1
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
2
|
Shafiei G, Levenberg A, Lujan MA, Picorel R, Zazubovich V. Evidence of Simultaneous Spectral Hole Burning Involving Two Tiers of the Protein Energy Landscape in Cytochrome b6f. J Phys Chem B 2019; 123:10930-10938. [PMID: 31763829 DOI: 10.1021/acs.jpcb.9b09515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome b6f, with one chlorophyll molecule per protein monomer, is a simple model system whose studies can help achieve a better understanding of nonphotochemical spectral hole burning (NPHB) and single-complex spectroscopy results obtained in more complicated photosynthetic chlorophyll-protein complexes. We are reporting new data and proposing an alternative explanation for spectral dynamics that was recently observed in cytochrome b6f using NPHB. The relevant distribution of the tunneling parameter λ is a superposition of two components that are nearly degenerate in terms of the resultant NPHB yield and represent two tiers of the energy landscape responsible for NPHB. These two components likely burn competitively; we present the first demonstration of modeling a competitive NPHB process. Similar values of the NPHB yield result from distinctly different combinations of barrier heights, shifts along the generalized coordinate d, and/or masses of the entities involved in conformational changes m, with md2 parameter different by a factor of 2.7. Consequently, in cytochrome b6f, the first (at least) 10 h of fixed-temperature recovery preferentially probe different components of the barrier- and λ-distributions encoded into the spectral holes than thermocycling experiments. Both components most likely represent dynamics of the protein and not of the surrounding buffer/glycerol glass.
Collapse
Affiliation(s)
- Golia Shafiei
- Department of Physics , Concordia University , 7141 Sherbrooke Str. West , Montreal , Quebec H4B 1R6 , Canada
| | - Alexander Levenberg
- Department of Physics , Concordia University , 7141 Sherbrooke Str. West , Montreal , Quebec H4B 1R6 , Canada
| | - Maria A Lujan
- Estacion Experimental de Aula Dei (CSIC) , Avda. Montañana 1005 , 50059 Zaragoza , Spain
| | - Rafael Picorel
- Estacion Experimental de Aula Dei (CSIC) , Avda. Montañana 1005 , 50059 Zaragoza , Spain
| | - Valter Zazubovich
- Department of Physics , Concordia University , 7141 Sherbrooke Str. West , Montreal , Quebec H4B 1R6 , Canada
| |
Collapse
|
3
|
Dibrova DV, Shalaeva DN, Galperin MY, Mulkidjanian AY. Emergence of cytochrome bc complexes in the context of photosynthesis. PHYSIOLOGIA PLANTARUM 2017; 161:150-170. [PMID: 28493482 PMCID: PMC5600118 DOI: 10.1111/ppl.12586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/22/2017] [Accepted: 05/04/2017] [Indexed: 05/18/2023]
Abstract
The cytochrome bc (cyt bc) complexes are involved in Q-cycling; they oxidize membrane quinols by high-potential electron acceptors, such as cytochromes or plastocyanin, and generate transmembrane proton gradient. In several prokaryotic lineages, and also in plant chloroplasts, the catalytic core of the cyt bc complexes is built of a four-helical cytochrome b (cyt b) that contains three hemes, a three-helical subunit IV, and an iron-sulfur Rieske protein (cytochrome b6 f-type complexes). In other prokaryotic lineages, and also in mitochondria, the cyt b subunit is fused with subunit IV, yielding a seven- or eight-helical cyt b with only two hemes (cyt bc1 -type complexes). Here we present an updated phylogenomic analysis of the cyt b subunits of cyt bc complexes. This analysis provides further support to our earlier suggestion that (1) the ancestral version of cyt bc complex contained a small four-helical cyt b with three hemes similar to the plant cytochrome b6 and (2) independent fusion events led to the formation of large cyts b in several lineages. In the search for a primordial function for the ancestral cyt bc complex, we address the intimate connection between the cyt bc complexes and photosynthesis. Indeed, the Q-cycle turnover in the cyt bc complexes demands high-potential electron acceptors. Before the Great Oxygenation Event, the biosphere had been highly reduced, so high-potential electron acceptors could only be generated upon light-driven charge separation. It appears that an ancestral cyt bc complex capable of Q-cycling has emerged in conjunction with the (bacterio)chlorophyll-based photosynthetic systems that continuously generated electron vacancies at the oxidized (bacterio)chlorophyll molecules.
Collapse
Affiliation(s)
- Daria V. Dibrova
- A.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119991Russia
| | - Daria N. Shalaeva
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscow119991Russia
- School of PhysicsUniversity of OsnabrueckOsnabrueckD‐49069Germany
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of MedicineNational Institutes of HealthBethesdaMD20894USA
| | - Armen Y. Mulkidjanian
- A.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119991Russia
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscow119991Russia
- School of PhysicsUniversity of OsnabrueckOsnabrueckD‐49069Germany
| |
Collapse
|
4
|
Luján MA, Lorente P, Zazubovich V, Picorel R. A simple and efficient method to prepare pure dimers and monomers of the cytochrome b 6 f complex from spinach. PHOTOSYNTHESIS RESEARCH 2017; 132:305-309. [PMID: 28374305 DOI: 10.1007/s11120-017-0375-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
Using a single size-exclusion chromatography we were able to isolate highly pure dimers and monomers of the Cyt b 6 f complex from spinach from a bulk preparation of that protein complex obtained with a standard procedure. At higher protein/detergent ratio during the chromatography most of the Cyt b 6 f complex remained as dimers. In contrast, at lower protein/detergent ratio (around 15 times lower), most dimers became monomerized. As a bonus, this chromatography also allowed the elimination of potential Chl a contaminant to the Cyt b 6 f preparations. SDS-PAGE protein analysis with 18% (w/v) acrylamide revealed the loss of the ISP subunit in our monomeric preparation. However, it fully retained the content of Chl a, a prerequisite to perform any spectroscopic study involving this unique pigment.
Collapse
Affiliation(s)
- María A Luján
- CSIC-Estación Experimental de Aula Dei, Avda. Montañana 1005, 50059, Zaragoza, Spain
| | - Patricia Lorente
- CSIC-Estación Experimental de Aula Dei, Avda. Montañana 1005, 50059, Zaragoza, Spain
| | - Valter Zazubovich
- Department of Physics, Concordia University, 7141 Sherbrook Str. West, Montreal, QC, H4B 1R6, Canada
| | - Rafael Picorel
- CSIC-Estación Experimental de Aula Dei, Avda. Montañana 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
5
|
Agarwal R, Chauvet AAP. Ultrafast dynamics of the photo-excited hemes b and c n in the cytochrome b 6f complex. Phys Chem Chem Phys 2017; 19:3287-3296. [PMID: 28085168 DOI: 10.1039/c6cp08077d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of hemes b and cn within the cytochrome b6f complex are investigated by means of ultrafast broad-band transient absorption spectroscopy. On the one hand, the data reveal that, subsequent to visible light excitation, part of the b hemes undergoes pulse-limited photo-oxidation, with the liberated electron supposedly being transferred to one of the adjacent aromatic amino acids. Photo-oxidation is followed by charge recombination in about 8.2 ps. Subsequent to charge recombination, heme b is promoted to a vibrationally excited ground state that relaxes in about 4.6 ps. On the other hand, heme cn undergoes ultrafast ground state recovery in about 140 fs. Interestingly, the data also show that, in contrast to previous beliefs, Chl a is involved in the photochemistry of hemes. Indeed, subsequent to heme excitation, Chl a bleaches and recovers to its ground state in 90 fs and 650 fs, respectively. Chl a bleaching allegedly corresponds to the formation of a short lived Chl a anion. Beyond the previously suggested structural role, this study provides unique evidence that Chl a is directly involved in the photochemistry of the hemes.
Collapse
Affiliation(s)
- Rachna Agarwal
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA and Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Adrien A P Chauvet
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC, Faculté des Sciences de Base and Lausanne Centre for Ultrafast Science (LACUS), Station 6, 1015 Lausanne, Switzerland. and The University of Sheffield, Department of Chemistry, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| |
Collapse
|
6
|
Petrov EG, Robert B, Lin SH, Valkunas L. Theory of Triplet Excitation Transfer in the Donor-Oxygen-Acceptor System: Application to Cytochrome b6f. Biophys J 2016; 109:1735-45. [PMID: 26488665 DOI: 10.1016/j.bpj.2015.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/28/2015] [Accepted: 08/17/2015] [Indexed: 11/28/2022] Open
Abstract
Theoretical consideration is presented of the triplet excitation dynamics in donor-acceptor systems in conditions where the transfer is mediated by an oxygen molecule. It is demonstrated that oxygen may be involved in both real and virtual intramolecular triplet-singlet conversions in the course of the process under consideration. Expressions describing a superexchange donor-acceptor coupling owing to a participation of the bridging twofold degenerate oxygen's virtual singlet state are derived and the transfer kinetics including the sequential (hopping) and coherent (distant) routes are analyzed. Applicability of this theoretical description to the pigment-protein complex cytochrome b6f, by considering the triplet excitation transfer from the chlorophyll a molecule to distant β-carotene, is discussed.
