1
|
Robleto VL, Zhuo Y, Crecelius JM, Benzow S, Marchese A. SNX9 family mediates βarrestin-independent GPCR endocytosis. Commun Biol 2024; 7:1455. [PMID: 39511325 PMCID: PMC11544122 DOI: 10.1038/s42003-024-07157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Agonist-stimulated GPCR endocytosis typically occurs via the multi-faceted adaptor proteins known as βarrestins. However, endocytosis of several GPCRs occurs independently of β-arrestins, suggesting an additional mode of GPCR endocytosis, but the mechanisms remain unknown. Here we provide evidence that sorting nexin 9 (SNX9), a previously described endocytic remodeling protein, functions as a novel cargo adaptor that promotes agonist-stimulated GPCR endocytosis. We show that SNX9 and SNX18, but not β-arrestins, are necessary for endocytosis of the chemokine receptor CXCR4. SNX9 is recruited to CXCR4 at the plasma membrane and interacts directly with the carboxyl-terminal tail of the receptor in a phosphorylation-dependent manner. We also provide evidence that some receptors do not require SNX9 and SNX18 nor β-arrestins for endocytosis, suggesting additional modes for GPCR endocytosis. These results provide novel insights into the mechanisms regulating GPCR trafficking and broaden our overall understanding of GPCR regulation.
Collapse
Affiliation(s)
- Valeria L Robleto
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ya Zhuo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Joseph M Crecelius
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sara Benzow
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
2
|
Bous J, Fouillen A, Orcel H, Trapani S, Cong X, Fontanel S, Saint-Paul J, Lai-Kee-Him J, Urbach S, Sibille N, Sounier R, Granier S, Mouillac B, Bron P. Structure of the vasopressin hormone-V2 receptor-β-arrestin1 ternary complex. SCIENCE ADVANCES 2022; 8:eabo7761. [PMID: 36054364 PMCID: PMC10866553 DOI: 10.1126/sciadv.abo7761] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Arrestins interact with G protein-coupled receptors (GPCRs) to stop G protein activation and to initiate key signaling pathways. Recent structural studies shed light on the molecular mechanisms involved in GPCR-arrestin coupling, but whether this process is conserved among GPCRs is poorly understood. Here, we report the cryo-electron microscopy active structure of the wild-type arginine-vasopressin V2 receptor (V2R) in complex with β-arrestin1. It reveals an atypical position of β-arrestin1 compared to previously described GPCR-arrestin assemblies, associated with an original V2R/β-arrestin1 interface involving all receptor intracellular loops. Phosphorylated sites of the V2R carboxyl terminus are clearly identified and interact extensively with the β-arrestin1 N-lobe, in agreement with structural data obtained with chimeric or synthetic systems. Overall, these findings highlight a notable structural variability among GPCR-arrestin signaling complexes.
Collapse
Affiliation(s)
- Julien Bous
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Aurélien Fouillen
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Hélène Orcel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Stefano Trapani
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Xiaojing Cong
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Simon Fontanel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Julie Saint-Paul
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Joséphine Lai-Kee-Him
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Nathalie Sibille
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Rémy Sounier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
3
|
Ikeda Y, Zabbarova I, de Rijk M, Kanai A, Wolf-Johnston A, Weiss JP, Jackson E, Birder L. Effects of vasopressin receptor agonists on detrusor smooth muscle tone in young and aged bladders: Implications for nocturia treatment. CONTINENCE (AMSTERDAM, NETHERLANDS) 2022; 2:100032. [PMID: 35789681 PMCID: PMC9250757 DOI: 10.1016/j.cont.2022.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE The main goal of this study was to determine the effects of arginine vasopressin (AVP) and desmopressin on bladder contractility and to examine whether the effects of these vasopressin receptor (VR) agonists differ in young versus aged animals. These aims were addressed using urinary bladders from young (3 months) and aged (24 month) female Fischer 344 rats that were isolated and dissected into strips for isometric tension recordings. Bladder strips were exposed to AVP and desmopressin through the perfusate, and tension changes recorded. RESULTS In young rat bladders, AVP, an agonist at both vasopressin-1 receptors (V1Rs) and vasopressin-2 receptor (V2Rs), concentration-dependently caused contraction of bladder strips with a sensitivity that was greater in young versus aged bladder strips. Removal of the mucosa did not alter the sensitivity of young bladder strips to AVP yet enhanced the AVP sensitivity of aged bladder strips. The differential sensitivity to AVP between young denuded and aged denuded bladder strips was similar. In contrast to AVP, desmopressin (V2R selective agonist) relaxed bladder strips. This response was reduced by removal of the mucosa in young, but not aged, bladder strips. CONCLUSION These findings support a direct role for VRs in regulating detrusor tone with V1Rs causing contraction and V2Rs relaxation. In aged bladders, the contractile response to V1R activation is attenuated due to release of a mucosal factor that attenuates V1R-induced contractions. Also in aged bladders, the relaxation response to V2R activation is attenuated by lack of release of a mucosal factor that contributes to V2R-induced relaxation. Thus age-associated changes in the bladder mucosa impair the effects of VRs on bladder tone. Because the V2R signaling system is impaired in the older bladder, administering an exogenous V2R agonist (e.g., desmopressin) could counteract this defect. Thus, desmopressin could potentially increase nighttime bladder capacity through detrusor relaxation in concert with decreased urine production, reducing nocturnal voiding frequency.
Collapse
Affiliation(s)
- Youko Ikeda
- University of Pittsburgh, School of Medicine, Renal-Electrolyte division, United States of America
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, United States of America
| | - Irina Zabbarova
- University of Pittsburgh, School of Medicine, Renal-Electrolyte division, United States of America
| | - Mathijs de Rijk
- Maastricht University, Faculty of Health, Medicine, and Life Sciences, School for Mental Health and Neurosciences, Department of Urology, the Netherlands
| | - Anthony Kanai
- University of Pittsburgh, School of Medicine, Renal-Electrolyte division, United States of America
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, United States of America
| | - Amanda Wolf-Johnston
- University of Pittsburgh, School of Medicine, Renal-Electrolyte division, United States of America
| | - Jeffrey P. Weiss
- SUNY Downstate Health Sciences University, Department of Urology, United States of America
| | - Edwin Jackson
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, United States of America
| | - Lori Birder
- University of Pittsburgh, School of Medicine, Renal-Electrolyte division, United States of America
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, United States of America
| |
Collapse
|
4
|
Lazar AM, Irannejad R, Baldwin TA, Sundaram AB, Gutkind JS, Inoue A, Dessauer CW, Von Zastrow M. G protein-regulated endocytic trafficking of adenylyl cyclase type 9. eLife 2020; 9:e58039. [PMID: 32515353 PMCID: PMC7332294 DOI: 10.7554/elife.58039] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
GPCRs are increasingly recognized to initiate signaling via heterotrimeric G proteins as they move through the endocytic network, but little is known about how relevant G protein effectors are localized. Here we report selective trafficking of adenylyl cyclase type 9 (AC9) from the plasma membrane to endosomes while adenylyl cyclase type 1 (AC1) remains in the plasma membrane, and stimulation of AC9 trafficking by ligand-induced activation of Gs-coupled GPCRs. AC9 transits a similar, dynamin-dependent early endocytic pathway as ligand-activated GPCRs. However, unlike GPCR traffic control which requires β-arrestin but not Gs, AC9 traffic control requires Gs but not β-arrestin. We also show that AC9, but not AC1, mediates cAMP production stimulated by endogenous receptor activation in endosomes. These results reveal dynamic and isoform-specific trafficking of adenylyl cyclase in the endocytic network, and a discrete role of a heterotrimeric G protein in regulating the subcellular distribution of a relevant effector.
Collapse
Affiliation(s)
- André M Lazar
- Program in Biochemistry and Cell Biology, University of California San FranciscoSan FranciscoUnited States
| | - Roshanak Irannejad
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
| | - Tanya A Baldwin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science CenterHoustonUnited States
| | - Aparna B Sundaram
- Lung Biology Center, Department of Medicine, University of California San FranciscoSan FranciscoUnited States
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California San DiegoSan DiegoUnited States
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-kuSendaiJapan
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, University of Texas Health Science CenterHoustonUnited States
| | - Mark Von Zastrow
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Department of Psychiatry and Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
5
|
Liu H, Wang D, Zhang Q, Zhao Y, Mamonova T, Wang L, Zhang C, Li S, Friedman PA, Xiao K. Parallel Post-Translational Modification Scanning Enhancing Hydrogen-Deuterium Exchange-Mass Spectrometry Coverage of Key Structural Regions. Anal Chem 2019; 91:6976-6980. [PMID: 31082219 DOI: 10.1021/acs.analchem.9b01410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen-deuterium exchange-mass spectrometry (HDXMS) is a powerful technology to characterize conformations and conformational dynamics of proteins and protein complexes. HDXMS has been widely used in the field of therapeutics for the development of protein drugs. Although sufficient sequence coverage is critical to the success of HDXMS, it is sometimes difficult to achieve. In this study, we developed a HDXMS data analysis strategy that includes parallel post-translational modification (PTM) scanning in HDXMS analysis. Using a membrane-delimited G protein-coupled receptor (vasopressin type 2 receptor; V2R) and a cytosolic protein (Na+/H+ exchanger regulatory factor-1; NHERF1) as examples, we demonstrate that this strategy substantially improves protein sequence coverage, especially in key structural regions likely including PTMs themselves that play important roles in protein conformational dynamics and function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sheng Li
- Department of Medicine , University of California San Diego , La Jolla , California 92093 , United States
| | | | | |
Collapse
|
6
|
Perkovska S, Méjean C, Ayoub MA, Li J, Hemery F, Corbani M, Laguette N, Ventura MA, Orcel H, Durroux T, Mouillac B, Mendre C. V 1b vasopressin receptor trafficking and signaling: Role of arrestins, G proteins and Src kinase. Traffic 2018; 19:58-82. [PMID: 29044966 DOI: 10.1111/tra.12535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/29/2022]
Abstract
The signaling pathway of G protein-coupled receptors is strongly linked to their trafficking profile. Little is known about the molecular mechanisms involved in the vasopressin receptor V1b subtype (V1b R) trafficking and its impact on receptor signaling and regulation. For this purpose, we investigated the role of β-arrestins in receptor desensitization, internalization and recycling and attempted to dissect the V1b R-mediated MAP kinase pathway. Using MEF cells Knocked-out for β-arrestins 1 and 2, we demonstrated that both β-arrestins 1 and 2 play a fundamental role in internalization and recycling of V1b R with a rapid and transient V1b R-β-arrestin interaction in contrast to a slow and long-lasting β-arrestin recruitment of the V2 vasopressin receptor subtype (V2 R). Using V1b R-V2 R chimeras and V1b R C-terminus truncations, we demonstrated the critical role of the V1b R C-terminus in its interaction with β-arrestins thereby regulating the receptor internalization and recycling kinetics in a phosphorylation-independent manner. In parallel, V1b R MAP kinase activation was dependent on arrestins and Src-kinase but independent on G proteins. Interestingly, Src interacted with hV1b R at basal state and dissociated when receptor internalization occurred. Altogether, our data describe for the first time the trafficking profile and MAP kinase pathway of V1b R involving both arrestins and Src kinase family.
