1
|
Zhang M, Meng Y, Ying Y, Zhou P, Zhang S, Fang Y, Yao Y, Li D. Selective activation of STAT3 and STAT5 dictates the fate of myeloid progenitor cells. Cell Death Discov 2023; 9:274. [PMID: 37507383 PMCID: PMC10382539 DOI: 10.1038/s41420-023-01575-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The molecular programs that govern the directed differentiation of myeloid progenitor cells are still poorly defined. Using a previously established immortalized, phenotypically normal myeloid progenitor cell model mEB8-ER, we unveil a new mechanism mediated by STAT5 and STAT3 at a bifurcation point of myeloid progenitor cell-fate specification. We find that myeloid progenitor cells can spontaneously differentiate into neutrophils with a basal level of STAT3 phosphorylation, which is enhanced by G-CSF treatment or STAT3 over-expression, leading to elevated neutrophil differentiation. Reduced STAT3 phosphorylation caused by GM-CSF treatment, STAT3 specific inhibitor, or STAT3 depletion leads to attenuated myeloid differentiation into neutrophils, while elevating differentiation into monocytes/macrophages. In contrast, STAT5 appears to have an antagonistic function to STAT3. When activated by GM-CSF, STAT5 promotes myeloid differentiation into monocytes/macrophages but inhibits neutrophil differentiation. At the mechanistic level, GM-CSF activates STAT5 to up-regulate SOCS3, which attenuates STAT3 phosphorylation and consequently neutrophil differentiation, while enhancing monocyte/macrophage differentiation. Furthermore, inhibition of STAT5 and STAT3 in primary myeloid progenitors recapitulates the results from the mEB8-ER model. Together, our findings provide new mechanistic insights into myeloid differentiation and may prove useful for the diagnosis and treatment of diseases related to abnormal myeloid differentiation.
Collapse
Affiliation(s)
- Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiling Meng
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingxia Ying
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pingting Zhou
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Suning Zhang
- Department of Emergency, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Fang
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yuan Yao
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
McCarthy C, Carey BC, Trapnell BC. Autoimmune Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2022; 205:1016-1035. [PMID: 35227171 PMCID: PMC9851473 DOI: 10.1164/rccm.202112-2742so] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/24/2022] [Indexed: 01/23/2023] Open
Abstract
Autoimmune pulmonary alveolar proteinosis (PAP) is a rare disease characterized by myeloid cell dysfunction, abnormal pulmonary surfactant accumulation, and innate immune deficiency. It has a prevalence of 7-10 per million; occurs in individuals of all races, geographic regions, sex, and socioeconomic status; and accounts for 90% of all patients with PAP syndrome. The most common presentation is dyspnea of insidious onset with or without cough, production of scant white and frothy sputum, and diffuse radiographic infiltrates in a previously healthy adult, but it can also occur in children as young as 3 years. Digital clubbing, fever, and hemoptysis are not typical, and the latter two indicate that intercurrent infection may be present. Low prevalence and nonspecific clinical, radiological, and laboratory findings commonly lead to misdiagnosis as pneumonia and substantially delay an accurate diagnosis. The clinical course, although variable, usually includes progressive hypoxemic respiratory insufficiency and, in some patients, secondary infections, pulmonary fibrosis, respiratory failure, and death. Two decades of research have raised autoimmune PAP from obscurity to a paradigm of molecular pathogenesis-based diagnostic and therapeutic development. Pathogenesis is driven by GM-CSF (granulocyte/macrophage colony-stimulating factor) autoantibodies, which are present at high concentrations in blood and tissues and form the basis of an accurate, commercially available diagnostic blood test with sensitivity and specificity of 100%. Although whole-lung lavage remains the first-line therapy, inhaled GM-CSF is a promising pharmacotherapeutic approach demonstrated in well-controlled trials to be safe, well tolerated, and efficacious. Research has established GM-CSF as a pulmonary regulatory molecule critical to surfactant homeostasis, alveolar stability, lung function, and host defense.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Respiratory Medicine, St. Vincent’s University Hospital, Dublin, Ireland
- University College Dublin, Dublin, Ireland
| | - Brenna C. Carey
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bruce C. Trapnell
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
3
|
Monaghan KL, Wan EC. The Role of Granulocyte-Macrophage Colony-Stimulating Factor in Murine Models of Multiple Sclerosis. Cells 2020; 9:cells9030611. [PMID: 32143326 PMCID: PMC7140439 DOI: 10.3390/cells9030611] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease that predominantly impacts the central nervous system (CNS). Animal models have been used to elucidate the underpinnings of MS pathology. One of the most well-studied models of MS is experimental autoimmune encephalomyelitis (EAE). This model was utilized to demonstrate that the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) plays a critical and non-redundant role in mediating EAE pathology, making it an ideal therapeutic target. In this review, we will first explore the role that GM-CSF plays in maintaining homeostasis. This is important to consider, because any therapeutics that target GM-CSF could potentially alter these regulatory processes. We will then focus on current findings related to the function of GM-CSF signaling in EAE pathology, including the cell types that produce and respond to GM-CSF and the role of GM-CSF in both acute and chronic EAE. We will then assess the role of GM-CSF in alternative models of MS and comment on how this informs the understanding of GM-CSF signaling in the various aspects of MS immunopathology. Finally, we will examine what is currently known about GM-CSF signaling in MS, and how this has promoted clinical trials that directly target GM-CSF.
Collapse
Affiliation(s)
- Kelly L. Monaghan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA;
| | - Edwin C.K. Wan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA;
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Correspondence: ; Tel.:+1-304-293-6293
| |
Collapse
|
4
|
Wang B, Mehta H. Cytokine receptor splice variants in hematologic diseases. Cytokine 2019; 127:154919. [PMID: 31816579 DOI: 10.1016/j.cyto.2019.154919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/08/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
Cytokine and cytokine receptors are important regulators of hematopoiesis. Hematopoietic stem cells (HSCs) and progenitors differentiate into the myeloid or lymphoid lineage in response to specific cytokines. Cell-type specific receptors are expressed on committed progenitors that bind to other late-acting cytokines that are involved in terminal differentiation of hematopoietic cells. In normal hematopoiesis, these receptors undergo alternative splicing and are developmentally regulated. Splicing changes can significantly affect the structure and function of the receptors resulting in alterations of either the extracellular ligand binding domain or the cytoplasmic signaling domain responsible for cellular growth and differentiation. Most alternatively spliced isoforms generally lose the ability to promote differentiation. Evidently, overexpression of naturally occurring cytokine receptor alternate isoforms are observed in multiple myeloid diseases such as myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and polycythemia vera (PV). The purpose of this review is to introduce the various isoforms of key cytokine receptors that play a crucial role in myeloid development and their potential role in myeloid diseases.
Collapse
Affiliation(s)
- Borwyn Wang
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Hrishikesh Mehta
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
5
|
Soysa NS, Alles N. The role of IL-3 in bone. J Cell Biochem 2019; 120:6851-6859. [PMID: 30320936 DOI: 10.1002/jcb.27956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/02/2018] [Indexed: 01/24/2023]
Abstract
In the recent past, there has been a burgeoning interest in targeting cytokines such as IL-3 for specific disease conditions of bone such as rheumatoid arthritis and multiple myeloma. Unlike other cytokines, IL-3 is a cytokine with a multilineage potential and broad spectrum of target cells and it plays a vital role in hematopoiesis. Due to its common receptor subunit, the action of IL-3 shows functional redundancy with other cytokines such as the granulocyte-macrophage colony-stimulating factor and IL-5. IL-3 has been successfully used in ameliorating radiation-induced bone marrow aplasia and similar conditions. However, the role of IL-3 in bone cells has not been fully unraveled yet; therefore, the aim of this overview is to present the effects of IL-3 in bone with a special emphasis on osteoclasts and osteoblasts in a concise manner.
Collapse
Affiliation(s)
| | - Neil Alles
- Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Sri Lanka
| |
Collapse
|
6
|
Trapnell BC, Nakata K, Bonella F, Campo I, Griese M, Hamilton J, Wang T, Morgan C, Cottin V, McCarthy C. Pulmonary alveolar proteinosis. Nat Rev Dis Primers 2019; 5:16. [PMID: 30846703 DOI: 10.1038/s41572-019-0066-3] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pulmonary alveolar proteinosis (PAP) is a syndrome characterized by the accumulation of alveolar surfactant and dysfunction of alveolar macrophages. PAP results in progressive dyspnoea of insidious onset, hypoxaemic respiratory failure, secondary infections and pulmonary fibrosis. PAP can be classified into different types on the basis of the pathogenetic mechanism: primary PAP is characterized by the disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling and can be autoimmune (caused by elevated levels of GM-CSF autoantibodies) or hereditary (due to mutations in CSF2RA or CSF2RB, encoding GM-CSF receptor subunits); secondary PAP results from various underlying conditions; and congenital PAP is caused by mutations in genes involved in surfactant production. In most patients, pathogenesis is driven by reduced GM-CSF-dependent cholesterol clearance in alveolar macrophages, which impairs alveolar surfactant clearance. PAP has a prevalence of at least 7 cases per million individuals in large population studies and affects men, women and children of all ages, ethnicities and geographical locations irrespective of socioeconomic status, although it is more-prevalent in smokers. Autoimmune PAP accounts for >90% of all cases. Management aims at improving symptoms and quality of life; whole-lung lavage effectively removes excessive surfactant. Novel pathogenesis-based therapies are in development, targeting GM-CSF signalling, immune modulation and cholesterol homeostasis.
