the cells that are inhibited by the specific SecA inhibitor.
Collapse
Affiliation(s)
- Ying-Hsin Hsieh
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Hao Zhang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jinshan Jin
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Chaofeng Dai
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
9
|
Cui J, Jin J, Chaudhary AS, Hsieh YH, Zhang H, Dai C, Damera K, Chen W, Tai PC, Wang B. Design, Synthesis and Evaluation of Triazole-Pyrimidine Analogues as SecA Inhibitors. ChemMedChem 2016; 11:43-56. [PMID: 26607404 PMCID: PMC4778717 DOI: 10.1002/cmdc.201500447] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 01/15/2023]
Abstract
SecA, a key component of the bacterial Sec-dependent secretion pathway, is an attractive target for the development of new antimicrobial agents. Through a combination of virtual screening and experimental exploration of the surrounding chemical space, we identified a hit bistriazole SecA inhibitor, SCA-21, and studied a series of analogues by systematic dissections of the core scaffold. Evaluation of these analogues allowed us to establish an initial structure-activity relationship in SecA inhibition. The best compounds in this group are potent inhibitors of SecA-dependent protein-conducting channel activity and protein translocation activity at low- to sub-micromolar concentrations. They also have minimal inhibitory concentration (MIC) values against various strains of bacteria that correlate well with the SecA and protein translocation inhibition data. These compounds are effective against methicillin-resistant Staphylococcus aureus strains with various levels of efflux pump activity, indicating the capacity of SecA inhibitors to null the effect of multidrug resistance. Results from studies of drug-affinity-responsive target stability and protein pull-down assays are consistent with SecA as a target for these compounds.
Collapse
Affiliation(s)
- Jianmei Cui
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | | | - Ying-hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Chaofeng Dai
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Krishna Damera
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Weixuan Chen
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA.
| | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
10
|
You Z, Liao M, Zhang H, Yang H, Pan X, Houghton JE, Sui SF, Tai PC. Phospholipids induce conformational changes of SecA to form membrane-specific domains: AFM structures and implication on protein-conducting channels. PLoS One 2013; 8:e72560. [PMID: 23977317 PMCID: PMC3745498 DOI: 10.1371/journal.pone.0072560] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/12/2013] [Indexed: 11/23/2022] Open
Abstract
SecA, an essential component of the Sec machinery, exists in a soluble and a membrane form in Escherichia coli. Previous studies have shown that the soluble SecA transforms into pore structures when it interacts with liposomes, and integrates into membranes containing SecYEG in two forms: SecAS and SecAM; the latter exemplified by two tryptic membrane-specific domains, an N-terminal domain (N39) and a middle M48 domain (M48). The formation of these lipid-specific domains was further investigated. The N39 and M48 domains are induced only when SecA interacts with anionic liposomes. Additionally, the N-terminus, not the C-terminus of SecA is required for inducing such conformational changes. Proteolytic treatment and sequence analyses showed that liposome-embedded SecA yields the same M48 and N39 domains as does the membrane-embedded SecA. Studies with chemical extraction and resistance to trypsin have also shown that these proteoliposome-embedded SecA fragments exhibit the same stability and characteristics as their membrane-embedded SecA equivalents. Furthermore, the cloned lipid-specific domains N39 and M48, but not N68 or C34, are able to form partial, but imperfect ring-like structures when they interact with phospholipids. These ring-like structures are characteristic of a SecA pore-structure, suggesting that these domains contribute part of the SecA-dependent protein-conducting channel. We, therefore, propose a model in which SecA alone is capable of forming a lipid-specific, asymmetric dimer that is able to function as a viable protein-conducting channel in the membrane, without any requirement for SecYEG.