Collapse
Affiliation(s)
- Sanja Perkovska
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Catherine Méjean
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Mohammed Akli Ayoub
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Juan Li
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Floriane Hemery
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Maithé Corbani
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Nadine Laguette
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Angeles Ventura
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hélène Orcel
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Thierry Durroux
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Bernard Mouillac
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Christiane Mendre
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| |
Collapse
|
7
|
|
8
|
Wasilewski MA, Myers VD, Recchia FA, Feldman AM, Tilley DG. Arginine vasopressin receptor signaling and functional outcomes in heart failure. Cell Signal 2015; 28:224-233. [PMID: 26232615 DOI: 10.1016/j.cellsig.2015.07.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/27/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Melissa A Wasilewski
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Valerie D Myers
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Fabio A Recchia
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Arthur M Feldman
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Ma WJ, Hashii M, Munesue T, Hayashi K, Yagi K, Yamagishi M, Higashida H, Yokoyama S. Non-synonymous single-nucleotide variations of the human oxytocin receptor gene and autism spectrum disorders: a case-control study in a Japanese population and functional analysis. Mol Autism 2013; 4:22. [PMID: 23815867 PMCID: PMC3707786 DOI: 10.1186/2040-2392-4-22] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 06/18/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The human oxytocin receptor (hOXTR) is implicated in the etiology of autism spectrum disorders (ASDs) and is a potential target for therapeutic intervention. Several studies have reported single-nucleotide polymorphisms (SNPs) of the OXTR gene associated with ASDs. These SNPs, however, reside outside the protein-coding region. Not much is known about genetic variations that cause amino acid substitutions that alter receptor functions. METHODS Variations in the OXTR gene were analyzed in 132 ASD patients at Kanazawa University Hospital in Japan and 248 unrelated healthy Japanese volunteers by re-sequencing and real-time polymerase chain reaction-based genotyping. Functional changes in variant OXTRs were assessed by radioligand binding assay and measurements of intracellular free calcium concentrations ([Ca2+]i) and inositol 1,4,5-trisphosphate (IP3) levels. RESULTS Six subjects (4.5%) in the ASD group and two in the control group (0.8%) were identified as heterozygotes carrying the R376G variation (rs35062132; c.1126C>G); one individual from the ASD group (0.8%) and three members of the control group (1.2%) were found to be carrying R376C (c.1126C>T). The C/G genotype significantly correlated with an increased risk of ASDs (odds ratio (OR) = 5.83; 95% confidence interval (CI) = 1.16 to 29.33; P = 0.024, Fisher's exact test). Consistently, the G allele showed a correlation with an increased likelihood of ASDs (OR = 5.73; 95% CI = 1.15 to 28.61; P = 0.024, Fisher's exact test). The frequencies of the C/T genotype and the T allele in the ASD and control groups did not differ significantly. We also examined changes in agonist-induced cellular responses mediated by the variant receptors hOXTR-376G and hOXTR-376C. OXT-induced receptor internalization and recycling were faster in hOXTR-376G-expressing HEK-293 cells than in cells expressing hOXTR-376R or hOXTR-376C. In addition, the elevation in [Ca2+]i and IP3 formation decreased in the cells expressing hOXTR-376G and hOXTR-376C tagged with enhanced green fluorescent protein (EGFP), in comparison with the cells expressing the common-type hOXTR-376R tagged with EGFP. CONCLUSIONS These results suggest that the rare genetic variation rs35062132 might contribute to the pathogenesis of ASDs, and could provide a molecular basis of individual differences in OXTR-mediated modulation of social behavior.
Collapse
Affiliation(s)
- Wen-Jie Ma
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | - Minako Hashii
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Kenshi Hayashi
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Kunimasa Yagi
- Department of Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | - Masakazu Yamagishi
- Department of Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa 920-8640, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo 102-0075, Japan
- MEXT Strategic Research Program for Brain Sciences (SRPBS), Okazaki 444-0840, Japan
| | - Shigeru Yokoyama
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa 920-8640, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo 102-0075, Japan
- MEXT Strategic Research Program for Brain Sciences (SRPBS), Okazaki 444-0840, Japan
| |
Collapse
|
10
|
Chen S, Webber MJ, Vilardaga JP, Khatri A, Brown D, Ausiello DA, Lin HY, Bouley R. Visualizing microtubule-dependent vasopressin type 2 receptor trafficking using a new high-affinity fluorescent vasopressin ligand. Endocrinology 2011; 152:3893-904. [PMID: 21828182 PMCID: PMC3176653 DOI: 10.1210/en.2011-1049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The vasopressin receptor type 2 (V2R) is the major target of vasopressin (VP) in renal epithelial cells. Although it is known that VP induces V2R internalization, accumulation in the perinuclear area, and degradation, the V2R intracellular trafficking pathways remain elusive. We visualized this process by developing a new fluorescent VP analog tagged by tetramethylrhodamine (TMR)-[Lys-(PEG)(2)-Suc-TMR(8)]VP or (VP(TMR)). This ligand is fully functional as revealed by its high binding affinity toward V2R [(K(d)) =157 ± 52 nM] and ability to increase intracellular cAMP 32-fold. VP(TMR) induced V2R internalization in LLC-PK1 cells expressing either a FLAG-tagged receptor (FLAG-V2R) or V2R C-terminally tagged with green fluorescent protein (GFP) (V2R-GFP). After internalization, VP(TMR) and V2R-GFP colocalized in the perinuclear area, suggesting that the hormone and receptor traffic along the same pathway. VP(TMR) and V2R colocalized initially with the early endosome markers EEA1 and Rab5, and later with the recycling and late endosome markers Rab11 and Rab25. Epifluorescence microscopy of LLC-PK1 cells expressing GFP-tagged microtubules (MT) showed that VP(TMR)-containing vesicles travel along the MT network, and even remain attached to MT during the metaphase and anaphase of mitosis. Colchicine, a MT-depolymerizing agent, abolished perinuclear accumulation of VP(TMR), and Western blot analysis showed that VP-induced V2R-GFP degradation is markedly retarded, but not abolished, by colchicine (10 μM). We conclude that the new VP(TMR) ligand is suitable for dissecting V2R and VP internalization and trafficking in cells, and that V2R trafficking and down-regulation is an MT-dependent mechanism.
Collapse
Affiliation(s)
- Sylvia Chen
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Böselt I, Römpler H, Hermsdorf T, Thor D, Busch W, Schulz A, Schöneberg T. Involvement of the V2 vasopressin receptor in adaptation to limited water supply. PLoS One 2009; 4:e5573. [PMID: 19440390 PMCID: PMC2680020 DOI: 10.1371/journal.pone.0005573] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 04/06/2009] [Indexed: 01/11/2023] Open
Abstract
Mammals adapted to a great variety of habitats with different accessibility to water. In addition to changes in kidney morphology, e.g. the length of the loops of Henle, several hormone systems are involved in adaptation to limited water supply, among them the renal-neurohypophysial vasopressin/vasopressin receptor system. Comparison of over 80 mammalian V2 vasopressin receptor (V2R) orthologs revealed high structural and functional conservation of this key component involved in renal water reabsorption. Although many mammalian species have unlimited access to water there is no evidence for complete loss of V2R function indicating an essential role of V2R activity for survival even of those species. In contrast, several marsupial V2R orthologs show a significant increase in basal receptor activity. An increased vasopressin-independent V2R activity can be interpreted as a shift in the set point of the renal-neurohypophysial hormone circuit to realize sufficient water reabsorption already at low hormone levels. As found in other desert mammals arid-adapted marsupials show high urine osmolalities. The gain of basal V2R function in several marsupials may contribute to the increased urine concentration abilities and, therefore, provide an advantage to maintain water and electrolyte homeostasis under limited water supply conditions.
Collapse
Affiliation(s)
- Iris Böselt
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Holger Römpler
- Rudolf-Böhm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
- Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Thomas Hermsdorf
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Doreen Thor
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Wibke Busch
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Torsten Schöneberg
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
12
|
Tournaviti S, Pietro ES, Terjung S, Schafmeier T, Wegehingel S, Ritzerfeld J, Schulz J, Smith DF, Pepperkok R, Nickel W. Reversible phosphorylation as a molecular switch to regulate plasma membrane targeting of acylated SH4 domain proteins. Traffic 2009; 10:1047-60. [PMID: 19453972 DOI: 10.1111/j.1600-0854.2009.00921.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acylated SH4 domains represent N-terminal targeting signals that anchor peripheral membrane proteins such as Src kinases in the inner leaflet of plasma membranes. Here we provide evidence for a novel regulatory mechanism that may control the levels of SH4 proteins being associated with plasma membranes. Using a fusion protein of the SH4 domain of Leishmania HASPB and GFP as a model system, we demonstrate that threonine 6 is a substrate for phosphorylation. Substitution of threonine 6 by glutamate (to mimic a phosphothreonine residue) resulted in a dramatic redistribution from plasma membranes to intracellular sites with a particular accumulation in a perinuclear region. As shown by both pharmacological inhibition and RNAi-mediated down-regulation of the threonine/ serine-specific phosphatases PP1 and PP2A, recycling back to the plasma membrane required dephosphorylation of threonine 6. We provide evidence that a cycle of phosphorylation and dephosphorylation may also be involved in intracellular targeting of other SH4 proteins such as the Src kinase Yes.