Collapse
Affiliation(s)
- Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University, Niigata, Japan
| | - Francesco Bonella
- Interstitial and Rare Lung Disease Unit, Pneumology Department, Ruhrlandklinik University Hospital, University of Essen, Essen, Germany
| | - Ilaria Campo
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Matthias Griese
- Pediatric Pneumology, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - John Hamilton
- University of Melbourne, Parkville, Victoria, Australia
| | - Tisha Wang
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Cliff Morgan
- Department of Critical Care and Anaesthesia, Royal Brompton Hospital, London, UK
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, University of Lyon, Lyon, France
| | - Cormac McCarthy
- Department of Medicine, St. Vincent's University Hospital and University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
High CD123 levels enhance proliferation in response to IL-3, but reduce chemotaxis by downregulating CXCR4 expression. Blood Adv 2017; 1:1067-1079. [PMID: 29296749 DOI: 10.1182/bloodadvances.2016002931] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/21/2017] [Indexed: 11/20/2022] Open
Abstract
High expression of the α chain of the interleukin-3 receptor (IL-3Rα; CD123) is a hallmark of acute myeloid leukemia (AML) leukemic stem cells (LSCs). Elevated CD123 expression is part of the diagnostic immunophenotyping of myeloid leukemia, and higher expression is associated with poor prognosis. However, the biological basis of the poorer prognosis is unclear, and may include heightened IL-3 signaling and non-cell autonomous interactions with the bone marrow (BM) microenvironment. We used TF-1 cells expressing different levels of CD123 and found elevated CD123 levels amplified the proliferative response to exogenous IL-3 and maintained viability in reducing IL-3 concentrations. This was associated with stronger activation of STAT5, Akt, and extracellular signal-regulated kinase 1/2 in vitro. Surprisingly, in vivo e14.5 fetal liver cells transduced with retroviral constructs to express high CD123 failed to engraft in syngeneic recipients. In exploring the underlying mechanism for this, we found that CXCR4, a key molecule involved in LSC/BM interactions, was specifically downregulated in CD123 overexpressing cells in a manner dependent on IL-3 signaling. CXCR4 downregulation was sufficient to alter the chemotactic response of hematopoietic cells to stromal derived factor-1 (SDF-1). Thus, we propose that the overexpression of CD123 in AML LSC dictates their location by altering CXCR4/SDF-1 interaction in the BM, raising the possibility that this mechanism underpins the egress of BM AML LSC and more mature cells into the circulation.
Collapse
|
8
|
Granulocyte–macrophage colony-stimulating factor: not just another haematopoietic growth factor. Med Oncol 2013; 31:774. [DOI: 10.1007/s12032-013-0774-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022]
|
9
|
Urdinguio RG, Fernandez AF, Moncada-Pazos A, Huidobro C, Rodriguez RM, Ferrero C, Martinez-Camblor P, Obaya AJ, Bernal T, Parra-Blanco A, Rodrigo L, Santacana M, Matias-Guiu X, Soldevilla B, Dominguez G, Bonilla F, Cal S, Lopez-Otin C, Fraga MF. Immune-dependent and independent antitumor activity of GM-CSF aberrantly expressed by mouse and human colorectal tumors. Cancer Res 2012; 73:395-405. [PMID: 23108143 DOI: 10.1158/0008-5472.can-12-0806] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF2) is a cytokine produced in the hematologic compartment that may enhance antitumor immune responses, mainly by activation of dendritic cells. Here, we show that more than one-third of human colorectal tumors exhibit aberrant DNA demethylation of the GM-CSF promoter and overexpress the cytokine. Mouse engraftment experiments with autologous and homologous colon tumors engineered to repress the ectopic secretion of GM-CSF revealed the tumor-secreted GM-CSF to have an immune-associated antitumor effect. Unexpectedly, an immune-independent antitumor effect was observed that depended on the ectopic expression of GM-CSF receptor subunits by tumors. Cancer cells expressing GM-CSF and its receptor did not develop into tumors when autografted into immunocompetent mice. Similarly, 100% of the patients with human colon tumors that overexpressed GM-CSF and its receptor subunits survived at least 5 years after diagnosis. These data suggest that expression of GM-CSF and its receptor subunits by colon tumors may be a useful marker for prognosis as well as for patient stratification in cancer immunotherapy.
Collapse
Affiliation(s)
- Rocio G Urdinguio
- Cancer Epigenetics Laboratory, HUCA, Institute of Oncology of Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lim DS, Bae YS. Metastatic lymph node 51 and fibroblast-like synoviocyte hyperproliferation in rheumatoid arthritis pathogenesis. Rheumatol Int 2011; 31:843-7. [PMID: 21327427 DOI: 10.1007/s00296-011-1818-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/30/2011] [Indexed: 12/26/2022]
Abstract
One of the varied characteristic features of the pathogenesis of rheumatoid arthritis (RA) is synovial hyperplasia. Fibroblast-like synoviocytes (FLSs) play a key role in the development of sustained inflammation in arthritic joints. We have reported previously that metastatic lymph node 51 (MLN51) is involved in the proliferation of FLSs in the pathogenesis of RA. Interestingly, the overexpression of MLN51 was observed only in RA FLSs, but not in osteoarthritis FLSs, possibly expecting that MLN51 may be a RA-specific marker. Additionally, we found that granulocyte-macrophage colony-stimulating factor signaling activates mitogen-activated protein kinase, followed by the upregulation of MLN51 and FLICE-inhibitory protein, resulting in FLS hyperplasia in RA. Based on these studies, we could be firm that MLN51 is a key factor in FLS hyperplasia of RA patients.
Collapse
Affiliation(s)
- Dae-Seog Lim
- Department of Applied Bioscience, Laboratory for Immune Cell-based Therapy, CHA University, 222 Yatap-dong, Bundang-gu, Sungnam, Gyeonggi-do, 463-836, Korea.
| | | |
Collapse
|
11
|
Liontos LM, Dissanayake D, Ohashi PS, Weiss A, Dragone LL, McGlade CJ. The Src-Like Adaptor Protein Regulates GM-CSFR Signaling and Monocytic Dendritic Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2011; 186:1923-33. [DOI: 10.4049/jimmunol.0903292] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Chiba N, Kakimoto K, Masuda A, Matsuguchi T. Functional roles of Cot/Tpl2 in mast cell responses to lipopolysaccharide and FcεRI-clustering. Biochem Biophys Res Commun 2010; 402:1-6. [PMID: 20732300 DOI: 10.1016/j.bbrc.2010.08.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 08/17/2010] [Indexed: 12/26/2022]
Abstract
Cot/Tpl2, a member of MAP kinase kinase kinase (MAPKKK), is indispensable for the ERK activation, as well as the production of TNF-α, IL-1β, IL-23, and PGE(2) in lipopolysaccharide (LPS)-stimulated macrophages. However, the expression and the functional roles of Cot/Tpl2 in mast cells have not been elucidated. The administration of LPS impairs allergic airway inflammation in a mast cell-dependent manner, and LPS stimulates mast cells to produce not only pro-inflammatory cytokines, such as IL-6 and TNF-α, but also Th2-type cytokines, such as IL-5, IL-10 and IL-13. Here, we examine the role of Cot/Tpl2 by using bone marrow-derived mast cells (BMMCs) from cot/tpl2 gene-deficient mice. Phosphorylation of ERKs was significantly decreased, whereas that of JNKs and p38 kinase was normal in LPS-stimulated cot/tpl2(-/-) BMMCs compared with wild-type counterparts. LPS-induced mRNA increase was significantly impaired for IL-5, IL-10, IL-13, and TNF-α, but was normal for IL-6, in cot/tpl2(-/-) BMMCs. On the other hand, degranulation by FcεRI-clustering from cot/tpl2(-/-) BMMCs was significantly enhanced compared with the WT control. Although the phosphorylation of ERKs and p38 kinase by FcεRI-clustering was similar in WT and cot/tpl2(-/-) BMMCs, the phosphorylation of Syk was significantly enhanced in cot/tpl2(-/-) BMMCs, which seemed to be due to the increased protein concentration of Syk. These results imply the functional importance of Cot/Tpl2 in mast cells during the course of allergic diseases such as asthma.
Collapse
Affiliation(s)
- Norika Chiba
- Division of Biochemistry and Molecular Dentistry, Department of Developmental Medicine, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | | | | |
Collapse
|
13
|
Chiba N, Masuda A, Yoshikai Y, Matsuguchi T. Ceramide inhibits LPS-induced production of IL-5, IL-10, and IL-13 from mast cells. J Cell Physiol 2007; 213:126-36. [PMID: 17458900 DOI: 10.1002/jcp.21101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mast cells are central regulators of allergic inflammation through production of various chemical mediators and cytokines. Bacterial infection occasionally worsens allergic inflammation. Although the exact mechanism of this phenomenon remains unclear, we have previously reported that LPS stimulates mast cells to produce not only pro-inflammatory cytokines, such as IL-6 and TNF-alpha, but also Th2-type cytokines, such as IL-5 and IL-13, and a regulatory cytokine, IL-10. In the present study, we have studied the effect of ceramide on LPS-mediated cytokine production from mast cells, as ceramide modulates various cellular functions in many cell types. Administration of cell-permeable C8 ceramide reduced production of IL-5, IL-10, and IL-13 from LPS-stimulated mouse bone marrow-derived mast cells (BMMCs) apparently through transcriptional inhibition, but did not affect IL-6 or TNF-alpha production. Consistently, LPS-stimulated production of IL-5, IL-10, and IL-13 from BMMCs is significantly enhanced in the presence of fumonisin B1, a de novo ceramide synthesis inhibitor. Interestingly, the same C8 ceramide treatment showed opposite effects on cytokine production from LPS-stimulated macrophages, reducing IL-6 and TNF-alpha while not affecting IL-10 production. C8 ceramide pretreatment significantly reduced LPS-induced Akt phosphorylation in BMMCs, but not in macrophages. Furthermore, pretreatment of BMMCs by wortmannin, a specific inhibitor of PI3 kinase, inhibited LPS-stimulated expression of IL-5, IL-10, and IL-13, but not that of TNF-alpha or IL-6. Thus, ceramide appeared to down-regulate LPS-stimulated production of IL-5, IL-10, and IL-13 from mast cells by inhibiting PI3 kinase-Akt pathway in a cell type-specific manner.