Collapse
Affiliation(s)
- Zhipeng You
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Meijiang Liao
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Hao Zhang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Hsiuchin Yang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Xijian Pan
- School of Life Sciences, Center for Structural Biology, Tsinghua University, Beijing, China
| | - John E. Houghton
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Sen-fang Sui
- School of Life Sciences, Center for Structural Biology, Tsinghua University, Beijing, China
| | - Phang C. Tai
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Zhang H, Hsieh YH, Lin BR, Yu L, Yang H, Jiang C, Sui SF, Tai PC. Specificity of SecYEG for PhoA precursors and SecA homologs on SecA protein-conducting channels. Biochem Biophys Res Commun 2013; 437:212-216. [PMID: 23791875 DOI: 10.1016/j.bbrc.2013.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022]
Abstract
Previous studies showed that Escherichia coli membranes depleted of SecYEG are capable of translocating certain precursor proteins, but not other precursors such as pPhoA, indicating a differential requirement for SecYEG. In this study, we examined the role of SecYEG in pPhoA translocation using a purified reconstituted SecA-liposomes system. We found that translocation of pPhoA, in contrast to that of pOmpA, requires the presence of purified SecYEG. A differential specificity of the SecYEG was also revealed in its interaction with SecA: EcSecYEG did not enhance SecA-mediated pOmpA translocation by purified SecA either from Pseudomonas aeruginosa or Bacillus subtilis. Neither was SecYEG required for eliciting ion channel activity, which could be opened by unfolded pPhoA or unfolded PhoA. Addition of the SecYEG complex did restore the specificity of signal peptide recognition in the ion-channel activity. We concluded that SecYEG confers specificity in interacting with protein precursors and SecAs.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Ying-Hsin Hsieh
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Bor-Ruei Lin
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Liyan Yu
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Hsiuchin Yang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Chun Jiang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Sen-Fang Sui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Phang C Tai
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
12
|
Hsieh YH, Zhang H, Wang H, Yang H, Jiang C, Sui SF, Tai PC. Reconstitution of functionally efficient SecA-dependent protein-conducting channels: transformation of low-affinity SecA-liposome channels to high-affinity SecA-SecYEG-SecDF·YajC channels. Biochem Biophys Res Commun 2013; 431:388-92. [PMID: 23337498 DOI: 10.1016/j.bbrc.2013.01.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/10/2013] [Indexed: 11/20/2022]
Abstract
Previous work showed that SecA alone can promote protein translocation and ion-channel activity in liposomes, and that SecYEG increases efficiency as well as signal peptide specificity. We now report that SecDF·YajC further increases translocation and ion-channel activity. These activities of reconstituted SecA-SecYEG-SecDF·YajC-liposome are almost the same as those of native membranes, indicating the transformation of reconstituted functional high-affinity protein-conducting channels from the low-affinity SecA-channels.
Collapse
Affiliation(s)
- Ying-hsin Hsieh
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Lin BR, Hsieh YH, Jiang C, Tai PC. Escherichia coli Membranes Depleted of SecYEG Elicit SecA-Dependent Ion-Channel Activity but Lose Signal Peptide Specificity. J Membr Biol 2012; 245:747-57. [DOI: 10.1007/s00232-012-9477-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 06/30/2012] [Indexed: 11/29/2022]
|
14
|
Hsieh YH, Zhang H, Lin BR, Cui N, Na B, Yang H, Jiang C, Sui SF, Tai PC. SecA alone can promote protein translocation and ion channel activity: SecYEG increases efficiency and signal peptide specificity. J Biol Chem 2011; 286:44702-9. [PMID: 22033925 DOI: 10.1074/jbc.m111.300111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA is an essential component of the Sec-dependent protein translocation pathway across cytoplasmic membranes in bacteria. Escherichia coli SecA binds to cytoplasmic membranes at SecYEG high affinity sites and at phospholipid low affinity sites. It has been widely viewed that SecYEG functions as the essential protein-conducting channel through which precursors cross the membranes in bacterial Sec-dependent pathways, and that SecA functions as a motor to hydrolyze ATP in translocating precursors through SecYEG channels. We have now found that SecA alone can promote precursor translocation into phospholiposomes. Moreover, SecA-liposomes elicit ionic currents in Xenopus oocytes. Patch-clamp recordings further show that SecA alone promotes signal peptide- or precursor-dependent single channel activity. These activities were observed with the functional SecA at about 1-2 μM. The results show that SecA alone is sufficient to promote protein translocation into liposomes and to elicit ionic channel activity at the phospholipids low affinity binding sites, thus indicating that SecA is able to form the protein-conducting channels. Even so, such SecA-liposomes are less efficient than those with a full complement of Sec proteins, and lose the signal-peptide proofreading function, resembling the effects of PrlA mutations. Addition of purified SecYEG restores the signal peptide specificity and increases protein translocation and ion channel activities. These data show that SecA can promote protein translocation and ion channel activities both when it is bound to lipids at low affinity sites and when it is bound to SecYEG with high affinity. The latter of the two interactions confers high efficiency and specificity.