Collapse
|
13
|
Innamorati G, Giannone F, Guzzi F, Rovati GE, Accomazzo MR, Chini B, Bianchi E, Schiaffino MV, Tridente G, Parenti M. Heterotrimeric G proteins demonstrate differential sensitivity to beta-arrestin dependent desensitization. Cell Signal 2009; 21:1135-42. [PMID: 19275934 DOI: 10.1016/j.cellsig.2009.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/19/2009] [Accepted: 03/02/2009] [Indexed: 11/15/2022]
Abstract
G15 is a heterotrimeric G protein of the Gq/11 family. In this study, we describe its exceptional poor sensitivity to the general regulatory mechanism of G protein-coupled receptor (GPCR) desensitization. Enhancing beta2 adrenergic receptor desensitization by arrestin overexpression, did not affect signalling to G15. Similarly, increased levels of arrestin did not affect G15 signalling triggered by the activation of V2 vasopressin and delta opioid receptors. Furthermore, co-immunoprecipitation experiments showed that G15 alpha subunit (as opposed to Galphaq and Galphas) is recruited to a V2 vasopressin receptor mutant that is constitutively desensitized by beta-arrestin. Interestingly, co-expression of Galpha15 partially rescued cell surface localization and signalling capabilities of the same mutant receptor and reduced beta2 adrenergic receptor internalization. Taken together, these findings provide evidence for a novel mechanism whereby GPCR desensitization can be bypassed and G15 can support sustained signalling in cells chronically exposed to hormones or neurotransmitters.
Collapse
Affiliation(s)
- Giulio Innamorati
- Department of Pathology, Immunology Unit, University of Verona, c/o Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, Verona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wu S, Birnbaumer M, Guan Z. Phosphorylation analysis of G protein-coupled receptor by mass spectrometry: identification of a phosphorylation site in V2 vasopressin receptor. Anal Chem 2008; 80:6034-7. [PMID: 18578504 DOI: 10.1021/ac8008548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorylation plays vital roles in the regulation and function of the V2 vasopressin receptor (V2R), a G protein-coupled receptor (GPCR) that is responsible for maintaining water homeostasis in the kidney. Through a combination of immunoaffinity purification, immobilized metal affinity chromatography, and nanoflow liquid chromatography tandem mass spectrometry, we identified a novel phosphorylation site (Ser(255)) in the third intracellular loop of human V2R. We showed that the third intracellular loop could be phosphorylated in vitro by protein kinase A, but not by Akt kinase, although sequence motif analysis predicated otherwise. The analytical procedures and methodologies described in this study should be generally applicable for identifying the endogenous phosphorylation sites in other GPCRs, overcoming the limitations of conventional approaches such as sequence motif analysis and site-directed mutagenesis.
Collapse
Affiliation(s)
- Shilan Wu
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park,North Carolina 27709, USA
| | | | | |
Collapse
|
15
|
Dimerization of the thyrotropin-releasing hormone receptor potentiates hormone-dependent receptor phosphorylation. Proc Natl Acad Sci U S A 2007; 104:18303-8. [PMID: 17989235 DOI: 10.1073/pnas.0702857104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The G protein-coupled thyrotropin (TSH)-releasing hormone (TRH) receptor forms homodimers. Regulated receptor dimerization increases TRH-induced receptor endocytosis. These studies test whether dimerization increases receptor phosphorylation, which could potentiate internalization. Phosphorylation at residues 355-365, which is critical for internalization, was measured with a highly selective phospho-site-specific antibody. Two strategies were used to drive receptor dimerization. Dimerization of a TRH receptor-FK506-binding protein (FKBP) fusion protein was stimulated by a dimeric FKBP ligand. The chemical dimerizer caused a large increase in TRH-dependent phosphorylation within 1 min, whereas a monomeric FKBP ligand had no effect. The dimerizer did not alter phoshorylation of receptors lacking the FKBP domain. Dimerization of receptors containing an N-terminal HA epitope also was induced with anti-HA antibody. Anti-HA IgG strongly increased TRH-induced phosphorylation, whereas monomeric Fab fragments had no effect. Anti-HA antibody did not alter phosphorylation in receptors lacking an HA tag. Furthermore, two phosphorylation-defective TRH receptors functionally complemented one another and permitted phosphorylation. Receptors with a D71A mutation in the second transmembrane domain do not signal, whereas receptors with four Ala mutations in the 355-365 region signal normally but lack phosphorylation sites. When D71A- and 4Ala-TRH receptors were expressed alone, neither underwent TRH-dependent phosphorylation. When they were expressed together, D71A receptor was phosphorylated by G protein-coupled receptor kinases in response to TRH. These results suggest that the TRH receptor is phosphorylated preferentially when it is in dimers or when preexisting receptor dimers are driven into microaggregates. Increased receptor phosphorylation may amplify desensitization.
Collapse
|
16
|
Rovati GE, Capra V, Neubig RR. The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol Pharmacol 2007; 71:959-64. [PMID: 17192495 DOI: 10.1124/mol.106.029470] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite extensive study of heptahelical G protein-coupled receptors (GPCRs), the precise mechanism of G protein activation is unknown. The role of one highly conserved stretch of residues, the amino acids glutamic acid/aspartic acid-arginine-tyrosine (i.e., the E/DRY motif), has received considerable attention with respect to regulating GPCR conformational states. In the consensus view, glutamic acid/aspartic acid maintains the receptor in its ground state, because mutations frequently induce constitutive activity (CA). This hypothesis has been confirmed by the rhodopsin ground-state crystal structure and by computational modeling approaches. However, some class A GPCRs are resistant to CA, suggesting alternative roles for the glutamic acid/aspartic acid residue and the E/DRY motif. Here, we propose two different subgroups of receptors within class A GPCRs that make different use of the E/DRY motif, independent of the G protein type (G(s), G(i), or G(q)) to which the receptor couples. In phenotype 1 receptors, nonconservative mutations of the glutamic acid/aspartic acid-arginine residues, besides inducing CA, increase affinity for agonist binding, retain G protein coupling, and retain an agonist-induced response. In contrast, in second phenotype receptors, the E/DRY motif is more directly involved in governing receptor conformation and G protein coupling/recognition. Hence, mutations of the glutamic acid/aspartic acid residues do not induce CA. Conversely, nonconservative mutations of the arginine of the E/DRY motif always impair agonist-induced receptor responses and, generally, reduce agonist binding affinity. Thus, it is essential to look beyond the rhodopsin ground-state model of conformational activation to clarify the role of this highly conserved triplet in GPCR activation and function.
Collapse
Affiliation(s)
- G Enrico Rovati
- Laboratory of Molecular Pharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | |
Collapse
|
17
|
Abstract
Hyponatremia is a frequent and symptomatic electrolyte disorder for which specific treatments have been lacking. Hyponatremia is attributable to nonosmotic vasopressin stimulation and continued increased fluid intake. In the past, peptidic derivatives of arginine vasopressin proved that blockade of vasopressin V-2 receptors served to improve hyponatremia, however, these antagonists had intrinsic agonistic activity, too. In the past decade, random screening of molecules uncovered nonpeptide, orally available vasopressin antagonists without agonistic properties. The agents show competitive binding to the vasopressin V-2 receptor at an affinity comparable with that of arginine vasopressin. Four antagonists have undergone extensive study. Three of these agents--lixivaptan or VPA 985; SR 121 463 B; tolvaptan or OPC 41,061--are specific V-2 antagonists whereas conivaptan or YM 087 is a V-1/V-2 mixed antagonist. In animal and clinical studies all of the agents were able to correct water retention and hyponatremia in a dose-dependent manner. There was no tachyphylaxis, even when the agents were given over many weeks. It is expected that the clinical use of the agents will lead to a major improvement in the treatment of hyponatremia.
Collapse
Affiliation(s)
- Friedericke Quittnat
- Nephrologie, Medizinische Klinik III, Universitätsklinikum C.G. Carus, Dresden, Germany
| | | |
Collapse
|
18
|
Robben JH, Knoers NVAM, Deen PMT. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2006; 291:F257-70. [PMID: 16825342 DOI: 10.1152/ajprenal.00491.2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the renal collecting duct, water reabsorption is regulated by the antidiuretic hormone vasopressin (AVP). Binding of this hormone to the vasopressin V2 receptor (V2R) leads to insertion of aquaporin-2 (AQP2) water channels in the apical membrane, thereby allowing water reabsorption from the pro-urine to the interstitium. The disorder nephrogenic diabetes insipidus (NDI) is characterized by the kidney's inability to concentrate pro-urine in response to AVP, which is mostly acquired due to electrolyte disturbances or lithium therapy. Alternatively, NDI is inherited in an X-linked or autosomal fashion due to mutations in the genes encoding V2R or AQP2, respectively. This review describes the current knowledge of the cell biological causes of NDI and how these defects may explain the patients' phenotypes. Also, the increased understanding of these cellular defects in NDI has opened exciting initiatives in the development of novel therapies for NDI, which are extensively discussed in this review.