Collapse
Affiliation(s)
- Norika Chiba
- Division of Host Defense, Center for Neural Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | |
Collapse
|
14
|
|
15
|
Chen J, Cárcamo JM, Golde DW. The alpha subunit of the granulocyte-macrophage colony-stimulating factor receptor interacts with c-Kit and inhibits c-Kit signaling. J Biol Chem 2006; 281:22421-22426. [PMID: 16760463 DOI: 10.1074/jbc.m604644200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates hematopoiesis and the function of mature host defense cells through the GM-CSF receptor (GMR), which is composed of alpha (alphaGMR) and beta (betaGMR) subunits. Stem cell factor is another important hematopoietic cytokine that signals through c-Kit, a receptor tyrosine kinase, and regulates hematopoietic stem cell maintenance and erythroid development. Like other cytokine receptors, GMR and c-Kit are generally deemed as independent adaptor molecules capable of transducing cytokine-specific signals. We found that the alphaGMR directly interacts with c-Kit and that the interaction is mediated by the cytoplasmic domains. Furthermore, alphaGMR inhibited c-Kit auto-phosphorylation induced by the ligand stem cell factor. Consistent with the inhibitory effect, the expression of alphaGMR was suppressed in cells whose viability was dependent on c-Kit signaling. In contrast, the alternatively spliced alpha2 isoform of the alphaGMR could not inhibit c-Kit signaling, providing a rationale for the existence of the alpha2 isoform. Our results suggest that in addition to having the commonly appreciated roles in cytokine signal transduction, the receptors alphaGMR and c-Kit could interact to coordinate their signal initiation.
Collapse
Affiliation(s)
- Jian Chen
- Department of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021; Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York 10021.
| | - Juan M Cárcamo
- Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York 10021.
| | - David W Golde
- Department of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021; Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| |
Collapse
|
16
|
Murphy JM, Young IG. IL-3, IL-5, and GM-CSF signaling: crystal structure of the human beta-common receptor. VITAMINS AND HORMONES 2006; 74:1-30. [PMID: 17027509 DOI: 10.1016/s0083-6729(06)74001-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cytokines, interleukin-3 (IL-3), interleukin-5 (IL-5), and granulocyte-macrophage colony stimulating factor (GM-CSF), are polypeptide growth factors that exhibit overlapping activities in the regulation of hematopoietic cells. They appear to be primarily involved in inducible hematopoiesis in response to infections and are involved in the pathogenesis of allergic and inflammatory diseases and possibly in leukemia. The X-ray structure of the beta common (betac) receptor ectodomain has given new insights into the structural biology of signaling by IL-3, IL-5, and GM-CSF. This receptor is shared between the three ligands and functions together with three ligand-specific alpha-subunits. The structure shows betac is an intertwined homodimer in which each chain contains four domains with approximate fibronectin type-III topology. The two betac-subunits that compose the homodimer are interlocked by virtue of the swapping of beta-strands between domain 1 of one subunit and domain 3 of the other subunit. Site-directed mutagenesis has shown that the interface between domains 1 and 4 in this unique structure forms the functional epitope. This epitope is similar to those of other members of the cytokine class I receptor family but is novel in that it is formed by two different receptor chains. The chapter also reviews knowledge on the closely related mouse beta(IL-3) receptor and on the alpha-subunit-ligand interactions. The knowledge on the two beta receptors is placed in context with advances in understanding of the structural biology of other members of the cytokine class I receptor family.
Collapse
Affiliation(s)
- James M Murphy
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia 0200
| | | |
Collapse
|
17
|
D'Andrea RJ, Sadlon TJ, Gonda TJ. Overlapping motifs in the membrane-proximal region of cytokine receptor accessory and signaling subunits. Cytokine Growth Factor Rev 2004; 15:83-5. [PMID: 15110791 DOI: 10.1016/j.cytogfr.2004.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The membrane-proximal cytoplasmic region of cytokine receptors (CRs) is highly conserved and essential for receptor activation. In particular this region is essential for the activation of members of the Janus family of protein kinases (JAK) which results in initiation of receptor signaling. We have examined the sequence of this region in a number of CR signaling and accessory subunits with a view to better delineating motifs that play an important role in initiating receptor activity. Here, we have delineated two distinct proline-rich motifs in the membrane-proximal domains of cytokine receptors. Their configuration and distribution among CR subunits strongly suggest a model in which the two motifs act in a concerted manner to induce full receptor and JAK activation.
Collapse
Affiliation(s)
- Richard J D'Andrea
- Immunology Program, Child Health Research Institute, Adelaide Women's and Children's Hospital, North Adelaide, and Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia.
| | | | | |
Collapse
|
18
|
Gaynor RB. A role for extracellular matrix binding receptors in regulating hematopoietic growth factor signaling. Proc Natl Acad Sci U S A 2003; 100:13737-8. [PMID: 14623967 PMCID: PMC283489 DOI: 10.1073/pnas.2536856100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Richard B Gaynor
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| |
Collapse
|
19
|
Chen J, Cárcamo JM, Bórquez-Ojeda O, Erdjument-Bromage H, Tempst P, Golde DW. The laminin receptor modulates granulocyte-macrophage colony-stimulating factor receptor complex formation and modulates its signaling. Proc Natl Acad Sci U S A 2003; 100:14000-5. [PMID: 14614142 PMCID: PMC283535 DOI: 10.1073/pnas.2334584100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basement membrane matrix proteins are known to up-regulate granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling in neutrophils and mononuclear phagocytes, but the mechanisms involved are poorly understood. We used the intracellular portion of the alpha subunit of the GM-CSF receptor (alphaGMR) to search for interacting proteins and identified the 67-kDa laminin receptor (LR), a nonintegrin matrix protein receptor expressed in several types of host defense cells and certain tumors, as a binding partner. LR was found to interact with the beta subunit of the GMR (betaGMR) as well. Whereas GM-CSF functions by engaging the alphaGMR and betaGMR into receptor complexes, LR inhibited GM-CSF-induced receptor complex formation. Laminin and fibronectin binding to LR was found to prevent the binding of betaGMR to LR and relieved the LR inhibition of GMR. These findings provide a mechanistic basis for enhancing host defense cell responsiveness to GM-CSF at transendothelial migration sites while suppressing it in circulation.
Collapse
Affiliation(s)
- Jian Chen
- Department of Pharmacology, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
20
|
Ebner K, Bandion A, Binder BR, de Martin R, Schmid JA. GMCSF activates NF-kappaB via direct interaction of the GMCSF receptor with IkappaB kinase beta. Blood 2003; 102:192-9. [PMID: 12637324 DOI: 10.1182/blood-2002-12-3753] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GMCSF) has a central role in proliferation and differentiation of hematopoetic cells. Furthermore, it influences the proliferation and migration of endothelial cells. GMCSF elicits these functions by activating a receptor consisting of a ligand-specific alpha-chain and a beta-chain, which is common for GMCSF, interleukin-3 (IL-3), and IL-5. It is known that various signaling molecules such as Janus kinase 2 or transcription factors of the signal transducer and activator of transcription (STAT) family bind to the common beta-chain and initiate signaling cascades. However, alpha-chain-specific signal transduction adapters have to be postulated given that IL-3, IL-5, and GMCSF induce partly distinct biologic responses. Using a yeast 2-hybrid system, we identified the alpha-chain of the GMCSF receptor (GMRalpha) as putative interaction partner of IkappaB kinase beta, one of the central signaling kinases activating the transcription factor nuclear factor-kappaB (NF-kappaB). Using endogenous protein levels of endothelial cell extracts, we could verify the interaction by coimmunoprecipitation experiments. Fluorescence resonance energy transfer (FRET) microscopy confirmed the direct interaction of CFP-IKKbeta and YFPGMRalpha in living cells. Functional studies demonstrated GMCSF-dependent activation of IkappaB kinase activity in endothelial cells, degradation of IkappaB, and activation of NF-kappaB. Further biologic studies using GMCSF-dependent TF-1 cells indicated that GMCSF-triggered activation of NF-kappaB is important for cell survival and proliferation.
Collapse
Affiliation(s)
- Karin Ebner
- Department of Vascular Biology and Thrombosis Research, University of Vienna, Brunnerstrasse 59, A-1235 Vienna, Austria
| | | | | | | | | |
Collapse
|
21
|
Dhar-Mascareno M, Chen J, Zhang RH, Cárcamo JM, Golde DW. Granulocyte-macrophage colony-stimulating factor signals for increased glucose transport via phosphatidylinositol 3-kinase- and hydrogen peroxide-dependent mechanisms. J Biol Chem 2003; 278:11107-14. [PMID: 12538575 DOI: 10.1074/jbc.m212541200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates cellular glucose uptake by decreasing the apparent K(m) for substrate transport through facilitative glucose transporters on the plasma membrane. Little is known about this signal transduction pathway and the role of the alpha subunit of the GM-CSF receptor (alpha GMR) in modulating transporter activity. We examined the function of phosphatidylinositol 3-kinase (PI 3-kinase) in GM-CSF-stimulated glucose uptake and found that PI 3-kinase inhibitors, wortmannin and LY294002, completely blocked the GM-CSF-dependent increase of glucose uptake in Xenopus oocytes expressing the low affinity alpha GMR and in human cells expressing the high affinity alpha beta GMR complex. We identified a Src homology 3 domain-binding motif in alpha GMR at residues 358-361 as a potential interaction site for the PI 3-kinase regulatory subunit, p85. Physical evidence for p85 binding to alpha GMR was obtained by co-immunoprecipitation with antibodies to alpha GMR and p85, and an alpha GMR mutant with alteration of the Src homology 3 binding domain lost the ability to bind p85. Experiments with a construct eliminating most of the intracellular portion of alpha GMR showed a 50% reduction in GM-CSF-stimulated glucose uptake with residual activity blocked by wortmannin. Searching for a proximally generated diffusible factor capable of activating PI 3-kinase, we identified hydrogen peroxide (H(2)O(2)), generated by ligand or antibody binding to alpha GMR, as the initiating factor. Catalase treatment abrogated GM-CSF- or anti-alpha GMR antibody-stimulated glucose uptake in alpha GMR-expressing oocytes, and H(2)O(2) activated PI 3-kinase and led to some stimulation of glucose uptake in uninjected oocytes. Human myeloid cell lines and primary explant human lymphocytes expressing high affinity GM-CSF receptors responded to alpha GMR antibody with increased glucose uptake. These results identify the early events in the stimulation of glucose uptake by GM-CSF as involving local H(2)O(2) generation and requiring PI 3-kinase activation. Our findings also provide a mechanistic explanation for signaling through the isolated alpha subunit of the GM-CSF receptor.
