1
|
Emond-Fraser V, Larouche M, Kubiniok P, Bonneil É, Li J, Bourouh M, Frizzi L, Thibault P, Archambault V. Identification of PP2A-B55 targets uncovers regulation of emerin during nuclear envelope reassembly in Drosophila. Open Biol 2023; 13:230104. [PMID: 37463656 PMCID: PMC10353892 DOI: 10.1098/rsob.230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Mitotic exit requires the dephosphorylation of many proteins whose phosphorylation was needed for mitosis. Protein phosphatase 2A with its B55 regulatory subunit (PP2A-B55) promotes this transition. However, the events and substrates that it regulates are incompletely understood. We used proteomic approaches in Drosophila to identify proteins that interact with and are dephosphorylated by PP2A-B55. Among several candidates, we identified emerin (otefin in Drosophila). Emerin resides in the inner nuclear membrane and interacts with the DNA-binding protein barrier-to-autointegration factor (BAF) via a LEM domain. We found that the phosphorylation of emerin at Ser50 and Ser54 near its LEM domain negatively regulates its association with BAF, lamin and additional emerin in mitosis. We show that dephosphorylation of emerin at these sites by PP2A-B55 determines the timing of nuclear envelope reformation. Genetic experiments indicate that this regulation is required during embryonic development. Phosphoregulation of the emerin-BAF complex formation by PP2A-B55 appears as a key event of mitotic exit that is likely conserved across species.
Collapse
Affiliation(s)
- Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Peter Kubiniok
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Mohammed Bourouh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Laura Frizzi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de chimie, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| |
Collapse
|
2
|
Mandigo TR, Turcich BD, Anderson AJ, Hussey MR, Folker ES. Drosophila emerins control LINC complex localization and transcription to regulate myonuclear position. J Cell Sci 2019; 132:jcs.235580. [PMID: 31548202 DOI: 10.1242/jcs.235580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/16/2019] [Indexed: 01/06/2023] Open
Abstract
Mispositioned nuclei are a hallmark of skeletal muscle disease. Many of the genes that are linked to Emery-Dreifuss muscular dystrophy (EDMD) encode proteins that are critical for nuclear movement in various cells, suggesting that disruptions in nuclear movement and position may contribute to disease progression. However, how these genes are coordinated to move nuclei is not known. Here, we focussed on two different emerin proteins in Drosophila, Bocksbeutel and Otefin, and their effects on nuclear movement. Although nuclear position was dependent on both, elimination of either Bocksbeutel or Otefin produced distinct phenotypes that were based in differential effects on the KASH-domain protein Klarsicht. Specifically, loss of Bocksbeutel reduced Klarsicht localization to the nucleus and resulted in a disruption in nuclear separation. Loss of Otefin increased the transcription of Klarsicht and led to premature separation of nuclei and their positioning closer to the edge of the muscle. Consistent with opposing functions, nuclear position is normal in otefin; bocksbeutel double mutants. These data indicate emerin-dependent regulation of Klarsicht levels in the nuclear envelope is a critical determinant of nuclear position.
Collapse
Affiliation(s)
- Torrey R Mandigo
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Blake D Turcich
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Michael R Hussey
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Eric S Folker
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
3
|
Flora P, McCarthy A, Upadhyay M, Rangan P. Role of Chromatin Modifications in Drosophila Germline Stem Cell Differentiation. Results Probl Cell Differ 2017; 59:1-30. [PMID: 28247044 DOI: 10.1007/978-3-319-44820-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During Drosophila oogenesis, germline stem cells (GSCs) self-renew and differentiate to give rise to a mature egg. Self-renewal and differentiation of GSCs are regulated by both intrinsic mechanisms such as regulation of gene expression in the germ line and extrinsic signaling pathways from the surrounding somatic niche. Epigenetic mechanisms, including histone-modifying proteins, nucleosome remodeling complexes, and histone variants, play a critical role in regulating intrinsic gene expression and extrinsic signaling cues from the somatic niche. In the GSCs, intrinsic epigenetic modifiers are required to maintain a stem cell fate by promoting expression of self-renewal factors and repressing the differentiation program. Subsequently, in the GSC daughters, epigenetic regulators activate the differentiation program to promote GSC differentiation. During differentiation, the GSC daughter undergoes meiosis to give rise to the developing egg, containing a compacted chromatin architecture called the karyosome. Epigenetic modifiers control the attachment of chromosomes to the nuclear lamina to aid in meiotic recombination and the release from the lamina for karyosome formation. The germ line is in close contact with the soma for the entirety of this developmental process. This proximity facilitates signaling from the somatic niche to the developing germ line. Epigenetic modifiers play a critical role in the somatic niche, modulating signaling pathways in order to coordinate the transition of GSC to an egg. Together, intrinsic and extrinsic epigenetic mechanisms modulate this exquisitely balanced program.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA.
