1
|
Molecular details of dimerization kinetics reveal negligible populations of transient µ-opioid receptor homodimers at physiological concentrations. Sci Rep 2018; 8:7705. [PMID: 29769636 PMCID: PMC5955887 DOI: 10.1038/s41598-018-26070-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/01/2018] [Indexed: 11/08/2022] Open
Abstract
Various experimental and computational techniques have been employed over the past decade to provide structural and thermodynamic insights into G Protein-Coupled Receptor (GPCR) dimerization. Here, we use multiple microsecond-long, coarse-grained, biased and unbiased molecular dynamics simulations (a total of ~4 milliseconds) combined with multi-ensemble Markov state models to elucidate the kinetics of homodimerization of a prototypic GPCR, the µ-opioid receptor (MOR), embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol lipid bilayer. Analysis of these computations identifies kinetically distinct macrostates comprising several different short-lived dimeric configurations of either inactive or activated MOR. Calculated kinetic rates and fractions of dimers at different MOR concentrations suggest a negligible population of MOR homodimers at physiological concentrations, which is supported by acceptor photobleaching fluorescence resonance energy transfer (FRET) experiments. This study provides a rigorous, quantitative explanation for some conflicting experimental data on GPCR oligomerization.
Collapse
|
2
|
Expression and purification of functional human mu opioid receptor from E.coli. PLoS One 2013; 8:e56500. [PMID: 23437147 PMCID: PMC3578875 DOI: 10.1371/journal.pone.0056500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 01/10/2013] [Indexed: 12/17/2022] Open
Abstract
N-terminally his-tagged human mu opioid receptor, a G protein-coupled receptor was produced in E.coli employing synthetic codon-usage optimized constructs. The receptor was expressed in inclusion bodies and membrane-inserted in different E.coli strains. By optimizing the expression conditions the expression level for the membrane-integrated receptor was raised to 0.3–0.5 mg per liter of culture. Milligram quantities of receptor could be enriched by affinity chromatography from IPTG induced cultures grown at 18°C. By size exclusion chromatography the protein fraction with the fraction of alpha-helical secondary structure expected for a 7-TM receptor was isolated, by CD-spectroscopy an alpha-helical content of ca. 45% was found for protein solubilised in the detergent Fos-12. Receptor in Fos-12 micelles was shown to bind endomorphin-1 with a KD of 61 nM. A final yield of 0.17 mg functional protein per liter of culture was obtained.
Collapse
|
3
|
Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacol Ther 2010; 128:387-418. [PMID: 20705094 DOI: 10.1016/j.pharmthera.2010.07.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 11/23/2022]
Abstract
The Sf9 cell/baculovirus expression system is widely used for high-level protein expression, often with the purpose of purification. However, proteins may also be functionally expressed in the defined Sf9 cell environment. According to the literature, the pharmacology of G-protein-coupled receptors (GPCRs) functionally reconstituted in Sf9 cells is similar to the receptor properties in mammalian cells. Sf9 cells express both recombinant GPCRs and G-proteins at much higher levels than mammalian cells. Sf9 cells can be grown in suspension culture, providing an inexpensive way of obtaining large protein amounts. Co-infection with various baculoviruses allows free combination of GPCRs with different G-proteins. The absence of constitutively active receptors in Sf9 cells provides an excellent signal-to background ratio in functional assays, allowing the detection of agonist-independent receptor activity and of small ligand-induced signals including partial agonistic and inverse agonistic effects. Insect cell Gα(i)-like proteins mostly do not couple productively to mammalian GPCRs. Thus, unlike in mammalian cells, Sf9 cells do not require pertussis toxin treatment to obtain a Gα(i)-free environment. Co-expression of GPCRs with Gα(i1), Gα(i2), Gα(i3) or Gα(o) in Sf9 cells allows the generation of a selectivity profile for these Gα(i/o)-isoforms. Additionally, GPCR-G-protein combinations can be compared with defined 1:1 stoichiometry by expressing GPCR-Gα fusion proteins. Sf9 cells can also be employed for ligand screening in medicinal chemistry programs, using radioligand binding assays or functional assays, like the steady-state GTPase- or [(35)S]GTPγS binding assay. This review shows that Sf9 cells are a versatile model system to investigate the pharmacological properties of GPCRs.
Collapse
|
4
|
Kuszak AJ, Pitchiaya S, Anand JP, Mosberg HI, Walter NG, Sunahara RK. Purification and functional reconstitution of monomeric mu-opioid receptors: allosteric modulation of agonist binding by Gi2. J Biol Chem 2009; 284:26732-41. [PMID: 19542234 DOI: 10.1074/jbc.m109.026922] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite extensive characterization of the mu-opioid receptor (MOR), the biochemical properties of the isolated receptor remain unclear. In light of recent reports, we proposed that the monomeric form of MOR can activate G proteins and be subject to allosteric regulation. A mu-opioid receptor fused to yellow fluorescent protein (YMOR) was constructed and expressed in insect cells. YMOR binds ligands with high affinity, displays agonist-stimulated [(35)S]guanosine 5'-(gamma-thio)triphosphate binding to Galpha(i), and is allosterically regulated by coupled G(i) protein heterotrimer both in insect cell membranes and as purified protein reconstituted into a phospholipid bilayer in the form of high density lipoprotein particles. Single-particle imaging of fluorescently labeled receptor indicates that the reconstituted YMOR is monomeric. Moreover, single-molecule imaging of a Cy3-labeled agonist, [Lys(7), Cys(8)]dermorphin, illustrates a novel method for studying G protein-coupled receptor-ligand binding and suggests that one molecule of agonist binds per monomeric YMOR. Together these data support the notion that oligomerization of the mu-opioid receptor is not required for agonist and antagonist binding and that the monomeric receptor is the minimal functional unit in regard to G protein activation and strong allosteric regulation of agonist binding by G proteins.
