1
|
Distinct signaling by insulin and IGF-1 receptors and their extra- and intracellular domains. Proc Natl Acad Sci U S A 2021; 118:2019474118. [PMID: 33879610 DOI: 10.1073/pnas.2019474118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Insulin and insulin-like growth factor 1 (IGF-1) receptors share many downstream signaling pathways but have unique biological effects. To define the molecular signals contributing to these distinct activities, we performed global phosphoproteomics on cells expressing either insulin receptor (IR), IGF-1 receptor (IGF1R), or chimeric IR-IGF1R receptors. We show that IR preferentially stimulates phosphorylations associated with mammalian target of rapamycin complex 1 (mTORC1) and Akt pathways, whereas IGF1R preferentially stimulates phosphorylations on proteins associated with the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases), and cell cycle progression. There were also major differences in the phosphoproteome between cells expressing IR versus IGF1R in the unstimulated state, including phosphorylation of proteins involved in membrane trafficking, chromatin remodeling, and cell cycle. In cells expressing chimeric IR-IGF1R receptors, these differences in signaling could be mapped to contributions of both the extra- and intracellular domains of these receptors. Thus, despite their high homology, IR and IGF1R preferentially regulate distinct networks of phosphorylation in both the basal and stimulated states, allowing for the unique effects of these hormones on organismal function.
Collapse
|
2
|
Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nat Commun 2017; 8:14892. [PMID: 28345670 PMCID: PMC5378997 DOI: 10.1038/ncomms14892] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/08/2017] [Indexed: 01/20/2023] Open
Abstract
Despite a high degree of homology, insulin receptor (IR) and IGF-1 receptor (IGF1R) mediate distinct cellular and physiological functions. Here, we demonstrate how domain differences between IR and IGF1R contribute to the distinct functions of these receptors using chimeric and site-mutated receptors. Receptors with the intracellular domain of IGF1R show increased activation of Shc and Gab-1 and more potent regulation of genes involved in proliferation, corresponding to their higher mitogenic activity. Conversely, receptors with the intracellular domain of IR display higher IRS-1 phosphorylation, stronger regulation of genes in metabolic pathways and more dramatic glycolytic responses to hormonal stimulation. Strikingly, replacement of leucine973 in the juxtamembrane region of IR to phenylalanine, which is present in IGF1R, mimics many of these signalling and gene expression responses. Overall, we show that the distinct activities of the closely related IR and IGF1R are mediated by their intracellular juxtamembrane region and substrate binding to this region.
Collapse
|
3
|
Sun Y, Guo CY, Wang DD, Li XF, Xiao L, Zhang X, You X, Shi Q, Hu GJ, Fang C, Lin HR, Zhang Y. Transcriptome analysis reveals the molecular mechanisms underlying growth superiority in a novel grouper hybrid (Epinephelus fuscogutatus♀ × E. lanceolatus♂). BMC Genet 2016; 17:24. [PMID: 26785614 PMCID: PMC4719697 DOI: 10.1186/s12863-016-0328-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/11/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Groupers (Epinephelus spp.) have been widely cultivated in China and South-East Asian countries. As a novel hybrid offspring crossed between E. fuscogutatus♀ and E. lanceolatus♂, Hulong grouper exhibits significant growth superiority over its female parent, which made it a promising farmed species in grouper aquaculture industry in China. Hulong grouper present a good combination of beneficial traits from both parent species, but the molecular mechanisms of its heterosis still remain poorly understood. RESULTS Based on RNA sequencing and gene expression profiling, we conducted comparative transcriptome analyses between Hulong grouper and its parents E. fuscoguttatus & E. lanceolatus. Six hundred sixty-two and 5239 differentially expressed genes (DEGs) were identified in the brains and livers, respectively. GO enrichment analysis of these DEGs revealed that metabolic process and catalytic activity were the most enriched GO terms. Further analysis showed the expressions of GnRH1 and GnRH3 in the brain, and GH/IGF axis related genes such as IGF-1, IGF-2b, IGFBP-1, IGFBP-2, IGFBP-4 and IGFBP-5a in the liver of the hybrid F1 were significantly up-regulated, which is in accordance with the growth superiority of hybrid grouper. Meanwhile, expressions of genes related to the protein and glycogen synthesis pathway, such as PI3KC, PI3KR, Raptor, EIF4E3, and PP1 were up-regulated, while PYG expression was down-regulated. These changes might contribute to increased protein and glycogen synthesis in the hybrid grouper. CONCLUSIONS We identified a number of differentially expressed genes such as GnRH1 and GnRH3, and genes involved in GH/IGF axis and its downstream signaling pathways for protein and glycogen synthesis in Hulong Grouper. These findings provided molecular basis underlying growth superiority of hybrid grouper, and comprehensive insights into better understanding the molecular mechanisms and regulative pathways regulating heterosis in fish.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Shenzhen Key Lab of Marine Genomics, BGI, Shenzhen, 518083, China.