Collapse
Affiliation(s)
- Ying-hsin Hsieh
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lin BR, Gierasch LM, Jiang C, Tai PC. Electrophysiological studies in Xenopus oocytes for the opening of Escherichia coli SecA-dependent protein-conducting channels. J Membr Biol 2007; 214:103-13. [PMID: 17530158 PMCID: PMC2896742 DOI: 10.1007/s00232-006-0079-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/16/2006] [Indexed: 11/25/2022]
Abstract
Protein translocation in Escherichia coli requires protein-conducting channels in cytoplasmic membranes to allow precursor peptides to pass through with adenosine triphosphate (ATP) hydrolysis. Here, we report a novel, sensitive method that detects the opening of the SecA-dependent protein-conducting channels at the nanogram level. E. coli inverted membrane vesicles were injected into Xenopus oocytes, and ionic currents were recorded using the two-electrode voltage clamp. Currents were observed only in the presence of E. coli SecA in conjunction with E. coli membranes. Observed currents showed outward rectification in the presence of KCl as permeable ions and were significantly enhanced by coinjection with the precursor protein proOmpA or active LamB signal peptide. Channel activity was blockable with sodium azide or adenylyl 5'-(beta,gamma-methylene)-diphosphonate, a nonhydrolyzable ATP analogue, both of which are known to inhibit SecA protein activity. Endogenous oocyte precursor proteins also stimulated ion current activity and can be inhibited by puromycin. In the presence of puromycin, exogenous proOmpA or LamB signal peptides continued to enhance ionic currents. Thus, the requirement of signal peptides and ATP hydrolysis for the SecA-dependent currents resembles biochemical protein translocation assay with E. coli membrane vesicles, indicating that the Xenopus oocyte system provides a sensitive assay to study the role of Sec and precursor proteins in the formation of protein-conducting channels using electrophysiological methods.
Collapse
Affiliation(s)
- Bor-Ruei Lin
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA
| | - Lila M. Gierasch
- Departments of Biochemistry and Molecular Biology and of Chemistry, University of Massachusetts, 710 N. Pleasant Street, Amherst, MA 01003, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA
| | - Phang C. Tai
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA
| |
Collapse
|
16
|
Doerrler WT, Raetz CRH. Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant. J Biol Chem 2005; 280:27679-87. [PMID: 15951436 DOI: 10.1074/jbc.m504796200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli yaeT encodes an essential, conserved outer membrane (OM) protein that is an ortholog of Neisseria meningitidis Omp85. Conflicting data with N. meningitidis indicate that Omp85 functions either in assembly of OM proteins or in export of OM lipids. The role of YaeT in E. coli was investigated with a new temperature-sensitive mutant harboring nine amino acid substitutions. The mutant stops growing after 60 min at 44 degrees C. After 30 min at 44 degrees C, incorporation of [35S]methionine into newly synthesized OM proteins is selectively inhibited. Synthesis and export of OM phospholipids and lipopolysaccharide are not impaired. OM protein levels are low, even at 30 degrees C, and the buoyant density of the OM is correspondingly lower. By Western blotting, we show that levels of the major OM protein OmpA are lower in the mutant in whole cells, membranes, and the growth medium. SecA functions as a multicopy suppressor of the temperature-sensitive phenotype and partially restores OM proteins. Our data are consistent with a critical role for YaeT in OM protein assembly in E. coli.