Collapse
Affiliation(s)
- Adam J Kuszak
- Departments of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Korepanova A, Pereda-Lopez A, Solomon LR, Walter KA, Lake MR, Bianchi BR, McDonald HA, Neelands TR, Shen J, Matayoshi ED, Moreland RB, Chiu ML. Expression and purification of human TRPV1 in baculovirus-infected insect cells for structural studies. Protein Expr Purif 2008; 65:38-50. [PMID: 19121396 DOI: 10.1016/j.pep.2008.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/11/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
TRPV1 is a ligand-gated cation channel that is involved in acute thermal nociception and neurogenic inflammation. By using the GP67 signal peptide, high levels of full-length human TRPV1 was expressed in High Five insect cells using the baculovirus expression system. The functional activity of the expressed TRPV1 was confirmed by whole-cell ligand-gated ion flux recordings in the presence of capsaicin and low pH and via specific ligand binding to the isolated cellular membranes. Efficient solubilization and purification protocols have resulted in milligram amounts of detergent-solubilized channel at 80-90% purity after Ni2+ IMAC chromatography and size exclusion chromatography. Western blot analysis of amino and carboxyl terminal domains and MS of tryptic digestions of purified protein confirmed the presence of the full-length human TRPV1. Specific ligand binding experiments confirmed the protein integrity of the purified human TRPV1.
Collapse
Affiliation(s)
- Alla Korepanova
- Department of Structural Biology, R46Y, Abbott Laboratories, Bldg. AP10-LL8, 100 Abbott Park Rd., Abbott Park, IL 60064-6098, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Swift JL, Burger MC, Massotte D, Dahms TES, Cramb DT. Two-photon excitation fluorescence cross-correlation assay for ligand-receptor binding: cell membrane nanopatches containing the human micro-opioid receptor. Anal Chem 2007; 79:6783-91. [PMID: 17683166 DOI: 10.1021/ac0709495] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Current ligand-receptor binding assays for G-protein coupled receptors cannot directly measure the system's dissociation constant, Kd, without purification of the receptor protein. Accurately measured Kd's are essential in the development of a molecular level understanding of ligand-receptor interactions critical in rational drug design. Here we report the introduction of two-photon excitation fluorescence cross-correlation spectroscopy (TPE-FCCS) to the direct analysis of ligand-receptor interactions of the human micro opioid receptor (hMOR) for both agonists and antagonists. We have developed the use of fluorescently distinct, dye-labeled hMOR-containing cell membrane nanopatches ( approximately 100-nm radius) and ligands, respectively, for this assay. We show that the output from TPE-FCCS data sets can be converted to the conventional Hill format, which provides Kd and the number of active receptors per nanopatch. When ligands are labeled with quantum dots, this assay can detect binding with ligand concentrations in the subnanomolar regime. Interestingly, conjugation to a bulky quantum dot did not adversely affect the binding propensity of the hMOR pentapeptide ligand, Leu-enkephalin.
Collapse
Affiliation(s)
- Jody L Swift
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
7
|
Ratnala VRP. New tools for G-protein coupled receptor (GPCR) drug discovery: combination of baculoviral expression system and solid state NMR. Biotechnol Lett 2006; 28:767-78. [PMID: 16786240 DOI: 10.1007/s10529-006-9005-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Biotechnology using molecular biology, biochemistry, biophysics, and computational approaches provides an alternative approach for classical pharmacological screening to look at ligand-receptor interactions and receptor specificity, which should support the design of selective drugs based on detailed structural principles. This review addresses specific approaches to study function, structure and relevance of a major pharmaceutical target, namely the G-Protein Coupled Receptors (GPCRs). The main aim of this review has been to exploit and combine GPCR over-expression in a baculoviral expression system with solid-state MAS NMR (ssNMR) approaches for the elucidation of electronic structures of the coordinating ligands/drugs and their modes of interactions with the GPCRs. This review summarizes the approaches, possible future experiments and developments using the above combination of tools for GPCR drug discovery.
Collapse
Affiliation(s)
- Venkata R P Ratnala
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RALeiden, The Netherlands.
| |
Collapse
|
8
|
Expression and functional purification of a glycosylation deficient version of the human adenosine 2a receptor for structural studies. Protein Expr Purif 2006; 49:129-37. [PMID: 16630725 DOI: 10.1016/j.pep.2006.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/01/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
A glycosylation deficient (dG) version of the human adenosine 2a receptor (hA2aR) was made in Pichia pastoris strain SMD1163. Under optimal conditions, expression levels of between 8 and 12pmol receptor/mg membrane protein were obtained routinely. In a shake flask, this is equivalent to ca. 0.2mg of receptor per litre of culture. The level of functional receptor produced was essentially independent of the pH of the yeast media. In contrast to this, addition of the hA2aR antagonist theophylline to the culture media caused a twofold increase in receptor expression. A similar effect on dG hA2aR production was also observed when the induction temperature was reduced from 29 to 22 degrees C. In P. pastoris membranes, dG hA2aR had native-like pharmacological properties, binding antagonists with rank potency ZM241385>XAC>theophylline, as well as the agonist NECA. Furthermore, the receptor was made with its large (ca. 120 amino acid) C-terminal domain intact. dG hA2aR was purified to homogeneity in three steps, and its identity confirmed by electrospray tandem mass spectrometry following digestion with trypsin. The secondary structure of the entire receptor is largely (ca. 81%) alpha-helical. Purified dG hA2aR bound [(3)H]ZM241385 in a saturable manner with a B(max) of 18.1+/-0.5 nmol/mg protein, close to the theoretical B(max) value for pure protein (21.3 nmol/mg protein), showing that the receptor had retained its functionality during the purification process. Regular production of pure dG hA2aR in milligram quantities has enabled crystallisation trials to be started.