| | - Chuan-Yu Guo
- Shenzhen Key Lab of Marine Genomics, BGI, Shenzhen, 518083, China.
| | - Deng-Dong Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xiao Feng Li
- Shenzhen Key Lab of Marine Genomics, BGI, Shenzhen, 518083, China.
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, BGI, Shenzhen, 518083, China.
- Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen, 518083, China.
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, BGI, Shenzhen, 518083, China.
- Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen, 518083, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, BGI, Shenzhen, 518083, China.
- Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen, 518083, China.
| | - Guo-Jun Hu
- Shenzhen Key Lab of Marine Genomics, BGI, Shenzhen, 518083, China.
- Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen, 518083, China.
| | - Chao Fang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Hao-Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen, 518083, China.
| |
Collapse
|
4
|
Annenkov A, Rigby A, Amor S, Zhou D, Yousaf N, Hemmer B, Chernajovsky Y. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1428-37. [PMID: 21600935 DOI: 10.1016/j.bbamcr.2011.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/24/2011] [Accepted: 04/25/2011] [Indexed: 11/24/2022]
Abstract
In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 (IGF1R) signalling cascade. Activation of this pro-survival pathway in response to ligand broadly available in the brain might increase neuroregenerative potential of transplanted precursors. The ChR was produced by fusing a MOG-specific single chain antibody with the extracellular boundary of the IGF1R transmembrane segment. The ChR is expressed on the cellular surface, predominantly as a monomer, and is not N-glycosylated. To show MOG-dependent functionality of the ChR, neuroblastoma cells B104 expressing this ChR were stimulated with monolayers of cells expressing recombinant MOG. The ChR undergoes MOG-dependent tyrosine phosphorylation and homodimerisation. It promotes insulin and IGF-independent growth of the oligodendrocyte progenitor cell line CG4. The proposed mode of the ChR activation is by MOG-induced dimerisation which promotes kinase domain transphosphorylation, by-passing the requirement of conformation changes known to be important for IGF1R activation. Another ChR, which contains a segment of the β-chain ectodomain, was produced in an attempt to recapitulate some of these conformational changes, but proved non-functional.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and the London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | | | | | | | | | |
Collapse
|
5
|
Boucher J, Tseng YH, Kahn CR. Insulin and insulin-like growth factor-1 receptors act as ligand-specific amplitude modulators of a common pathway regulating gene transcription. J Biol Chem 2010; 285:17235-45. [PMID: 20360006 DOI: 10.1074/jbc.m110.118620] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin and insulin-like growth factor-1 (IGF-1) act on highly homologous receptors, yet in vivo elicit distinct effects on metabolism and growth. To investigate how the insulin and IGF-1 receptors exert specificity in their biological responses, we assessed their role in the regulation of gene expression using three experimental paradigms: 1) preadipocytes before and after differentiation into adipocytes that express both receptors, but at different ratios; 2) insulin receptor (IR) or IGF1R knock-out preadipocytes that only express the complimentary receptor; and 3) IR/IGF1R double knock-out (DKO) cells reconstituted with the IR, IGF1R, or both. In wild-type preadipocytes, which express predominantly IGF1R, microarray analysis revealed approximately 500 IGF-1 regulated genes (p < 0.05). The largest of these were confirmed by quantitative PCR, which also revealed that insulin produced a similar effect, but with a smaller magnitude of response. After differentiation, when IR levels increase and IGF1R decrease, insulin became the dominant regulator of each of these genes. Measurement of the 50 most highly regulated genes by quantitative PCR did not reveal a single gene regulated uniquely via the IR or IGF1R using cells expressing exclusively IGF-1 or insulin receptors. Insulin and IGF-1 dose responses from 1 to 100 nm in WT, IRKO, IGFRKO, and DKO cells re-expressing IR, IGF1R, or both showed that insulin and IGF-1 produced effects in proportion to the concentration of ligand and the specific receptor on which they act. Thus, IR and IGF1R act as identical portals to the regulation of gene expression, with differences between insulin and IGF-1 effects due to a modulation of the amplitude of the signal created by the specific ligand-receptor interaction.