Collapse
Affiliation(s)
- William T Doerrler
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
17
|
Wang HW, Chen Y, Yang H, Chen X, Duan MX, Tai PC, Sui SF. Ring-like pore structures of SecA: implication for bacterial protein-conducting channels. Proc Natl Acad Sci U S A 2003; 100:4221-6. [PMID: 12642659 PMCID: PMC153074 DOI: 10.1073/pnas.0737415100] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SecA, an essential component of the general protein secretion pathway of bacteria, is present in Escherichia coli as soluble and membrane-integral forms. Here we show by electron microscopy that SecA assumes two characteristic forms in the presence of phospholipid monolayers: dumbbell-shaped elongated structures and ring-like pore structures. The ring-like pore structures with diameters of 8 nm and holes of 2 nm are found only in the presence of anionic phospholipids. These ring-like pore structures with larger 3- to 6-nm holes (without staining) were also observed by atomic force microscopic examination. They do not form in solution or in the presence of uncharged phosphatidylcholine. These ring-like phospholipid-induced pore-structures may form the core of bacterial protein-conducting channels through bacterial membranes.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembranes, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Qi HY, Hyndman JB, Bernstein HD. DnaK promotes the selective export of outer membrane protein precursors in SecA-deficient Escherichia coli. J Biol Chem 2002; 277:51077-83. [PMID: 12403776 DOI: 10.1074/jbc.m209238200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Consistent with many other results indicating that SecA plays an essential role in the translocation of presecretory proteins across the Escherichia coli inner membrane, we previously found that a approximately 95% depletion of SecA completely blocks the export of periplasmic proteins in vivo. Surprisingly, we found that about 25% of the outer membrane protein (OMP) OmpA synthesized after SecA depletion was gradually translocated across the inner membrane. In this study we analyzed the export of several other OMPs after SecA depletion. We found that 25-50% of each OMP as well as an OmpA-alkaline phosphatase fusion protein was exported from SecA-deficient cells. This partial export was completely abolished by the SecA inhibitor sodium azide and therefore still required the participation of SecA. Examination of a variety of OmpA derivatives, however, ruled out the possibility that OMPs are selectively translocated in SecA-deficient cells because SecA binds to their N termini with unusually high affinity. Export after SecA depletion was observed in cells that lack SecB, the primary targeting factor for OMPs, but was abolished by partial inactivation of DnaK. Furthermore, OmpA could be isolated in a stable complex with DnaK. The data strongly suggest that OMPs require only a relatively low level of translocase activity to cross the inner membrane because they can be preserved in a prolonged export-competent state by DnaK.
Collapse
Affiliation(s)
- Hai-Yan Qi
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1810, USA
| | | | | |
Collapse
|
19
|
Fröderberg L, Röhl T, van Wijk KJ, de Gier JW. Complementation of bacterial SecE by a chloroplastic homologue. FEBS Lett 2001; 498:52-6. [PMID: 11389897 DOI: 10.1016/s0014-5793(01)02494-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The SecE protein is an essential component of the SecAYE-translocase, which mediates protein translocation across the cytoplasmic membrane in bacteria. In the thylakoid membranes of chloroplasts, a protein homologous to SecE, chloroplastic (cp) SecE, has been identified. However, the functional role of cpSecE has not been established experimentally. In this report we show that cpSecE in cells depleted for bacterial SecE (i) supports growth, (ii) stabilizes, just like bacterial SecE, the Sec-translocase core component SecY, and (iii) supports Sec-dependent protein translocation. This indicates that cpSecE can functionally replace bacterial SecE in vivo, and strongly suggests that the thylakoid membrane contains a SecAYE-like translocase with functional and structural similarities to the bacterial complex. This study further underscores the evolutionary link between chloroplasts and bacteria.
Collapse
Affiliation(s)
- L Fröderberg
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | | | | | | |
Collapse
|
20
|
Müller M, Koch HG, Beck K, Schäfer U. Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:107-57. [PMID: 11051763 DOI: 10.1016/s0079-6603(00)66028-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacteria use several routes to target their exported proteins to the plasma membrane. The majority are exported through pores formed by SecY and SecE. Two different molecular machineries are used to target proteins to the SecYE translocon. Translocated proteins, synthesized as precursors with cleavable signal sequences, require cytoplasmic chaperones, such as SecB, to remain competent for posttranslational transport. In concert with SecB, SecA targets the precursors to SecY and energizes their translocation by its ATPase activity. The latter function involves a partial insertion of SecA itself into the SecYE translocon, a process that is strongly assisted by a couple of membrane proteins, SecG, SecD, SecF, YajC, and the proton gradient across the membrane. Integral membrane proteins, however, are specifically recognized by a direct interaction between their noncleaved signal anchor sequences and the bacterial signal recognition particle (SRP) consisting of Ffh and 4.5S RNA. Recognition occurs during synthesis at the ribosome and leads to a cotranslational targeting to SecYE that is mediated by FtsY and the hydrolysis of GTP. No other Sec protein is required for integration unless the membrane protein also contains long translocated domains that engage the SecA machinery. Discrimination between SecA/SecB- and SRP-dependent targeting involves the specificity of SRP for hydrophobic signal anchor sequences and the exclusion of SRP from nascent chains of translocated proteins by trigger factor, a ribosome-associated chaperone. The SecYE pore accepts only unfolded proteins. In contrast, a class of redox factor-containing proteins leaves the cell only as completely folded proteins. They are distinguished by a twin arginine motif of their signal sequences that by an unknown mechanism targets them to specific pores. A few membrane proteins insert spontaneously into the bacterial plasma membrane without the need for targeting factors and SecYE. Insertion depends only on hydrophobic interactions between their transmembrane segments and the lipid bilayer and on the transmembrane potential. Finally, outer membrane proteins of Gram-negative bacteria after having crossed the plasma membrane are released into the periplasm, where they undergo distinct folding events until they insert as trimers into the outer membrane. These folding processes require distinct molecular chaperones of the periplasm, such as Skp, SurA, and PpiD.