Collapse
|
9
|
Ananthanarayanan VS, Kerman A. Role of metal ions in ligand-receptor interaction: insights from structural studies. Mol Cell Endocrinol 2006; 246:53-9. [PMID: 16368180 DOI: 10.1016/j.mce.2005.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Experimental data indicate that metal ions such as Na(+), Ca(2+) and Mg(2+), which are present in millimolar concentrations in the extracellular environment, modulate binding of ligands to plasma membrane receptors. Here, we briefly review structural studies that demonstrate that various types of ligands, including peptide hormones and drugs, bind metal ions, in particular Ca(2+), in the lipid milieu. We propose that the metal ion-bound forms of ligands represent their bioactive conformations. With a view to understanding the mechanism of modulation of ligand-receptor interactions by metal ions, we have computed a homology model of the mu-opioid receptor, a G protein-coupled receptor (GPCR), and performed docking of specific agonist and antagonist ligands in the receptor. This resulted in the formation of a ligand-metal ion-receptor (ternary) complex which accounted for the data on the structure-activity relationships of ligands and mutation data on the receptor. Based on experimental and modeling data, we have proposed a general mechanism of activation of GPCRs by their corresponding ligands wherein metal ions play a pivotal role. Studies on overexpressed segments of mu-receptor are in progress to verify the above proposal.
Collapse
Affiliation(s)
- Vettai S Ananthanarayanan
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main St. W., Hamilton, Ont., Canada L8N 3Z5.
| | | |
Collapse
|
10
|
Chang MO, Yamamoto N, Horiuchi S, Wu YF, Fujimoto M, Yamamoto N. Production and characterization of a monoclonal antibody specific to Nef-associated factor 1 (Naf1)/A20-binding inhibitor of NF-kappaB activation (ABIN-1). Hybridoma (Larchmt) 2006; 24:248-57. [PMID: 16225425 DOI: 10.1089/hyb.2005.24.248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cellular protein Naf1 (Nef-associated factor 1) or ABIN-1 (A20-binding inhibitor of NF-kappaB activation) is an important cellular protein, expressed in various human tissues and T-cell lines. Naf1 protein has two isoforms (Naf1alpha and Naf1beta) with different C-termini, produced by alternative splicing. Naf1alpha and Naf1beta have approximately 2800 and 2600 nucleotides, with an open reading frame of 1941 and 1781 nucleotides, encoding the 72-kDa Naf1alpha and 68-kDa Naf1beta proteins, respectively. In the present study, we generated a monoclonal antibody (MAb) against human Naf1, which recognizes full-length, endogenous Naf1 of both isotypes. For this purpose, recombinant 6xHis and myc-tagged N-terminal Naf1(38135), Naf1(N) protein was produced by using the baculovirus expression system. Recombinant Naf1(N) protein was used to immunize Balb/c mice, and a hybridoma cell line producing stable and highly specific MAb with strong affinity to Naf1 was established. We further characterized this antibody by immunofluorescent assay and Western blot analysis to confirm effectiveness in detecting recombinant and endogenous Naf1. By Western blot analysis of recombinant Naf1-N fusion proteins with overlapping N-terminal sequences, the epitope targeted by anti-Naf1 MAb was determined as the 81-88-amino acid region of human Naf1.
Collapse
Affiliation(s)
- Myint Oo Chang
- Department of Molecular Virology, Bio-Response, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Akermoun M, Koglin M, Zvalova-Iooss D, Folschweiller N, Dowell SJ, Gearing KL. Characterization of 16 human G protein-coupled receptors expressed in baculovirus-infected insect cells. Protein Expr Purif 2006; 44:65-74. [PMID: 15951199 DOI: 10.1016/j.pep.2005.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 04/21/2005] [Accepted: 04/24/2005] [Indexed: 10/25/2022]
Abstract
Understanding the three-dimensional structure of G protein-coupled receptors (GPCRs) has been limited by the technical challenges associated with expression, purification, and crystallization of membrane proteins, and their low abundance in native tissue. In the first large-scale comparative study of GPCR protein production using recombinant baculovirus, we report the characterization of 16 human receptors. The GPCRs were produced in three insect cell lines and functional protein levels monitored over 72 h using radioligand binding assays. Different GPCRs exhibited widely different expression levels, ranging from less than 1 pmol receptor/mg protein to more than 250 pmol/mg. No single set of conditions was suitable for all GPCRs, and large differences were seen for the expression of individual GPCRs in different cell lines. Closely related GPCRs did not share similar expression profiles; however, high expression (greater than 20 pmol/mg) was achieved for over half the GPCRs in our study. Overall, the levels of protein production compared favourably to other published systems.