Collapse
Affiliation(s)
- Manya Dhar-Mascareno
- Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
22
|
Masuda A, Yoshikai Y, Aiba K, Matsuguchi T. Th2 cytokine production from mast cells is directly induced by lipopolysaccharide and distinctly regulated by c-Jun N-terminal kinase and p38 pathways. THE JOURNAL OF IMMUNOLOGY 2002; 169:3801-10. [PMID: 12244175 DOI: 10.4049/jimmunol.169.7.3801] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mast cells secrete multiple cytokines and play an important role in allergic inflammation. Although it is widely accepted that bacteria infection occasionally worsens allergic airway inflammation, the mechanism has not been defined. In this study, we show that LPS induced Th2-associated cytokine production such as IL-5, IL-10, and IL-13 from mast cells and also synergistically enhanced production of these cytokines induced by IgE cross-linking. LPS-mediated Th2-type cytokine production was abolished in mouse bone marrow-derived mast cells derived from C3H/HeJ mice, suggesting that Toll-like receptor 4 is essential for the cytokine production. Furthermore, we found that mitogen-activated protein kinases including extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 kinase were activated by LPS stimulation in bone marrow-derived mast cells. Inhibition of extracellular signal-regulated kinase activation has little effect on LPS-mediated cytokine production. In contrast, inhibition of c-Jun N-terminal kinase activation significantly suppressed both IL-10 and IL-13 expression at both mRNA and protein levels. Interestingly, although inhibition of p38 did not down-regulate the mRNA induction, it moderately decreased all three cytokine productions by LPS. These results indicate that LPS-mediated production of IL-5, IL-10, and IL-13 was distinctly regulated by mitogen-activated protein kinases. Our findings may indicate a clue to understanding the mechanisms of how bacteria infection worsens the clinical features of asthma.
Collapse
Affiliation(s)
- Akio Masuda
- Laboratory of Host Defense and Germfree Life, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Nagoya, Japan.
| | | | | | | |
Collapse
|
23
|
Evans CA, Ariffin S, Pierce A, Whetton AD. Identification of primary structural features that define the differential actions of IL-3 and GM-CSF receptors. Blood 2002; 100:3164-74. [PMID: 12384414 DOI: 10.1182/blood-2001-12-0235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of human interleukin 3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors, ectopically expressed in FDCP-mix multipotent cells, stimulates self-renewal or myeloid differentiation, respectively. These receptors are composed of unique alpha subunits that interact with common beta(c) subunits. A chimeric receptor (hGM/beta(c)), comprising the extracellular domain of the hGM-CSF receptor alpha subunit (hGM Ralpha) fused to the intracellular domain of hbeta(c), was generated to determine whether hbeta(c) activation is alone sufficient to promote differentiation. hGM-CSF activation of hGM/beta(c), expressed in the presence and absence of the hbeta(c) subunit, promoted maintenance of primitive phenotype. This indicates that the cytosolic domain of the hGM Ralpha chain is required for differentiation mediated by activation of the hGM Ralpha, beta(c) receptor complex. We have previously demonstrated that the alpha cytosolic domain confers signal specificity for IL-3 and GM-CSF receptors. Bioinformatic analysis of the IL-3 Ralpha and GM Ralpha subunits identified a tripeptide sequence, adjacent to the conserved proline-rich domain, which was potentially a key difference between them. Cross-exchange of the equivalent tripeptides between the alpha subunits altered receptor function compared to the wild-type receptors. Both the mutant and the corresponding wild-type receptors promoted survival and proliferation in the short-term but had distinct effects on developmental outcome. The mutated hGM Ralpha promoted long-term proliferation and maintenance of primitive cell morphology, whereas cytokine activation of the corresponding hIL-3 Ralpha mutant promoted myeloid differentiation. We have thus identified a region of the alpha cytosolic domain that is of critical importance for defining receptor specificity.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Cell Differentiation/drug effects
- Cell Line
- Cell Survival/drug effects
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Granulocytes/cytology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Humans
- Interleukin-3/pharmacology
- Macrophages/cytology
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phenotype
- Protein Structure, Tertiary
- Protein Subunits
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/chemistry
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/drug effects
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Receptors, Interleukin-3/chemistry
- Receptors, Interleukin-3/drug effects
- Receptors, Interleukin-3/genetics
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/drug effects
- Recombinant Fusion Proteins/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
- Substrate Specificity
- Transfection
Collapse
Affiliation(s)
- Caroline A Evans
- Leukaemia Research Fund Cellular Development Unit, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Sackville Street, Manchester M60 1QD, UK
| | | | | | | |
Collapse
|
24
|
Piu F, Magnani M, Ader ME. Dissection of the cytoplasmic domains of cytokine receptors involved in STAT and Ras dependent proliferation. Oncogene 2002; 21:3579-91. [PMID: 12032860 DOI: 10.1038/sj.onc.1205444] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2001] [Revised: 02/11/2002] [Accepted: 02/21/2002] [Indexed: 11/08/2022]
Abstract
Cytokine receptors have different signaling requirements which ultimately lead to various physiological responses. In an effort to precisely characterize the molecular determinants involved in the proliferative response mediated by cytokines, we examine dose-dependent proliferation of the betac (GM-CSF, IL-3, IL-5) and homodimeric (G-CSF, TPO) cytokine receptors. Here we report that all cytokine receptors tested activate mostly STAT3 and STAT5. While STAT3 had a positive effect on betac cytokine receptor dependent proliferation, STAT5 was strongly inhibitory. Similarly, G-CSF and TPO lead to activation of STAT3 and STAT5 but, unlike the betac cytokine receptors, both stimulated cellular growth. On the other hand, Ras activation was necessary for all receptor mediated proliferation with the exception of G-CSF R. Truncated mutants of the receptors intracellular domains were used to delineate the functional domains involved in JAK/STAT and Ras activation linked to cellular growth. For instance, we revealed a critical role for the specific alpha subunit of the betac receptors in triggering receptor activation, STAT3 stimulation and proliferation, while Ras activation originates from the distal intracellular portion of the betac subunit. Finally, we showed that proximal STAT activation is the triggering event of G-CSF and TPO receptor function.
Collapse
Affiliation(s)
- Fabrice Piu
- ACADIA Pharmaceuticals Inc., Signal Transduction Group, San Diego, California, CA 92121, USA.
| | | | | |
Collapse
|
25
|
Abstract
Hematopoiesis is the cumulative result of intricately regulated signal transduction cascades that are mediated by cytokines and their cognate receptors. Proper culmination of these diverse signaling pathways forms the basis for an orderly generation of different cell types and aberrations in these pathways is an underlying cause for diseases such as leukemias and other myeloproliferative and lymphoproliferative disorders. Over the past decade, downstream signal transduction events initiated upon cytokine/growth factor stimulation have been a major focus of basic and applied biomedical research. As a result, several key concepts have emerged allowing a better understanding of the complex signaling processes. A group of transcription factors, termed signal transducers and activators of transcription (STATs) appear to orchestrate the downstream events propagated by cytokine/growth factor interactions with their cognate receptors. Similarly, cytoplasmic Janus protein tyrosine kinases (JAKs) and Src family of kinases seem to play a critical role in diverse signal transduction pathways that govern cellular survival, proliferation, differentiation and apoptosis. Accumulating evidence suggests that STAT protein activation may be mediated by members of both JAK and Src family members following cytokine/growth factor stimulation. In addition, JAK kinases appear to be essential for the phosphorylation of the cytokine receptors which results in the creation of docking sites on the receptors for binding of SH2-containing proteins such as STATs, Src-kinases and other signaling intermediates. Cell and tissue-specificity of cytokine action appears to be determined by the nature of signal transduction pathways activated by cytokine/receptor interactions. The integration of these diverse signaling cues from active JAK kinases, members of the Src-family kinases and STAT proteins, leads to cell proliferation, cell survival and differentiation, the end-point of the cytokine/growth factor stimulus.
Collapse
Affiliation(s)
- Sushil G Rane
- Laboratory of Cell Regulation & Carcinogenesis, NCI, NIH, Bldg. 41, C629, 41 Library Drive, Bethesda, Maryland, MD 20892, USA
| | | |
Collapse
|
26
|
Trapnell BC, Whitsett JA. Gm-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu Rev Physiol 2002; 64:775-802. [PMID: 11826288 DOI: 10.1146/annurev.physiol.64.090601.113847] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies in transgenic mice have revealed important insights into the roles of GM-CSF in regulation of surfactant homeostasis and lung host defense. Interruption of the GM-CSF signaling pathway by targeted ablation of the GM-CSF gene or its receptor (GM(-/-) or GM Rbetac(-/-) mice, respectively) resulted in pulmonary alveolar proteinosis (PAP) but no hematologic abnormalities. Alveolar macrophages from GM(-/-) mice have reduced capacity for surfactant catabolism, cell adhesion, phagocytosis, bacterial killing, Toll-receptor signaling, and expression of various pathogen-associated molecular pattern recognition receptors, suggesting arrest at an early stage of differentiation. PAP and abnormalities of alveolar macrophage function were corrected by local expression of GM-CSF in the lung, and expression of the transcription factor PU.1 in alveolar macrophages of GM(-/-) mice rescued most defects. Recently, a strong association of auto-antibodies to GM-CSF or GM-CSF receptor gene mutations with PAP has implicated GM-CSF signaling abnormalities in the pathogenesis of PAP in humans. Together, these observations demonstrate that GM-CSF has a critical role in regulation of surfactant homeostasis and alveolar macrophage innate immune functions in the lung.