Collapse
Affiliation(s)
- Jeremie Boucher
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
6
|
Palsgaard J, Brown AE, Jensen M, Borup R, Walker M, De Meyts P. Insulin-like growth factor I (IGF-I) is a more potent regulator of gene expression than insulin in primary human myoblasts and myotubes. Growth Horm IGF Res 2009; 19:168-178. [PMID: 19010705 DOI: 10.1016/j.ghir.2008.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 09/15/2008] [Accepted: 09/24/2008] [Indexed: 11/28/2022]
Abstract
Conventionally, insulin is believed to induce a metabolic response, and IGF-I a mitogenic/differentiation response in vivo. However, several studies indicate that the roles of insulin and IGF-I may not be that easy to separate. In this study, insulin and IGF-I specificity in terms of gene regulation was investigated in primary human skeletal muscle cells before and after differentiation. Cell cultures were treated with 100 nM insulin, IGF-I or nothing for 4h, and gene expression was subsequently determined using the Affymetrix microarray platform. Insulin and IGF-I receptor levels were determined by qRT-PCR and by radioligand binding assays. In primary myoblasts, insulin did not have any significant effect on gene expression, whereas IGF-I regulated 229 genes. In primary myotubes, insulin regulated 105 genes, whereas IGF-I regulated 697 genes. Additionally, 99 genes were found to be differentially regulated by insulin and IGF-I in a direct comparison. The majority of these genes were specifically regulated by IGF-I, 16 genes were regulated by both ligands, and no genes were regulated by only insulin. The microarray results correlated with low levels of insulin receptors compared to IGF-I receptors as determined by radioligand binding assays. In the myotubes, we did not identify any ligand specificity in terms of functional categories. The major difference between the two ligands was their respective potencies in gene regulation, which was higher for IGF-I than for insulin. This was true for genes involved in both mitogenic and metabolic regulations. The data suggest that IGF-I is a more important metabolic regulator in skeletal muscle than previously estimated.
Collapse
Affiliation(s)
- Jane Palsgaard
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Niels Steensens vej 6, 2820 Gentofte, Denmark.
| | | | | | | | | | | |
Collapse
|
7
|
Lim GE, Huang GJ, Flora N, LeRoith D, Rhodes CJ, Brubaker PL. Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Endocrinology 2009; 150:580-91. [PMID: 18818290 PMCID: PMC5393261 DOI: 10.1210/en.2008-0726] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Insulin resistance and type 2 diabetes mellitus are associated with impaired postprandial secretion of glucagon-like peptide-1 (GLP-1), a potent insulinotropic hormone. The direct effects of insulin and insulin resistance on the L cell are unknown. We therefore hypothesized that the L cell is responsive to insulin and that insulin resistance impairs GLP-1 secretion. The effects of insulin and insulin resistance were examined in well-characterized L cell models: murine GLUTag, human NCI-H716, and fetal rat intestinal cells. MKR mice, a model of chronic hyperinsulinemia, were used to assess the function of the L cell in vivo. In all cells, insulin activated the phosphatidylinositol 3 kinase-Akt and MAPK kinase (MEK)-ERK1/2 pathways and stimulated GLP-1 secretion by up to 275 +/- 58%. Insulin resistance was induced by 24 h pretreatment with 10(-7) m insulin, causing a marked reduction in activation of Akt and ERK1/2. Furthermore, both insulin-induced GLP-1 release and secretion in response to glucose-dependent insulinotropic peptide and phorbol-12-myristate-13-acetate were significantly attenuated. Whereas inhibition of phosphatidylinositol 3 kinase with LY294002 potentiated insulin-induced GLP-1 release, secretion was abrogated by inhibiting the MEK-ERK1/2 pathway with PD98059 or by overexpression of a kinase-dead MEK1-ERK2 fusion protein. Compared with controls, MKR mice were insulin resistant and displayed significantly higher fasting plasma insulin levels. Furthermore, they had significantly higher basal GLP-1 levels but displayed impaired GLP-1 secretion after an oral glucose challenge. These findings indicate that the intestinal L cell is responsive to insulin and that insulin resistance in vitro and in vivo is associated with impaired GLP-1 secretion.