Collapse
Affiliation(s)
- Elmar G Petrov
- Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Bruno Robert
- Nuclear Research Center Saclay, UMR 8221 Centre National de la Recherche Scientifique, Institut de Biologie et de Technologie de Saclay, University Paris Sud, Gif sur Yvette, France
| | | | - Leonas Valkunas
- Theoretical Physics Department, Vilnius University, Vilnius, Lithuania; Center for Physical Sciences and Technology, Vilnius, Lithuania.
| |
Collapse
|
7
|
Structure-Function of the Cytochrome b 6 f Lipoprotein Complex. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Heme c i or c n of the Cytochrome b 6 f Complex, A Short Retrospective. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Vladkova R. Chlorophyllais the crucial redox sensor and transmembrane signal transmitter in the cytochromeb6fcomplex. Components and mechanisms of state transitions from the hydrophobic mismatch viewpoint. J Biomol Struct Dyn 2015; 34:824-54. [DOI: 10.1080/07391102.2015.1056551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Hasan SS, Proctor EA, Yamashita E, Dokholyan NV, Cramer WA. Traffic within the cytochrome b6f lipoprotein complex: gating of the quinone portal. Biophys J 2015; 107:1620-8. [PMID: 25296314 DOI: 10.1016/j.bpj.2014.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 12/24/2022] Open
Abstract
The cytochrome bc complexes b6f and bc1 catalyze proton-coupled quinol/quinone redox reactions to generate a transmembrane proton electrochemical gradient. Quinol oxidation on the electrochemically positive (p) interface of the complex occurs at the end of a narrow quinol/quinone entry/exit Qp portal, 11 Å long in bc complexes. Superoxide, which has multiple signaling functions, is a by-product of the p-side quinol oxidation. Although the transmembrane core and the chemistry of quinone redox reactions are conserved in bc complexes, the rate of superoxide generation is an order of magnitude greater in the b6f complex, implying that functionally significant differences in structure exist between the b6f and bc1 complexes on the p-side. A unique structure feature of the b6f p-side quinol oxidation site is the presence of a single chlorophyll-a molecule whose function is unrelated to light harvesting. This study describes a cocrystal structure of the cytochrome b6f complex with the quinol analog stigmatellin, which partitions in the Qp portal of the bc1 complex, but not effectively in b6f. It is inferred that the Qp portal is partially occluded in the b6f complex relative to bc1. Based on a discrete molecular-dynamics analysis, occlusion of the Qp portal is attributed to the presence of the chlorophyll phytyl tail, which increases the quinone residence time within the Qp portal and is inferred to be a cause of enhanced superoxide production. This study attributes a novel (to our knowledge), structure-linked function to the otherwise enigmatic chlorophyll-a in the b6f complex, which may also be relevant to intracellular redox signaling.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, West Lafayette, Indiana
| | - Elizabeth A Proctor
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Eiki Yamashita
- Osaka University, Institute for Protein Research, Suita, Osaka, Japan
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - William A Cramer
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
11
|
Internal lipid architecture of the hetero-oligomeric cytochrome b6f complex. Structure 2014; 22:1008-15. [PMID: 24931468 DOI: 10.1016/j.str.2014.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 12/18/2022]
Abstract
The role of lipids in the assembly, structure, and function of hetero-oligomeric membrane protein complexes is poorly understood. The dimeric photosynthetic cytochrome b6f complex, a 16-mer of eight distinct subunits and 26 transmembrane helices, catalyzes transmembrane proton-coupled electron transfer for energy storage. Using a 2.5 Å crystal structure of the dimeric complex, we identified 23 distinct lipid-binding sites per monomer. Annular lipids are proposed to provide a connection for super-complex formation with the photosystem-I reaction center and the LHCII kinase enzyme for transmembrane signaling. Internal lipids mediate crosslinking to stabilize the domain-swapped iron-sulfur protein subunit, dielectric heterogeneity within intermonomer and intramonomer electron transfer pathways, and dimer stabilization through lipid-mediated intermonomer interactions. This study provides a complete structure analysis of lipid-mediated functions in a multi-subunit membrane protein complex and reveals lipid sites at positions essential for assembly and function.
Collapse
|
12
|
Dibrova DV, Cherepanov DA, Galperin MY, Skulachev VP, Mulkidjanian AY. Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:1407-27. [PMID: 23871937 PMCID: PMC3839093 DOI: 10.1016/j.bbabio.2013.07.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/30/2022]
Abstract
This review traces the evolution of the cytochrome bc complexes from their early spread among prokaryotic lineages and up to the mitochondrial cytochrome bc1 complex (complex III) and its role in apoptosis. The results of phylogenomic analysis suggest that the bacterial cytochrome b6f-type complexes with short cytochromes b were the ancient form that preceded in evolution the cytochrome bc1-type complexes with long cytochromes b. The common ancestor of the b6f-type and the bc1-type complexes probably resembled the b6f-type complexes found in Heliobacteriaceae and in some Planctomycetes. Lateral transfers of cytochrome bc operons could account for the several instances of acquisition of different types of bacterial cytochrome bc complexes by archaea. The gradual oxygenation of the atmosphere could be the key evolutionary factor that has driven further divergence and spread of the cytochrome bc complexes. On the one hand, oxygen could be used as a very efficient terminal electron acceptor. On the other hand, auto-oxidation of the components of the bc complex results in the generation of reactive oxygen species (ROS), which necessitated diverse adaptations of the b6f-type and bc1-type complexes, as well as other, functionally coupled proteins. A detailed scenario of the gradual involvement of the cardiolipin-containing mitochondrial cytochrome bc1 complex into the intrinsic apoptotic pathway is proposed, where the functioning of the complex as an apoptotic trigger is viewed as a way to accelerate the elimination of the cells with irreparably damaged, ROS-producing mitochondria. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Daria V Dibrova
- School of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia; Institute of Mitoengineering, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | | | | | | |
Collapse
|
13
|
Bechara C, Bolbach G, Bazzaco P, Sharma KS, Durand G, Popot JL, Zito F, Sagan S. MALDI-TOF mass spectrometry analysis of amphipol-trapped membrane proteins. Anal Chem 2012; 84:6128-35. [PMID: 22703540 DOI: 10.1021/ac301035r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amphipols (APols) are amphipathic polymers with the ability to substitute detergents to keep membrane proteins (MPs) soluble and functional in aqueous solutions. APols also protect MPs against denaturation. Here, we have examined the ability of APol-trapped MPs to be analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). For that purpose, we have used ionic and nonionic APols and as model proteins (i) the transmembrane domain of Escherichia coli outer membrane protein A, a β-barrel, eubacterial MP, (ii) Halobacterium salinarum bacteriorhodopsin, an α-helical archaebacterial MP with a single cofactor, and (iii, iv) two eukaryotic MP complexes comprising multiple subunits and many cofactors, cytochrome b(6)f from the chloroplast of the green alga Chlamydomonas reinhardtii and cytochrome bc(1) from beef heart mitochondria. We show that these MP/APol complexes can be readily analyzed by MALDI-TOF-MS; most of the subunits and some lipids and cofactors were identified. APols alone, even ionic ones, had no deleterious effects on MS signals and were not detected in mass spectra. Thus, the combination of MP stabilization by APols and MS analyses provides an interesting new approach to investigating supramolecular interactions in biological membranes.