Collapse
Affiliation(s)
- Bruce C Trapnell
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | |
Collapse
|
27
|
Jubinsky PT, Messer A, Bender J, Morris RE, Ciraolo GM, Witte DP, Hawley RG, Short MK. Identification and characterization of Magmas, a novel mitochondria-associated protein involved in granulocyte-macrophage colony-stimulating factor signal transduction. Exp Hematol 2001; 29:1392-402. [PMID: 11750097 DOI: 10.1016/s0301-472x(01)00749-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The aim of this study was to identify granulocyte-macrophage colony-stimulating factor (GM-CSF) responsive genes. MATERIALS AND METHODS Potential GM-CSF responsive genes were identified by comparing the mRNA expression pattern of the murine myeloid cell line PGMD1 grown in either interleukin-3 (IL-3) or GM-CSF by differential display. Human and murine cDNA clones of one of the bands having increased expression in GM-CSF were isolated. mRNA expression of the gene was examined by Northern blot. Immunohistochemistry and studies with a green fluorescent fusion protein were used to determine its intracellular location. Growth factor-stimulated proliferation of PGMD1 cells transfected with constitutively expressed sense and anti-sense cDNA constructs of the gene was measured by 3H-thymidine incorporation. RESULTS A gene, named Magmas (mitochondria-associated granulocyte macrophage CSF signaling molecule), was shown to be rapidly induced when cells were switched from IL-3 to GM-CSF. Analysis of the amino acid sequence of Magmas showed it contained a mitochondrial signal peptide, but not any other known functional domains. The human and murine clones encode nearly identical 13-kDa proteins that localized to the mitochondria. Magmas mRNA expression was observed in all tissues examined. PGMD1 cells that overexpressed Magmas proliferated similarly to untransfected cells when cultured in IL-3 or GM-CSF. In contrast, cells with reduced protein levels grew normally in IL-3, but had impaired proliferation in GM-CSF. CONCLUSION Magmas is a mitochondrial protein involved in GM-CSF signal transduction.
Collapse
Affiliation(s)
- P T Jubinsky
- Divisions of Hematology/Oncology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
McClure B, Stomski F, Lopez A, Woodcock J. Perverted responses of the human granulocyte-macrophage colony-stimulating factor receptor in mouse cell lines due to cross-species beta-subunit association. Blood 2001; 98:3165-8. [PMID: 11698308 DOI: 10.1182/blood.v98.10.3165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transfected murine cell lines are commonly used to study the function of many human cytokine or receptor mutants. This study reports the inappropriate activation of the human granulocyte-macrophage colony-stimulating factor (hGM-CSF) receptor by the human GM-CSF antagonist, E21R, when the human receptor is introduced into the murine cell line BaF-B03. E21R-induced proliferation of the BaF-B03 cells is dependent on transfection with both hGM-CSF receptor alpha and beta(c) subunits. Studies on the underlying mechanism revealed constitutive association between human and mouse beta(c) and GM-CSF receptor-alpha, tyrosine phosphorylation of mouse and human beta(c), and association of phosphorylated mouse beta(c) into an activated human GM-CSF receptor complex in response to E21R and GM-CSF. This interspecies receptor cross-talk of receptor signaling subunits may produce misleading results and emphasizes the need to use cell lines devoid of the cognate endogenous receptors for functional analysis of ligand and receptor mutants.
Collapse
Affiliation(s)
- B McClure
- Cytokine Receptor Laboratory, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, South Australia
| | | | | | | |
Collapse
|
29
|
Wagner K, Kafert-Kasting S, Heil G, Ganser A, Eder M. Inhibition of granulocyte-macrophage colony-stimulating factor receptor function by a splice variant of the common beta-receptor subunit. Blood 2001; 98:2689-96. [PMID: 11675339 DOI: 10.1182/blood.v98.9.2689] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 are composed of a ligand-specific alpha-chain (eg, alpha-GM-CSF receptor [alpha-GMR]) and a common beta-subunit (beta-GMR). Ligand binding is believed to induce assembly or conformational changes in preformed complexes containing more than one alpha- and beta-subunit in the activated receptor complex. To analyze the function of a splice variant of beta-GMR with a truncation in the intracellular domain (beta-GMR(IT)), BaF-3 cells expressing human alpha-GMR plus beta-GMR were transfected with beta-GMR(IT). In these cells, coexpression of beta-GMR(IT) inhibits GM-CSF-mediated survival and proliferation in a GM-CSF concentration-dependent manner. To analyze the effect of cytoplasmic assembly of truncated and full-length intracellular beta-GMR sequences, beta-GMR and beta-GMR(IT) were coexpressed with different chimeric alpha/beta-GMR constructs. Whereas both beta-GMR and beta-GMR(IT) generate high-affinity GMR complexes in the presence of alpha/beta-GMR, beta-GMR(IT) inhibits while beta-GMR supports proliferation and cell survival mediated by alpha/beta-GMR. Correspondingly, beta-GMR, but not beta-GMR(IT), generates functional GMR complexes when coexpressed with a defective alpha/beta-GMR construct. These data indicate that beta-GMR(IT) can inhibit survival and mitogenic signaling of the wild-type GMR and demonstrate that recruitment of alternatively spliced receptor subunits may regulate the function of heteromeric cytokine receptors.
Collapse
Affiliation(s)
- K Wagner
- Department of Hematology and Oncology, Hannover Medical School, and the Center for Cell Therapy/Cytonet, Hannover, Germany
| | | | | | | | | |
Collapse
|
30
|
Masuda A, Matsuguchi T, Yamaki K, Hayakawa T, Yoshikai Y. Interleukin-15 Prevents Mouse Mast Cell Apoptosis through STAT6-mediated Bcl-xL Expression. J Biol Chem 2001; 276:26107-13. [PMID: 11369758 DOI: 10.1074/jbc.m011475200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-15 is a member of the cytokine family with T and natural killer (NK) cell growth-promoting activity. In mast cells, however, IL-15 uses a distinct receptor system different from that used in T and NK cells. We recently reported that IL-15 induces STAT6 activation and IL-4 production in a mouse mast cell line (MC/9) and bone marrow-derived mast cells. In the present study, we have demonstrated that IL-15 prevents MC/9 and bone marrow-derived mast cell apoptosis induced by factor withdrawal or anti-Fas antibody treatment. IL-15 increased mRNA and protein levels of an anti-apoptotic protein (Bcl-x(L)) in these cells, whereas bcl-2 mRNA remained unchanged. In addition, the transcriptional activity of the bcl-x(L) promoter was increased by IL-15 in MC/9 cells. In an electrophoretic mobility shift assay, IL-15 induced STAT6 binding to the STAT recognition site in the bcl-x(L) gene promoter. Furthermore, the expression of a dominant-negative form of STAT6 abrogated the effects of IL-15 on both bcl-x(L) mRNA up-regulation and prevention of apoptosis in mast cells. Altogether, our results suggest that IL-15 plays an important role in maintaining the number of mast cells through Bcl-x(L) expression mediated by STAT6.
Collapse
Affiliation(s)
- A Masuda
- Second Department of Internal Medicine, Nagoya University School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | |
Collapse
|
31
|
Lilly MB, Zemskova M, Frankel AE, Salo J, Kraft AS. Distinct domains of the human granulocyte-macrophage colony-stimulating factor receptor alpha subunit mediate activation of Jak/Stat signaling and differentiation. Blood 2001; 97:1662-70. [PMID: 11238105 DOI: 10.1182/blood.v97.6.1662] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alpha subunit of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor has several isoforms that result from alternative splicing events. Two forms, alpha-1 and alpha-2, have intracytoplasmic sequences that are identical within a membrane-proximal domain but differ completely distally. Variant and mutated GM-CSF receptor alpha subunits, along with the beta subunit (beta(c) protein) were expressed in M1 murine leukemia cells. and the ability of the receptors to signal for differentiation events and to activate Jak/Stat signaling pathways was examined. All cell lines expressing both alpha and beta(c) proteins exhibited high-affinity binding of radiolabeled human GM-CSF. Receptor alpha subunits with intact membrane-proximal intracellular domains could induce expression of the macrophage antigen F4/80 and down-regulate the expression of CD11b. Addition of recombinant human GM-CSF to cells expressing alpha-1 subunits induced the expression of CD86 and tyrosine phosphorylation of Jak-2 and its putative substrates SHPTP-2, Stat-5, and the GM-CSF receptor beta(c) subunit. Cells containing alpha subunits that lacked a distal domain (term-3) or had the alternatively spliced alpha-2 distal domain showed markedly decreased ability to support tyrosine phosphorylation of Jak-2 and its substrates or to up-regulate CD86. Ligand binding induced stable association of the alpha-1 subunit and beta(c) protein. In contrast, the alpha-2 subunit did not stably associate with the beta(c) subunit. These data identify potential molecular mechanisms for differential signaling of the alpha-1 and alpha-2 proteins. The association of unique signaling events with the 2 active GM-CSF alpha subunit isoforms offers a model for variable response phenotypes to the same ligand.