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
4
|
Jafferali MH, Vijayaraghavan B, Figueroa RA, Crafoord E, Gudise S, Larsson VJ, Hallberg E. MCLIP, an effective method to detect interactions of transmembrane proteins of the nuclear envelope in live cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2399-403. [DOI: 10.1016/j.bbamem.2014.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
|
5
|
Abstract
The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins.
Collapse
|
6
|
Sui L, Yang Y. Distinct effects of nuclear membrane localization on gene transcription silencing in Drosophila S2 cells and germ cells. J Genet Genomics 2011; 38:55-61. [PMID: 21356524 DOI: 10.1016/j.jcg.2011.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 11/29/2022]
Abstract
Nuclear envelope proteins have important roles in chromatin organization and signal-dependent transcriptional regulation. A previous study reported that the inner nuclear membrane protein, Otefin (Ote), was essential for germline stem cell (GSC) maintenance via interaction with Smad complex. The interaction of Ote with the Smad complex recruits the bam locus to the nuclear periphery and subsequently results in bam transcriptional silencing, revealing that nuclear peripheral localization is essential for bam gene regulation. However, it remains unknown whether the nuclear peripheral localization is sufficient for bam silencing. To address this issue, we have established a tethering system, in which the Gal4 DNA binding domain (DBD) of the Flag:Gal4 DBD:Ote▵LEM fusion protein physically interacts with the Gal4 binding sites upstream of bamP-gfp to artificially recruit the reporter gene gfp to the nuclear membrane. Our data demonstrated that the nuclear peripheral localization seemed to affect the expression of the target naked gene in S2 cells. By contrast, in Drosophila germ cells, the nuclear membrane localization was not sufficient for gene silencing.
Collapse
Affiliation(s)
- Lu Sui
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
7
|
Batrakou DG, Kerr ARW, Schirmer EC. Comparative proteomic analyses of the nuclear envelope and pore complex suggests a wide range of heretofore unexpected functions. J Proteomics 2008; 72:56-70. [PMID: 18852071 DOI: 10.1016/j.jprot.2008.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/26/2008] [Accepted: 09/18/2008] [Indexed: 12/31/2022]
Abstract
Since the discovery of several inherited diseases linked to the nuclear envelope the number of functions ascribed to this subcellular organelle has skyrocketed. However the molecular pathways underlying these functions are not clear in most cases, perhaps because of missing components. Several recent proteomic analyses of the nuclear envelope and nuclear pore complex proteomes have yielded not only enough missing components to potentially elucidate these pathways, but suggest an exponentially greater number of functions at the nuclear periphery than ever imagined. Many of these functions appear to derive from recapitulation of pathways utilized at the plasma membrane and from other membrane systems. Additionally, many proteins identified in the comparative nuclear envelope studies have sequence characteristics suggesting that they might also contribute to nuclear pore complex functions. In particular, the striking enrichment for proteins in the nuclear envelope fractions that carry phenylalanine-glycine (FG) repeats may be significant for the mechanism of nuclear transport. In retrospect, these findings are only surprising in context of the notion held for many years that the nuclear envelope was only a barrier protecting the genome. In fact, it is arguably the most complex membrane organelle in the cell.
Collapse
Affiliation(s)
- Dzmitry G Batrakou
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
8
|
Abstract
The nuclear lamina represents a protein network required for nuclear structure and function. One family of lamina proteins is defined by an approximately 40-aa LAP2, Emerin, and MAN1 (LEM) domain (LEM-D) that binds the nonspecific DNA-binding protein, barrier-to-autointegration factor (BAF). Through interactions with BAF, LEM-D proteins serve as a bridge between chromosomes and the nuclear envelope. Mutations in genes encoding LEM-D proteins cause human laminopathies that are associated with tissue-restricted pathologies. Drosophila has five genes that encode proteins with LEM homology. Using yeast two-hybrid analyses, we demonstrate that four encode proteins that bind Drosophila (d)BAF. In addition to dBAF, dMAN1 associates with lamins, the LEM-D protein Bocksbeutel, and the receptor-regulated Smads, demonstrating parallel protein interactions with vertebrate homologs. P-element mobilization was used to generate null dMAN1 alleles. These mutants showed decreased viability, with surviving adults displaying male sterility, decreased female fertility, wing patterning and positioning defects, flightlessness, and locomotion difficulties that became more severe with age. Increased phospho-Smad staining in dMAN1 mutant wing discs is consistent with a role in transforming growth factor (TGF)-beta/bone morphogenic protein (BMP) signaling. The tissue-specific, age-enhanced dMAN1 mutant phenotypes are reminiscent of human laminopathies, suggesting that studies in Drosophila will provide insights into lamina dysfunction associated with disease.