Collapse
Affiliation(s)
- Gareth E Lim
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Entingh-Pearsall A, Kahn CR. Differential Roles of the Insulin and Insulin-like Growth Factor-I (IGF-I) Receptors in Response to Insulin and IGF-I. J Biol Chem 2004; 279:38016-24. [PMID: 15247278 DOI: 10.1074/jbc.m313201200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin and insulin-like growth factor-I (IGF-I) receptors are highly homologous tyrosine kinase receptors that share many common steps in their signaling pathways and have ligands that can bind to either receptor with differing affinities. To define precisely the signaling specific to the insulin receptor (IR) or the IGF-I receptor, we have generated brown preadipocyte cell lines that lack either receptor (insulin receptor knockout (IRKO) or insulin-like growth factor receptor knockout (IGFRKO)). Control preadipocytes expressed fewer insulin receptors than IGF-I receptors (20,000 versus 60,000), but during differentiation, insulin receptor levels increased so that mature adipocytes expressed slightly more insulin receptors than IGF-I receptors (120,000 versus 100,000). In these cells, insulin stimulated IR homodimer phosphorylation, whereas IGF-I activated both IGF-I receptor homodimers and hybrid receptors. Insulin-stimulated IRS-1 phosphorylation was significantly impaired in IRKO cells but was surprisingly elevated in IGFRKO cells. IRS-2 phosphorylation was unchanged in either cell line upon insulin stimulation. IGF-I-dependent phosphorylation of IRS-1 and IRS-2 was ablated in IGFRKO cells but not in IRKO cells. In control cells, both insulin and IGF-I produced a dose-dependent increase in phosphorylated Akt and MAPK, although IGF-I elicited a stronger response at an equivalent dose. In IRKO cells, the insulin-dependent increase in phospho-Akt was completely abolished at the lowest dose and reached only 20% of the control stimulation at 10 nm. Most interestingly, the response to IGF-I was also impaired at low doses, suggesting that IR is required for both insulin- and IGF-I-dependent phosphorylation of Akt. Most surprisingly, insulin- or IGF-I-dependent phosphorylation of MAPK was unaltered in either receptor-deficient cell line. Taken together, these results indicate that the insulin and IGF-I receptors contribute distinct signals to common downstream components in response to both insulin and IGF-I.
Collapse
Affiliation(s)
- Amelia Entingh-Pearsall
- Department of Cellular and Molecular Physiology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
9
|
Scarpa RC, Carraway RE, Cochrane DE. The effect of neurotensin on insulin-induced proliferation of human fibroblasts. Peptides 2004; 25:1159-69. [PMID: 15245876 DOI: 10.1016/j.peptides.2004.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 04/27/2004] [Indexed: 11/20/2022]
Abstract
Neurotensin has been shown to influence growth in a number of cancerous and non-cancerous cells and to enhance the proliferative effects of growth factors without itself inducing proliferation. Here we show that neurotensin potentiates the proliferative effects of insulin on IMR90 human fibroblasts in a concentration and neurotensin receptor type 1-dependent manner. This potentiating effect of neurotensin was blocked by inhibitors of phospholipase C and protein kinase C, was accompanied by an increase in the level of soluble inositol phosphates and did not involve an autocrine factor. These results show that neurotensin can enhance insulin-dependent proliferation of human fibroblasts and suggest a possible role for neurotensin in tissue growth and repair.
Collapse
|
10
|
Purcell AL, Sharma SK, Bagnall MW, Sutton MA, Carew TJ. Activation of a tyrosine kinase-MAPK cascade enhances the induction of long-term synaptic facilitation and long-term memory in Aplysia. Neuron 2003; 37:473-84. [PMID: 12575954 DOI: 10.1016/s0896-6273(03)00030-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tyrosine kinases have been implicated in cellular processes thought to underlie learning and memory. Here we show that tyrosine kinases play a direct role in long-term synaptic facilitation (LTF) and long-term memory (LTM) for sensitization in Aplysia. Tyrosine kinase activity is required for serotonin-induced LTF of sensorimotor (SN-MN) synapses, and enhancement of endogenous tyrosine kinase activity facilitates the induction of LTF. These effects are mediated, at least in part, through mitogen-activated protein kinase (MAPK) activation and are blocked by transcriptional and translational inhibitors. Moreover, brain-derived neurotrophic factor (BDNF) also enhances the induction of LTF in a MAPK-dependent fashion. Finally, activation of endogenous tyrosine kinases enhances the induction of long-term memory for sensitization, and this enhancement also requires MAPK activation. Thus, tyrosine kinases, acting through MAPK, play a pivotal role in LTF and LTM formation.