Collapse
MESH Headings
- Animals
- Antigens, CD/drug effects
- Antigens, CD/metabolism
- Antigens, Differentiation/drug effects
- Antigens, Differentiation/metabolism
- B7-2 Antigen
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Humans
- Janus Kinase 2
- Macrophage-1 Antigen/drug effects
- Macrophage-1 Antigen/metabolism
- Membrane Glycoproteins/drug effects
- Membrane Glycoproteins/metabolism
- Mice
- Milk Proteins
- Mutation
- Phosphorylation/drug effects
- Protein Structure, Tertiary
- Protein Subunits
- Protein-Tyrosine Kinases/metabolism
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/chemistry
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/physiology
- STAT5 Transcription Factor
- Signal Transduction/drug effects
- Structure-Activity Relationship
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transduction, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M B Lilly
- Department of Medicine and the Center for Molecular Biology and Gene Therapy, Loma Linda University, Loma Linda, CA 92354, USA.
| | | | | | | | | |
Collapse
|
32
|
Geijsen N, Koenderman L, Coffer PJ. Specificity in cytokine signal transduction: lessons learned from the IL-3/IL-5/GM-CSF receptor family. Cytokine Growth Factor Rev 2001; 12:19-25. [PMID: 11312115 DOI: 10.1016/s1359-6101(00)00019-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytokines mediate the transduction of proliferative, differentiation and survival signals in the hematopoietic system. Although the cytokine family is large and diverse, many different cytokines display broadly overlapping functions. This can be explained by the fact that cytokine receptors often share multiple subunits. Specificity in signal transduction can however be achieved through several mechanisms. This review focuses on how signal specificity can be achieved within the IL-3, IL-5 and GM-CSF receptor family. This is discussed in terms of receptor expression, recent advances in our understanding of intracellular signalling components, and analysis of null mutant knock-out mice.
Collapse
MESH Headings
- Animals
- Cytokines/metabolism
- Humans
- Mice
- Mice, Knockout
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/chemistry
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-3/chemistry
- Receptors, Interleukin-3/genetics
- Receptors, Interleukin-3/metabolism
- Receptors, Interleukin-5
- Signal Transduction
- Transgenes
Collapse
Affiliation(s)
- N Geijsen
- Department of Pulmonary Diseases, University Medical Centre Utrecht, G03.550, Heidelberglaan 100, 3584, Utrecht, The Netherlands
| | | | | |
Collapse
|
33
|
Shikama Y, Shichishima T, Ohto H, Jubinsky PT, Yukio. Maruyama. Neutrophil-specific reduction in the expression of granulocyte-macrophage colony-stimulating factor receptor subunits in myelodysplastic syndromes. Br J Haematol 2000. [DOI: 10.1111/j.1365-2141.2000.02398.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Shikama Y, Shichishima T, Ohto H, Jubinsky PT. Neutrophil-specific reduction in the expression of granulocyte-macrophage colony-stimulating factor receptor subunits in myelodysplastic syndromes. Br J Haematol 2000. [DOI: 10.1046/j.1365-2141.2000.02398.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Abstract
Cytoplasmic Janus protein tyrosine kinases (JAKs) are crucial components of diverse signal transduction pathways that govern cellular survival, proliferation, differentiation and apoptosis. Evidence to date, indicates that JAK kinase function may integrate components of diverse signaling cascades. While it is likely that activation of STAT proteins may be an important function attributed to the JAK kinases, it is certainly not the only function performed by this key family of cytoplasmic tyrosine kinases. Emerging evidence indicates that phosphorylation of cytokine and growth factor receptors may be the primary functional attribute of JAK kinases. The JAK-triggered receptor phosphorylation can potentially be a rate-limiting event for a successful culmination of downstream signaling events. In support of this hypothesis, it has been found that JAK kinase function is required for optimal activation of the Src-kinase cascade, the Ras-MAP kinase pathway, the PI3K-AKT pathway and STAT signaling following the interaction of cytokine/interferon receptors with their ligands. Aberrations in JAK kinase activity, that may lead to derailment of one or more of the above mentioned pathways could disrupt normal cellular responses and result in disease states. Thus, over-activation of JAK kinases has been implicated in tumorigenesis. In contrast, loss of JAK kinase function has been found to result in disease states such as severe-combined immunodeficiency. In summary, optimal JAK kinase activity is a critical determinant of normal transmission of cytokine and growth factor signals.
Collapse
Affiliation(s)
- S G Rane
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 N. Broad Street, Philadelphia, Pennsylvania, PA 19140, USA
| | | |
Collapse
|
36
|
Masuda A, Matsuguchi T, Yamaki K, Hayakawa T, Kubo M, LaRochelle WJ, Yoshikai Y. Interleukin-15 induces rapid tyrosine phosphorylation of STAT6 and the expression of interleukin-4 in mouse mast cells. J Biol Chem 2000; 275:29331-7. [PMID: 10882748 DOI: 10.1074/jbc.m910290199] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-4 plays an important role in the differentiation of naive T helper (Th) cells into Th2. Mast cells can produce a significant amount of IL-4 and have been proposed to play a major role in the induction of Th2 responses. Recently, it has been reported that mast cells have a distinct IL-15 receptor system different from that of T or natural killer cells. In the present study, we demonstrated that IL-15 induced IL-4 production from a mouse mast cell line, MC/9, and bone marrow-derived mast cells. IL-4 mRNA expression was increased by IL-15, suggesting that IL-15 promotes IL-4 expression at the transcriptional level. In these mast cells, signal transducer and activator of transcription (STAT) 6 were rapidly tyrosine-phosphorylated in response to IL-15. In MC/9 cells, the expression of a C-terminally truncated dominant negative form of STAT6 significantly suppressed the IL-4 mRNA up-regulation by IL-15, suggesting that STAT6 activation is essential for the IL-15-mediated IL-4 production. Additionally, tyrosine phosphorylation of Tyk2 was rapidly increased by IL-15 treatment in this cell line. Altogether, our results suggest that IL-15 plays an important role in stimulating early IL-4 production in mast cells that may be responsible for the initiation of Th2 response.
Collapse
Affiliation(s)
- A Masuda
- Second Department of Internal Medicine, Nagoya University School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Abstract
The IL-3 family of cytokines transduces signals through Stat5 and regulates myeloid development. Previous studies have determined that a carboxy terminally truncated isoform of Stat5 is activated in immature myeloid cells. This isoform, which lacks a transcriptional activation domain, is generated by a protein-processing event. To determine whether Stat5 cleavage plays an important role in the growth and maturation of myeloid progenitors, the FdCP1 model of myeloid maturation was evaluated. FdCP1 cells are IL-3–dependent myeloid progenitors that differentiate into monocytes when cultured in granulocyte macrophage–colony-stimulating factor (GM-CSF). Consistent with their immature phenotype, when FdCP1 cells are cultured in IL-3 they exhibit robust protease activity and signal through truncated Stat5 isoforms. In contrast, maturation leads to a loss of protease activity and a switch to the expression to full-length Stat5 isoforms. Introduction of a noncleavable, full-length Stat5 mutant into undifferentiated FdCP1 cells leads to a partially differentiated phenotype and prevents further differentiation in response to GM-CSF. These results support our hypothesis that Stat5 processing is important for myeloid maturation.
Collapse
|
38
|
Myeloid differentiation of FdCP1 cells is dependent on Stat5 processing. Blood 2000. [DOI: 10.1182/blood.v96.4.1358.h8001358_1358_1365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IL-3 family of cytokines transduces signals through Stat5 and regulates myeloid development. Previous studies have determined that a carboxy terminally truncated isoform of Stat5 is activated in immature myeloid cells. This isoform, which lacks a transcriptional activation domain, is generated by a protein-processing event. To determine whether Stat5 cleavage plays an important role in the growth and maturation of myeloid progenitors, the FdCP1 model of myeloid maturation was evaluated. FdCP1 cells are IL-3–dependent myeloid progenitors that differentiate into monocytes when cultured in granulocyte macrophage–colony-stimulating factor (GM-CSF). Consistent with their immature phenotype, when FdCP1 cells are cultured in IL-3 they exhibit robust protease activity and signal through truncated Stat5 isoforms. In contrast, maturation leads to a loss of protease activity and a switch to the expression to full-length Stat5 isoforms. Introduction of a noncleavable, full-length Stat5 mutant into undifferentiated FdCP1 cells leads to a partially differentiated phenotype and prevents further differentiation in response to GM-CSF. These results support our hypothesis that Stat5 processing is important for myeloid maturation.
Collapse
|
39
|
Abstract
AbstractWe have developed a gene trap approach to select specific cytokine receptor/ligand responsive genes in the cell line TF-1. This cell line exhibits a dependency on granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-3 (IL-3) and responds to interleukin-5 (IL-5). In an attempt to detect genes modulated by one of these factors, cells were infected with the Rosaβgeo retrovirus in the presence of GM-CSF, IL-3, or IL-5 and clones were selected for retroviral integration on the basis of G418 resistance. Housekeeping and cytokine-regulated trapped genes were then differentiated on the basis of G418 resistance versus sensitivity in the presence of the different cytokines. To determine the reliability of this screen, DNA sequences upstream of the proviral integration site were identified by 5′ rapid amplification of DNA ends polymerase chain reaction (RACE PCR) from selected GM-CSF–treated and –infected clones. Comparison of the sequences with those in the Genbank database revealed that 2 sequences correspond to known genes: NACA and RBM3. NACAwas recently defined as a coactivator of c-jun–mediated transcription factors in osteoblasts, and RBM3 as a protein from the heterogeneous nuclear ribonucleoprotein family. Data from transcriptional analysis of these 2 genes in TF-1 cells showed a specific up-regulation by GM-CSF. Both transcripts were also found to be up-regulated in purified CD34+ cells, suggesting their involvement in proliferative processes during hematopoiesis. Interestingly, down-regulation was observed during monocytic differentiation of TF-1 cells, suggesting their extinction could contribute to monocytic lineage development. This study demonstrates that this gene trap approach is a useful method for identifying novel, specific cytokine-responsive genes that are involved in the regulation of hematopoiesis.