Collapse
Affiliation(s)
- Malika Akermoun
- Gene Expression and Protein Biochemistry, GlaxoSmithKline Research and Development, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | | | | | | | | | | |
Collapse
|
12
|
Knight PJK, Grigliatti TA. Chimeric G proteins extend the range of insect cell-based functional assays for human G protein-coupled receptors. J Recept Signal Transduct Res 2005; 24:241-56. [PMID: 15648445 DOI: 10.1081/rrs-200035217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We previously described a functional assay for G protein-coupled receptors (GPCRs) based on stably transformed insect cells and using the promiscuous G protein Galpha16. We now show that, compared with Galpha16, the use of chimeric Galphaq subunits with C-terminal modifications (qi5-HA, qo5-HA, or qz5-HA) significantly enhances the ability of insect cells to redirect Gi-coupled GPCRs into a Gq-type signal transduction pathway. We coexpressed human Gi-coupled GPCRs, G protein alpha subunits (either a chimeric Galphaq or Galpha16), and the calcium-sensitive reporter protein aequorin in Sf9 cells using a nonlytic protein expression system, and measured agonist-induced intracellular calcium flux using a luminometer. Three of the GPCRs (serotonin 1A, 1D, and dopamine D2) were functionally redirected into a Gq-type pathway when coexpressed with the chimeric G proteins, compared with only one (serotonin 1A) with Galpha16. We determined agonist concentration-response relationships for all three receptors, which yielded EC50 values comparable with those achieved in mammalian cell-based assay systems. However, three other Gi-coupled GPCRs (the opioid kappa1 and delta1 receptors, and serotonin 1E) were not coupled to calcium flux by either the G protein chimeras or Galpha16. Possible reasons and solutions for this result are discussed.
Collapse
Affiliation(s)
- Peter J K Knight
- Department of Biochemistry, University of Cambridge, Cambridge, Cambs, UK
| | | |
Collapse
|
13
|
Kerman A, Ananthanarayanan VS. Expression and spectroscopic characterization of a large fragment of the μ-opioid receptor. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1747:133-40. [PMID: 15680247 DOI: 10.1016/j.bbapap.2004.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 10/13/2004] [Accepted: 10/13/2004] [Indexed: 11/28/2022]
Abstract
We report here a procedure for the production in Escherichia coli and subsequent purification and characterization of an 80-residue fragment of the human mu-opioid receptor. The fragment ('TM2-3'), which comprises the second and third transmembrane segments as well as the first extracellular loop of the receptor, was expressed as a fusion with glutathione-S-transferase. The fusion protein, which accumulated in insoluble inclusion bodies, was solubilized with N-lauroylsarcosine, and TM2-3 was obtained by thrombin cleavage of the fusion protein followed by reversed-phase HPLC purification. CD spectroscopy of TM2-3 in lysophosphatidylcholine micelles showed that TM2-3 adopts approximately 50% alpha-helical structure in this environment, with the remainder consisting of disordered and/or beta-structure. This is consistent with the assumption of an alpha-helical structure by the two membrane-spanning regions and a nonhelical structure in the loop region of TM2-3. Fluorescence spectroscopy and fluorescence quenching experiments suggested that the extracellular loop lies near the surface of the lysophosphatidylcholine micelle. Our work shows that the study of large receptor fragments is a technically accessible approach to the study of the structural properties of the mu-opioid receptor and, possibly, other G-protein-coupled receptors as well.
Collapse
Affiliation(s)
- Aaron Kerman
- Department of Biochemistry, HSC 4H25, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | |
Collapse
|
14
|
Liu ZH, He Y, Jin WQ, Chen XJ, Shen QX, Chi ZQ. Effect of chronic treatment of ohmefentanyl stereoisomers on cyclic AMP formation in Sf9 insect cells expressing human mu-opioid receptors. Life Sci 2004; 74:3001-8. [PMID: 15051423 DOI: 10.1016/j.lfs.2003.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 10/21/2003] [Indexed: 10/26/2022]
Abstract
The binding affinity of ohmefentanyl stereoisomers for mu-opioid receptors and the effect of chronic ohmefentanyl stereoisomers pretreatments on intracellular cAMP formation were investigated in Sf9 insect cells expressing human mu-opioid receptors (Sf9-mu cells). Competitive assay of [3H]ohmefentanyl binding revealed that these isomers had high affinity for micro-opioid receptors in Sf9-mu cells. Isomer F9204 had the highest affinity for mu-opioid receptors with the Ki value of 1.66 +/- 0.28 nM. After pretreated Sf9-mu cells with increasing concentrations of these isomers for 6 h, addition of naloxone (1 microM) precipitated an overshoot of foskolin-stimulated cAMP accumulation. The ability of these isomers to induce cAMP overshoot differed greatly with the order of F9202>F9205>F9208>F9206>F9204>F9207. Of these isomers, F9202 was 2.7-fold less potent than F9204 in receptor binding affinity, but 71.5-fold more potent in ability to induce cAMP overshoot. These results suggested that there was a significant stereo-structural difference among ohmefentanyl stereoisomers in ability to induce naloxone-precipitated cAMP overshoot in Sf9-mu cells.