Collapse
|
9
|
Jiang X, Xia L, Chen D, Yang Y, Huang H, Yang L, Zhao Q, Shen L, Wang J, Chen D. Otefin, a nuclear membrane protein, determines the fate of germline stem cells in Drosophila via interaction with Smad complexes. Dev Cell 2008; 14:494-506. [PMID: 18410727 DOI: 10.1016/j.devcel.2008.02.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 12/05/2007] [Accepted: 02/13/2008] [Indexed: 12/28/2022]
Abstract
Nuclear envelope proteins play important roles in chromatin organization, gene regulation, and signal transduction; however, the physiological role of these proteins remains elusive. We found that otefin (ote), which encodes a nuclear lamin-binding protein [corrected], is essential for germline stem cell (GSC) maintenance. We show that Ote, as an intrinsic factor, is both necessary and sufficient to regulate GSC fate. Furthermore, we demonstrate that ote is required for the Dpp/BMP signaling pathway to silence bam transcription. By structure-function analysis, we demonstrate that the nuclear membrane localization of Ote is essential for its role in GSC maintenance. Finally, we show that Ote physically interacts with Medea/Smad4 at the bam silencer element to regulate GSC fate. Thus, we demonstrate that specific nuclear membrane components mediate signal-dependent transcriptional effects to control stem cell behavior.
Collapse
Affiliation(s)
- Xiaoyong Jiang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, 25 Beisihuanxi Road, Haidian, Beijing, 100080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
A cancer-associated RING finger protein, RNF43, is a ubiquitin ligase that interacts with a nuclear protein, HAP95. Exp Cell Res 2008; 314:1519-28. [DOI: 10.1016/j.yexcr.2008.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 12/21/2007] [Accepted: 01/11/2008] [Indexed: 02/06/2023]
|
11
|
Wagner N, Krohne G. LEM‐Domain Proteins: New Insights into Lamin‐Interacting Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:1-46. [PMID: 17560279 DOI: 10.1016/s0074-7696(07)61001-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
LEM-domain proteins present a growing family of nonrelated inner nuclear membrane and intranuclear proteins, including emerin, MAN1, LEM2, several alternatively spliced isoforms of LAP2, and various uncharacterized proteins in higher eukaryotes as well as the Drosophila-specific proteins otefin and Bocksbeutel. LEM-domain proteins are involved in diverse cellular processes including replication and cell cycle control, chromatin organization and nuclear assembly, the regulation of gene expression and signaling pathways, as well as retroviral infection. Genetic analyses in different model organisms reveal new insights into the various functions of LEM-domain proteins, lamins, and their involvement in laminopathic diseases. All these findings as well as previously proposed ideas and models have been summarized to broaden our view of this exciting protein family.
Collapse
Affiliation(s)
- Nicole Wagner
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | | |
Collapse
|
12
|
Wagner N, Kagermeier B, Loserth S, Krohne G. The Drosophila melanogaster LEM-domain protein MAN1. Eur J Cell Biol 2006; 85:91-105. [PMID: 16439308 DOI: 10.1016/j.ejcb.2005.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/11/2005] [Accepted: 10/11/2005] [Indexed: 12/24/2022] Open
Abstract
Here we describe the Drosophila melanogaster LEM-domain protein encoded by the annotated gene CG3167 which is the putative ortholog to vertebrate MAN1. MAN1 of Drosophila (dMAN1) and vertebrates have the following properties in common. Firstly, both molecules are integral membrane proteins of the inner nuclear membrane (INM) and share the same structural organization comprising an N-terminally located LEM motif, two transmembrane domains in the middle of the molecule, and a conserved RNA recognition motif in the C-terminal region. Secondly, dMAN1 has similar targeting domains as it has been reported for the human protein. Thirdly, immunoprecipitations with dMAN1-specific antibodies revealed that this Drosophila LEM-domain protein is contained in protein complexes together with lamins Dm0 and C. It has been previously shown that human MAN1 binds to A- and B-type lamins in vitro. During embryogenesis and early larval development LEM-domain proteins dMAN1 and otefin show the same expression pattern and are much more abundant in eggs and the first larval instar than in later larval stages and young pupae whereas the LEM-domain protein Bocksbeutel is uniformly expressed in all developmental stages. dMAN1 is detectable in the nuclear envelope of embryonic cells including the pole cells. In mitotic cells of embryos at metaphase and anaphase, LEM-domain proteins dMAN1, otefin and Bocksbeutel were predominantly localized in the region of the two spindle poles whereas the lamin B receptor and lamin Dm0 were more homogeneously distributed. Downregulation of dMAN1 by RNA interference (RNAi) in Drosophila cultured Kc167 cells has no obvious effect on nuclear architecture, viability of RNAi-treated cells and the intracellular distribution of the LEM-domain proteins Bocksbeutel and otefin. In contrast, the localization of dMAN1, Bocksbeutel and otefin at the INM is supported by lamin Dm0. We conclude that the dMAN1 protein is not a limiting component of the nuclear architecture in Drosophila cultured cells.