Collapse
Affiliation(s)
- Chérine Bechara
- Université Pierre et Marie Curie (UPMC Université Paris 06), Laboratoire des BioMolécules (LBM), Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Banères JL, Durand G, Zito F, Pucci B, Popot JL. Nonionic Homopolymeric Amphipols: Application to Membrane Protein Folding, Cell-Free Synthesis, and Solution Nuclear Magnetic Resonance. Biochemistry 2012; 51:1416-30. [DOI: 10.1021/bi201862v] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Paola Bazzacco
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Emmanuelle Billon-Denis
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - K. Shivaji Sharma
- Université d′Avignon et des Pays de Vaucluse, Equipe Chimie
Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur,
F-84000 Avignon, France
| | - Laurent J. Catoire
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Sophie Mary
- Unité Mixte de Recherche 5247, Centre National de la Recherche Scientifique and Universités de Montpellier 1 & 2, Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Christel Le Bon
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Elodie Point
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Jean-Louis Banères
- Unité Mixte de Recherche 5247, Centre National de la Recherche Scientifique and Universités de Montpellier 1 & 2, Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Grégory Durand
- Université d′Avignon et des Pays de Vaucluse, Equipe Chimie
Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur,
F-84000 Avignon, France
- Unité Mixte de Recherche 5247, Centre National de la Recherche Scientifique and Universités de Montpellier 1 & 2, Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Francesca Zito
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Bernard Pucci
- Université d′Avignon et des Pays de Vaucluse, Equipe Chimie
Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur,
F-84000 Avignon, France
- Unité Mixte de Recherche 5247, Centre National de la Recherche Scientifique and Universités de Montpellier 1 & 2, Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Jean-Luc Popot
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| |
Collapse
|
15
|
Kallas T. Cytochrome b 6 f Complex at the Heart of Energy Transduction and Redox Signaling. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
|
17
|
Cramer WA, Hasan SS, Yamashita E. The Q cycle of cytochrome bc complexes: a structure perspective. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:788-802. [PMID: 21352799 PMCID: PMC3101715 DOI: 10.1016/j.bbabio.2011.02.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/08/2011] [Accepted: 02/13/2011] [Indexed: 12/01/2022]
Abstract
Aspects of the crystal structures of the hetero-oligomeric cytochrome bc(1) and b(6)f ("bc") complexes relevant to their electron/proton transfer function and the associated redox reactions of the lipophilic quinones are discussed. Differences between the b(6)f and bc(1) complexes are emphasized. The cytochrome bc(1) and b(6)f dimeric complexes diverge in structure from a core of subunits that coordinate redox groups consisting of two bis-histidine coordinated hemes, a heme b(n) and b(p) on the electrochemically negative (n) and positive (p) sides of the complex, the high potential [2Fe-2S] cluster and c-type heme at the p-side aqueous interface and aqueous phase, respectively, and quinone/quinol binding sites on the n- and p-sides of the complex. The bc(1) and b(6)f complexes diverge in subunit composition and structure away from this core. b(6)f Also contains additional prosthetic groups including a c-type heme c(n) on the n-side, and a chlorophyll a and β-carotene. Common structure aspects; functions of the symmetric dimer. (I) Quinone exchange with the bilayer. An inter-monomer protein-free cavity of approximately 30Å along the membrane normal×25Å (central inter-monomer distance)×15Å (depth in the center), is common to both bc(1) and b(6)f complexes, providing a niche in which the lipophilic quinone/quinol (Q/QH(2)) can be exchanged with the membrane bilayer. (II) Electron transfer. The dimeric structure and the proximity of the two hemes b(p) on the electrochemically positive side of the complex in the two monomer units allow the possibility of two alternate routes of electron transfer across the complex from heme b(p) to b(n): intra-monomer and inter-monomer involving electron cross-over between the two hemes b(p). A structure-based summary of inter-heme distances in seven bc complexes, representing mitochondrial, chromatophore, cyanobacterial, and algal sources, indicates that, based on the distance parameter, the intra-monomer pathway would be favored kinetically. (III) Separation of quinone binding sites. A consequence of the dimer structure and the position of the Q/QH(2) binding sites is that the p-side QH(2) oxidation and n-side Q reduction sites are each well separated. Therefore, in the event of an overlap in residence time by QH(2) or Q molecules at the two oxidation or reduction sites, their spatial separation would result in minimal steric interference between extended Q or QH(2) isoprenoid chains. (IV) Trans-membrane QH(2)/Q transfer. (i) n/p-side QH(2)/Q transfer may be hindered by lipid acyl chains; (ii) the shorter less hindered inter-monomer pathway across the complex would not pass through the center of the cavity, as inferred from the n-side antimycin site on one monomer and the p-side stigmatellin site on the other residing on the same surface of the complex. (V) Narrow p-side portal for QH(2)/Q passage. The [2Fe-2S] cluster that serves as oxidant, and whose histidine ligand serves as a H(+) acceptor in the oxidation of QH(2), is connected to the inter-monomer cavity by a narrow extended portal, which is also occupied in the b(6)f complex by the 20 carbon phytyl chain of the bound chlorophyll.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
18
|
Baniulis D, Zhang H, Zakharova T, Hasan SS, Cramer WA. Purification and crystallization of the cyanobacterial cytochrome b6f complex. Methods Mol Biol 2011; 684:65-77. [PMID: 20960122 DOI: 10.1007/978-1-60761-925-3_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cytochrome b6f complex from the filamentous cyanobacteria (Mastigocladus laminosus, Nostoc sp. PCC 7120) and spinach chloroplasts has been purified as a homo-dimer. Electrospray ionization mass spectroscopy showed the monomer to contain eight and nine subunits, respectively, and dimeric masses of 217.1, 214.2, and 286.5 kDa for M. laminosus, Nostoc, and the complex from spinach. The core subunits containing or interacting with redox-active prosthetic groups are petA (cytochrome f), B (cytochrome b6, C (Rieske iron-sulfur protein), D (subunit IV), with protein molecular weights of 31.8-32.3, 24.7-24.9, 18.9-19.3, and 17.3-17.5 kDa, and four small 3.2-4.2 kDa polypeptides petG, L, M, and N. A ninth polypeptide, the 35 kDa petH (FNR) polypeptide in the spinach complex, was identified as ferredoxin:NADP reductase (FNR), which binds to the complex tightly at a stoichiometry of approx 0.8/cytf. The spinach complex contains diaphorase activity diagnostic of FNR and is active in facilitating ferredoxin-dependent electron transfer from NADPH to the cytochrome b6f complex. The purified cytochrome b6f complex contains stoichiometrically bound chlorophyll a and β-carotene at a ratio of approximately one molecule of each per cytochrome f. It also contains bound lipid and detergent, indicating seven lipid-binding sites per monomer. Highly purified complexes are active for approximately 1 week after isolation, transferring 200-300 electrons/cytf s. The M. laminosus complex was shown to be subject to proteolysis and associated loss of activity if incubated for more than 1 week at room temperature. The Nostoc complex is more resistant to proteolysis. Addition of pure synthetic lipid to the cyanobacterial complex, which is mostly delipidated by the isolation procedure, allows rapid formation of large (≥0.2 mm) crystals suitable for X-ray diffraction analysis and structure determination. The crystals made from the cyanobacterial complex diffract to 3.0 Å with R values of 0.222 and 0.230 for M. laminosus and Nostoc, respectively. It has not yet been possible to obtain crystals of the b6f complex from any plant source, specifically spinach or pea, perhaps because of incomplete binding of FNR or other peripheral polypeptides. Well diffracting crystals have been obtained from the green alga, Chlamydomonas reinhardtii (ref. 10).
Collapse
Affiliation(s)
- Danas Baniulis
- Department of Biological Sciences, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | | | | |
Collapse
|
19
|
Mulkidjanian AY. Activated Q-cycle as a common mechanism for cytochrome bc1 and cytochrome b6f complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1858-68. [DOI: 10.1016/j.bbabio.2010.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/14/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
|
20
|
Baymann F, Nitschke W. Heliobacterial Rieske/cytb complex. PHOTOSYNTHESIS RESEARCH 2010; 104:177-187. [PMID: 20091229 DOI: 10.1007/s11120-009-9524-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 12/21/2009] [Indexed: 05/28/2023]
Abstract
Data on structure and function of the Rieske/cytb complex from Heliobacteria are scarce. They indicate that the complex is related to the b (6) f complex in agreement with the phylogenetic position of the organism. It is composed of a diheme cytochrome c, and a Rieske iron-sulfur protein, together with transmembrane cytochrome b (6) and subunit IV. Additional small subunits may be part of the complex. The cofactor content comprises heme c (i), first discovered in the Q(i) binding pocket of b (6) f complexes. The redox midpoint potentials are more negative than in b (6) f complex in agreement with the lower redox midpoint potentials (by about 150 mV) of its reaction partners, menaquinone, and cytochrome c (553). The enzyme is implicated in cyclic electron transfer around the RCI. Functional studies are favored by the absence of antennae and the simple photosynthetic reaction chain but are hampered by the high oxygen sensitivity of the organism, its chlorophyll, and lipids.