Collapse
Affiliation(s)
- Zhong-Hua Liu
- 2nd Department of Pharmacology, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
15
|
Perret BG, Wagner R, Lecat S, Brillet K, Rabut G, Bucher B, Pattus F. Expression of EGFP-amino-tagged human mu opioid receptor in Drosophila Schneider 2 cells: a potential expression system for large-scale production of G-protein coupled receptors. Protein Expr Purif 2003; 31:123-32. [PMID: 12963349 DOI: 10.1016/s1046-5928(03)00140-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The G-protein coupled receptor (GPCR) human mu opioid receptor (hMOR) fused to the carboxy-terminus of the enhanced green fluorescent protein (EGFP) has been successfully and stably expressed in Drosophila Schneider 2 cells under the control of an inducible metallothionein promoter. Polyclonal cells expressing EGFPhMOR display high-affinity, saturable, and specific binding sites for the opioid antagonist diprenorphine. Competition studies with opioid agonists and antagonists defined the pharmacological profile of a mu opioid receptor similar to that observed in mammalian cells, suggesting proper folding of EGFPhMOR in a high-affinity state in Drosophila cells. The functionality of the fusion protein was demonstrated by the ability of agonist to reduce forskolin-stimulated cyclic AMP production and to induce [35S]GTPgammaS incorporation. The EGFPhMOR protein had the expected molecular weight (70kDa), as demonstrated by protein immunoblotting with anti-EGFP and anti-C-terminus hMOR antibodies. However, quantitative EGFP fluorescence intensity analysis revealed that the total level of expressed EGFPhMOR is 8-fold higher than the level of diprenorphine binding sites, indicating that part of the receptor is not in a high-affinity state. This may in part be due to a population of receptors localized in intracellular compartments, as shown by the distribution of fluorescence between the plasma membrane and the cell interior. This study shows that EGFP is a valuable and versatile tool for monitoring and quantifying expression levels as well as for optimizing and characterizing an expression system. Optimization of the Drosophila Schneider 2 cell expression system will allow large-scale purification of GPCRs, thus enabling structural studies to be undertaken.
Collapse
MESH Headings
- Animals
- Binding, Competitive/drug effects
- Blotting, Western
- Cell Line
- Cloning, Molecular
- Colforsin/pharmacology
- Copper Sulfate/pharmacology
- Cyclic AMP/metabolism
- DNA, Complementary/genetics
- Diprenorphine/metabolism
- Diprenorphine/pharmacology
- Drosophila/cytology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- GTP-Binding Proteins/metabolism
- Gene Expression/drug effects
- Genetic Vectors/genetics
- Green Fluorescent Proteins
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Humans
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Metallothionein/genetics
- Microscopy, Confocal
- Morphine/pharmacology
- Naloxone/pharmacology
- Naltrexone/pharmacology
- Oligopeptides/metabolism
- Oligopeptides/pharmacology
- Opioid Peptides
- Pertussis Toxin/pharmacology
- Polymerase Chain Reaction
- Protein Binding/drug effects
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/metabolism
- Spectrometry, Fluorescence
- Thermodynamics
Collapse
Affiliation(s)
- Bénédicte G Perret
- Récepteurs et Protéines Membranaires, UPR CNRS 9050, Ecole Supérieure de Biotechnologie de Strasbourg, Bld Sébastien Brant, B.P. 10413, F-67400, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Massotte D. G protein-coupled receptor overexpression with the baculovirus-insect cell system: a tool for structural and functional studies. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:77-89. [PMID: 12586382 DOI: 10.1016/s0005-2736(02)00720-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G protein-coupled receptors, whose topology shows seven transmembrane domains, form the largest known family of receptors involved in higher organism signal transduction. These receptors are generally of low natural abundance and overexpression is usually a prerequisite to their structural or functional characterisation. The baculovirus-insect cell system constitutes a versatile tool for the maximal production of receptors. This heterologous expression system also provides interesting alternatives for receptor functional studies in a well-controlled cellular context.
Collapse
Affiliation(s)
- Dominique Massotte
- Laboratoire de Biologie et Génomique Structurales, UMR 7104, IGBMC, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch Cedex, France.
| |
Collapse
|
17
|
Warne T, Chirnside J, Schertler GFX. Expression and purification of truncated, non-glycosylated turkey beta-adrenergic receptors for crystallization. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:133-40. [PMID: 12586387 DOI: 10.1016/s0005-2736(02)00716-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to purify milligram quantities of turkey beta-adrenergic receptor (betaAR) for structural analysis, we have expressed mutant betaARs using the baculovirus system. The initial betaAR construct was truncated at both N- and C-termini thus removing an N-glycosylation site. Cys 116 was mutated to leucine and a histidine tag was added at the C-terminus resulting in the betaAR construct 20-424/His6. Expression of this construct in Sf9 cells produced 0.5 mg of unpurified receptor per liter of culture which necessitated the use of a fermenter for large-scale production. The yield was improved more than 2-fold to 1.2 mg/l culture by using Tni cells which facilitated the production of receptor on a 4 litre scale in shake cultures. The receptor was purified to homogeneity with 35% recovery giving a yield of 2 mg receptor. A further deletion at the N-terminus (betaAR 34-424/His6) eliminated proteolysis which had been observed with the original construct and also increased expression more than 5-fold to 360 pmol/mg solubilized membrane protein. This expression level is one of the highest reported for a G protein-coupled receptor (GPCR) and has enabled us to purify 10 mg betaAR for large-scale crystallization experiments.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Baculoviridae/genetics
- Cell Line
- Crystallization
- Culture Media
- Fermentation
- Gene Deletion
- Insecta
- Molecular Sequence Data
- Receptors, Adrenergic, beta/biosynthesis
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/isolation & purification
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/isolation & purification
- Receptors, G-Protein-Coupled
- Saccharomyces cerevisiae Proteins/biosynthesis
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/isolation & purification
- Turkeys
- Up-Regulation
Collapse
Affiliation(s)
- Tony Warne
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
18
|
Kempf J, Snook LA, Vonesch JL, Dahms TES, Pattus F, Massotte D. Expression of the human mu opioid receptor in a stable Sf9 cell line. J Biotechnol 2002; 95:181-7. [PMID: 11911927 DOI: 10.1016/s0168-1656(02)00008-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cDNA that encodes the human mu opioid receptor (hMOR) has been cloned and expressed in Spodoptera frugiperda (Sf9) cells using a nonlytic vector system. The coding sequence fused to the cleavable glycoprotein signal peptide gp 64, and a C-terminal histidine tag was placed under the transcriptional control of the Orgyia pseudotsugata multicapsid nucleopolyhedrosis virus immediate-early 2 (OpIE2) promoter. Transfected cells were selected using Zeocin resistance and the receptor was constitutively expressed at approximately 12000 receptors per cell. Immunofluorescence images illustrated that more than 75% of the Sf9 cells expressed hMOR at the plasma membrane. This is the first report of the constitutive and heterologous expression of a G protein-coupled receptor in a stably transfected Sf9 cell line, under the control of the OpIE2 promoter.