Collapse
Affiliation(s)
- Nicole Wagner
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | |
Collapse
|
13
|
Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A. The nuclear lamina and its functions in the nucleus. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:1-62. [PMID: 12921235 DOI: 10.1016/s0074-7696(03)01001-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lamin-Associated Proteins. Methods Cell Biol 2004. [DOI: 10.1016/s0091-679x(04)78029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Wagner N, Schmitt J, Krohne G. Two novel LEM-domain proteins are splice products of the annotated Drosophila melanogaster gene CG9424 (Bocksbeutel). Eur J Cell Biol 2004; 82:605-16. [PMID: 15035436 DOI: 10.1078/0171-9335-00350] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The LEM motif is a sequence of 40-50 amino acids that has been identified in a number of non-related proteins of the inner nuclear membrane including the lamina-associated polypeptides 2 (LAP2), emerin, MAN1 and the Drosophila protein otefin. This evolutionary conserved sequence motif can mediate via the interaction with the small protein BAF the binding of LEM-domain proteins to DNA. Taking advantage of its sequenced genome we analyzed whether Drosophila possesses beside otefin additional genes coding for proteins with a LEM motif. A putative candidate gene was the annotated gene CG9424 which we named Bocksbeutel. Of all putative Drosophila LEM-domain proteins, otefin and Bocksbeutel exhibited the highest similarity in the LEM motif (53% identical amino acids). The Bocksbeutel gene can code for two isoforms of 399 and 351 amino acids that are produced by alternative splicing. In the alpha-isoform a transmembrane domain is localized close to the carboxyterminus. This segment is absent in the shorter beta-isoform. By RT-PCR we could show that in the embryo the mRNA coding for the alpha-isoform and in significantly lower amounts the mRNA coding for the beta-isoform are expressed. When expressed in transfected cells as GFP fusion proteins, the beta-isoform is localized predominantly in the nucleoplasm and the alpha-isoform is targeted to the nuclear envelope, indicating that Bocksbeutel-alpha is localized in the inner nuclear membrane. Bocksbeutel-alpha is the predominant isoform expressed in cells, larvae, and flies. Indirect immunofluorescence with Bocksbeutel-specific antibodies on tissues and cultured cells revealed that Bocksbeutel proteins are localized in the nuclear envelope and in the cytoplasm. By RNA interference we have down-regulated the expression of Bocksbeutel, BAF, otefin, and lamin DmO in Drosophila Kc167 cells. The down-regulation of Bocksbeutel and otefin had no influence on the viability of Kc167 cells and the intracellular localization of all other nuclear and nuclear envelope proteins analyzed. In contrast, when lamin DmO was reduced by RNAi the distribution of Bocksbeutel and otefin in the nuclear envelope of Kc167 cells was significantly altered. We conclude that the two LEM-domain proteins Bocksbeutel and otefin are no limiting components for the maintenance of the nuclear architecture in cultured Drosophila cells at interphase.
Collapse
Affiliation(s)
- Nicole Wagner
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
16
|
De Felice B, Wilson RR, Mondola P, Matrone G, Damiano S, Garbi C, Nezi L, Su TT. Characterization of DIP1, a novel nuclear protein in Drosophila melanogaster. Biochem Biophys Res Commun 2003; 307:224-8. [PMID: 12859943 DOI: 10.1016/s0006-291x(03)01141-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have recently identified in Drosophila melanogaster a new gene encoding a nuclear protein, DIP1. Here we report the developmental expression and the finding that DIP1 subcellular localization is in the nucleus and at the nuclear periphery during interphase in embryos. Interestingly, in humans, DIP1 antibody identified signals in nuclei from cultured cells and reacted with a rough 30kDa protein in Western blotting experiments, demonstrating evolutionary conservation.
Collapse
Affiliation(s)
- Bruna De Felice
- Department of Life Sciences, University of Naples II, Caserta, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kondo Y, Kondoh J, Hayashi D, Ban T, Takagi M, Kamei Y, Tsuji L, Kim J, Yoneda Y. Molecular cloning of one isotype of human lamina-associated polypeptide 1s and a topological analysis using its deletion mutants. Biochem Biophys Res Commun 2002; 294:770-8. [PMID: 12061773 DOI: 10.1016/s0006-291x(02)00563-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
LAP1s (lamina-associated polypeptide 1s) are type 2 integral membrane proteins with a single membrane-spanning region of the inner nuclear membrane. We report here on the cloning of the full-length cDNA of human LAP1B (huLAP1B) that encodes 584 amino acids. The sequence homology between the predicted rat LAP1B and huLAP1B was found to be 73.6%. A topological analysis was carried out by transiently expressing N-terminal GFP fused deletion mutants of huLAP1B in cells. The transmembrane (TM) domain (aa 346-368) is required for the localization of the nuclear and endoplasmic reticulum membrane and that the TM domain and the C-terminal half of the nucleoplasmic domain (aa 190-331) are sufficient for the proper localization of LAP1B. In contrast, the well-conserved lumenal domain of the nuclear membrane is not required for its topological function. Biochemical analysis showed that huLAP1B is retained within the nucleus via interactions of the nucleoplasmic portion with nuclear components.