Collapse
Affiliation(s)
- F Baymann
- BIP, Centre National de la Recherche Scientifique, UPR9036, IFR88, 31 Chemin Joseph Aiguier, Marseille, France.
| | | |
Collapse
|
21
|
Nitschke W, van Lis R, Schoepp-Cothenet B, Baymann F. The "green" phylogenetic clade of Rieske/cytb complexes. PHOTOSYNTHESIS RESEARCH 2010; 104:347-355. [PMID: 20130997 DOI: 10.1007/s11120-010-9532-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/16/2010] [Indexed: 05/28/2023]
Abstract
More than a decade ago, Heliobacteria were recognised to contain a Rieske/cytb complex in which the cytochrome b subunit is split into two separate proteins, a peculiar feature characteristic of the cyanobacterial and plastidic b (6) f complex. The common presence of RCI-type reaction centres further emphasise possible evolutionary links between Heliobacteria, Chlorobiaceae and Cyanobacteria. In this contribution, we further explore the evolutionary relationships among these three phototrophic lineages by both molecular phylogeny and consideration of phylogenetic marker traits of the superfamily of Rieske/cytb complexes. The combination of these two methods suggests the existence of a "green" clade involving many non-phototrophs in addition to the mentioned RCI-type photosynthetic organisms. Structural and functional idiosyncrasies are (re-)interpreted in the framework of evolutionary biology and more specifically evolutionary bioenergetics.
Collapse
Affiliation(s)
- W Nitschke
- BIP, Centre National de la Recherche Scientifique, UPR9036, IFR88, 31 Chemin Joseph Aiguier, Marseille, France.
| | | | | | | |
Collapse
|
22
|
Meinecke L, Alawady A, Schroda M, Willows R, Kobayashi MC, Niyogi KK, Grimm B, Beck CF. Chlorophyll-deficient mutants of Chlamydomonas reinhardtii that accumulate magnesium protoporphyrin IX. PLANT MOLECULAR BIOLOGY 2010; 72:643-58. [PMID: 20127142 PMCID: PMC2837180 DOI: 10.1007/s11103-010-9604-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/13/2010] [Indexed: 05/12/2023]
Abstract
Two Chlamydomonas reinhardtii mutants defective in CHLM encoding Mg-protoporphyrin IX methyltransferase (MgPMT) were identified. The mutants, one with a missense mutation (chlM-1) and a second mutant with a splicing defect (chlM-2), do not accumulate chlorophyll, are yellow in the dark and dim light, and their growth is inhibited at higher light intensities. They accumulate Mg-protoporphyrin IX (MgProto), the substrate of MgPMT and this may be the cause for their light sensitivity. In the dark, both mutants showed a drastic reduction in the amounts of core proteins of photosystems I and II and light-harvesting chlorophyll a/b-binding proteins. However, LHC mRNAs accumulated above wild-type levels. The accumulation of the transcripts of the LHC and other genes that were expressed at higher levels in the mutants during dark incubation was attenuated in the initial phase of light exposure. No regulatory effects of the constitutively 7- to 18-fold increased MgProto levels on gene expression were detected, supporting previous results in which MgProto and heme in Chlamydomonas were assigned roles as second messengers only in the transient activation of genes by light.
Collapse
Affiliation(s)
- Linda Meinecke
- Fakultaet fuer Biologie, Institut fuer Biologie III, Universitaet Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Ali Alawady
- Institut fuer Biologie/Pflanzenphysiologie, Humboldt Universitaet, Philippstrasse 13, 10115 Berlin, Germany
| | - Michael Schroda
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Robert Willows
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, 2109 Australia
| | - Marilyn C. Kobayashi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102 USA
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102 USA
| | - Bernhard Grimm
- Institut fuer Biologie/Pflanzenphysiologie, Humboldt Universitaet, Philippstrasse 13, 10115 Berlin, Germany
| | - Christoph F. Beck
- Fakultaet fuer Biologie, Institut fuer Biologie III, Universitaet Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| |
Collapse
|
23
|
|
24
|
Breyton C, Gabel F, Abla M, Pierre Y, Lebaupain F, Durand G, Popot JL, Ebel C, Pucci B. Micellar and biochemical properties of (hemi)fluorinated surfactants are controlled by the size of the polar head. Biophys J 2009; 97:1077-86. [PMID: 19686655 DOI: 10.1016/j.bpj.2009.05.053] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 05/20/2009] [Accepted: 05/22/2009] [Indexed: 11/28/2022] Open
Abstract
Surfactants with fluorinated and hemifluorinated alkyl chains have yielded encouraging results in terms of membrane protein stability; however, the molecules used hitherto have either been chemically heterogeneous or formed heterogeneous micelles. A new series of surfactants whose polar head size is modulated by the presence of one, two, or three glucose moieties has been synthesized. Analytical ultracentrifugation and small-angle neutron scattering show that fluorinated surfactants whose polar head bears a single glucosyl group form very large cylindrical micelles, whereas those with two or three glucose moieties form small, homogeneous, globular micelles. We studied the homogeneity and stability of the complexes formed between membrane proteins and these surfactants by using bacteriorhodopsin and cytochrome b(6)f as models. Homogeneous complexes were obtained only with surfactants that form homogeneous micelles. Surfactants bearing one or two glucose moieties were found to be stabilizing, whereas those with three moieties were destabilizing. Fluorinated and hemifluorinated surfactants with a two-glucose polar head thus appear to be very promising molecules for biochemical applications and structural studies. They were successfully used for cell-free synthesis of the ion channel MscL.
Collapse
Affiliation(s)
- Cécile Breyton
- Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Unite Mixte de Recherche 7099, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sang M, Ma F, Xie J, Chen XB, Wang KB, Qin XC, Wang WD, Zhao JQ, Li LB, Zhang JP, Kuang TY. High-light induced singlet oxygen formation in cytochrome b(6)f complex from Bryopsis corticulans as detected by EPR spectroscopy. Biophys Chem 2009; 146:7-12. [PMID: 19861232 DOI: 10.1016/j.bpc.2009.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/24/2009] [Accepted: 09/26/2009] [Indexed: 11/16/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy was used to detect the light-induced formation of singlet oxygen ((1)O(2)*) in the intact and the Rieske-depleted cytochrome b(6)f complexes (Cyt b(6)f) from Bryopsis corticulans, as well as in the isolated Rieske Fe-S protein. It is shown that, under white-light illumination and aerobic conditions, chlorophyll a (Chl a) bound in the intact Cyt b(6)f can be bleached by light-induced (1)O(2)*, and that the (1)O(2)* production can be promoted by D(2)O or scavenged by extraneous antioxidants such as l-histidine, ascorbate, beta-carotene and glutathione. Under similar experimental conditions, (1)O(2)* was also detected in the Rieske-depleted Cyt b(6)f complex, but not in the isolated Rieske Fe-S protein. The results prove that Chl a cofactor, rather than Rieske Fe-S protein, is the specific site of (1)O(2)* formation, a conclusion which draws further support from the generation of (1)O(2)* with selective excitation of Chl a using monocolor red light.
Collapse
Affiliation(s)
- Min Sang
- Institute of Botany, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ma F, Chen XB, Sang M, Wang P, Zhang JP, Li LB, Kuang TY. Singlet oxygen formation and chlorophyll a triplet excited state deactivation in the cytochrome b6f complex from Bryopsis corticulans. PHOTOSYNTHESIS RESEARCH 2009; 100:19-28. [PMID: 19333778 DOI: 10.1007/s11120-009-9418-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 03/14/2009] [Indexed: 05/27/2023]
Abstract
We have attempted to investigate the correlation between the detergent-perturbed structural integrity of the Cyt b (6) f complex from the marine green alga Bryopsis corticulans and its photo-protective properties, for which the nonionic detergents n-octyl-beta-D-glucopyranoside (beta-OG) and n-dodecyl-beta-D-maltoside (beta-DM), respectively, were used for the preparation of Cyt b (6) f, and the singlet oxygen ((1)O(2)*) production as well as the triplet excited-state chlorophyll a ((3)Chl a*) formation and deactivation were examined by spectroscopic means. Near-infrared luminescence of (1)O(2)* (approximately 1,270 nm) on photo-irradiation was detected for the beta-OG preparation where the complex is mainly in oligomeric state, but not for the beta-DM one in which the complex exists in dimeric form. Under anaerobic condition, photo-excitation of Chl a in the beta-DM preparation generated (3)Chl a* with a lower quantum yield of Phi(T) approximately 0.02 and a longer lifetime of approximately 600 micros with respect to those as in the case of beta-OG preparation, Phi(T) approximately 0.12 and 200-300 micros. These results prove that the enzymatically active and intact Cyt b (6) f complex on photo-excitation tends to produce little (3)Chl a* or (1)O(2)*, which implies that the pigment-protein assembly of Cyt b (6) f complex per se is crucial for photo-protection.