Collapse
Affiliation(s)
- Angela L Purcell
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
11
|
Mulligan C, Rochford J, Denyer G, Stephens R, Yeo G, Freeman T, Siddle K, O'Rahilly S. Microarray analysis of insulin and insulin-like growth factor-1 (IGF-1) receptor signaling reveals the selective up-regulation of the mitogen heparin-binding EGF-like growth factor by IGF-1. J Biol Chem 2002; 277:42480-7. [PMID: 12213819 DOI: 10.1074/jbc.m206206200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin and insulin-like growth factor-1 (IGF-1) act through highly homologous receptors that engage similar intracellular signaling pathways, yet these hormones serve largely distinct physiological roles in the control of metabolism and growth, respectively. In an attempt to uncover the molecular mechanisms underlying their divergent functions, we compared insulin receptor (IR) and IGF-1 receptor (IGF-1R) regulation of gene expression by microarray analysis, using 3T3-L1 cells expressing either TrkC/IR or TrkC/IGF-1R chimeric receptors to ensure the highly selective activation of each receptor tyrosine kinase. Following stimulation of the chimeric receptors for 4 h, we detected 11 genes to be differentially regulated, of which 10 were up-regulated to a greater extent by the IGF-1R. These included genes involved in adhesion, transcription, transport, and proliferation. The expression of mRNA encoding heparin-binding epidermal growth factor-like growth factor (HB-EGF), a potent mitogen, was markedly increased by IGF-1R but not IR activation. This effect was dependent on MAPK, but not phosphatidylinositol 3-kinase, and did not require an autocrine loop through the epidermal growth factor receptor. HB-EGF mitogenic activity was detectable in the medium of 3T3-L1 preadipocytes expressing activated IGF-1R but not IR, indicating that the transcriptional response is accompanied by a parallel increase in mature HB-EGF protein. The differential abilities of the IR and IGF-1R tyrosine kinases to stimulate the synthesis and release of a growth factor may provide, at least in part, an explanation for the greater role of the IGF-1R in the control of cellular proliferation.
Collapse
Affiliation(s)
- Claire Mulligan
- University of Cambridge, Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QR, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kido Y, Nakae J, Hribal ML, Xuan S, Efstratiadis A, Accili D. Effects of mutations in the insulin-like growth factor signaling system on embryonic pancreas development and beta-cell compensation to insulin resistance. J Biol Chem 2002; 277:36740-7. [PMID: 12101187 DOI: 10.1074/jbc.m206314200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin and insulin-like growth factors (IGF) play overlapping and complementary roles in pancreatic beta-cell function and peripheral metabolism. In this study, we have analyzed mice bearing loss-of-function mutations of the insulin/IGF signaling systems. Combined inactivation of insulin receptor (Insr) and Igf1 receptor (Igf1r), but not of either receptor alone, resulted in a 90% decrease in the size of the exocrine pancreas, because of decreased cellular proliferation. In contrast to the findings in the exocrine compartment, endocrine alpha- and beta-cell development was unperturbed. Combined ablation of Igf1 and Igf2, the ligands for these two receptors, resulted in an identical phenotype. We also examined the effect of heterozygous null Igf1r mutations on glucose homeostasis in adult mice. Igf1r haploinsufficiency did not affect insulin action and compensatory beta-cell growth in insulin-resistant mice with combined Insr and Igf1r heterozygous null mutations, resulting in a considerably milder phenotype than combined haploinsufficiency for Insr and its main signaling substrates, Irs1 and Irs2. We conclude that Igf1r and Insr are required for embryonic development of the exocrine but not of the endocrine pancreas and that defects of Igf1r do not alter glucose homeostasis as long as the insulin receptor system remains intact.
Collapse
Affiliation(s)
- Yoshiaki Kido
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Receptor tyrosine kinases of the insulin-insulin-like growth factor (IGF) family promote growth and mediate metabolic signals. Despite their extensive structural homology, genetic evidence indicates that their physiological functions are distinct. Nevertheless, there is limited evidence from cell culture systems suggesting that their signalling capabilities differ. Thus, it remains unclear whether the different physiological roles of insulin and IGF-I receptors result from intrinsic differences in their abilities to activate distinct signalling pathways, or arise from extrinsic differences, such as tissue distribution, relative abundance and developmental regulation.