Collapse
MESH Headings
- Amino Acid Sequence
- Aquaporin 2/genetics
- Aquaporin 2/physiology
- DNA/genetics
- Diabetes Insipidus, Nephrogenic/etiology
- Diabetes Insipidus, Nephrogenic/genetics
- Diabetes Insipidus, Nephrogenic/physiopathology
- Diabetes Insipidus, Nephrogenic/therapy
- Gene Expression Regulation/physiology
- Genetic Diseases, X-Linked/etiology
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/physiopathology
- Genetic Diseases, X-Linked/therapy
- Humans
- Molecular Sequence Data
- Mutation/genetics
- Mutation/physiology
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/physiology
- Vasopressins/physiology
Collapse
Affiliation(s)
- Joris H Robben
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences and Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
19
|
Innamorati G, Piccirillo R, Bagnato P, Palmisano I, Schiaffino MV. The melanosomal/lysosomal protein OA1 has properties of a G protein-coupled receptor. ACTA ACUST UNITED AC 2006; 19:125-35. [PMID: 16524428 PMCID: PMC1459912 DOI: 10.1111/j.1600-0749.2006.00292.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The protein product of the ocular albinism type 1 gene, named OA1, is a pigment cell-specific integral membrane glycoprotein, localized to melanosomes and lysosomes and possibly implicated in melanosome biogenesis. Although its function remains unknown, we previously showed that OA1 shares structural similarities with G protein-coupled receptors (GPCRs). To ascertain the molecular function of OA1 and in particular its nature as a GPCR, we adopted a heterologous expression strategy commonly exploited to demonstrate GPCR-mediated signaling in mammalian cells. Here we show that when expressed in COS7 cells OA1 displays a considerable and spontaneous capacity to activate heterotrimeric G proteins and the associated signaling cascade. In contrast, OA1 mutants carrying either a missense mutation or a small deletion in the third cytosolic loop lack this ability. Furthermore, OA1 is phosphorylated and interacts with arrestins, well-established multifunctional adaptors of conformationally active GPCRs. In fact, OA1 colocalizes and coprecipitates with arrestins, which downregulate the signaling of OA1 by specifically reducing its expression levels. These findings indicate that heterologously expressed OA1 exhibits two fundamental properties of GPCRs, being capable to activate heterotrimeric G proteins and to functionally associate with arrestins, and provide proof of principle that OA1 can actually function as a canonical GPCR in mammalian cells.
Collapse
Affiliation(s)
- Giulio Innamorati
- DIBIT, Scientific Institute San Raffalele, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | |
Collapse
|
20
|
Charest PG, Oligny-Longpré G, Bonin H, Azzi M, Bouvier M. The V2 vasopressin receptor stimulates ERK1/2 activity independently of heterotrimeric G protein signalling. Cell Signal 2006; 19:32-41. [PMID: 16857342 DOI: 10.1016/j.cellsig.2006.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 05/24/2006] [Accepted: 05/25/2006] [Indexed: 10/24/2022]
Abstract
The V2 vasopressin receptor (V2R) activates the mitogen activated protein kinases (MAPK) ERK1/2 through a mechanism involving the scaffolding protein beta arrestin. Here we report that this activating pathway is independent of G alpha s, G alpha i, G alpha q or G betagamma and that the V2R-mediated activation of G alpha s inhibits ERK1/2 activity in a cAMP/PKA-dependent manner. In the HEK293 cells studied, the beta arrestin-promoted activation was found to dominate over the PKA-mediated inhibition of the pathway, leading to a strong vasopressin-stimulated ERK1/2 activation. Despite the strong MAPK activation and in contrast with other GPCR, V2R did not induce any significant increase in DNA synthesis, consistent with the notion that the stable interaction between V2R and beta arrestin prevents signal propagation to the nucleus. Beta arrestin was found to be essential for the ERK1/2 activation, indicating that the recruitment of the scaffolding protein is necessary and sufficient to initiate the signal in the absence of any other stimulatory cues. Based on the use of selective pharmacological inhibitors, dominant negative mutants and siRNA, we conclude that the beta arrestin-dependent activation of ERK1/2 by the V2R involves c-Src and a metalloproteinase-dependent trans-activation event. These findings demonstrate that beta arrestin is a genuine signalling initiator that can, on its own, engage a MAPK activation machinery upon stimulation of a GPCR by its natural ligand.
Collapse
Affiliation(s)
- Pascale G Charest
- Department of Biochemistry and Groupe de Recherche Universitaire sur le Médicament, Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal (Québec) Canada H3C 3J7
| | | | | | | | | |
Collapse
|
21
|
Madziva MT, Birnbaumer M. A Role for ADP-ribosylation Factor 6 in the Processing of G-protein-coupled Receptors. J Biol Chem 2006; 281:12178-86. [PMID: 16497672 DOI: 10.1074/jbc.m601357200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After agonist-induced internalization, the vasopressin V2 receptor (V2R) does not recycle to the plasma membrane. The ADP-ribosylation factor (ARF) proteins initiate vesicular intracellular traffic by promoting the recruitment of adaptor proteins; thus, we sought to determine whether ARF6 could promote V2R recycling. Neither the agonist-induced internalization nor the recycling of the V2R was regulated by ARF6, but a constitutively active mutant of ARF6 reduced cell-surface V2Rs 10-fold in the absence of agonist treatment. Visualization of the ARF6 mutant-expressing cells revealed a vacuolar-staining pattern of the V2R instead of the normal plasma membrane expression. Analysis of V2R maturation revealed that reduced cell-surface expression was due to the diminished ability of the newly synthesized receptor to migrate from the endoplasmic reticulum to the Golgi network. The same mechanism affected processing of the V1aR and acetylcholine M2 receptors. Therefore, ARF6 controls the exit of the V2 and other receptors from the endoplasmic reticulum in addition to its established role in the trafficking of plasma-membrane-derived vesicles.
Collapse
Affiliation(s)
- Michael T Madziva
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
22
|
Granier S, Jean-Alphonse F, Déméné H, Guillon G, Pascal R, Mendre C. Design and synthesis of cyclic and linear peptide-agarose tools for baiting interacting protein partners of GPCRs. Bioorg Med Chem Lett 2005; 16:521-4. [PMID: 16289816 DOI: 10.1016/j.bmcl.2005.10.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/18/2005] [Accepted: 10/19/2005] [Indexed: 11/29/2022]
Abstract
A ligation strategy for the synthesis of cyclic and linear peptides covalently linked to agarose beads designed as baits to identify new interacting partners of intracellular loops of the V2 vasopressin receptor, a member of the G-protein-coupled receptor family, is reported. The peptide-resin conjugates were subsequently shown to interact specifically with a fraction of proteins present in cellular lysates.
Collapse
Affiliation(s)
- Sébastien Granier
- UMR 5203 CNRS, U 661 INSERM, Université Montpellier 1, Université Montpellier 2, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier Cedex, France
| | | | | | | | | | | |
Collapse
|
23
|
Gouill CL, Darden T, Madziva MT, Birnbaumer M. A role for K268 in V2R folding. FEBS Lett 2005; 579:4985-90. [PMID: 16115624 DOI: 10.1016/j.febslet.2005.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 07/29/2005] [Accepted: 08/02/2005] [Indexed: 10/25/2022]
Abstract
The V2 vasopressin receptor, a member of the rhodopsin subfamily of GPCRs, mediates arginine vasopressin control of water reabsorption in the kidney by activating Gs. Requirement of the third intracellular loop of the V2R for G(s) activation was identified by introducing V2R segments into the Gq coupled V1aR [Liu, J. and Wess, J. (1996) J. Biol. Chem. 271, 8772-8778]; the same approach recognized glutamate 231 and glutamine 225 at the amino terminus of loop 3i as being needed for signal transduction. Site-directed mutagenesis of the V2R confirmed their observations. Recently, we found that a positively charged amino acid at codon 268 is essential for V2R expression, although a double-mutant bearing lysine at position 231 and glutamic acid at position 268 was expressed at higher levels than the wild type V2R and displayed unchanged ligand-binding affinity. Ligand-induced internalization and phosphorylation of the double-mutant receptor was indistinguishable from that observed with the wild type protein but signaling activity was greatly diminished. The data suggested these two amino acids might interact with each other and might play a role in promoting GDP/GTP exchange.
Collapse
Affiliation(s)
- Christian Le Gouill
- Department of Anesthesiology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
24
|
Robben JH, Knoers NVAM, Deen PMT. Regulation of the vasopressin V2 receptor by vasopressin in polarized renal collecting duct cells. Mol Biol Cell 2004; 15:5693-9. [PMID: 15469988 PMCID: PMC532047 DOI: 10.1091/mbc.e04-04-0337] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Binding of arginine-vasopressin (AVP) to its V2 receptor (V2R) in the basolateral membrane of principal cells induces Aquaporin-2-mediated water reabsorption in the kidney. To study the regulation of the V2R by dDAVP in a proper model, a polarized renal cell line stably-expressing V2R-GFP was generated. Labeled AVP-binding studies revealed an equal basolateral vs. apical membrane distribution for V2R-GFP and endogenous V2R. In these cells, GFP-V2R was expressed in its mature form and localized for 75% in the basolateral membrane and for 25% to late endosomes/lysosomes. dDAVP caused a dose- and time-dependent internalization of V2R-GFP, which was completed within 1 h with 100 nM dDAVP, was prevented by coincubation with a V2R antagonist, and which reduced its half-life from 11.5 to 2.8 h. Semiquantification of the V2R-GFP colocalization with E-cadherin (basolateral membrane), early endosomal antigen-1 (EEA-1) and lysosome-associated membrane protein-2 (LAMP-2) in time revealed that most dDAVP-bound V2R was internalized via early endosomes to late endosomes/lysosomes, where it was degraded. The dDAVP-internalized V2R did not recycle to the basolateral membrane. In conclusion, we established the itinerary of the V2R in a polarized cell model that likely resembles the in vivo V2R localization and regulation by AVP to a great extent.