Collapse
Affiliation(s)
- Juliette Kempf
- Département des Récepteurs et Protéines Membranaires, CNRS UPR 9050, Ecole Supérieure de Biotechnologie de Strasbourg, F-67400, Illkirch-Graffenstaden, France
| | | | | | | | | | | |
Collapse
|
19
|
Sarramegna V, Demange P, Milon A, Talmont F. Optimizing functional versus total expression of the human mu-opioid receptor in Pichia pastoris. Protein Expr Purif 2002; 24:212-20. [PMID: 11858715 DOI: 10.1006/prep.2001.1564] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of the EGFP-human mu-opioid receptor fusion protein in the methylotrophic yeast Pichia pastoris was optimized and monitored using both fluorescence and ligand-binding experiments. A set of parameters, including gene copy number, strain type, temperature, pH, and methanol inducer levels, was studied for its effect on the production of the recombinant protein. We show here that the expression level is optimal after 10 h of promoter induction and that the maximum is reached at a lower temperature and a higher pH than normally used. The optimized conditions have allowed a fourfold increase of the ligand-binding active form of the receptor, whereas the total expression level determined by EGFP fluorescence measurements was not modified.
Collapse
Affiliation(s)
- Valérie Sarramegna
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089, Toulouse, France
| | | | | | | |
Collapse
|
20
|
Carpentier E, Lebesgue D, Kamen AA, Hogue M, Bouvier M, Durocher Y. Increased production of active human beta(2)-adrenergic/G(alphas) fusion receptor in Sf-9 cells using nutrient limiting conditions. Protein Expr Purif 2001; 23:66-74. [PMID: 11570847 DOI: 10.1006/prep.2001.1476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using the baculovirus/insect-cell expression vector system, we succeeded in obtaining a high yield of active human beta(2)-adrenergic receptor/G(alphas) fusion protein. This was achieved following high cell density production under nutrient-limiting conditions using a very low multiplicity of infection (MOI). This approach was found to significantly reduce inactive protein accumulation that occurred when production was done using conventional high MOI procedures. The maximum specific and volumetric yields of active receptor using this strategy increased by factors of two- and sixfold, respectively. Our results suggest that the increase in the ratio of active/total protein produced results from production under nutrient limitation. Since low multiplicity of infection offers many advantages for large-scale applications, we suggest that this simple production method should be considered when optimizing expression of G-protein-coupled receptors and other complex proteins.
Collapse
Affiliation(s)
- E Carpentier
- Bioprocess sector, Biotechnology Research Institute, 6100 Royalmount avenue, Montreal, Quebec, H4P 2R2, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Hoffmann M, Verzijl D, Lundstrom K, Simmen U, Alewijnse AE, Timmerman H, Leurs R. Recombinant Semliki Forest virus for over-expression and pharmacological characterisation of the histamine H(2) receptor in mammalian cells. Eur J Pharmacol 2001; 427:105-14. [PMID: 11557261 DOI: 10.1016/s0014-2999(01)01264-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe the use of recombinant Semliki Forest virus (SFV) vectors for efficient expression of the rat histamine H(2) (rH(2)) receptor in COS-7 (African green monkey kidney cells) cells. Recombinant SFV-infected COS-7 cells express the histamine rH(2) receptor in a time-dependent fashion with a maximum expression level of 50 pmol mg(-1) after 40 h. SFV-mediated histamine rH(2) receptor expression shows similar pharmacological properties as the receptor expressed transiently or stably in mammalian cells. In addition, we demonstrate the pharmacological and functional characterisation of the D(115)N mutated histamine rH(2) receptor. It has been shown that the D(115)N mutation renders the receptor constitutively active and structurally unstable. The rapid onset of and high maximal expression levels obtained from SFV-infected COS-7 cells enabled us to characterise this mutant receptor. We prove that recombinant SFV vectors are powerful tools for heterologous expression of G-protein-coupled receptors and that one can achieve both the high-level gene expression described for baculovirus-infected insect cells and the use of mammalian cells as hosts.