Collapse
Affiliation(s)
- M Müller
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Germany
| | | | | | | |
Collapse
|
21
|
Abstract
SecA is an obligatory component of the complex hetero-septameric translocase of prokaryotes. It is unique in that it exists as two forms within the holoenzyme; first, as a structural component of the preprotein channel and second, as an ATP-dependent membrane cycling factor facilitating the translocation of a broad class of proteins across the cytoplasmic membrane. While the translocase activity of SecA appears to be functionally conserved, it is not clear whether the mechanisms of regulation of the secA gene are similarly maintained. The recent characterization of an ATP-dependent RNA helicase activity of SecA offers a unique mechanism for SecA to communicate the secretion status of the cell to the appropriate regulatory circuits simply by the unwinding of an appropriate RNA target. Resolution of these two activities through combined biochemical, genetic, and biophysical studies should lead to a better understanding of the role of SecA in bacterial secretion.
Collapse
Affiliation(s)
- M G Schmidt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425-2230, USA
| | | |
Collapse
|
22
|
Cristóbal S, Scotti P, Luirink J, von Heijne G, de Gier JW. The signal recognition particle-targeting pathway does not necessarily deliver proteins to the sec-translocase in Escherichia coli. J Biol Chem 1999; 274:20068-70. [PMID: 10400614 DOI: 10.1074/jbc.274.29.20068] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ProW is an Escherichia coli inner membrane protein that consists of a 100-residue-long periplasmic N-terminal tail (N-tail) followed by seven closely spaced transmembrane segments. N-tail translocation presumably proceeds in a C-to-N-terminal direction and represents a poorly understood aspect of membrane protein biogenesis. Here, using an in vivo depletion approach, we show that N-tail translocation in a ProW derivative comprising the N-tail and the first transmembrane segment fused to the globular P2 domain of leader peptidase depends both on the bacterial signal recognition particle (SRP) and the Sec-translocase. Surprisingly, however, a deletion construct with only one transmembrane segment downstream of the N-tail can assemble properly even under severe depletion of SecE, a central component of the Sec-translocase, but not under SRP-depletion conditions. To our knowledge, this is the first demonstration that the SRP-targeting pathway does not necessarily deliver SRP-dependent inner membrane proteins to the Sec-translocase. The data further suggest that N-tail translocation can proceed in the absence of a functional Sec-translocase.
Collapse
Affiliation(s)
- S Cristóbal
- Department of Biochemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
23
|
Cristóbal S, de Gier JW, Nielsen H, von Heijne G. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J 1999; 18:2982-90. [PMID: 10357811 PMCID: PMC1171380 DOI: 10.1093/emboj/18.11.2982] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recently, a new protein translocation pathway, the twin-arginine translocation (TAT) pathway, has been identified in both bacteria and chloroplasts. To study the possible competition between the TAT- and the well-characterized Sec translocon-dependent pathways in Escherichia coli, we have fused the TorA TAT-targeting signal peptide to the Sec-dependent inner membrane protein leader peptidase (Lep). We find that the soluble, periplasmic P2 domain from Lep is re-routed by the TorA signal peptide into the TAT pathway. In contrast, the full-length TorA-Lep fusion protein is not re-routed into the TAT pathway, suggesting that Sec-targeting signals in Lep can override TAT-targeting information in the TorA signal peptide. We also show that the TorA signal peptide can be converted into a Sec-targeting signal peptide by increasing the hydrophobicity of its h-region. Thus, beyond the twin-arginine motif, the overall hydrophobicity of the signal peptide plays an important role in TAT versus Sec targeting. This is consistent with statistical data showing that TAT-targeting signal peptides in general have less hydrophobic h-regions than Sec-targeting signal peptides.