Collapse
Affiliation(s)
- J H Robben
- Department of Physiology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
25
|
Barak LS, Wilbanks AM, Caron MG. Constitutive desensitization: a new paradigm for g protein-coupled receptor regulation. Assay Drug Dev Technol 2004; 1:339-46. [PMID: 15090199 DOI: 10.1089/15406580360545152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
GPCRs are a large family of cell-surface proteins that regulate many important biochemical pathways and physiological responses. The isolation and characterization of GPCRs represent one of the more remarkable success stories that occurred during the revolution in biology of the last quarter century. Of the many discoveries that originated in the laboratory of Robert Lefkowitz at Duke University concerning GPCR regulation, none is more fundamental than the elucidation of the families of GRKs and arrestin proteins that terminate GPCR signaling. In this essay, we will discuss how advances in microscopy and biology have made the visualization of GPCR, GRK, and arrestin activity possible in single cells. Additionally, we will discuss how imaging studies using arrestins and a naturally occurring mutant of the vasopressin receptor led to the recognition of a novel phenotypic receptor behavior, in which the receptor desensitizes in the absence of agonist. We have termed this process constitutive desensitization, and this unexpected receptor property suggests that it may be possible to develop novel classes of signal-inhibiting drugs distinct from conventional antagonists.
Collapse
Affiliation(s)
- Larry S Barak
- Howard Hughes Medical Institute and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
26
|
Nickols HH, Shah VN, Chazin WJ, Limbird LE. Calmodulin interacts with the V2 vasopressin receptor: elimination of binding to the C terminus also eliminates arginine vasopressin-stimulated elevation of intracellular calcium. J Biol Chem 2004; 279:46969-80. [PMID: 15319442 DOI: 10.1074/jbc.m407351200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify molecules that might contribute to V2 vasopressin receptor (V2R) trafficking or signaling, we searched for novel interacting proteins with this receptor. Preliminary data, using the V2R C terminus as bait in a yeast two-hybrid screen, revealed calmodulin as a binding partner. Because calmodulin interacts with other G protein-coupled receptors, we explored this interaction and its possible functional relevance in greater detail. A Ca2+ -dependent interaction occurs between calmodulin-linked agarose and the holo-V2R as well as the V2R C terminus. Truncation and site-directed mutagenesis of the V2R C terminus revealed an involvement of an RGR sequence in this interaction. NMR studies showed that a peptide fragment of the V2R C terminus containing the RGR sequence binds to calmodulin in a Ca2+ -dependent manner with a Kd < or =1.5 microm; concentration-dependent binding of the V2R C terminus to calmodulin-agarose was used to estimate a Kd value of approximately 200 nm for this entire C-terminal sequence as expressed in mammalian cells. Madin-Darby canine kidney II cells stably expressing either wild type or a mutant V2R, in which the RGR C-terminal sequence was mutated to alanines (AAA V2R), revealed that the steady-state localization and agonist-induced internalization of the AAA V2R resembled that of the wild type V2R in polarized Madin-Darby canine kidney II cells. V2R binding of agonist similarly was unchanged in the AAA V2R, as was the concentration response for arginine vasopressin (AVP)-stimulated cAMP accumulation. Most interestingly, AVP-induced increases in intracellular Ca2+ observed for the wild type V2R were virtually eliminated for the AAA V2R. Taken together, the data suggest that a C-terminal region of the V2R important for calmodulin interaction is also important in modulation of V2R elevation of intracellular Ca2+, a prerequisite for AVP-induced fusion of aquaporin-containing vesicles with the apical surface of renal epithelial cells.
Collapse
Affiliation(s)
- Hilary Highfield Nickols
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | | | | | |
Collapse
|
27
|
Terrillon S, Barberis C, Bouvier M. Heterodimerization of V1a and V2 vasopressin receptors determines the interaction with beta-arrestin and their trafficking patterns. Proc Natl Acad Sci U S A 2004; 101:1548-53. [PMID: 14757828 PMCID: PMC341772 DOI: 10.1073/pnas.0305322101] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
V1a vasopressin receptor (V1aR) and V2 vasopressin receptor (V2R) present distinct mechanisms of agonist-promoted trafficking. Although both receptors are endocytosed by way of beta-arrestin-dependent processes, beta-arrestin dissociates rapidly from V1aR, allowing its rapid recycling to the plasma membrane while beta-arrestin remains associated with V2R in the endosomes, leading to their intracellular accumulation. Here, we demonstrate that, when coexpressed, the two receptors can be endocytosed as stable heterodimers. On activation with a nonselective agonist, both receptors cotrafficked with beta-arrestin in endosomes where the stable interaction inhibited the recycling of V1aR to the plasma membrane, thus conferring a V2R-like endocytotic/recycling pattern to the V1aR/V2R heterodimer. Coexpression of the constitutively internalized R137HV2R mutant with V1aR was sufficient to promote cointernalization of V1aR in beta-arrestin-positive vesicles even in the absence of agonist stimulation. This finding indicates that internalization of the heterodimer does not require activation of each of the protomers. Consistent with this notion, a V1aR-selective agonist led to the coendocytosis of V2R. In that case, however, the V1aR/V2R heterodimer was not stably associated with beta-arrestin, and both receptors were recycled back to the cell surface, indicating that the complex followed the V1aR endocytotic/recycling path. Taken together, these results suggest that heterodimerization regulates the endocytotic processing of G protein-coupled receptors and that the identity of the activated protomer within the heterodimer determines the fate of the internalized receptors.
Collapse
Affiliation(s)
- Sonia Terrillon
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada H3C 3J7
| | | | | |
Collapse
|
28
|
Bouley R, Sun TX, Chenard M, McLaughlin M, McKee M, Lin HY, Brown D, Ausiello DA. Functional role of the NPxxY motif in internalization of the type 2 vasopressin receptor in LLC-PK1 cells. Am J Physiol Cell Physiol 2003; 285:C750-62. [PMID: 12801889 DOI: 10.1152/ajpcell.00477.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interaction of the type 2 vasopressin receptor (V2R) with hormone causes desensitization and internalization. To study the role of the V2R NPxxY motif (which is involved in the clathrin-mediated endocytosis of several other receptors) in this process, we expressed FLAG-tagged wild-type V2R and a Y325F mutant V2R in LLC-PK1a epithelial cells that have low levels of endogenous V2R. Both proteins had a similar apical (35%) and basolateral (65%) membrane distribution. Substitution of Tyr325 with Phe325 prevented ligand-induced internalization of V2R determined by [3H]AVP binding and immunofluorescence but did not prevent ligand binding or signal transduction via adenylyl cyclase. Desensitization and resensitization of the V2R-Y325F mutation occurred independently of internalization. The involvement of clathrin in V2R downregulation was also shown by immunogold electron microscopy. We conclude that the NPxxY motif of the V2R is critically involved in receptor downregulation via clathrin-mediated internalization. However, this motif is not essential for the apical/basolateral sorting and polarized distribution of the V2R in LLC-PK1a cells or for adenylyl cyclase-mediated signal transduction.
Collapse
Affiliation(s)
- Richard Bouley
- Program in Membrane Biology and Renal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Following ligand-promoted internalization the human type 2 vasopressin receptor (hV2R) is not recycled to the cell surface after removal of the agonist. A retention motif consisting of a serine triplet present in the cytoplasmic tail was previously found to require for retention, but serine 357, and threonines 359, 360 located upstream were not examined. Evidence is now presented that substitution of these amino acids did not change V2 internalization although it reduced the levels of arginine vasopressin (AVP)-induced phosphorylation as compared to the wild type (WT). Contrary to the WT hV2R, these mutant receptors were recycled to the cell surface after a 2 h incubation in the absence of AVP identifying these changed residues as additional members of the retention motif of the hV2R.
Collapse
Affiliation(s)
- Christian Le Gouill
- Department of Anesthesiology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
30
|
Olivares-Reyes JA, Smith RD, Hunyady L, Shah BH, Catt KJ. Agonist-induced signaling, desensitization, and internalization of a phosphorylation-deficient AT1A angiotensin receptor. J Biol Chem 2001; 276:37761-8. [PMID: 11495923 DOI: 10.1074/jbc.m106368200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An analysis of the functional role of a diacidic motif (Asp236-Asp237) in the third intracellular loop of the AT1A angiotensin II (Ang II) receptor (AT1-R) revealed that substitution of both amino acids with alanine (DD-AA) or asparagine (DD-NN) residues diminished Ang II-induced receptor phosphorylation in COS-7 cells. However, Ang II-stimulated inositol phosphate production, mitogen-activated protein kinase, and AT1 receptor desensitization and internalization were not significantly impaired. Overexpression of dominant negative G protein-coupled receptor kinase 2 (GRK2)K220M decreased agonist-induced receptor phosphorylation by approximately 40%, but did not further reduce the impaired phosphorylation of DD-AA and DD-NN receptors. Inhibition of protein kinase C by bisindolylmaleimide reduced the phosphorylation of both the wild-type and the DD mutant receptors by approximately 30%. The inhibitory effects of GRK2K220M expression and protein kinase C inhibition by bisindolylmaleimide on agonist-induced phosphorylation were additive for the wild-type AT1-R, but not for the DD mutant receptor. Agonist-induced internalization of the wild-type and DD mutant receptors was similar and was unaltered by coexpression of GRK2K220M. These findings demonstrate that an acidic motif at position 236/237 in the third intracellular loop of the AT1-R is required for optimal Ang II-induced phosphorylation of its carboxyl-terminal tail by GRKs. Furthermore, the properties of the DD mutant receptor suggest that not only Ang II-induced signaling, but also receptor desensitization and internalization, are independent of agonist-induced GRK-mediated phosphorylation of the AT1 receptor.