Collapse
Affiliation(s)
- M Hoffmann
- Leiden/Amsterdam Centre for Drug Research, Division of Medicinal Chemistry, Vrije Universiteit, FEW, De Boelelaan 1083, 1081 HV Amsterdam, Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Wei Q, Zhou DH, Shen QX, Chen J, Chen LW, Wang TL, Pei G, Chi ZQ. Human mu-opioid receptor overexpressed in Sf9 insect cells functionally coupled to endogenous Gi/o proteins. Cell Res 2000; 10:93-102. [PMID: 10896171 DOI: 10.1038/sj.cr.7290039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human mu-opioid receptor (HmuOR) with a tag of six consecutive histidines at its carboxyl terminus had been expressed in recombinant baculovirus infected Sf9 insect cells. The maximal binding capacity for the [3H] diprenorphine and [3H]ohmefentanyl (Ohm) were 9.1 +/- 0.7 and 6.52 +/- 0.23 nmol/g protein, respectively. The [3H] diprenorphine or [3H] Ohm binding to the receptor expressed in Sf9 cells was strongly inhibited by mu-selective agonists [D-Ala2, N-methyl-Phe4, glyol5]enkephalin (DAGO), Ohm, and morphine, but neither by delta nor by kappa selective agonist. Na+ (100 mM) and GTP (50 microM) could reduce HmuOR agonists etorphine and Ohm affinity binding to the overexpressed HmuOR. mu-selective agonists DAGO and Ohm effectively stimulated [35S]GTP-gammaS binding (EC50 = 2.7 nM and 6.9 nM) and inhibited forskolin- stimulated cAMP accumulation (IC50 = 0.9 nM and 0.3 nM). The agonist-dependent effects could be blocked by opioid antagonist naloxone or by pretreatment of cells with pertussis toxin (PTX). These results demonstrated that HmuOR overexpressed in Sf9 insect cells functionally coupled to endogenous G(i/o) proteins.
Collapse
Affiliation(s)
- Q Wei
- Shanghai Institute of Materia Medica, Shanghai Academy of Life Sciences, Chinese Academy of Sciences
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Tryoen-Toth P, Gavériaux-Ruff C, Labourdette G. Down-regulation of mu-opioid receptor expression in rat oligodendrocytes during their development in vitro. J Neurosci Res 2000; 60:10-20. [PMID: 10723064 DOI: 10.1002/(sici)1097-4547(20000401)60:1<10::aid-jnr2>3.0.co;2-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the central nervous system, opioid receptors are found in neurons and also in glial cells. To gain more information on their presence and possibly on their function, we investigated the expression of mu-opioid receptors (MOR) during oligodendroglial cell development in two culture systems. In these models, during the first days, the cells are O-2A bipotential progenitor cells (also called OPCs; oligodendrocyte precursor cells), and then they differentiate into oligodendrocytes, which mature. In the first system, oligodendroglial cells, derived from newborn rat brain hemispheres, are grown in primary culture in the presence of a confluent layer of astrocytes, and they differentiate slowly. In the second, cells are specifically detached from the mixed cultures of the first system and are grown thereafter alone in secondary culture, a condition allowing a rapid cell differentiation. Under both conditions OPCs and immature oligodendrocytes were found to express a high level of MOR mRNA, whereas mature oligodendrocytes did not express it at all. The decrease of MOR expression during oligodendrocyte maturation was progressive, suggesting that it was not a primary effect of differentiation but an indirect secondary effect. Our study also shows that basic fibroblast growth factor (bFGF), which has been claimed by some authors to induce a dedifferentiation of the mature oligodendrocytes, and retinoic acid (RA), which had not been tested before, were not able to restore MOR expression in mature oligodendrocytes. These results indicate that bFGF and RA neither reverse the maturation process nor dedifferentiate the cells. However, RA was found to inhibit almost completely the expression of the myelin basic protein. The main result of this study is that MOR is expressed in progenitors and in immature oligodendrocytes, but not in mature oligodendrocytes. This suggests that MOR could be involved in some developmental process of the cells of the oligodendroglial lineage.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Northern
- Blotting, Southern
- Cells, Cultured
- Down-Regulation
- Fibroblast Growth Factor 2/pharmacology
- Gene Expression Regulation, Developmental
- Oligodendroglia/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- P Tryoen-Toth
- Laboratory of Neurobiology of Development and Regeneration, UPR 1352 CNRS, Centre of Neurochemistry, Strasbourg, France
| | | | | |
Collapse
|
24
|
Belke-Louis GF, Wehmeyer A, Schulz R. Mu-opioid receptor expression in High Five insect cells is regulated by 5' untranslated region (5'UTR). Life Sci 1999; 64:913-21. [PMID: 10201640 DOI: 10.1016/s0024-3205(99)00017-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is increasing evidence that the 5'UTR of mRNAs affects regulation of gene expression in eukaryotic cells. We examined the overexpression of the mu-opioid receptor in High Five insect cells, employing rat mu-receptor cDNA linked to variable lenghts of their native 5'UTR. The sequences employed consist of either 209 nucleotides (termed ,,long") upstream the translation initiation site of the mu-receptor mRNA, or a truncated 5'UTR comprising only 11 nucleotides (,,short"). These constructs served to generate recombinant baculovirus for the expression of mu-receptor protein in High Five insect cells. 48 hours after baculovirus infection cells were harvested for mu-receptor characterization or RNA analysis. Scatchard analysis of radioligand binding consistently revealed three to four fold higher concentrations of the mu-opioid receptors expressed with the ,,long" over the ,,short" UTR containing baculovirus. The distinct expression rates of mu-receptors paralleled the amounts of mRNAs determined by RNase protection assay. Regardless of the distinct 5'UTR regions, the expressed opioid receptors displayed identical high affinity binding characteristics for the opioid antagonist diprenorphine and similar EC50 values to inhibit forskolin (10(-5) M) stimulated cAMP synthesis. Our results demonstrate that the native 5'UTR of the mu-opioid receptor has an enhancing effect on expression in the baculovirus/insect cell system.