Collapse
Affiliation(s)
- S Cristóbal
- Department of Biochemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
24
|
de Gier JW, Scotti PA, Sääf A, Valent QA, Kuhn A, Luirink J, von Heijne G. Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli. Proc Natl Acad Sci U S A 1998; 95:14646-51. [PMID: 9843943 PMCID: PMC24503 DOI: 10.1073/pnas.95.25.14646] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1998] [Accepted: 09/11/1998] [Indexed: 11/18/2022] Open
Abstract
Assembly of several inner membrane proteins-leader peptidase (Lep), a Lep derivative (Lep-inv) that inserts with an inverted topology compared with the wild-type protein, the phage M13 procoat protein, and a procoat derivative (H1-procoat) with the hydrophobic core of the signal peptide replaced by a stretch from the first transmembrane segment in Lep-has been studied in vitro and in Escherichia coli strains that are conditional for the expression of either the 54 homologue (Ffh) or 4.5S RNA, which are the two components of the E. coli signal recognition particle (SRP), or SecE, an essential core component of the E. coli preprotein translocase. Membrane insertion has also been tested in a SecB null strain. Lep, Lep-inv, and H1-procoat require SRP for correct assembly into the inner membrane; in contrast, we find that wild-type procoat does not. Lep and, surprisingly, Lep-inv and H1-procoat fail to insert properly when SecE is depleted, whereas insertion of wild-type procoat is unaffected under these conditions. None of the proteins depend on SecB for assembly. These observations indicate that inner membrane proteins can assemble either by a mechanism in which SRP delivers the protein at the preprotein translocase or by what appears to be a direct integration into the lipid bilayer. The observed change in assembly mechanism when the hydrophobicity of the procoat signal peptide is increased demonstrates that the assembly of an inner membrane protein can be rerouted between different pathways.
Collapse
Affiliation(s)
- J W de Gier
- Department of Biochemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm University, Sweden
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Targeting of chloroplast proteins to the thylakoid membrane is analogous to bacterial secretion, and much of what we know has been learned from secretory mechanisms in Escherichia coli. However, chloroplasts also use a delta pH-dependent pathway to target thylakoid proteins, at least some of which are folded before transport. Previously, this pathway seemed to have no cognate in bacteria, but recent results have shown that the HCF106 gene in maize encodes a component of this pathway and has bacterial homologues. This delta pH-dependent pathway might be an ancient conserved mechanism for protein translocation that evolved before the endosymbiotic origin of plastids and mitochondria.
Collapse
Affiliation(s)
- A M Settles
- Cold Spring Harbor Laboratory, NY 11724, USA.
| | | |
Collapse
|
26
|
Chen X, Brown T, Tai PC. Identification and characterization of protease-resistant SecA fragments: secA has two membrane-integral forms. J Bacteriol 1998; 180:527-37. [PMID: 9457854 PMCID: PMC106918 DOI: 10.1128/jb.180.3.527-537.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have identified and characterized the protease-resistant SecA fragments (X. Chen, H. Xu, and P. C. Tai, J. Biol. Chem. 271:29698-29706, 1996) through immunodetection with region-specific antibodies, chemical extraction, and sequencing analysis. The 66-, 36-, and 27-kDa proteolytic fragments in the membranes all start at Met1, whereas the 48-kDa fragment starts at Glu361. The overlapping of the sequences of the 66- and 48-kDa fragments indicates that they are derived from different SecA molecules. These two fragments were generated differently in response to ATP hydrolysis and protein translocation. Furthermore, the presence of membrane is required for the generation of the 48-kDa fragment but not for that of the 66-kDa fragment. These data suggest that there are two different integral forms of SecA in the membrane: SecA(S) and SecA(M). The combination of these two forms of SecA has several membrane-interacting domains. Both forms of SecA are integrated in the membrane, since both the 48- and 66-kDa fragments could be derived from urea- or Na2CO3-washed membranes. Moreover, all fragments are resistant to extraction with a high concentration of salt or with heparin, but the membrane-specific 48-kDa SecA domain is more sensitive to Na2CO3 or urea extraction. This suggests that this domain may interact with other membrane proteins in an aqueous microenvironment and therefore may form a part of the protein-conducting channel.