Collapse
Affiliation(s)
- J A Olivares-Reyes
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
31
|
Thibonnier M, Plesnicher CL, Berrada K, Berti-Mattera L. Role of the human V1 vasopressin receptor COOH terminus in internalization and mitogenic signal transduction. Am J Physiol Endocrinol Metab 2001; 281:E81-92. [PMID: 11404225 DOI: 10.1152/ajpendo.2001.281.1.e81] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the role played by the intracellular COOH-terminal region of the human arginine vasopressin (AVP) V1-vascular receptor (V1R) in ligand binding, trafficking, and mitogenic signal transduction in Chinese hamster ovary cells stably transfected with the human AVP receptor cDNA clones that we had isolated previously. Truncations, mutations, or chimeric alterations of the V1R COOH terminus did not alter ligand binding, but agonist-induced V1R internalization and recycling were reduced in the absence of the proximal region of the V(1)R COOH terminus. Coupling to phospholipase C was altered as a function of the COOH-terminal length. Deletion of the proximal portion of the V1R COOH terminus or its replacement by the V2-renal receptor COOH terminus prevented AVP stimulation of DNA synthesis and progression through the cell cycle. Mutation of a kinase consensus motif in the proximal region of the V1R COOH terminus also abolished the mitogenic response. Thus the V1R cytoplasmic COOH terminus is not involved in ligand specificity but is instrumental in receptor trafficking and facilitates the interaction between the intracellular loops of the receptor, G protein, and phospholipase C. It is absolutely required for transmission of the mitogenic action of AVP, probably via a specific kinase phosphorylation site.
Collapse
Affiliation(s)
- M Thibonnier
- Division of Clinical and Molecular Endocrinology, Department of Medicine, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, USA.
| | | | | | | |
Collapse
|
32
|
Thibonnier M, Coles P, Thibonnier A, Shoham M. The basic and clinical pharmacology of nonpeptide vasopressin receptor antagonists. Annu Rev Pharmacol Toxicol 2001; 41:175-202. [PMID: 11264455 DOI: 10.1146/annurev.pharmtox.41.1.175] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The neurohypophysial hormone arginine vasopressin (AVP) is a cyclic nonpeptide whose actions are mediated by the stimulation of specific G protein--coupled membrane receptors pharmacologically classified into V1-vascular (V1R), V2-renal (V2R) and V3-pituitary (V3R) AVP receptor subtypes. The random screening of chemical compounds and optimization of lead compounds recently resulted in the development of orally active nonpeptide AVP receptor antagonists. Potential therapeutic uses of AVP receptor antagonists include (a) the blockade of V1-vascular AVP receptors in arterial hypertension, congestive heart failure, and peripheral vascular disease; (b) the blockade of V2-renal AVP receptors in the syndrome of inappropriate vasopressin secretion, congestive heart failure, liver cirrhosis, nephrotic syndrome and any state of excessive retention of free water and subsequent dilutional hyponatremia; (c) the blockade of V3-pituitary AVP receptors in adrenocorticotropin-secreting tumors. The pharmacological and clinical profile of orally active nonpeptide vasopressin receptor antagonists is reviewed here.
Collapse
Affiliation(s)
- M Thibonnier
- Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106-4951, USA.
| | | | | | | |
Collapse
|
33
|
Morello JP, Salahpour A, Petäjä-Repo UE, Laperrière A, Lonergan M, Arthus MF, Nabi IR, Bichet DG, Bouvier M. Association of calnexin with wild type and mutant AVPR2 that causes nephrogenic diabetes insipidus. Biochemistry 2001; 40:6766-75. [PMID: 11389590 DOI: 10.1021/bi002699r] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over 155 mutations within the V2 vasopressin receptor (AVPR2) gene are responsible for nephrogenic diabetes insipidus (NDI). The expression and subcellular distribution of four of these was investigated in transfected cells. These include a point mutation in the seventh transmembrane domain (S315R), a frameshift mutation in the third intracellular loop (804delG), and two nonsense mutations that code for AVPR2 truncated within the first cytoplasmic loop (W71X) and in the proximal portion of the carboxyl tail (R337X). RT-PCR revealed that mRNA was produced for all mutant receptor constructs. However, no receptor protein, as assessed by Western blot analysis, was detected for 804delG. The S315R was properly processed through the Golgi and targeted to the plasma membrane but lacked any detectable AVP binding or signaling. Thus, this mutation induces a conformational change that is compatible with endoplasmic reticulum (ER) export but dramatically affects hormone recognition. In contrast, the W71X and R337X AVPR2 were retained inside the cell as determined by immunofluorescence. Confocal microscopy revealed that they were both retained in the ER. To determine if calnexin could be involved, its interaction with the AVPR2 was assessed. Sequential coimmunoprecipitation demonstrated that calnexin associated with the precursor forms of both wild-type (WT) and mutant receptors in agreement with its general role in protein folding. Moreover, its association with the ER-retained R337X mutant was found to be longer than with the WT receptor suggesting that this molecular chaperone also plays a role in quality control and ER retention of misfolded G protein-coupled receptors.
Collapse
Affiliation(s)
- J P Morello
- Département de biochimie and Le groupe de recherche sur le système nerveux autonome, Université de Montréal, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bowen-Pidgeon D, Innamorati G, Sadeghi HM, Birnbaumer M. Arrestin effects on internalization of vasopressin receptors. Mol Pharmacol 2001; 59:1395-401. [PMID: 11353798 DOI: 10.1124/mol.59.6.1395] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arrestins have been shown to facilitate the recruitment of G protein-coupled receptors to the clathrin-coated vesicles that mediate their internalization. After (8)Arg-vasopressin-induced internalization, the human V2 vasopressin receptor failed to recycle to the cell surface, whereas the vasopressin type 1a receptor (V1a) subtype did. The possibility that the lack of recycling could identify a novel role for arrestins was investigated by examining the effect of coexpressing wild-type and dominant negative arrestins on the recycling of wild-type and mutant V2 and V1a receptors. Coexpression of the V1a or V2 receptors with the last 100 amino acids of arrestin reduced significantly their internalization, whereas coexpression of wild-type and mutant arrestins had diverse effects on internalization. Arrestin3 but not arrestin2 increased the internalization of the V1aR without altering its recycling pattern. Both nonvisual arrestins enhanced vasopressin type 2 receptor (V2R) internalization, inducing the appearance of a pool of recycling receptor in addition to the nonrecycling pool. The effect of arrestins on the internalization of the chimeric V1a/V2 receptor and its reciprocal chimera was specified by the identity of the carboxyl-terminal segment. The S363A mutation that confers recycling to the V2R did not alter its interaction with arrestins. Truncation of the carboxyl-terminal segment of the V2R impaired ligand-induced internalization that could be fully restored by wild-type arrestins. Internalization of the V2 and V1a receptors required dynamin GTPase activity.
Collapse
Affiliation(s)
- D Bowen-Pidgeon
- Department of Anesthesiology, University of California Los Angeles School of Medicine, Los Angeles, CA 90095-7115
| | | | | | | |
Collapse
|
35
|
Innamorati G, Le Gouill C, Balamotis M, Birnbaumer M. The long and the short cycle. Alternative intracellular routes for trafficking of G-protein-coupled receptors. J Biol Chem 2001; 276:13096-103. [PMID: 11150299 DOI: 10.1074/jbc.m009780200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C terminus of the human V2 vasopressin receptor contains multiple phosphorylation sites including a cluster of amino acids that when phosphorylated prevents the return of the internalized receptor to the cell surface. To identify the step where the recycling process was interrupted, the trafficking of the V2 receptor was compared with that of the recycling V1a receptor after exposure to ligand. Initially, both receptors internalized in small peripheral endosomes, but a physical separation of their endocytic pathways was subsequently detected. The V1a receptor remained evenly distributed throughout the cytosol, whereas the V2 receptor accumulated in a large aggregation of vesicles in the proximity of the nucleus where it colocalized with the transferrin receptor and Rab11, a small GTP-binding protein that is concentrated in the perinuclear recycling compartment; only marginal colocalization of Rab11 with the V1a receptor was observed. Thus, the V2 receptor was sequestered in the perinuclear recycling compartment. Targeting to the perinuclear recycling compartment was determined by the receptor subtype and not by the inability to recycle, since the mutation S363A in the phosphorylation-dependent retention signal generated a V2 receptor that was recycled via the same compartment. The perinuclear recycling compartment was enriched in beta-arrestin after internalization of either wild type V2 receptor or its recycling mutant, indicating that long term interaction between the receptors and arrestin was not responsible for the intracellular retention. Thus, the fully phosphorylated retention domain overrides the natural tendency of the V2 receptor to recycle and, by preventing its exit from the perinuclear recycling compartment, interrupts its transit via the "long cycle." The data suggest that the inactivation of the domain, possibly by dephosphorylation, triggers the return of the receptor from the perinuclear compartment to the plasma membrane.
Collapse
Affiliation(s)
- G Innamorati
- Department of Anesthesiology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
36
|
Barak LS, Oakley RH, Laporte SA, Caron MG. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc Natl Acad Sci U S A 2001; 98:93-8. [PMID: 11134505 PMCID: PMC14550 DOI: 10.1073/pnas.98.1.93] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Agonist-dependent desensitization and internalization of G protein-coupled receptors (GPCR) are mediated by the binding of arrestins to phosphorylated receptors. The affinity of arrestins for the phosphorylated GPCR regulates the ability of the internalized receptor to be dephosphorylated and recycled back to the plasma membrane. In this study, we show that the naturally occurring loss of function vasopressin receptor mutation R137H, which is associated with familial nephrogenic diabetes insipidus, induces constitutive arrestin-mediated desensitization. In contrast to the wild-type vasopressin receptor, the nonsignaling R137H receptor is phosphorylated and sequestered in arrestin-associated intracellular vesicles even in the absence of agonist. Eliminating molecular determinants on the receptor that promote high affinity arrestin-receptor interaction reestablishes plasma membrane localization and the ability of the mutated receptors to signal. These findings suggest that unregulated desensitization can contribute to the etiology of a GPCR-based disease, implying that pharmacological targeting of GPCR desensitization may be therapeutically beneficial.