Collapse
Affiliation(s)
- Jane J Kim
- Naomi Berrie Diabetes Center and Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
14
|
Mohamed-Ali V, Pinkney J. Therapeutic Potential of Insulin-Like Growth Factor-1 in Patients with Diabetes Mellitus. ACTA ACUST UNITED AC 2002; 1:399-410. [PMID: 15832492 DOI: 10.2165/00024677-200201060-00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) and its receptors share considerable homology with insulin and insulin receptors, and their respective signaling pathways interact at the post receptor level. While the growth hormone (GH)-IGF-1 axis principally regulates tissue growth and differentiation, insulin exerts it primary effects on fuel metabolism. However, these two endocrine systems interact at multiple levels and in diabetes mellitus the GH-IGF-1 axis is grossly disturbed, with increased secretion of GH, reduced plasma levels of IGF-1, and complex tissue-specific changes in IGF binding proteins (IGFBPs). These observations have given rise to the view that GH-IGF-1 axis dysfunction, particularly low plasma levels of circulating IGF-1, probably play a significant role in several aspects of the pathophysiology of diabetes mellitus, including insulin resistance and poor glycemic control, and may also influence the development of microvascular complications. The availability of recombinant human IGF-1 (rhIGF-1; mecasermin), used either alone or in combination with insulin, has led to experimental studies and clinical trials in humans testing these hypotheses. These studies have examined the impact of subcutaneous rhIGF-1 injections on sensitivity and metabolic parameters. In patients with type 1 and 2 diabetes mellitus, insulin sensitivity is significantly improved, insulin requirements are reduced, and glycemic control of dyslipidemia is generally improved in short-term studies. rhIGF-1 is a particularly attractive possibility in patients with type 2 diabetes mellitus, where insulin resistance is the fundamental problem. Some patients with genetic syndromes of severe insulin resistance also benefit from treatment with rhIGF-1, which can bypass blocks in the insulin signaling pathway. The common adverse effects reported for rhIGF-1 are dose-related and include edema, jaw pain, arthralgia, myalgia, hypotension, injection site pain, and less commonly, Bell's palsy and raised intracranial pressure. Although disturbance of the GH-IGF-1 axis participates in the development of diabetic complications, the functional consequences of the complex changes in IGFBP expression at the tissue level are uncertain, and it is not known whether systemic IGF-1 therapy or other manipulations of the GH-IGF-1 axis would be helpful or harmful. Experimentally, IGF-1 has a protective effect on neuropathy, and could find an application in the healing of neuropathic ulcers. The potential benefits of IGF-1 therapy in diabetes mellitus have yet to be realised.
Collapse
Affiliation(s)
- Vidya Mohamed-Ali
- Adipokines and Metabolism Research Group, Department of Medicine, University College London, London, UK.
| | | |
Collapse
|
15
|
Kim JJ, Park BC, Kido Y, Accili D. Mitogenic and metabolic effects of type I IGF receptor overexpression in insulin receptor-deficient hepatocytes. Endocrinology 2001; 142:3354-60. [PMID: 11459778 DOI: 10.1210/endo.142.8.8332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have previously shown that hepatocytes lacking insulin receptors (Ir-/-) fail to mediate metabolic responses, such as stimulation of glycogen synthesis, while retaining the ability to proliferate in response to IGFs. In this study we have asked whether overexpression of type I IGF receptors would rescue the metabolic response of Ir-/- hepatocytes. After IGF-I stimulation, insulin receptor substrate-1 and -2 phosphorylation and PI3K activity were restored to levels similar to or greater than those seen in wild-type cells. Rates of cell proliferation in response to IGF-I increased approximately 2-fold, whereas glycogen synthesis was restored to wild-type levels, but was comparatively smaller than that elicited by overexpression of insulin receptors. In summary, overexpression of IGF-I receptors in Ir-/- hepatocytes normalized insulin receptor substrate-2 phosphorylation and glycogen synthesis to wild-type levels, whereas it increased cell proliferation above wild-type levels. Moreover, stimulation of glycogen synthesis was submaximal compared with the effect of insulin receptor overexpression. We conclude that IGF-I receptors are more efficiently coupled to cell proliferation than insulin receptors, but are less potent than insulin receptors in stimulating glycogen synthesis. The data are consistent with the possibility that there exist intrinsic signaling differences between insulin and IGF-I receptors.