Collapse
Affiliation(s)
- X Chen
- Department of Biology, Georgia State University, Atlanta 30303, USA
| | | | | |
Collapse
|
27
|
Economou A. Bacterial preprotein translocase: mechanism and conformational dynamics of a processive enzyme. Mol Microbiol 1998; 27:511-8. [PMID: 9489663 DOI: 10.1046/j.1365-2958.1998.00713.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Preprotein translocase, the membrane transporter for secretory proteins, is a processive enzyme. It comprises the membrane proteins SecYEG(DFYajC) and the peripheral ATPase SecA, which acts as a motor subunit. Translocase subunits form dynamic complexes in the lipid bilayer and build an aqueous conduit through which preprotein substrates are transported at the expense of energy. Preproteins bind to translocase and trigger cycles of ATP binding and hydrolysis that drive a transition of SecA between two distinct conformational states. These changes are transmitted to SecG and lead to inversion of its membrane topology. SecA conformational changes promote directed migration of the polymeric substrate through the translocase, in steps of 20-30 aminoacyl residues. Translocase dissociates from the substrate only after the whole preprotein chain length has been transported to the trans side of the membrane, where it is fully released.
Collapse
Affiliation(s)
- A Economou
- Institute of Molecular Biology and Biotechnology-FORTH and Department of Biology, University of Crete, Iraklio-Crete, Greece.
| |
Collapse
|
28
|
Yang YB, Lian J, Tai PC. Differential translocation of protein precursors across SecY-deficient membranes of Escherichia coli: SecY is not obligatorily required for translocation of certain secretory proteins in vitro. J Bacteriol 1997; 179:7386-93. [PMID: 9393703 PMCID: PMC179689 DOI: 10.1128/jb.179.23.7386-7393.1997] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SecY, a component of the protein translocation system in Escherichia coli, was depleted at a nonpermissive temperature in a strain which had a temperature-sensitive polar effect on the expression of its secY. Membrane vesicles prepared from these cells, when grown at the nonpermissive temperature, contained about 5% SecY and similarly low levels of SecG. As expected, translocation of alkaline phosphatase precursors across these SecY-deficient membranes was severely impaired and appeared to be directly related to the decrease of SecY amounts. However, despite such a dramatic reduction in SecY and SecG levels, these membranes exhibited 50 to 70% of the wild-type translocation activity, including the processing of the signal peptide, of OmpA precursor (proOmpA). This translocation activity in SecY-deficient membranes was still SecA and ATP dependent and was not unique to proOmpA, as lipoprotein and lambda receptor protein precursors were also transported efficiently. Membranes that were reconstituted from these SecY-depleted membranes contained undetectable amounts of SecY yet were also shown to possess substantial translocation activity for proOmpA. These results indicate that the requirement of SecY for translocation is not obligatory for all secretory proteins and may depend on the nature of precursors. Consequently, it is unlikely that SecY is the essential core channel through which all precursors traverse across membranes; rather, SecY probably contributes to efficiency and specificity.
Collapse
Affiliation(s)
- Y B Yang
- Department of Biology, Georgia State University, Atlanta 30303, USA
| | | | | |
Collapse
|
29
|
Affiliation(s)
- F Duong
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844, USA
| | | | | | | | | |
Collapse
|
30
|
Taura T, Yoshihisa T, Ito K. Protein translocation functions of Escherichia coli SecY: in vitro characterization of cold-sensitive secY mutants. Biochimie 1997; 79:517-21. [PMID: 9451453 DOI: 10.1016/s0300-9084(97)82744-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein translocation across the plasma membrane of E coli is facilitated by Sec factors, including the membrane-embedded SecYEG subunit and the SecA ATPase. Although there is complete agreement that SecA is essential for protein translocation, some publications question the essentialness of SecY. We previously isolated a number of cold-sensitive mutants of secY and characterized their in vivo phenotypes. In this study, we characterized membrane vesicles prepared from these mutants with respect to their in vitro activities to support protein translocation and to activate the SecA ATPase. These studies revealed several single amino acid alterations that abolish these in vitro activities of membrane vesicles. In particular, several mutations in the two most carboxy-terminal cytoplasmic domains of SecY prevented SecA from functioning as the translocation ATPase. A number of mutants showed strong correlations between in vivo protein export ability, in vitro translocation activity and in vitro translocation ATPase activity, substantiating the importance of SecY in vivo and in vitro. A few other mutants were affected in only one or two aspects of these properties, suggesting that they were differentially affected in some substeps of translocation. These results provide further evidence that SecY has vital roles in protein translocation, in which the 'motor' function of SecA and the 'channel' function of SecYEG should be coordinated.
Collapse
Affiliation(s)
- T Taura
- Institute for Virus Research, Kyoto University, Japan
| | | | | |
Collapse
|