Collapse
Affiliation(s)
- L S Barak
- Howard Hughes Medical Institute Laboratories and Departments of Cell Biology and Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
37
|
Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11134505 PMCID: PMC14550 DOI: 10.1073/pnas.011303698] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Agonist-dependent desensitization and internalization of G protein-coupled receptors (GPCR) are mediated by the binding of arrestins to phosphorylated receptors. The affinity of arrestins for the phosphorylated GPCR regulates the ability of the internalized receptor to be dephosphorylated and recycled back to the plasma membrane. In this study, we show that the naturally occurring loss of function vasopressin receptor mutation R137H, which is associated with familial nephrogenic diabetes insipidus, induces constitutive arrestin-mediated desensitization. In contrast to the wild-type vasopressin receptor, the nonsignaling R137H receptor is phosphorylated and sequestered in arrestin-associated intracellular vesicles even in the absence of agonist. Eliminating molecular determinants on the receptor that promote high affinity arrestin-receptor interaction reestablishes plasma membrane localization and the ability of the mutated receptors to signal. These findings suggest that unregulated desensitization can contribute to the etiology of a GPCR-based disease, implying that pharmacological targeting of GPCR desensitization may be therapeutically beneficial.
Collapse
|
38
|
Berrada K, Plesnicher CL, Luo X, Thibonnier M. Dynamic Interaction of Human Vasopressin/Oxytocin Receptor Subtypes with G Protein-coupled Receptor Kinases and Protein Kinase C after Agonist Stimulation. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61501-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Schöneberg T, Schulz A, Biebermann H, Grüters A, Grimm T, Hübschmann K, Filler G, Gudermann T, Schultz G. V2 vasopressin receptor dysfunction in nephrogenic diabetes insipidus caused by different molecular mechanisms. Hum Mutat 2000; 12:196-205. [PMID: 9711877 DOI: 10.1002/(sici)1098-1004(1998)12:3<196::aid-humu7>3.0.co;2-f] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Loss-of-function mutations in the V2 vasopressin receptor (AVPR2) gene have been identified as a molecular basis for X-linked nephrogenic diabetes insipidus (NDI). Herein, we describe a novel deletion mutation at nucleotide position 102 (delG102) found in a Russian family resulting in a frameshift and a truncated receptor protein. Furthermore, we analyzed the AVPR2 gene of two other unrelated boys with NDI from our patient clientele. These patients showed previously described mutations (R137H, R181C). In-depth characterization of the three mutant AVPR2s by a combination of functional and immunological techniques permitted further insight into molecular mechanisms leading to receptor dysfunction. Premature truncation of the AVPR2 (delG102) led to a drastically reduced receptor protein expression in transfected COS-7 cells and, as expected, precluded specific AVPR2 functions. As indicated by different ELISA and binding studies, the R137H mutant was almost completely retained in the cell interior. In contrast to previous studies, the few mutant receptors in the plasma membrane displayed a low (2.3-fold above basal) but significant ability to stimulate the Gs/adenylyl cyclase system. In contrast to the latter mutation, the R181C mutant is properly delivered to the cell surface but the mutation interferes with high affinity vasopressin binding. Impaired ligand binding is reflected in an about 100-fold shift of the concentration-response curve toward higher vasopressin concentrations with only slightly reduced agonist potency.
Collapse
Affiliation(s)
- T Schöneberg
- Institut für Pharmakologie, Freie Universität Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L. Modulation of Ca(2+) entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca(2+) entry. Proc Natl Acad Sci U S A 1999; 96:14955-60. [PMID: 10611319 PMCID: PMC24754 DOI: 10.1073/pnas.96.26.14955] [Citation(s) in RCA: 314] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologues of Drosophilia transient receptor potential (TRP) have been proposed to be unitary subunits of plasma membrane ion channels that are activated as a consequence of active or passive depletion of Ca(2+) stores. In agreement with this hypothesis, cells expressing TRPs display novel Ca(2+)-permeable cation channels that can be activated by the inositol 1,4,5-trisphosphate receptor (IP3R) protein. Expression of TRPs alters cells in many ways, including up-regulation of IP3Rs not coded for by TRP genes, and proof that TRP forms channels of these and other cells is still missing. Here, we document physical interaction of TRP and IP3R by coimmunoprecipitation and glutathione S-transferase-pulldown experiments and identify two regions of IP3R, F2q and F2g, that interact with one region of TRP, C7. These interacting regions were expressed in cells with an unmodified complement of TRPs and IP3Rs to study their effect on agonist- as well as store depletion-induced Ca(2+) entry and to test for a role of their respective binding partners in Ca(2+) entry. C7 and an F2q-containing fragment of IP3R decreased both forms of Ca(2+) entry. In contrast, F2g enhanced the two forms of Ca(2+) entry. We conclude that store depletion-activated Ca(2+) entry occurs through channels that have TRPs as one of their normal structural components, and that these channels are directly activated by IP3Rs. IP3Rs, therefore, have the dual role of releasing Ca(2+) from stores and activating Ca(2+) influx in response to either increasing IP3 or decreasing luminal Ca(2+).
Collapse
Affiliation(s)
- G Boulay
- Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kojro E, Postina R, Gilbert S, Bender F, Krause G, Fahrenholz F. Structural requirements for V2 vasopressin receptor proteolytic cleavage. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:538-48. [PMID: 10561596 DOI: 10.1046/j.1432-1327.1999.00892.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ligand-induced proteolytic cleavage of the V2 vasopressin receptor transiently expressed in COS cells was investigated. After incubation of the cell membranes with a photoreactive ligand possessing full agonistic properties for V2 receptors, approximately 90% of the porcine and bovine V2 vasopressin receptors were cleaved in the upper part of transmembrane helix 2 at a heptapeptide sequence conserved in both vasopressin and oxytocin receptors. The oxytocin receptor was completely resistant to proteolysis after binding the same photoreactive ligand, which is only a partial agonist for this receptor. Chimeric V2/oxytocin receptors obtained by transfer of extracellular domains of the oxytocin receptor into the V2 receptor showed an increase in binding affinity for oxytocin versus vasopressin and a diminished cleavage. The proteolysis-resistant chimeric V2/oxytocin receptor, which contains the first three extracellular domains of the oxytocin receptor, stimulated cAMP accumulation to a larger extent in response to vasopressin than the wild-type receptor and showed impaired desensitization of the adenylate cyclase system. Our data indicate that the proteolytic cleavage of the V2 receptor requires a defined conformation, especially of the first two extracellular domains that is induced by agonist binding. Furthermore, the results suggest that the proteolytic V2 receptor cleavage might play a role in signal termination at elevated hormone concentrations.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Amino Acid Sequence
- Animals
- COS Cells
- Cattle
- Cloning, Molecular
- Cyclic AMP/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Enzyme Activation
- Humans
- Ligands
- Microscopy, Fluorescence
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Point Mutation
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Proteins/metabolism
- Receptors, Oxytocin/chemistry
- Receptors, Vasopressin/chemistry
- Sequence Homology, Amino Acid
- Swine
- Time Factors
- Transfection
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- E Kojro
- Institut für Biohemie, Johannes Gutenberg-Universität, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG. Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 1999; 274:32248-57. [PMID: 10542263 DOI: 10.1074/jbc.274.45.32248] [Citation(s) in RCA: 435] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Resensitization of G protein-coupled receptors (GPCRs) following agonist-mediated desensitization is a necessary step for maintaining physiological responsiveness. However, the molecular mechanisms governing the nature of GPCR resensitization are poorly understood. Here, we examine the role of beta-arrestin in the resensitization of the beta(2) adrenergic receptor (beta(2)AR), known to recycle and resensitize rapidly, and the vasopressin V2 receptor (V2R), known to recycle and resensitize slowly. Upon agonist activation, both receptors recruit beta-arrestin to the plasma membrane and internalize in a beta-arrestin- and clathrin-dependent manner. However, whereas beta-arrestin dissociates from the beta(2)AR at the plasma membrane, it internalizes with the V2R into endosomes. The differential trafficking of beta-arrestin and the ability of these two receptors to dephosphorylate, recycle, and resensitize is completely reversed when the carboxyl-terminal tails of these two receptors are switched. Moreover, the ability of beta-arrestin to remain associated with desensitized GPCRs during clathrin-mediated endocytosis is mediated by a specific cluster of phosphorylated serine residues in the receptor carboxyl-terminal tail. These results demonstrate that the interaction of beta-arrestin with a specific motif in the GPCR carboxyl-terminal tail dictates the rate of receptor dephosphorylation, recycling, and resensitization, and thus provide direct evidence for a novel mechanism by which beta-arrestins regulate the reestablishment of GPCR responsiveness.
Collapse
Affiliation(s)
- R H Oakley
- Howard Hughes Medical Institute Laboratories, Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
X-linked recessive nephrogenic diabetes insipidus is caused by mutations in the gene encoding the V2 vasopressin receptor (V2R), the mediator of the antidiuretic effect of arginine vasopressin (AVP) in mammalian kidneys. Upon binding to AVP, the receptor activates the G protein Gs, stimulating a phosphorylation cascade that promotes translocation of presynthesized water channels to the apical surface of the principal cells lining the last segments of the nephron. The presence of these channels allows the flow of water from the hypotonic lumen of the nephron into the hypertonic interstitium. More than 100 different mutations have been identified since the receptor gene was characterized--in most cases one per family, although some families bear two and three mutations in the same gene. The frequency of the de novo mutations identified suggests that the DNA at the end of the long arm of the X chromosome is very susceptible to alteration. The mutations are scattered within the coding region, not confined to a particular segment of the receptor protein, and in most cases confined to a single amino acid change that significantly reduces the number of receptors present on the plasma membrane. Some mutations do not affect protein synthesis but significantly reduce the coupling efficiency between the receptor and G protein. Analysis of the biochemical impact of the mutations has provided valuable information about the synthesis and regulation of the receptor.