Collapse
Affiliation(s)
- J J Kim
- Naomi Berrie Diabetes Center and Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
16
|
Ursø B, Niesler CU, O'Rahilly S, Siddle K. Comparison of anti-apoptotic signalling by the insulin receptor and IGF-I receptor in preadipocytes and adipocytes. Cell Signal 2001; 13:279-85. [PMID: 11306245 DOI: 10.1016/s0898-6568(01)00130-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We compared the effectiveness of insulin receptor (IR) and type I insulin-like growth factor (IGF) receptor (IGFR) cytoplasmic domains in mediating anti-apoptotic effects in 3T3-L1 preadipocytes and adipocytes. We used TrkC/IR and TrkC/IGFR chimeras, stably expressed in these cells and stimulated with neurotrophin-3 (NT-3), so as to avoid interference from endogenous receptors. After 24-h serum deprivation, 10% of preadipocytes and 2% of adipocytes appeared apoptotic as determined by fluorescence-activated cell sorter (FACS) analysis of cells stained with propidium iodide (PI) and Annexin V. When NT-3 was added, the two chimeras inhibited apoptosis to the same extent by 80% in preadipocytes and 50% in adipocytes. Mutation of juxtamembrane tyrosines (IR Y960F, IGFR Y950F) abrogated these anti-apoptotic effects. Qualitatively similar results were obtained by determination of viable rather than apoptotic cells. We conclude that IR and IGFR have equal potential to inhibit apoptosis in cell backgrounds, which are normally responsive to either IGF-I or insulin.
Collapse
Affiliation(s)
- B Ursø
- University of Cambridge, Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, CB2 2QR, Cambridge, UK
| | | | | | | |
Collapse
|
17
|
Ricort JM, Binoux M. Insulin-like growth factor (IGF) binding protein-3 inhibits type 1 IGF receptor activation independently of its IGF binding affinity. Endocrinology 2001; 142:108-13. [PMID: 11145572 DOI: 10.1210/endo.142.1.7915] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factor binding proteins (IGFBPs) regulate the cellular actions of the IGFs owing to their strong affinities, which are equal to or stronger than the affinity of the type 1 IGF receptor (IGF-IR), the mediator of IGF signal transduction. We recently found that IGFBP-3 modulates IGF-I binding to its receptor via a different mechanism possibly involving conformational alteration of the receptor. We have now investigated the effects of IGFBP-3 on the initial steps in the IGF signaling pathway. MCF-7 breast carcinoma cells were preincubated with increasing concentrations of IGFBP-3 and then stimulated with IGF-I, des(1-3)IGF-I, or [Q(3)A(4)Y(15)L(16)]-IGF-I, the latter two being IGF-I analogs with intact affinity for the type 1 IGF receptor, but weak or virtually no affinity for IGFBPs. Stimulation of autophosphorylation of the receptor and its tyrosine kinase activity was dose-dependently depressed. At 2.5 nM, IGFBP-3 provoked more than 50% inhibition of the stimulation induced by 3 nM des(1-3)IGF-1 and, at 10 nM, more than 80% inhibition. Similar results were obtained with [Q(3)A(4)Y(15)L(16)]-IGF-I. Cross-linking experiments using iodinated or unlabeled IGFBP-3 and anti-IGF-IR antibodies indicated that the inhibitory effects do not involve direct interaction between IGFBP-3 and IGF-IR. The inhibition appeared to be specific to IGFBP-3, because IGFBP-1 and IGFBP-5 at 10 nM had no significant effect. Also, inhibition was restricted to the IGF receptor, because IGFBP-3 failed to inhibit the tyrosine kinase activity of the insulin receptor stimulated by physiological concentrations of insulin. Our results provide the first demonstration that IGFBP-3 can specifically modulate the IGF-I signaling pathway independently of its IGF-I-binding ability. They also reveal a regulatory mechanism specific to the type 1 IGF receptor, with no effect on insulin receptor activation.
Collapse
Affiliation(s)
- J M Ricort
- Institut National de la Santé et de la Recherche Médicale, Unité 515, Croissance, Différenciation et Processus tumoraux, Hôpital Saint-Antoine, Paris, France
| | | |
Collapse
|
18
|
Bernier M, Kole HK, Montrose-Rafizadeh C, Kole S. Discrete region of the insulin receptor carboxyl terminus plays key role in insulin action. J Cell Biochem 2000; 78:160-9. [PMID: 10797575 DOI: 10.1002/(sici)1097-4644(20000701)78:1<160::aid-jcb15>3.0.co;2-g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present study, we attempted to determine the importance of a 23-amino-acid sequence within the carboxyl terminus of the human insulin receptor (IR) molecule in modulating insulin action in Chinese hamster ovary cells. Stable expression of a minigene encoding the receptor fragment led to an increase in insulin-induced IR autophosphorylation that was 2.4-fold higher when compared to that of IR-expressing cells transfected with empty vector. Insulin-stimulated downstream signaling was also significantly elevated in cells expressing the minigene. It was found that expression of the minigene had no effect toward insulin-like growth factor I receptor kinase activity and function. These results indicate that the IR carboxyl terminus contains a motif that acts as a physiologic modulator of insulin signaling. J. Cell. Biochem. 78:160-169, 2000. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- M Bernier
- Diabetes Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-2780, USA.