Collapse
Affiliation(s)
- Yukihiro Kondo
- Depertment of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang Q, Skepper JN, Yang F, Davies JD, Hegyi L, Roberts RG, Weissberg PL, Ellis JA, Shanahan CM. Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J Cell Sci 2001; 114:4485-98. [PMID: 11792814 DOI: 10.1242/jcs.114.24.4485] [Citation(s) in RCA: 309] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In search of vascular smooth muscle cell differentiation markers, we identified two genes encoding members of a new family of type II integral membrane proteins. Both are ubiquitously expressed, and tissue-specific alternative mRNA initiation and splicing generate at least two major isoforms of each protein, with the smaller isoforms being truncated at the N-terminus. We have named these proteins nesprin-1 and -2 for nuclear envelope spectrin repeat, as they are characterized by the presence of multiple, clustered spectrin repeats, bipartite nuclear localization sequences and a conserved C-terminal, single transmembrane domain. Transient transfection of EGFP-fusion expression constructs demonstrated their localization to the nuclear membrane with a novel C-terminal, TM-domain-containing sequence essential for perinuclear localization. Using antibodies to nesprin-1, we documented its colocalization with LAP1, emerin and lamins at the nuclear envelope, and immunogold labeling confirmed its presence at the nuclear envelope and in the nucleus where it colocalized with heterochromatin. Nesprin-1 is developmentally regulated in both smooth and skeletal muscle and is re-localized from the nuclear envelope to the nucleus and cytoplasm during C2C12 myoblast differentiation. These data and structural analogies with other proteins suggest that nesprins may function as ‘dystrophins of the nucleus’ to maintain nuclear organization and structural integrity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biomarkers
- COS Cells
- Cell Differentiation/genetics
- Cells, Cultured
- Cytoskeletal Proteins
- DNA, Complementary/isolation & purification
- Humans
- Immune Sera/chemistry
- In Situ Hybridization, Fluorescence
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Microfilament Proteins
- Molecular Sequence Data
- Multigene Family
- Muscle Proteins/chemistry
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Nerve Tissue Proteins
- Nuclear Envelope/metabolism
- Nuclear Localization Signals/genetics
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Nuclear Proteins/metabolism
- Organ Specificity/genetics
- Protein Structure, Tertiary/genetics
- Rats
- Repetitive Sequences, Amino Acid
- Sequence Homology, Amino Acid
- Spectrin/metabolism
- Subcellular Fractions/metabolism
Collapse
Affiliation(s)
- Q Zhang
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Organization, Replication, Transposition, and Repair of DNA. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Dechat T, Korbei B, Vaughan OA, Vlcek S, Hutchison CJ, Foisner R. Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins. J Cell Sci 2000; 113 Pt 19:3473-84. [PMID: 10984438 DOI: 10.1242/jcs.113.19.3473] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleoskeletal protein lamina-associated polypeptide 2(α) (LAP2*) contains a large, unique C terminus and differs significantly from its alternatively spliced, mostly membrane-integrated isoforms, such as LAP2beta. Unlike lamin B-binding LAP2beta, LAP2alpha was found by confocal immunofluorescence microscopy to colocalize preferentially with A-type lamins in the newly formed nuclei assembled after mitosis. While only a subfraction of lamins A and C (lamin A/C) was associated with the predominantly nuclear LAP2alpha in telophase, the majority of lamin A/C colocalized with LAP2alpha in G(1)-phase nuclei. Furthermore, selective disruption of A-type lamin structures by overexpression of lamin mutants in HeLa cells caused a redistribution of LAP2alpha. Coimmunoprecipitation experiments revealed that a fraction of lamin A/C formed a stable, SDS-resistant complex with LAP2alpha in interphase cells and in postmetaphase cell extracts. Blot overlay binding studies revealed a direct binding of LAP2alpha to exclusively A-type lamins and located the interaction domains to the C-terminal 78 amino acids of LAP2alpha and to residues 319–566 in lamin A/C, which include the C terminus of the rod and the entire tail common to lamin A/C. These findings suggest that LAP2alpha and A-type lamins cooperate in the organization of internal nuclear structures.