Collapse
Affiliation(s)
- Fei Ma
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
27
|
de Lacroix de Lavalette A, Finazzi G, Zito F. b6f-Associated Chlorophyll: Structural and Dynamic Contribution to the Different Cytochrome Functions. Biochemistry 2008; 47:5259-65. [DOI: 10.1021/bi800179b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Agnès de Lacroix de Lavalette
- UMR 7099, CNRS and Université Paris-7, and UMR 7141, CNRS and Université Paris-6, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Giovanni Finazzi
- UMR 7099, CNRS and Université Paris-7, and UMR 7141, CNRS and Université Paris-6, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Francesca Zito
- UMR 7099, CNRS and Université Paris-7, and UMR 7141, CNRS and Université Paris-6, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
28
|
Yan J, Dashdorj N, Baniulis D, Yamashita E, Savikhin S, Cramer WA. On the Structural Role of the Aromatic Residue Environment of the Chlorophyll a in the Cytochrome b6f Complex. Biochemistry 2008; 47:3654-61. [PMID: 18302324 DOI: 10.1021/bi702299b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiusheng Yan
- Departments of Biological Sciences and Physics, Purdue University, West Lafayette, Indiana 47907
| | - Naranbaatar Dashdorj
- Departments of Biological Sciences and Physics, Purdue University, West Lafayette, Indiana 47907
| | - Danas Baniulis
- Departments of Biological Sciences and Physics, Purdue University, West Lafayette, Indiana 47907
| | - Eiki Yamashita
- Departments of Biological Sciences and Physics, Purdue University, West Lafayette, Indiana 47907
| | - Sergei Savikhin
- Departments of Biological Sciences and Physics, Purdue University, West Lafayette, Indiana 47907
| | - William A. Cramer
- Departments of Biological Sciences and Physics, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
29
|
Reisinger V, Hertle AP, Plöscher M, Eichacker LA. Cytochrome b6f is a dimeric protochlorophyll a binding complex in etioplasts. FEBS J 2008; 275:1018-24. [PMID: 18221490 DOI: 10.1111/j.1742-4658.2008.06268.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cytochrome b6f complex is a dimeric protein complex that is of central importance for photosynthesis to carry out light driven electron and proton transfer in chloroplasts. One molecule of chlorophyll a was found to associate per cytochrome b6f monomer and the structural or functional importance of this is discussed. We show that etioplasts which are devoid of chlorophyll a already contain dimeric cytochrome b6f. However, the phytylated chlorophyll precursor protochlorophyll a, and not chlorophyll a, is associated with subunit b6. The data imply that a phytylated tetrapyrrol is an essential structural requirement for assembly of cytochrome b6f.
Collapse
|
30
|
Dashdorj N, Yamashita E, Schaibley J, Cramer WA, Savikhin S. Ultrafast Optical Pump−Probe Studies of the Cytochrome b6f Complex in Solution and Crystalline States. J Phys Chem B 2007; 111:14405-10. [PMID: 18047317 DOI: 10.1021/jp076536p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Naranbaatar Dashdorj
- Department of Physics and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Eiki Yamashita
- Department of Physics and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - John Schaibley
- Department of Physics and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - William A. Cramer
- Department of Physics and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Sergei Savikhin
- Department of Physics and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
31
|
Chen X, Zhao X, Zhang J, Li L, Kuang T. The effects of detergents DDM and beta-OG on the singlet excited state lifetime of the chlorophyll a in cytochrome b6f complex from spinach chloroplasts. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2007; 50:505-10. [PMID: 17653672 DOI: 10.1007/s11427-007-0047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
The singlet excited state lifetime of the chlorophyll a (Chl a) in cytochrome b(6)f (Cyt b(6)f) complex was reported to be shorter than that of free Chl a in methanol, but the value was different for Cyt b(6)f complexes from different sources ( approximately 200 and approximately 600 ps are the two measured results). The present study demonstrated that the singlet excited state lifetime is associated with the detergents n-dodecyl-beta-D-maltoside (DDM) and n-octyl-beta-D-glucopyranoside (beta-OG), but has nothing to do with the different sources of Cyt b(6)f complexes. Compared with the Cyt b(6)f dissolved in beta-OG, the Cyt b(6)f in DDM had a lower fluorescence yield, a lower photodegradation rate of Chl a, and a shorter lifetime of Chl a excited state. In short, the singlet excited state lifetime, approximately 200 ps, of the Chl a in Cyt b(6)f complex in DDM is closer to the true in vivo.
Collapse
Affiliation(s)
- XiaoBo Chen
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | |
Collapse
|
32
|
Yamashita E, Zhang H, Cramer WA. Structure of the cytochrome b6f complex: quinone analogue inhibitors as ligands of heme cn. J Mol Biol 2007; 370:39-52. [PMID: 17498743 PMCID: PMC1993820 DOI: 10.1016/j.jmb.2007.04.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 04/01/2007] [Accepted: 04/04/2007] [Indexed: 11/24/2022]
Abstract
A native structure of the cytochrome b(6)f complex with improved resolution was obtained from crystals of the complex grown in the presence of divalent cadmium. Two Cd(2+) binding sites with different occupancy were determined: (i) a higher affinity site, Cd1, which bridges His143 of cytochrome f and the acidic residue, Glu75, of cyt b(6); in addition, Cd1 is coordinated by 1-2 H(2)O or 1-2 Cl(-); (ii) a second site, Cd2, of lower affinity for which three identified ligands are Asp58 (subunit IV), Glu3 (PetG subunit) and Glu4 (PetM subunit). Binding sites of quinone analogue inhibitors were sought to map the pathway of transfer of the lipophilic quinone across the b(6)f complex and to define the function of the novel heme c(n). Two sites were found for the chromone ring of the tridecyl-stigmatellin (TDS) quinone analogue inhibitor, one near the p-side [2Fe-2S] cluster. A second TDS site was found on the n-side of the complex facing the quinone exchange cavity as an axial ligand of heme c(n). A similar binding site proximal to heme c(n) was found for the n-side inhibitor, NQNO. Binding of these inhibitors required their addition to the complex before lipid used to facilitate crystallization. The similar binding of NQNO and TDS as axial ligands to heme c(n) implies that this heme utilizes plastoquinone as a natural ligand, thus defining an electron transfer complex consisting of hemes b(n), c(n), and PQ, and the pathway of n-side reduction of the PQ pool. The NQNO binding site explains several effects associated with its inhibitory action: the negative shift in heme c(n) midpoint potential, the increased amplitude of light-induced heme b(n) reduction, and an altered EPR spectrum attributed to interaction between hemes c(n) and b(n). A decreased extent of heme c(n) reduction by reduced ferredoxin in the presence of NQNO allows observation of the heme c(n) Soret band in a chemical difference spectrum.
Collapse
Affiliation(s)
| | - H. Zhang
- Department of Biological Sciences, Purdue University, 915 West State St., West Lafayette, IN 47907
| | - W. A. Cramer
- Department of Biological Sciences, Purdue University, 915 West State St., West Lafayette, IN 47907
| |
Collapse
|
33
|
Abstract
Crystal structures and their implications for function are described for the energy transducing hetero-oligomeric dimeric cytochrome b6f complex of oxygenic photosynthesis from the thermophilic cyanobacterium, Mastigocladus laminosus, and the green alga, Chlamydomonas reinhardtii. The complex has a cytochrome b core and a central quinone exchange cavity, defined by the two monomers that are very similar to those in the respiratory cytochrome bc1 complex. The pathway of quinol/quinone (Q/QH2) transfer emphasizes the labyrinthine internal structure of the complex, including an 11x12 A portal through which Q/QH2, containing a 45-carbon isoprenoid chain, must pass. Three prosthetic groups are present in the b6f complex that are not found in the related bc1 complex: a chlorophyll (Chl) a, a beta-carotene, and a structurally unique covalently bound heme that does not possess amino acid side chains as axial ligands. It is hypothesized that this heme, exposed to the cavity and a neighboring plastoquinone and close to the positive surface potential of the complex, can function in cyclic electron transport via anionic ferredoxin.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2054, USA.
| | | | | | | | | |
Collapse
|
34
|
Chen XB, Zhao XH, Zhu Y, Gong YD, Li LB, Zhang JP, Kuang TY. Hydrogen peroxide-induced chlorophyll a bleaching in the cytochrome b6f complex: a simple and effective assay for stability of the complex in detergent solutions. PHOTOSYNTHESIS RESEARCH 2006; 90:205-14. [PMID: 17235492 DOI: 10.1007/s11120-006-9118-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2006] [Accepted: 11/20/2006] [Indexed: 05/10/2023]
Abstract
The instability of cytochrome b ( 6 ) f complex in detergent solutions is a well-known problem that has been studied extensively, but without finding a satisfactory solution. One of the important reasons can be short of the useful method to verify whether the complex suspended in different detergent is in an intact state or not. In this article, a simple and effective assay for stability of the complex was proposed based on the investigation on the different effects of the two detergents, n-octyl-beta-D: -glucopyranoside (OG) and dodecyl-beta-D: -maltoside (DDM), on the properties of the complex. DDM stabilizes the complex preparation more effectively whereas OG denatures the interactions of the heme groups and pigment molecules with the protein environment, leading to the bleaching of chlorophyll a induced by addition of hydrogen peroxide. The assay of the use of hydrogen peroxide to characterize the complex by studying the bleaching of chlorophyll induced by hydrogen peroxide and the peroxidase activity of the complex was discussed. This simple method will probably be useful to study the stability of the complex.