Collapse
|
40
|
Abstract
We have developed a gene trap approach to select specific cytokine receptor/ligand responsive genes in the cell line TF-1. This cell line exhibits a dependency on granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-3 (IL-3) and responds to interleukin-5 (IL-5). In an attempt to detect genes modulated by one of these factors, cells were infected with the Rosaβgeo retrovirus in the presence of GM-CSF, IL-3, or IL-5 and clones were selected for retroviral integration on the basis of G418 resistance. Housekeeping and cytokine-regulated trapped genes were then differentiated on the basis of G418 resistance versus sensitivity in the presence of the different cytokines. To determine the reliability of this screen, DNA sequences upstream of the proviral integration site were identified by 5′ rapid amplification of DNA ends polymerase chain reaction (RACE PCR) from selected GM-CSF–treated and –infected clones. Comparison of the sequences with those in the Genbank database revealed that 2 sequences correspond to known genes: NACA and RBM3. NACAwas recently defined as a coactivator of c-jun–mediated transcription factors in osteoblasts, and RBM3 as a protein from the heterogeneous nuclear ribonucleoprotein family. Data from transcriptional analysis of these 2 genes in TF-1 cells showed a specific up-regulation by GM-CSF. Both transcripts were also found to be up-regulated in purified CD34+ cells, suggesting their involvement in proliferative processes during hematopoiesis. Interestingly, down-regulation was observed during monocytic differentiation of TF-1 cells, suggesting their extinction could contribute to monocytic lineage development. This study demonstrates that this gene trap approach is a useful method for identifying novel, specific cytokine-responsive genes that are involved in the regulation of hematopoiesis.
Collapse
|
41
|
Reddy EP, Korapati A, Chaturvedi P, Rane S. IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene 2000; 19:2532-47. [PMID: 10851052 DOI: 10.1038/sj.onc.1203594] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hematopoiesis is the cumulative result of intricately regulated signal transduction cascades that are mediated by cytokines and their cognate receptors. Proper culmination of these diverse signaling pathways forms the basis for an orderly generation of different cell types and aberrations in these pathways is an underlying cause for diseases such as cancer. Over the past several years, downstream events initiated upon cytokine/growth factor stimulation have been a major focus of biomedical research. As a result, several key concepts have emerged allowing a better understanding of the complex signaling processes. A group of novel transcription factors, termed signal transducers and activators of transcription (STATs) appear to orchestrate the downstream events propagated by cytokine/growth factor interactions with their cognate receptors. Until recently, the JAK proteins were considered to be the tyrosine kinases, which dictated the levels of phosphorylation and activation of STAT proteins, forming the basis of the JAK-STAT model. However, over the past few years, increasing evidence has accumulated which indicates that at least some of the STAT protein activation may be mediated by members of the Src gene family following cytokine/growth factor stimulation. Studies have demonstrated that the Src-family of tyrosine kinases can phosphorylate and activate certain STAT proteins, in lieu of JAK kinases. In such a scenario, JAK kinases may be more crucial to phosphorylation of the cytokine/growth factor receptors and in the process create docking sites on the receptors for binding of SH2-containing proteins such as STATs, Src-kinases and other signaling intermediates. Tyrosine phosphorylation and activation of STAT proteins can be achieved either by JAKs or Src-kinases depending on the nature of STAT that is being activated. This forms the basis for the JAK-Src-STAT model proposed in this review. The concerted action of JAK kinases, members of the Src-kinase family and STAT proteins, leads to cell proliferation and cell survival, the end-point of the cytokine/growth factor stimulus. Oncogene (2000).
Collapse
Affiliation(s)
- E P Reddy
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 N Broad Street, Philadelphia, Pennsylvania, PA 19140, USA
| | | | | | | |
Collapse
|
42
|
Watanabe S, Aoki Y, Nishijima I, Xu M, Arai K. Analysis of signals and functions of the chimeric human granulocyte-macrophage colony-stimulating factor receptor in BA/F3 cells and transgenic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3635-44. [PMID: 10725720 DOI: 10.4049/jimmunol.164.7.3635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Receptors for GM-CSF, IL-3, and IL-5 are composed of two subunits: alpha, which is specific for each cytokine, and betac, which is shared by all. Although the role of betac in signal transduction has been extensively studied, the role of the alpha subunit has remained to be clarified. To analyze the role of the human (h) GM-CSF receptor alpha subunit, we constructed a chimeric receptor subunit composed of extracellular and transmembrane regions of alpha fused with the cytoplasmic region of betac, designated alpha/beta. In BA/F3 cells, chimeric receptor composed of alpha/beta,beta can transduce signals for mitogen-activated protein kinase cascade activation and proliferation in response to hGM-CSF. Although phosphorylation of Jak1 but not of Jak2 occurred with stimulation of hGM-CSF, the dominant-negative Jak2 but not the dominant-negative Jak1 suppresses c-fos promoter activation. To determine whether the chimeric receptor alpha/beta,beta is functional in vivo, we developed transgenic mice expressing the chimeric receptor alpha/beta,beta. Bone marrow cells from the transgenic mice expressing the alpha/beta,beta receptor form not only GM colonies but also various lineages of colonies in response to GM-CSF. In addition, mast cells were produced when bone marrow cells of the transgenic mouse were cultured with hGM-CSF. Thus, it appears that the cytoplasmic region of the alpha subunit is not required for hGM-CSF promoting activities, even in bone marrow cells.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Cell Count
- Cell Culture Techniques
- Cell Division/genetics
- Cell Division/immunology
- Cell Line
- Cells, Cultured
- Crosses, Genetic
- Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage
- Humans
- Injections, Intralymphatic
- Injections, Subcutaneous
- Intracellular Signaling Peptides and Proteins
- Janus Kinase 1
- Janus Kinase 2
- Methylcellulose
- Mice
- Mice, Inbred C3H
- Mice, Transgenic
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/physiology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/physiology
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/drug effects
- Thymus Gland/cytology
- Thymus Gland/drug effects
- Thymus Gland/metabolism
- src Homology Domains/genetics
- src Homology Domains/immunology
Collapse
Affiliation(s)
- S Watanabe
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
43
|
D'Andrea RJ, Gonda TJ. A model for assembly and activation of the GM-CSF, IL-3 and IL-5 receptors: insights from activated mutants of the common beta subunit. Exp Hematol 2000; 28:231-43. [PMID: 10720688 DOI: 10.1016/s0301-472x(99)00159-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF), Interleukin-3 (IL-3) and Interleukin-5 (IL-5) have overlapping, pleiotropic effects on hematopoietic cells, including neutrophils, eosinophils, monocytes and early progenitor cells. The high-affinity receptors for human GM-CSF, IL-3, and IL-5 share a common beta-subunit (hbeta(c)), which is essential for signalling and plays a major role in recruiting intracellular signalling molecules. While activation of the cytoplasmic tyrosine kinase JAK2 appears to be the initiating event for signalling, the immediate events that trigger this are still unclear. We have isolated a number of activated mutants of hbeta(c), which can be grouped into classes defined by their state of receptor phosphorylation, their requirement for alpha subunit as a cofactor, and their activities in primary cells and cell lines. We discuss these findings with regard to the stoichiometry, activation, and signalling of the normal GM-CSF/IL-3/IL-5 receptor complexes. Specifically, this work has implications for the role of the ligand-specific alpha-subunits in initiating the signalling through the beta-subunit, the role of beta subunit dimerization as a receptor trigger, and the function of receptor tyrosine phosphorylation in generating growth and survival signals. Based on the properties of the activated mutants and the recent structures of erythropoietin receptor (Epo-R) complexes, we propose a model in which (1) activation of hbeta(c) can occur via alternative states that differ with respect to stoichiometry and subunit assembly, but which all mediate proliferative responses, and (2) each of the different classes of activated mutants mimics one of these alternative states.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Humans
- Interleukin-3/metabolism
- Interleukin-5/metabolism
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/chemistry
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-3/chemistry
- Receptors, Interleukin-3/genetics
- Receptors, Interleukin-3/metabolism
- Receptors, Interleukin-5
- Signal Transduction
Collapse
Affiliation(s)
- R J D'Andrea
- Hanson Centre for Cancer Research and, Adelaide, South Australia, Australia
| | | |
Collapse
|
44
|
Novel murine myeloid cell lines that exhibit a differentiation switch in response to IL-3 or GM-CSF, or to different constitutively active mutants of the GM-CSF receptor β subunit. Blood 2000. [DOI: 10.1182/blood.v95.1.120.001k08_120_127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several activating mutations have recently been described in the common β subunit for the human interleukin(IL)-3, IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors (hβc). Two of these, FIΔ and I374N, result, respectively, in a 37–amino acid duplication and an isoleucine-to-asparagine substitution in the extracellular domain. A third, V449E, leads to valine-to–glutamic acid substitution in the transmembrane domain. Previous studies have shown that when expressed in murine hemopoietic cells in vitro, the extracellular mutants can confer factor independence on only the granulocyte-macrophage lineage while the transmembrane mutant can do so to all cell types of the myeloid and erythroid compartments. To further study the signaling properties of the constitutively active hβc mutants, we have used novel murine hemopoietic cell lines, which we describe in this report. These lines, FDB1 and FDB2, proliferate in murine IL-3 and undergo granulocyte-macrophage differentiation in response to murine GM-CSF. We find that while the transmembrane mutant, V449E, confers factor-independent proliferation on these cell lines, the extracellular hβc mutants promote differentiation. Hence, in addition to their ability to confer factor independence on distinct cell types, transmembrane and extracellular activated hβc mutants deliver distinct signals to the same cell type. Thus, the FDB cell lines, in combination with activated hβc mutants, constitute a powerful new system to distinguish between signals that determine hemopoietic proliferation or differentiation. (Blood. 2000;95:120-127)
Collapse
|
45
|