Collapse
Affiliation(s)
- T Dechat
- Department of Biochemistry and Molecular Cell Biology, Vienna Biocenter, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- P Collas
- Institute of Medical Biochemistry, University of Oslo, Norway
| | | |
Collapse
|
22
|
Dechat T, Vlcek S, Foisner R. Review: lamina-associated polypeptide 2 isoforms and related proteins in cell cycle-dependent nuclear structure dynamics. J Struct Biol 2000; 129:335-45. [PMID: 10806084 DOI: 10.1006/jsbi.2000.4212] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lamina-associated polypeptide (LAP) 2 family comprises up to six alternatively spliced proteins in mammalian cells and three isoforms in Xenopus. LAP2beta is a type II integral protein of the inner nuclear membrane, which binds to lamin B and the chromosomal protein BAF, and may link the nuclear membrane to the underlying lamina and provide docking sites for chromatin. LAP2alpha shares only the N-terminus with the other isoforms and contains a unique C-terminus. It is a nonmembrane protein associated with the nucleoskeleton and may help to organize higher order chromatin structure by interacting with A-lamins and chromosomes. Recent studies using mutant proteins have just begun to unravel functions of LAP2 isoforms during postmitotic nuclear reassembly. LAP2alpha associates with chromosomes via an alpha-specific domain at early stages of assembly, possibly providing a structural framework for chromosome reorganization. The subsequent interaction of both LAP2alpha and LAP2beta with the chromosomal BAF may stabilize chromatin structure and target membranes to the chromosomes. At later stages LAP2 may regulate the assembly of lamins. LAP2 isoforms have been found to share a homologous approximately 40 amino acid long region, the LEM domain, with nuclear membrane proteins MAN1 and emerin, which has been implicated in Emery-Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- T Dechat
- Department of Biochemistry and Molecular Cell Biology, Biocenter, Vienna, A-1030, Austria
| | | | | |
Collapse
|
23
|
Lin F, Blake DL, Callebaut I, Skerjanc IS, Holmer L, McBurney MW, Paulin-Levasseur M, Worman HJ. MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. J Biol Chem 2000; 275:4840-7. [PMID: 10671519 DOI: 10.1074/jbc.275.7.4840] [Citation(s) in RCA: 269] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The "MAN antigens" are polypeptides recognized by autoantibodies from a patient with a collagen vascular disease and localized to the nuclear envelope. We now show that one of the human MAN antigens termed MAN1 is a 82.3-kDa protein with an amino-terminal domain followed by two hydrophobic segments and a carboxyl-terminal tail. The MAN1 gene contains seven protein-coding exons and is assigned to human chromosome 12q14. Its mRNA is approximately 5.5 kilobases and is detected in several different cell types that were examined. Cell extraction experiments show that MAN1 is an integral membrane protein. When expressed in transfected cells, MAN1 is exclusively targeted to the nuclear envelope, consistent with an inner nuclear membrane localization. Protein sequence analysis reveals that MAN1 shares a conserved globular domain of approximately 40 amino acids, which we term the LEM module, with inner nuclear membrane proteins lamina-associated polypeptide 2 and emerin. The LEM module is also present in two proteins of Caenorhabditis elegans. These results show that MAN1 is an integral protein of the inner nuclear membrane that shares the LEM module with other proteins of this subcellular localization.
Collapse
Affiliation(s)
- F Lin
- Departments of Medicine and of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Okabe E, Tsujimoto Y, Kobayashi Y. Calmodulin and cyclic ADP-ribose interaction in Ca2+ signaling related to cardiac sarcoplasmic reticulum: superoxide anion radical-triggered Ca2+ release. Antioxid Redox Signal 2000; 2:47-54. [PMID: 11232599 DOI: 10.1089/ars.2000.2.1-47] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) are often shown to damage cellular functions. The targets of oxidative damage depend on the nature of ROS produced and the site of generation. In contrast, ROS can also regulate signal transduction. In this case, ROS may either induce or enhance events, which lead to forward directions of cellular signaling. The consequences of regulation of signal transduction can be observed in physiological processes such as muscle contraction. Here, we discuss the concentration-dependent effects of superoxide anion radical (*O2-) on Ca2+ release from the cardiac sarcoplasmic reticulum (SR). Recent studies suggest that the ADP-ribosyl cyclase pathway, through its production of cyclic adenosine 5'-diphosphoribose (cADPR), may control Ca2+ mobilization in cardiac muscle cells. *O2- has dual effects that are concentration dependent. At low concentrations (nearly nanomolar levels), *O2- induces Ca2+ release by stimulating synthesis of cADPR, which requires calmodulin for sensitization of ryanodine-sensitive Ca2+-release channels (RyRC). At these low concentrations, *O2- is responsible for regulation of cellular signal transduction. At higher concentrations (micromolar levels), *O2- produces a loss in the function of calmodulin that is to inhibit RyRC. This results in an increase in Ca2+ release, which is linked to cell injury. The difference in the functions of low and high concentrations of *O2- may result in two distinct physiological roles in cardiac muscle Ca2+ signaling.