Collapse
Affiliation(s)
- Xiao-Bo Chen
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nan Xincun 20, Xiangshan, 100093, Beijing, P.R. China
| | | | | | | | | | | | | |
Collapse
|
35
|
Lebaupain F, Salvay AG, Olivier B, Durand G, Fabiano AS, Michel N, Popot JL, Ebel C, Breyton C, Pucci B. Lactobionamide surfactants with hydrogenated, perfluorinated or hemifluorinated tails: physical-chemical and biochemical characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:8881-90. [PMID: 17014131 DOI: 10.1021/la061083l] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Detergents are customarily used to solubilize cell membranes and keep membrane proteins soluble in aqueous buffers, but they often lead to irreversible protein inactivation. Hemifluorinated amphiphiles with hybrid hydrophobic chains have been specifically designed to minimize the denaturating propensity of surfactants toward membrane proteins. We have studied the physical-chemical and biochemical properties of lactobionamide surfactants bearing either a hydrogenated, a fluorinated or a hemifluorinated chain (respectively H-, F-, and HF-Lac). We show that the dual composition of the hydrophobic chain of HF-Lac endows it with unusual physical-chemical properties as regards its critical micellar concentration, interfacial area per molecule, and behavior upon reverse phase chromatography. Analytical ultracentrifugation shows that, whereas H-Lac assembles into well-defined micelles, F-Lac and HF-Lac form large and heterogeneous assemblies, whose size increases with surfactant concentration. Molecular dynamics calculations suggest that F-Lac forms cylindrical micelles. The ability of HF-Lac to keep membrane proteins soluble was examined using the cytochrome b(6) f complex from Chlamydomonas reinhardtii's chloroplast as a model protein. HF-Lac/b(6) f complexes form particles relatively homogeneous in size, in which the b(6) f complex is as stable or markedly more stable, depending on the surfactant concentration, than it is in equivalent concentrations of hydrogenated surfactants, including H-Lac.
Collapse
Affiliation(s)
- Florence Lebaupain
- C.N.R.S., Université Paris-7, UMR 7099 Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li BX, Zuo P, Chen XB, Li LB, Zhang JP, Zhang JP, Kuang TY. Study on energy transfer between carotenoid and chlorophyll a in cytochrome b6f complex from Bryopsis corticulans. PHOTOSYNTHESIS RESEARCH 2006; 88:43-50. [PMID: 16688490 DOI: 10.1007/s11120-005-9020-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/19/2005] [Indexed: 05/09/2023]
Abstract
The excitation energy transfer between carotenoid and chlorophyll (Chl) in the cytochrome b ( 6 ) f complex from Bryopsis corticulans (B. corticulans), in which the carotenoid is 9-cis-alpha-carotene, was investigated by means of fluorescence excitation and sub-microsecond time-resolved absorption spectroscopies. The presence of efficient singlet excitation transfer from alpha-carotene to Chl a was found with an overall efficiency as high as approximately approximately 24%, meanwhile the Chl a-to-alpha-carotene triplet excitation transfer was also evidenced. Circular dichroism spectroscopy showed that alpha-carotene molecule existed in an asymmetric environment and Chl a molecule had a certain orientation in this complex.
Collapse
Affiliation(s)
- Bin-Xing Li
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nan Xincun 20, Xiangshan, 100093, Beijing, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Iverson TM. Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Curr Opin Chem Biol 2006; 10:91-100. [PMID: 16504567 DOI: 10.1016/j.cbpa.2006.02.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/16/2006] [Indexed: 11/17/2022]
Abstract
Oxygenic photosynthesis is one example of the many bioenergetic pathways utilized by different organisms to harvest energy from the environment. These pathways revolve around a theme of coupling oxidation-reduction reactions to the formation of membrane potential and subsequent ATP synthesis. Although the basic principles underlying bioenergetics are universally conserved, the constituents of the bioenergetic pathways in different organisms have evolved unique aspects to fill an evolutionary niche. Three-dimensional structures of all of the membrane-spanning components of the electron-transfer chain of oxygenic photosynthesis have revealed those unique aspects of this fascinating process, including the unique metallocofactor for catalysis, the determinants of the uniquely high voltage cofactor, and the numerous photoprotective mechanisms that guard against radical damage.
Collapse
Affiliation(s)
- Tina M Iverson
- Department of Pharmacology, Center for Structural Biology and Vanderbilt Institute for Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
| |
Collapse
|
38
|
Zuo P, Li BX, Zhao XH, Wu YS, Ai XC, Zhang JP, Li LB, Kuang TY. Ultrafast carotenoid-to-chlorophyll singlet energy transfer in the cytochrome b6f complex from Bryopsis corticulans. Biophys J 2006; 90:4145-54. [PMID: 16565047 PMCID: PMC1459505 DOI: 10.1529/biophysj.105.076612] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ultrafast carotenoid-to-chlorophyll (Car-to-Chl) singlet excitation energy transfer in the cytochrome b(6)f (Cyt b(6)f) complex from Bryopsis corticulans is investigated by the use of femtosecond time-resolved absorption spectroscopy. For all-trans-alpha-carotene free in n-hexane, the lifetimes of the two low-lying singlet excited states, S(1)(2A(g)(-)) and S(2)(1B(u)(+)), are determined to be 14.3 +/- 0.4 ps and 230 +/- 10 fs, respectively. For the Cyt b(6)f complex, to which 9-cis-alpha-carotene is bound, the lifetime of the S(1)(2A(g)(-)) state remains unchanged, whereas that of the S(2)(1B(u)(+)) state is significantly reduced. In addition, a decay-to-rise correlation between the excited-state dynamics of alpha-carotene and Chl a is clearly observed. This spectroscopic evidence proves that the S(2)(1B(u)(+)) state is able to transfer electronic excitations to the Q(x) state of Chl a, whereas the S(1)(2A(g)(-)) state remains inactive. The time constant and the partial efficiency of the energy transfer are determined to be 240 +/- 40 fs and (49 +/- 4)%, respectively, which supports the overall efficiency of 24% determined with steady-state fluorescence spectroscopy. A scheme of the alpha-carotene-to-Chl a singlet energy transfer is proposed based on the excited-state dynamics of the pigments.
Collapse
Affiliation(s)
- Ping Zuo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Dashdorj N, Zhang H, Kim H, Yan J, Cramer WA, Savikhin S. The single chlorophyll a molecule in the cytochrome b6f complex: unusual optical properties protect the complex against singlet oxygen. Biophys J 2005; 88:4178-87. [PMID: 15778449 PMCID: PMC1305648 DOI: 10.1529/biophysj.104.058693] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Accepted: 03/16/2005] [Indexed: 11/18/2022] Open
Abstract
The cytochrome b(6)f complex of oxygenic photosynthesis mediates electron transfer between the reaction centers of photosystems I and II and facilitates coupled proton translocation across the membrane. High-resolution x-ray crystallographic structures (Kurisu et al., 2003; Stroebel et al., 2003) of the cytochrome b(6)f complex unambiguously show that a Chl a molecule is an intrinsic component of the cytochrome b(6)f complex. Although the functional role of this Chl a is presently unclear (Kuhlbrandt, 2003), an excited Chl a molecule is known to produce toxic singlet oxygen as the result of energy transfer from the excited triplet state of the Chl a to oxygen molecules. To prevent singlet oxygen formation in light-harvesting complexes, a carotenoid is typically positioned within approximately 4 A of the Chl a molecule, effectively quenching the triplet excited state of the Chl a. However, in the cytochrome b(6)f complex, the beta-carotene is too far (> or =14 Angstroms) from the Chl a for effective quenching of the Chl a triplet excited state. In this study, we propose that in this complex, the protection is at least partly realized through special arrangement of the local protein structure, which shortens the singlet excited state lifetime of the Chl a by a factor of 20-25 and thus significantly reduces the formation of the Chl a triplet state. Based on optical ultrafast absorption difference experiments and structure-based calculations, it is proposed that the Chl a singlet excited state lifetime is shortened due to electron exchange transfer with the nearby tyrosine residue. To our knowledge, this kind of protection mechanism against singlet oxygen has not yet been reported for any other chlorophyll-containing protein complex. It is also reported that the Chl a molecule in the cytochrome b(6)f complex does not change orientation in its excited state.