Collapse
Affiliation(s)
- M Birnbaumer
- Department of Anesthesiology, University of California, Los Angeles School of Medicine 90095, USA.
| |
Collapse
|
44
|
Preisser L, Ancellin N, Michaelis L, Creminon C, Morel A, Corman B. Role of the carboxyl-terminal region, di-leucine motif and cysteine residues in signalling and internalization of vasopressin V1a receptor. FEBS Lett 1999; 460:303-8. [PMID: 10544254 DOI: 10.1016/s0014-5793(99)01360-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The structural requirements for internalization and signalling of the vasopressin V1a receptor were investigated in stably transfected HEK-293 cells. Removal of the 51 C-terminal amino acids did not affect vasopressin binding, calcium signalling, heterologous desensitization or internalization of the receptor. Deletion of 14 additional amino acids reduced vasopressin-dependent calcium increase and impaired receptor internalization. Substitution of cysteines 371-372 did not affect intracellular signalling, but decreased endocytosis by 26%. Substitution of the 361-362 leucine by alanine residues reduced by 56% V1a receptor sequestration without affecting calcium signalling. These results indicate that di-cysteine and mostly di-leucine motifs present in the C-terminal region of the V1a receptor are involved in its internalization.
Collapse
Affiliation(s)
- L Preisser
- Service de Biologie Cellulaire, CEA/Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
45
|
Ancellin N, Preisser L, Le Maout S, Barbado M, Créminon C, Corman B, Morel A. Homologous and heterologous phosphorylation of the vasopressin V1a receptor. Cell Signal 1999; 11:743-51. [PMID: 10574329 DOI: 10.1016/s0898-6568(99)00035-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The vasopressin V1a receptor undergoes homologous and heterologous desensitizations which can be mimicked by activation of protein kinase C. This suggests that phosphorylation of the V1a receptor may be involved in the desensitization mechanisms. Such a phosphorylation was presently investigated in HEK 293 cells stably transfected with rat vasopressin V1a receptor. Metabolic labelling and immunoprecipitation of epitope-tagged V1a receptor evidenced a 52-kDa band and a 92-kDa band. Glycosidase treatments and immunoblotting experiments suggest that the 52-kDa band corresponds to an immature unprocessed receptor protein, whereas the 92-kDa band would correspond to a highly glycosylated form of the mature V1a receptor. Exposure of the cells to vasopressin induced a selective 32P phosphate incorporation in the 92-kDa form of the receptor. This homologous ligand-induced phosphorylation was dose dependent with maximal phosphate incorporation corresponding to four times the basal level. Stimulation of the endogenous phospholipase C-coupled m3 muscarinic receptor by carbachol-induced heterologous phosphorylation of the V1a receptor whose amplitude was half that of the homologous phosphorylation. This heterologous phosphorylation was associated with a reduced vasopressin-dependent increase in intracellular calcium.
Collapse
Affiliation(s)
- N Ancellin
- Service de Biologie Cellulaire, CEA, Centre d'Etudes de Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Schoots O, Hernando F, Knoers NV, Burbach JP. Vasopressin receptors: structural functional relationships and role in neural and endocrine regulation. Results Probl Cell Differ 1999; 26:107-33. [PMID: 10453462 DOI: 10.1007/978-3-540-49421-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- O Schoots
- Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Medical Faculty, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
47
|
Abstract
G-protein coupled receptors (GPCRs) comprise one of the largest classes of signalling molecules. A wide diversity of activating ligands induce the active conformation of GPCRs and lead to signalling via heterotrimeric G-proteins and downstream effectors. In addition, a complex series of reactions participate in the 'turn-off' of GPCRs in both physiological and pharmacological settings. Some key players in the inactivation or 'desensitization' of GPCRs have been identified, whereas others remain the target of ongoing studies. G-protein coupled receptor kinases (GRKs) specifically phosphorylate activated GPCRs and initiate homologous desensitization. Uncoupling proteins, such as members of the arrestin family, bind to the phosphorylated and activated GPCRs and cause desensitization by precluding further interactions of the GPCRs and G-proteins. Adaptor proteins, including arrestins, and endocytic machinery participate in the internalization of GPCRs away from their normal signalling milieu. In this review we discuss the roles of these regulatory molecules as modulators of GPCR signalling.
Collapse
Affiliation(s)
- M Bünemann
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 East Chicago Avenue S215, Chicago, IL 60611, USA
| | | |
Collapse
|
48
|
Rajagopalan-Gupta RM, Mukherjee S, Zhu X, Ho YK, Hamm H, Birnbaumer M, Birnbaumer L, Hunzicker-Dunn M. Roles of Gi and Gq/11 in mediating desensitization of the luteinizing hormone/choriogonadotropin receptor in porcine ovarian follicular membranes. Endocrinology 1999; 140:1612-21. [PMID: 10098495 DOI: 10.1210/endo.140.4.6657] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although desensitization of most guanine nucleotide-binding (G) protein receptors is triggered by phosphorylation of the receptor, desensitization of the LH/CG receptor (-R) in porcine follicular ovarian membranes appears to be independent of LH/CG-R phosphorylation. We therefore evaluated whether desensitization of the LH/CG-R reflected a direct inhibition of adenylyl cyclase (AC) activity by either the alpha-subunit of Gi or betagamma-subunits derived from any of the membrane G proteins activated in response to LH/CG-R activation or whether desensitization reflected a competition between Gs and a G protein that activated phospholipase C for binding sites on the LH/CG-R. The results showed that follicular membrane AC activity was not inhibited upon activation of the LH/CG-R despite evidence that the ACs in follicular membranes, when maximally activated by forskolin, could be inhibited when membrane G proteins were activated by guanyl-5'-yl imidodiphosphate, and that pertussis toxin pretreatment of membranes raised forskolin-stimulated AC activity, consistent with a tonic inhibition of follicular membrane AC activity. Similarly, agonist-stimulated desensitization of LH/CG-R-stimulated AC activity was not inhibited by pertussis toxin. Therefore, desensitization is not the result of inhibition of AC mediated by an inhibitory Gi subunit. Follicular membrane AC was also not inhibited by Gbetagamma subunits freed with activation of Gs Gq/11, or G13, based on the inabilities of exogenous Gbetagamma to promote desensitization and of a protein that sequesters Gbetagamma to inhibit desensitization. Desensitization was also not inhibited by a Gq/11 C-terminal peptide or antiserum directed toward the C-terminus of Gq/11, nor was it reversed with the addition of Gbetagamma to membranes exhibiting desensitized LH/CG-R, suggesting that desensitization is independent of coupling of the LH/CG-R to Gq/11. These results indicate that agonist-dependent desensitization of LH/CG-R-stimulated AC activity is mediated by a unique mechanism.
Collapse
Affiliation(s)
- R M Rajagopalan-Gupta
- Department of Cell and Molecular Biology, Neuroscience Institute, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bünemann M, Lee KB, Pals-Rylaarsdam R, Roseberry AG, Hosey MM. Desensitization of G-protein-coupled receptors in the cardiovascular system. Annu Rev Physiol 1999; 61:169-92. [PMID: 10099686 DOI: 10.1146/annurev.physiol.61.1.169] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple mechanisms exist to control the signaling and density of G-protein-coupled receptors (GPRs). Upon agonist binding and receptor activation, a series of reactions participate in the turn off or desensitization of GPRs. Many GPRs are phosphorylated by protein kinases and consequently uncoupled from G proteins. In addition, many GPRs are sequestered from the cell surface and become inaccessible to their activating ligands. Both receptor:G protein uncoupling and receptor sequestration may involve the participation of arrestins or other proteins. A model for receptor regulation has been developed from studies of the beta-adrenergic receptor. However, recent studies suggest that other GPRs important in the cardiovascular system, such as the muscarinic cholinergic receptors that regulate heart rate, might be regulated by mechanisms other than those that regulate the beta-adrenergic receptors. This review summarizes our current understanding of the processes involved in the desensitization of GPRs.
Collapse
Affiliation(s)
- M Bünemann
- Department of Molecular Pharmacology & Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
50
|
Sadeghi HM, Innamorati G, Esqueda E, Birnbaumer M. Processing and ligand-induced modifications of the V2 vasopressin receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 449:339-46. [PMID: 10026823 DOI: 10.1007/978-1-4615-4871-3_43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Synthesis, processing and agonist-induced modifications of the V2 vasopressin receptor were examined in stably or transiently transfected HEK293 cells. Metabolic labeling with S methionine for 30 min revealed a predominant precursor protein which subsequently gave rise to the mature receptor on the cell surface. Maturation of the receptor was unrelated to glycosylation suggesting that it was the consequence of protein refolding. In addition to monomeric forms of V2 receptor protein, oligomers of the precursor protein were also detected in SDS-PAGE. These oligomers seemed to be dimers and tetrameres, and were more apparent in transiently transfected cells that produced higher quantities of protein then stably transfected cells. No oligomers of the mature receptor were detected, and co-transfection of the wild type with a mutant V2 receptor lacking G-protein coupling activity did not alter the function of the wild type receptor. These results indicated that the formation of oligomeric was most likely a consequence of overproduction of the protein and not a required step for receptor function. Addition of vasopressin promoted phosphorylation and sequestration of the wild type receptor, and of the R137H mutant receptor which lacks coupling to G proteins. Activation of protein kinases A or C did not result in phosphorylation of un-occupied receptor. Phosphate incorporated into the protein was stable in the continuous presence of the ligand despite sequestration of the receptor protein. Deletion of the last 14 amino acids abolished receptor phosphorylation but not sequestration and desensitization, indicating that these two processes are not dependent on protein phosphorylation. Additionally, phosphorylation and sequestration of the R137H mutant receptor revealed that phosphorylation and sequestration does not require coupling to Gs. The wild type V2 vasopressin receptor was found to be palmitoylated at two cysteines at the carboxyl terminus. Either cysteine could be palmitoylated independently of each other and the presence of at least one was required to obtain receptor expression similar to the wild type. The turnover of the palmitic acid incorporated into the receptor was not altered by the addition of vasopressin demonstrating that this post-translational modification of the receptor was not altered by the ligand-promoted phosphorylation of the protein.
Collapse
Affiliation(s)
- H M Sadeghi
- Department of Anesthesiology and Molecular Biology Institute, University of California, Los Angeles School of Medicine 90095-1778, USA
| | | | | | | |
Collapse
|