Collapse
Affiliation(s)
- E Okabe
- Department of Pharmacology, Kanagawa Dental College, Yokosuka, Japan.
| | | | | |
Collapse
|
25
|
Weber PJ, Eckhard CP, Gonser S, Otto H, Folkers G, Beck-Sickinger AG. On the role of thymopoietins in cell proliferation. Immunochemical evidence for new members of the human thymopoietin family. Biol Chem 1999; 380:653-60. [PMID: 10430029 DOI: 10.1515/bc.1999.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thymopoietins (TMPOs) are a group of ubiquitously expressed nuclear proteins. They are suggested to play an important role in nuclear envelope organization and cell cycle control, as has been shown for lamina-associated polypeptides 2 alpha and beta, which are the rat homologs of human TMPOalpha and TMPObeta, respectively. The recent isolation and characterization of seven mouse TMPO mRNA transcripts named TMPO-alpha, beta, beta', gamma, epsilon delta and zeta, suggest that more than the three previously reported transcripts, alpha, beta, and gamma forms, may exist in humans. Here we report on the demonstration of putative human TMPOdelta and epsilon by immunoblotting of human cell lines using a newly prepared polyclonal antiserum against the common N-terminal region of TMPO. Furthermore, we prepared the first truly TMPO-beta-specific, affinity-purified polyclonal antiserum, using a part of the human analog of the beta-specific domain of mouse TMPO 220-259 for immunization. We showed that human TMPObeta is highly expressed in all cancerous cells tested, while hardly any cross-reactivities with other proteins could be detected. In contrast to the high expression of human TMPObeta in the cancer-derived neuroblastoma cell lines SK-N-MC and SMS-KAN, we found very low expression of human TMPObeta in low-proliferative nerve tissue. These data led us to the assumption that expression of TMPObeta may correlate with the occurrence of cancer, and therefore may serve as a new tumor marker, or even as a new target for cancer therapy.
Collapse
Affiliation(s)
- P J Weber
- Department of Pharmacy, Swiss Federal Institute of Technology, Zürich
| | | | | | | | | | | |
Collapse
|
26
|
Tsuchiya Y, Hase A, Ogawa M, Yorifuji H, Arahata K. Distinct regions specify the nuclear membrane targeting of emerin, the responsible protein for Emery-Dreifuss muscular dystrophy. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:859-65. [PMID: 10092874 DOI: 10.1046/j.1432-1327.1999.00112.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Emery-Dreifuss muscular dystrophy is a neuromuscular disorder that has three characteristics: (a) early contracture of the elbows, Achilles tendons and postcervical muscles; (b) slowly progressive wasting and weakness of skeletal muscle; and (c) cardiomyopathy with severe conduction block. The responsible gene for the X-linked recessive form of this disease encodes an inner nuclear membrane protein named emerin. Although emerin is absent in tissues from patients with this disorder, it remains obscure why the loss of this widely expressed protein affects selectively skeletal muscle, heart and joints. As the first step to address this question, we examined the molecular regions of emerin that are essential for nuclear membrane targeting and stability of the protein. We found that the C-terminal hydrophobic region was necessary, but not sufficient, for nuclear membrane anchoring and stability of the protein. In the absence of this transmembrane domain, the upstream nucleoplasmic domain showed no firm association with the nuclear rim, but showed the tendency to accumulate at the nucleolus-like structures. Furthermore, proper targeting of emerin to the nuclear membrane required the latter half of the nucleoplasmic domain. These characteristics are distinct from those of lamina-associated polypeptide 2. Our findings indicate that emerin has distinct interactions with the inner nuclear membrane components that may be required for the stability and function of rigorously moving nuclei in tissues such as skeletal muscle, heart and joints.
Collapse
Affiliation(s)
- Y Tsuchiya
- Department of Neuromuscular Research, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | | | |
Collapse
|
27
|
Drummond S, Ferrigno P, Lyon C, Murphy J, Goldberg M, Allen T, Smythe C, Hutchison CJ. Temporal differences in the appearance of NEP-B78 and an LBR-like protein during Xenopus nuclear envelope reassembly reflect the ordered recruitment of functionally discrete vesicle types. J Cell Biol 1999; 144:225-40. [PMID: 9922450 PMCID: PMC2132889 DOI: 10.1083/jcb.144.2.225] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/1997] [Revised: 12/09/1998] [Indexed: 11/30/2022] Open
Abstract
In this work, we have used novel mAbs against two proteins of the endoplasmic reticulum and outer nuclear membrane, termed NEP-B78 and p65, in addition to a polyclonal antibody against the inner nuclear membrane protein LBR (lamin B receptor), to study the order and dynamics of NE reassembly in the Xenopus cell-free system. Using these reagents, we demonstrate differences in the timing of recruitment of their cognate membrane proteins to the surface of decondensing chromatin in both the cell-free system and XLK-2 cells. We show unequivocally that, in the cell-free system, two functionally and biochemically distinct vesicle types are necessary for NE assembly. We find that the process of distinct vesicle recruitment to chromatin is an ordered one and that NEP-B78 defines a vesicle population involved in the earliest events of reassembly in this system. Finally, we present evidence that NEP-B78 may be required for the targeting of these vesicles to the surface of decondensing chromatin in this system. The results have important implications for the understanding of the mechanisms of nuclear envelope disassembly and reassembly during mitosis and for the development of systems to identify novel molecules that control these processes.