Collapse
|
40
|
Abstract
This review focuses on the biosynthesis of pigments in the unicellular alga Chlamydomonas reinhardtii and their physiological and regulatory functions in the context of information gathered from studies of other photosynthetic organisms. C. reinhardtii is serving as an important model organism for studies of photosynthesis and the pigments associated with the photosynthetic apparatus. Despite extensive information pertaining to the biosynthetic pathways critical for making chlorophylls and carotenoids, we are just beginning to understand the control of these pathways, the coordination between pigment and apoprotein synthesis, and the interactions between the activities of these pathways and those for other important cellular metabolites branching from these pathways. Other exciting areas relating to pigment function are also emerging: the role of intermediates of pigment biosynthesis as messengers that coordinate metabolism in the chloroplast with nuclear gene activity, and the identification of photoreceptors and their participation in critical cellular processes including phototaxis, gametogenesis, and the biogenesis of the photosynthetic machinery. These areas of research have become especially attractive for intensive development with the application of potent molecular and genomic tools currently being applied to studies of C. reinhardtii.
Collapse
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution of Washington, Department of Plant Biology, Stanford, California 94305, USA.
| | | | | |
Collapse
|
41
|
Li B, Mao D, Liu Y, Li L, Kuang T. Characterization of the cytochrome b(6)f complex from marine green alga, Bryopsis corticulans. PHOTOSYNTHESIS RESEARCH 2005; 83:297-305. [PMID: 16143919 DOI: 10.1007/s11120-004-6555-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 11/22/2004] [Indexed: 05/04/2023]
Abstract
A pure, active cytochrome b(6)f was isolated from the chloroplasts of the marine green alga, Bryopsis corticulans. To investigate and characterize this cytochrome b(6)f complex, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), absorption spectra measurement and HPLC were employed. It was shown that this purified complex contained four large subunits with apparent molecular masses of 34.8, 24, 18.7 and 16.7 kD. The ratio of Cyt (6) to Cyt f was 2.01 : 1. The cytochrome b(6) f was shown to catalyze the transfer of 73 electrons from decylplastoquinol to plastocyanin-ferricyanide per Cyt f per second. alpha-Carotene, one kind of carotenoid that has not been found to present in cytochrome b(6)f complex, was discovered in this preparation by reversed phase HPLC. It was different from beta-carotene usually found in cytochrome b(6)f complex. The configuration of the major alpha-carotene component was assigned to be 9-cis by resonance Raman spectroscopy. Different from the previous reports, the configuration of this alpha-carotene in dissociated state was determined to be all-trans. Besides this carotene, chlorophyll a was also found in this complex. It was shown that the molecular ratios of chlorophyll a, cis and all-trans-alpha-carotene to Cyt f in this complex were 1.2, 0.7 and 0.2, respectively.
Collapse
Affiliation(s)
- Binxing Li
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing.
| | | | | | | | | |
Collapse
|
42
|
Wenk SO, Schneider D, Boronowsky U, Jäger C, Klughammer C, de Weerd FL, van Roon H, Vermaas WFJ, Dekker JP, Rögner M. Functional implications of pigments bound to a cyanobacterial cytochrome b6f complex. FEBS J 2004; 272:582-92. [PMID: 15654895 DOI: 10.1111/j.1742-4658.2004.04501.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A highly purified cytochrome b(6)f complex from the cyanobacterium Synechocystis sp. PCC 6803 selectively binds one chlorophyll a and one carotenoid in analogy to the recent published structure from two other b(6)f complexes. The unknown function of these pigments was elucidated by spectroscopy and site-directed mutagenesis. Low-temperature redox difference spectroscopy showed red shifts in the chlorophyll and carotenoid spectra upon reduction of cytochrome b(6), which indicates coupling of these pigments with the heme groups and thereby with the electron transport. This is supported by the correlated kinetics of these redox reactions and also by the distinct orientation of the chlorophyll molecule with respect to the heme cofactors as shown by linear dichroism spectroscopy. The specific role of the carotenoid echinenone for the cytochrome b(6)f complex of Synechocystis 6803 was elucidated by a mutant lacking the last step of echinenone biosynthesis. The isolated mutant complex preferentially contained a carotenoid with 0, 1 or 2 hydroxyl groups (most likely 9-cis isomers of beta-carotene, a monohydroxy carotenoid and zeaxanthin, respectively) instead. This indicates a substantial role of the carotenoid - possibly for strucure and assembly - and a specificity of its binding site which is different from those in most other oxygenic photosynthetic organisms. In summary, both pigments are probably involved in the structure, but may also contribute to the dynamics of the cytochrome b(6)f complex.
Collapse
Affiliation(s)
- Stephan-Olav Wenk
- Plant Biochemistry, Faculty for Biology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yan J, Cramer WA. Molecular control of a bimodal distribution of quinone-analogue inhibitor binding sites in the cytochrome b(6)f complex. J Mol Biol 2004; 344:481-93. [PMID: 15522300 DOI: 10.1016/j.jmb.2004.09.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2004] [Revised: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 10/26/2022]
Abstract
The 3.0-3.1A X-ray structures of the cytochrome b(6)f complex from Mastigocladus laminosus and Chlamydomonas reinhardtii obtained in the presence of the p-side quinone-analogue inhibitor tridecyl-stigmatellin (TDS) are very similar. A difference occurs in the p-side binding position of TDS. In C.reinhardtii, TDS binds in the ring-in mode, as previously found for stigmatellin in X-ray structures of the cytochrome bc(1) complex. In this mode, the H-bonding chromone ring moiety of the TDS bound in the Q(p) niche is proximal to the ISP [2Fe-2S] cluster, and its 13 carbon tail extends through a portal to the large inter-monomer quinone-exchange cavity. However, in M.laminosus, TDS binds in an oppositely oriented ring-out mode, with the tail inserted toward the Q(p) niche through the portal and the ring caught in the quinone-exchange cavity that is 20A away from the [2Fe-2S] cluster. Site-directed mutagenesis of residues that might determine TDS binding was performed with the related transformable cyanobacterium Synechococcus sp. PCC 7002. The following changes in the sensitivity of electron transport activity to TDS and stigmatellin were observed: (a) little effect of mutation L193A in cytochrome b(6), which is proximal to the chromone of the ring-out TDS; (b) almost complete loss of sensitivity by mutation L111A in the ISP cluster binding region, which is close to the chromone of the ring-in TDS; (c) a ten and 60-fold increase associated with the mutation L81F in subunit IV. It was inferred that only the ring-in binding mode, in which the ring interacts with residues near the ISP, is inhibitory, and that residue 81 of subunit IV, which resides at the immediate entrance to the Q(p) niche, controls the relative binding affinity of inhibitor at the two different binding sites.
Collapse
Affiliation(s)
- Jiusheng Yan
- Department of Biological Sciences, Lilly Hall of Life Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA.
| | | |
Collapse
|
44
|
Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL. Evolution of photosynthesis: time-independent structure of the cytochrome b6f complex. Biochemistry 2004; 43:5921-9. [PMID: 15147175 DOI: 10.1021/bi049444o] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structures of the cytochrome b(6)f complex obtained from the thermophilic cyanobacterium Mastigocladus laminosus and the green alga Chlamydomonas reinhardtii, whose appearance in evolution is separated by 10(9) years, are almost identical. Two monomers with a molecular weight of 110,000, containing eight subunits and seven natural prosthetic groups, are separated by a large lipid-containing "quinone exchange cavity". A unique heme, heme x, that is five-coordinated and high-spin, with no strong field ligand, occupies a position close to intramembrane heme b(n). This position is filled by the n-side bound quinone, Q(n), in the cytochrome bc(1) complex of the mitochondrial respiratory chain. The structure and position of heme x suggest that it could function in ferredoxin-dependent cyclic electron transport as well as being an intermediate in a quinone cycle mechanism for electron and proton transfer. The significant differences between the cyanobacterial and algal structures are as follows. (i) On the n-side, a plastoquinone molecule is present in the quinone exchange cavity in the cyanobacterial complex, and a sulfolipid is bound in the algal complex at a position corresponding to a synthetic DOPC lipid molecule in the cyanobacterial complex. (ii) On the p-side, in both complexes a quinone analogue inhibitor, TDS, passes through a portal that separates the large cavity from a niche containing the Fe(2)S(2) cluster. However, in the cyanobacterial complex, TDS is in an orientation that is the opposite of its position in the algal structure and bc(1) complexes, so its headgroup in the M. laminosus structure is 20 A from the Fe(2)S(2) cluster.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Lilly Hall of Life Sciences, 915 West State Street, Purdue University, West Lafayette, Indiana 47907-2054, USA.