Collapse
Affiliation(s)
- G F Belke-Louis
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig Maximilians University, Muenchen, Germany.
| | | | | |
Collapse
|
25
|
Massotte D, Pereira CA, Pouliquen Y, Pattus F. Parameters influencing human mu opioid receptor over-expression in baculovirus-infected insect cells. J Biotechnol 1999; 69:39-45. [PMID: 10201114 DOI: 10.1016/s0168-1656(98)00209-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cDNA encoding the human mu opioid receptor (hMOR) was cloned in the baculovirus Autographa californica (AcMNPV) under the control of the polyhedrin promoter. We investigated the influence of different molecular constructions on receptor expression levels: the receptor was fused either to an amino- or a carboxy-terminal histidine tag (hMOR-N-His and hMOR-C-His respectively), or to the cleavable sequence signal of the baculovirus gp64 glycoprotein (gp-hMOR and gp-hMOR-C-His). Two cell lines, Spodoptera frugiperda (Sf9) and Trichoplusia ni (BTI-TN-5B1-4), in combination with three different culture media were also tested for their ability to produce maximal protein expression. Molecular constructions and culture conditions were both shown to influence substantially protein production. The best results were obtained using cells adapted to serum-free medium combined with constructions in fusion with the endogenous signal sequence of the baculovirus gp64 protein. Those conditions led to maximal expression and shortened the time required for receptor production. We also showed that an amino-terminal location of a hexahistidine tag was more detrimental to the expression level than a carboxy-terminal position.
Collapse
Affiliation(s)
- D Massotte
- Département des Récepteurs et Protéines membranaires, CNRS UPR 9050, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch-Graffenstaden, France.
| | | | | | | |
Collapse
|
26
|
Stanasila L, Massotte D, Kieffer BL, Pattus F. Expression of delta, kappa and mu human opioid receptors in Escherichia coli and reconstitution of the high-affinity state for agonist with heterotrimeric G proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:430-8. [PMID: 10095778 DOI: 10.1046/j.1432-1327.1999.00187.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human opioid receptors of the delta, mu and kappa subtypes were successfully expressed in Escherichia coli as fusions to the C-terminus of the periplasmic maltose-binding protein, MBP. Expression levels of correctly folded receptor molecules were comparable for the three subtypes and reached an average of 30 receptors.cell-1 or 0.5 pmol.mg-1 membrane protein. Binding of [3H]diprenorphine to intact cells or membrane preparations was saturatable, with a dissociation constant, KD, of 2.5 nM, 0.66 nM and 0.75 nM for human delta, mu and kappa opioid receptors (hDOR, hMOR and hKOR, respectively). Recombinant receptors of the three subtypes retained selectivity and nanomolar affinity for their specific antagonists. Agonist affinities were decreased by one to three orders of magnitude as compared to values measured for receptors expressed in mammalian cells. The effect of sodium on agonist binding to E. coli-expressed receptors was investigated. Receptor high-affinity state for agonists was reconstituted in the presence of heterotrimeric G proteins. We also report affinity values of endomorphins 1 and 2 for mu opioid receptors expressed both in E. coli and in COS cells. Our results confirm that opioid receptors can be expressed in a functional form in bacteria and point out the advantages of E. coli as an expression system for pharmacological studies.
Collapse
MESH Headings
- Animals
- COS Cells
- Diprenorphine/metabolism
- Escherichia coli/metabolism
- GTP-Binding Proteins/metabolism
- Humans
- Kinetics
- Receptors, Opioid, delta/biosynthesis
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, kappa/biosynthesis
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
- Sodium/metabolism
Collapse
Affiliation(s)
- L Stanasila
- Département des Récepteurs et Protéines Membranaires, Illkirch-Graffenstaden, France
| | | | | | | |
Collapse
|
27
|
Abstract
We examined whether the mu opioid receptor was palmitoylated and attempted to determine sites of palmitoylation. Following metabolic labeling with [3H]palmitic acid and immunoaffinity purification of the mu opioid receptor, SDS-PAGE and fluorography revealed a broad labeled band with Mr of approximately 80 kDa in CHO cells stably expressing the rat mu receptor, but not in CHO cells transfected with the vector alone, indicating that the mu receptor is palmitoylated. Activation of the receptor with morphine did not affect the extent of palmitoylation. Hydroxylamine or dithiothreitol treatment removed most of the radioactivity, demonstrating that [3H]palmitic acid is incorporated into Cys residue(s) via thioester bond(s). Surprisingly, mutations of the only two Cys residues in the C-terminal domain did not reduce [3H]palmitic acid incorporation significantly. Thus, unlike many G-protein coupled receptors, the palmitoylation site(s) of the rat mu opioid receptor do(es) not reside in the C-terminal domain.
Collapse
Affiliation(s)
- C Chen
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
28
|
Stanasila L, Pattus F, Massotte D. Heterologous expression of G-protein-coupled receptors: human opioid receptors under scrutiny. Biochimie 1998; 80:563-71. [PMID: 9782394 DOI: 10.1016/s0300-9084(00)80021-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
G-protein-coupled receptors whose topology shows seven transmembrane domains form the largest known family of receptors involved in higher organism signal transduction. Despite increasing knowledge on the functioning mechanisms of these receptors, almost no structural data are available but only a few models. Structural studies using a wide range of physical and biochemical techniques may require fairly large (up to several milligrams) amounts of purified protein. Since such quantities are not naturally available, overexpression is prerequisite. Heterologous expression systems are then assayed for maximal production of a protein facsimile. Heterologous systems may also provide interesting alternatives for receptor functional studies in a different cellular context. Opioid receptors will be used as an example to discuss aspects related to the choice and suitability of several different expression systems for the intended analysis of G-protein-coupled receptor properties. General implications will be outlined.
Collapse
Affiliation(s)
- L Stanasila
- Département des Récepteurs et Protéines membranaires, UPR 9050 CNRS, Ecole supérieure de Biotechnologie de Strasbourg, Illkirch-Graffenstaden, France
| | | | | |
Collapse
|