Novel murine myeloid cell lines that exhibit a differentiation switch in response to IL-3 or GM-CSF, or to different constitutively active mutants of the GM-CSF receptor β subunit. Blood 2000. [DOI: 10.1182/blood.v95.1.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSeveral activating mutations have recently been described in the common β subunit for the human interleukin(IL)-3, IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors (hβc). Two of these, FIΔ and I374N, result, respectively, in a 37–amino acid duplication and an isoleucine-to-asparagine substitution in the extracellular domain. A third, V449E, leads to valine-to–glutamic acid substitution in the transmembrane domain. Previous studies have shown that when expressed in murine hemopoietic cells in vitro, the extracellular mutants can confer factor independence on only the granulocyte-macrophage lineage while the transmembrane mutant can do so to all cell types of the myeloid and erythroid compartments. To further study the signaling properties of the constitutively active hβc mutants, we have used novel murine hemopoietic cell lines, which we describe in this report. These lines, FDB1 and FDB2, proliferate in murine IL-3 and undergo granulocyte-macrophage differentiation in response to murine GM-CSF. We find that while the transmembrane mutant, V449E, confers factor-independent proliferation on these cell lines, the extracellular hβc mutants promote differentiation. Hence, in addition to their ability to confer factor independence on distinct cell types, transmembrane and extracellular activated hβc mutants deliver distinct signals to the same cell type. Thus, the FDB cell lines, in combination with activated hβc mutants, constitute a powerful new system to distinguish between signals that determine hemopoietic proliferation or differentiation. (Blood. 2000;95:120-127)
Collapse
|
46
|
Haman A, Cadieux C, Wilkes B, Hercus T, Lopez A, Clark S, Hoang T. Molecular determinants of the granulocyte-macrophage colony-stimulating factor receptor complex assembly. J Biol Chem 1999; 274:34155-63. [PMID: 10567387 DOI: 10.1074/jbc.274.48.34155] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GMR) is composed of two chains that belong to the superfamily of cytokine receptors typified by the growth hormone receptor. A common structural element found in cytokine receptors is a module of two fibronectin-like domains, each characterized by seven beta-strands denoted A-G and A'-G', respectively. The alpha-chain (GMRalpha) confers low affinity GM-CSF binding (K(d) = 1-5 nM), whereas the beta-chain (beta(c)) does not bind GM-CSF by itself but confers high affinity binding when associated with alpha (K(d) = 40-100 pM). In the present study, we define the molecular determinants required for ligand recognition and for stabilization of the complex through a convergence of several approaches, including the construction of chimeric receptors, the molecular dynamics of our three-dimensional model of the GM.GMR complex, and site-directed mutagenesis. The functional importance of individual residues was then investigated through ligand binding studies at equilibrium and through determination of the kinetic constants of the GM.GMR complex. Critical to this tripartite complex is the establishment of four noncovalent bonds, three that determine the nature of the ligand recognition process involving residues Arg(280) and Tyr(226) of the alpha-chain and residue Tyr(365) of the beta-chain, since mutations of either one of these residues resulted in a significant decrease in the association rate. Finally, residue Tyr(365) of beta(c) serves a dual function in that it cooperates with another residue of beta(c), Tyr(421) to stabilize the complex since mutation of Tyr(365) and Tyr(421) result in a drastic increase in the dissociation rate (Koff). Interestingly, these four residues are located at the B'-C' and F'-G' loops of GMRalpha and of beta(c), thus establishing a functional symmetry within an apparently asymmetrical heterodimeric structure.
Collapse
Affiliation(s)
- A Haman
- The Clinical Research Institute of Montreal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Kafert S, Luther S, Böll I, Wagner K, Ganser A, Eder M. Functional analysis of a single chain chimeric alpha/beta-granulocyte-macrophage colony-stimulating factor receptor. Importance of a glutamate residue in the transmembrane region. J Biol Chem 1999; 274:33064-71. [PMID: 10551876 DOI: 10.1074/jbc.274.46.33064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To analyze the function of each subunit of the receptor for granulocyte-macrophage colony-stimulating factor (GM-CSF), GMR, we previously generated a single-chain chimeric receptor by fusion of the extracellular and transmembrane domain from the alpha-subunit (alpha-GMR) to the intracellular part of the beta-subunit (beta-GMR) introducing an additional glutamate residue at the fusion site (alpha/beta-GMR). We demonstrated the capacity of alpha/beta-GMR to bind GM-CSF with low affinity and to induce GM-CSF-dependent activation of tyrosine kinase activity and proliferation in transfected Ba/F3 cells. To further compare the functions of wild type and chimeric receptors, we now report that this alpha/beta-GMR is sufficient to mediate morphological changes, expression of alpha(4)- and beta(1)-integrin receptor subunits, and serine-phosphorylation of Akt kinase. To analyze the function of the glutamate residue at the fusion region of alpha/beta-GMR various point mutants changing this amino acid and its position were expressed in Ba/F3 cells. None of these mutants was capable of supporting GM-CSF-dependent proliferation; however, when beta-GMR was coexpressed, GM-CSF mediated short and long term proliferation. Interestingly, some mutants but not alpha/beta-GMR can induce proliferation in the presence of an anti-alpha-GMR antibody. These data demonstrate the significance of a glutamate residue in the transmembrane region of alpha/beta-GMR for ligand-induced receptor activation.
Collapse
Affiliation(s)
- S Kafert
- Department of Hematology, Hannover Medical School, D-30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Lee C, Piazza F, Brutsaert S, Valens J, Strehlow I, Jarosinski M, Saris C, Schindler C. Characterization of the Stat5 protease. J Biol Chem 1999; 274:26767-75. [PMID: 10480881 DOI: 10.1074/jbc.274.38.26767] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Immature myeloid cells have been shown to transduce signals through a carboxyl-terminally truncated isoform of Stat5. This functionally distinct signal transducer and activator of transcription isoform is generated through a unique protein-processing event. Evaluation of numerous cell lines has determined that there is a direct correlation between the expression of truncated Stat5 and protease activity. Moreover, protease activity is found only in the myeloid and not in lymphoid progenitors. To further characterize the protease small quantities have been purified to near homogeneity. Studies on this purified material indicate that the protease has an apparent molecular mass of approximately 25 kDa and is active over a wide range of pH values. The protease will also cleave both activated (i.e. tyrosine-phosphorylated) and inactivate Stat5. Although this activity is sensitive to phenylmethylsulfonyl fluoride, it is notably not sensitive to several other serine protease inhibitors. Additional studies have led to the identification of the unique site where the protease cleaves Stat5. Mutagenesis of this site renders Stat5 resistant to cleavage. Consistent with the model that Stat5 cleavage is important for early myeloid development, introduction of a "non-cleavable" isoform of Stat5 into FDC-P1 cells (a myeloid progenitor line) leads to significant phenotypic changes.
Collapse
Affiliation(s)
- C Lee
- Departments of Microbiology and Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Activation of Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin-3 Receptor Subunits in a Multipotential Hematopoietic Progenitor Cell Line Leads to Differential Effects on Development. Blood 1999. [DOI: 10.1182/blood.v94.5.1504.417a27_1504_1514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of specific cytokine receptors promotes survival and proliferation of hematopoietic progenitor cells but their role in the control of differentiation is unclear. To address this issue, the effects of human interleukin-3 (hIL-3) and human granulocyte-macrophage colony-stimulating factor (hGM-CSF) on hematopoietic development were investigated in hematopoietic progenitor cells. Murine multipotent factor-dependent cell-Paterson (FDCP)-mix cells, which can self-renew or differentiate, were transfected with the genes encoding the unique and/or shared βc human hIL-3 receptor (hIL-3 R) or hGM-CSF receptor (hGM R) subunits by retroviral gene transfer. Selective activation of hIL-3 R,βc or hGM R,βc transfects by hIL-3 and hGM-CSF promoted self-renewal and myeloid differentiation, respectively, over a range of cytokine (0.1 to 100 ng/mL) concentrations. These qualitatively distinct developmental outcomes were associated with different patterns of protein tyrosine phosphorylation and, thus, differential signaling pathway activation. The cell lines generated provide a model to investigate molecular events underlying self-renewal and differentiation and indicate that the subunits act in combination with the hβc to govern developmental decisions. The role of the subunit in conferring specificity was studied by using a chimeric receptor composed of the extracellular hIL-3 R and intracellular hGM R subunit domains. This receptor promoted differentiation in response to hIL-3. Thus, the subunit cytosolic domain is an essential component in determining cell fate via specific signaling events.
Collapse
|
50
|
Activation of Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin-3 Receptor Subunits in a Multipotential Hematopoietic Progenitor Cell Line Leads to Differential Effects on Development. Blood 1999. [DOI: 10.1182/blood.v94.5.1504] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractActivation of specific cytokine receptors promotes survival and proliferation of hematopoietic progenitor cells but their role in the control of differentiation is unclear. To address this issue, the effects of human interleukin-3 (hIL-3) and human granulocyte-macrophage colony-stimulating factor (hGM-CSF) on hematopoietic development were investigated in hematopoietic progenitor cells. Murine multipotent factor-dependent cell-Paterson (FDCP)-mix cells, which can self-renew or differentiate, were transfected with the genes encoding the unique and/or shared βc human hIL-3 receptor (hIL-3 R) or hGM-CSF receptor (hGM R) subunits by retroviral gene transfer. Selective activation of hIL-3 R,βc or hGM R,βc transfects by hIL-3 and hGM-CSF promoted self-renewal and myeloid differentiation, respectively, over a range of cytokine (0.1 to 100 ng/mL) concentrations. These qualitatively distinct developmental outcomes were associated with different patterns of protein tyrosine phosphorylation and, thus, differential signaling pathway activation. The cell lines generated provide a model to investigate molecular events underlying self-renewal and differentiation and indicate that the subunits act in combination with the hβc to govern developmental decisions. The role of the subunit in conferring specificity was studied by using a chimeric receptor composed of the extracellular hIL-3 R and intracellular hGM R subunit domains. This receptor promoted differentiation in response to hIL-3. Thus, the subunit cytosolic domain is an essential component in determining cell fate via specific signaling events.
Collapse
|