| | | | | | | | | |
Collapse
|
45
|
Breyton C, Chabaud E, Chaudier Y, Pucci B, Popot JL. Hemifluorinated surfactants: a non-dissociating environment for handling membrane proteins in aqueous solutions? FEBS Lett 2004; 564:312-8. [PMID: 15111115 DOI: 10.1016/s0014-5793(04)00227-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 02/10/2004] [Indexed: 11/30/2022]
Abstract
The instability of membrane proteins in detergent solution can generally be traced to the dissociating character of detergents and often correlates with delipidation. We examine here the possibility of substituting detergents, after membrane proteins have been solubilized, with non-detergent surfactants whose hydrophobic moiety contains a perfluorinated region that makes it lipophobic. In order to improve its affinity for the protein surface, the fluorinated chain is terminated by an ethyl group. Test proteins included bacteriorhodopsin, the cytochrome b(6)f complex, and the transmembrane region of the bacterial outer membrane protein OmpA. All three proteins were purified using classical detergents and transferred into solutions of C(2)H(5)C(6)F(12)C(2)H(4)-S-poly-Tris-(hydroxymethyl)aminomethane (HF-TAC). Transfer to HF-TAC maintained the native state of the proteins and prevented their precipitation. Provided the concentration of HF-TAC was high enough, HF-TAC/membrane protein complexes ran as single bands upon centrifugation in sucrose gradients. Bacteriorhodopsin and the cytochrome b(6)f complex, both of which are detergent-sensitive, exhibited increased biochemical stability upon extended storage in the presence of a high concentration of HF-TAC as compared to detergent micelles. The stabilization of cytochrome b(6)f is at least partly due to a better retention of protein-bound lipids.
Collapse
Affiliation(s)
- Cécile Breyton
- Laboratoire de Physicochimie Moléculaire des Membranes Biologiques, UMR 7099, CNRS and Université Paris-7, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | | | |
Collapse
|
46
|
Allen JF. Cytochrome b6f: structure for signalling and vectorial metabolism. TRENDS IN PLANT SCIENCE 2004; 9:130-137. [PMID: 15003236 DOI: 10.1016/j.tplants.2004.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- John F Allen
- Plant Biochemistry, Center for Chemistry and Chemical Engineering, Box 124, Lund University, SE-221 00 Lund, Sweden.
| |
Collapse
|
47
|
Stroebel D, Choquet Y, Popot JL, Picot D. An atypical haem in the cytochrome b6f complex. Nature 2003; 426:413-8. [PMID: 14647374 DOI: 10.1038/nature02155] [Citation(s) in RCA: 448] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 10/28/2003] [Indexed: 11/09/2022]
Abstract
Photosystems I and II (PSI and II) are reaction centres that capture light energy in order to drive oxygenic photosynthesis; however, they can only do so by interacting with the multisubunit cytochrome b(6)f complex. This complex receives electrons from PSII and passes them to PSI, pumping protons across the membrane and powering the Q-cycle. Unlike the mitochondrial and bacterial homologue cytochrome bc(1), cytochrome b(6)f can switch to a cyclic mode of electron transfer around PSI using an unknown pathway. Here we present the X-ray structure at 3.1 A of cytochrome b(6)f from the alga Chlamydomonas reinhardtii. The structure bears similarities to cytochrome bc(1) but also exhibits some unique features, such as binding chlorophyll, beta-carotene and an unexpected haem sharing a quinone site. This haem is atypical as it is covalently bound by one thioether linkage and has no axial amino acid ligand. This haem may be the missing link in oxygenic photosynthesis.
Collapse
Affiliation(s)
- David Stroebel
- Laboratoire de Physico-Chimie Moléculaire des Membranes Biologiques, CNRS/Université Paris 7, UMR 7099, France
| | | | | | | |
Collapse
|
48
|
Kurisu G, Zhang H, Smith JL, Cramer WA. Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 2003; 302:1009-14. [PMID: 14526088 DOI: 10.1126/science.1090165] [Citation(s) in RCA: 508] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The cytochrome b6f complex provides the electronic connection between the photosystem I and photosystem II reaction centers of oxygenic photosynthesis and generates a transmembrane electrochemical proton gradient for adenosine triphosphate synthesis. A 3.0 angstrom crystal structure of the dimeric b6f complex from the thermophilic cyanobacterium Mastigocladus laminosus reveals a large quinone exchange cavity, stabilized by lipid, in which plastoquinone, a quinone-analog inhibitor, and a novel heme are bound. The core of the b6f complex is similar to the analogous respiratory cytochrome bc1 complex, but the domain arrangement outside the core and the complement of prosthetic groups are strikingly different. The motion of the Rieske iron-sulfur protein extrinsic domain, essential for electron transfer, must also be different in the b6f complex.
Collapse
Affiliation(s)
- Genji Kurisu
- Department of Biological Sciences, 915 West State Street, Purdue University, West Lafayette, IN 47907-2054, USA
| | | | | | | |
Collapse
|
49
|
Schmidt K, Fufezan C, Krieger-Liszkay A, Satoh H, Paulsen H. Recombinant water-soluble chlorophyll protein from Brassica oleracea var. Botrys binds various chlorophyll derivatives. Biochemistry 2003; 42:7427-33. [PMID: 12809498 DOI: 10.1021/bi034207r] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A gene coding for water-soluble chlorophyll-binding protein (WSCP) from Brassica oleracea var. Botrys has been used to express the protein, extended by a hexahistidyl tag, in Escherichia coli. The protein has been refolded in vitro to study its pigment binding behavior. Recombinant WSCP was found to bind two chlorophylls (Chls) per tetrameric protein complex but no carotenoids in accordance with previous observations with the native protein [Satoh, H., Nakayama, K., Okada, M. (1998) J. Biol. Chem. 273, 30568-30575]. WSCP binds Chl a, Chl b, bacteriochlorophyll a, and the Zn derivative of Chl a but not pheophytin a, indicating that the central metal ion in Chl is essential for binding. WSCP also binds chlorophyllides a and b and even the more distant Chl precursor Mg-protoporphyrin IX; however, these pigments fail to induce oligomerization of the protein. We conclude that the phytol group in bound Chl plays a role in the formation of tetrameric WSCP complexes. If WSCP in fact binds Chl or its derivative(s) in vivo, the lack of carotenoids in pigmented WSCP raises the question of how photooxidation, mediated by triplet-excited Chl and singlet oxygen, is prohibited. We show by spin-trap electron-paramagnetic resonance that the light-induced singlet-oxygen formation of WSCP-bound Chl is lower by a factor of about 4 than that of unbound Chl. This as-yet-unknown mechanism of WSCP to protect its bound Chl against photooxidation supports the notion that WSCP may function as a transient carrier of Chl or its derivatives.
Collapse
Affiliation(s)
- Kristin Schmidt
- Institut für Allgemeine Botanik der Johannes-Gutenberg-Universität, Müllerweg 6, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
50
|
Zhang H, Kurisu G, Smith JL, Cramer WA. A defined protein-detergent-lipid complex for crystallization of integral membrane proteins: The cytochrome b6f complex of oxygenic photosynthesis. Proc Natl Acad Sci U S A 2003; 100:5160-3. [PMID: 12702760 PMCID: PMC154315 DOI: 10.1073/pnas.0931431100] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 03/12/2003] [Indexed: 11/18/2022] Open
Abstract
The paucity of integral membrane protein structures creates a major bioinformatics gap, whose origin is the difficulty of crystallizing these detergent-solubilized proteins. The problem is particularly formidable for hetero-oligomeric integral membrane proteins, where crystallization is impeded by the heterogeneity and instability of the protein subunits and the small lateral pressure imposed by the detergent micelle envelope that surrounds the hydrophobic domain. In studies of the hetero (eight subunit)-dimeric 220,000 molecular weight cytochrome b(6)f complex, derived from the thermophilic cyanobacterium, Mastigocladus laminosus, crystals of the complex in an intact state could not be obtained from highly purified delipidated complex despite exhaustive screening. Crystals of proteolyzed complex could be obtained that grew very slowly and diffracted poorly. Addition to the purified lipid-depleted complex of a small amount of synthetic nonnative lipid, dioleolyl-phosphatidylcholine, resulted in a dramatic improvement in crystallization efficiency. Large crystals of the intact complex grew overnight, whose diffraction parameters are as follows: 94% complete at 3.40 A spacing; R(merge) = 8.8% (38.5%), space group, P6(1)22; and unit cell parameters, a = b = 156.3 A, c = 364.0 A, alpha = beta = 90 degrees, gamma = 120 degrees. It is proposed that the methodology of augmentation of a well-defined lipid-depleted integral membrane protein complex with synthetic nonnative lipid, which can provide conformational stability to the protein complex, may be of general use in the crystallization of integral membrane proteins.
Collapse
Affiliation(s)
- Huamin Zhang
- Department of Biological Sciences, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907-2054, USA
| | | | | | | |
Collapse
|