| | | | | | | |
Collapse
|
19
|
Ursø B, Brown RA, O'Rahilly S, Shepherd PR, Siddle K. The alpha-isoform of class II phosphoinositide 3-kinase is more effectively activated by insulin receptors than IGF receptors, and activation requires receptor NPEY motifs. FEBS Lett 1999; 460:423-6. [PMID: 10556509 DOI: 10.1016/s0014-5793(99)01388-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Little is known about the physiological role and mechanism of activation of class II phosphoinositide 3-kinases (PI3Ks), although it has been shown that the PI3K-C2alpha isoform is activated by insulin. Using chimaeric receptor constructs which can be activated independently of endogenous receptors in transfected cells, we found that PI3K-C2alpha activity was stimulated to a greater extent by insulin receptors than IGF receptors in 3T3-L1 adipocytes. Activation of PI3K-C2alpha required an intact NPEY motif in the receptor juxtamembrane domain. We conclude that PI3K-C2alpha is a candidate for participation in insulin-specific intracellular signalling.
Collapse
Affiliation(s)
- B Ursø
- University of Cambridge, Department of Clinical Biochemistry, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | |
Collapse
|
20
|
Ursø B, Cope DL, Kalloo-Hosein HE, Hayward AC, Whitehead JP, O'Rahilly S, Siddle K. Differences in signaling properties of the cytoplasmic domains of the insulin receptor and insulin-like growth factor receptor in 3T3-L1 adipocytes. J Biol Chem 1999; 274:30864-73. [PMID: 10521479 DOI: 10.1074/jbc.274.43.30864] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Insulin and insulin-like growth factors (IGFs) elicit distinct but overlapping biological effects in vivo. To investigate whether differences in intrinsic signaling capacity of receptors contribute to biological specificity, we constructed chimeric receptors containing the extracellular portion of the neurotrophin receptor TrkC fused to the intracellular portion of the insulin or IGF-I receptors. Chimeras were stably expressed in 3T3-L1 adipocytes at levels comparable to endogenous insulin receptors and were efficiently activated by neurotrophin-3. The wild-type insulin receptor chimera mediated approximately 2-fold greater phosphorylation of insulin receptor substrate 1 (IRS-1), association of IRS-1 with phosphoinositide 3-kinase, stimulation of glucose uptake, and GLUT4 translocation, compared with the IGF-I receptor chimera. In contrast, the IGF-I receptor chimera mediated more effective Shc phosphorylation, association of Shc with Grb2, and activation of mitogen-activated protein kinase compared with the insulin receptor chimera. The two receptors elicited similar activation of protein kinase B, p70S6 kinase, and glycogen synthesis. We conclude that the insulin receptor mediates some aspects of metabolic signaling in adipocytes more effectively than the IGF-I receptor, as a consequence of more efficient phosphorylation of IRS-1 and greater recruitment/activation of phosphoinositide 3-kinase.
Collapse
Affiliation(s)
- B Ursø
- University of Cambridge, Department of Clinical Biochemistry, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Loizou CL, Ozanne SE, Hales CN. The effect of insulin on delta5 desaturation in hepG2 human hepatoma cells and L6 rat muscle myoblasts. Prostaglandins Leukot Essent Fatty Acids 1999; 61:89-95. [PMID: 10509863 DOI: 10.1054/plef.1999.0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In humans there is a correlation between the ratio of arachidonic acid (20:4n-6) to cis 8,11,14 eicosatrienoic acid (20:3n-6) in skeletal muscle phospholipids and insulin sensitivity. This has been interpreted as indicating a link between the activity of the delta5 desaturase enzyme and muscle insulin sensitivity. The present study addressed the possibility that insulin regulates delta5 desaturase activity using L6 rat myoblasts and hepG2 human hepatoma cells. Both cell lines responded to insulin by increasing the amount of D-[U-14C] glucose incorporated into glycogen. In L6 cells, insulin stimulated cis 8,11,14 eicosatrienoic acid uptake and arachidonic acid production but had no effect on the percentage conversion of cis 8,11,14 eicosatrienoic acid to arachidonic acid. In hepG2 cells, insulin had no effect on cis 8,11,14 eicosatrienoic acid uptake or arachidonic acid production. These results suggest that insulin has no direct effect on delta5 desaturase activity in the liver but can alter arachidonic acid production in muscle by altering substrate availability.
Collapse
Affiliation(s)
- C L Loizou
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, UK.
| | | | | |
Collapse
|