Collapse
Affiliation(s)
- S Drummond
- MRC Protein Phosphorylation Unit, University of Dundee, Dundee DD1 4HN, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Nuclear lamins are intermediate filament-type proteins that are the major building blocks of the nuclear lamina, a fibrous proteinaceous meshwork underlying the inner nuclear membrane. Lamins can also be localized in the nuclear interior, in a diffuse or spotted pattern. Nuclei assembled in vitro in the absence of lamins are fragile, indicating that lamins mechanically stabilize the cell nucleus. Available evidence also indicates a role for lamins in DNA replication, chromatin organization, spatial arrangement of nuclear pore complexes, nuclear growth, and anchorage of nuclear envelope proteins. In this review we summarize the current state of knowledge on the structure, assembly, and possible functional roles of nuclear lamins, emphasizing the information concerning the ability of nuclear lamins to self-assemble into distinct oligomers and polymers.
Collapse
Affiliation(s)
- N Stuurman
- M. E. Müller-Institute for Microscopy at the Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | | | | |
Collapse
|
29
|
Dechat T, Gotzmann J, Stockinger A, Harris CA, Talle MA, Siekierka JJ, Foisner R. Detergent-salt resistance of LAP2alpha in interphase nuclei and phosphorylation-dependent association with chromosomes early in nuclear assembly implies functions in nuclear structure dynamics. EMBO J 1998; 17:4887-902. [PMID: 9707448 PMCID: PMC1170818 DOI: 10.1093/emboj/17.16.4887] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lamina-associated polypeptide (LAP) 2 of the inner nuclear membrane (now LAP2beta) and LAP2alpha are related proteins produced by alternative splicing, and contain a common 187 amino acid N-terminal domain. We show here that, unlike LAP2beta, LAP2alpha behaved like a nuclear non-membrane protein in subcellular fractionation studies and was localized throughout the nuclear interior in interphase cells. It co-fractionated with LAP2beta in nuclear lamina/matrix-enriched fractions upon extraction of nuclei with detergent, salt and nucleases. During metaphase LAP2alpha dissociated from chromosomes and became concentrated around the spindle poles. Furthermore, LAP2alpha was mitotically phosphorylated, and phosphorylation correlated with increased LAP2alpha solubility upon extraction of cells in physiological buffers. LAP2alpha relocated to distinct sites around chromosomes at early stages of nuclear reassembly and intermediarily co-localized with peripheral lamin B and intranuclear lamin A structures at telophase. During in vitro nuclear assembly LAP2alpha was dephosphorylated and assembled into insoluble chromatin-associated structures, and recombinant LAP2alpha was found to interact with chromosomes in vitro. Some LAP2alpha may also associate with membranes prior to chromatin attachment. Altogether the data suggest a role of LAP2alpha in post-mitotic nuclear assembly and in the dynamic structural organization of the nucleus.
Collapse
Affiliation(s)
- T Dechat
- nstitute of Biochemistry and Molecular Cell Biology, Biocenter and Institute of Tumor Biology-Cancer Research, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
30
|
Goldberg M, Lu H, Stuurman N, Ashery-Padan R, Weiss AM, Yu J, Bhattacharyya D, Fisher PA, Gruenbaum Y, Wolfner MF. Interactions among Drosophila nuclear envelope proteins lamin, otefin, and YA. Mol Cell Biol 1998; 18:4315-23. [PMID: 9632815 PMCID: PMC109015 DOI: 10.1128/mcb.18.7.4315] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The nuclear envelope plays many roles, including organizing nuclear structure and regulating nuclear events. Molecular associations of nuclear envelope proteins may contribute to the implementation of these functions. Lamin, otefin, and YA are the three Drosophila nuclear envelope proteins known in early embryos. We used the yeast two-hybrid system to explore the interactions between pairs of these proteins. The ubiquitous major lamina protein, lamin Dm, interacts with both otefin, a peripheral protein of the inner nuclear membrane, and YA, an essential, developmentally regulated protein of the nuclear lamina. In agreement with this interaction, lamin and otefin can be coimmunoprecipitated from the vesicle fraction of Drosophila embryos and colocalize in nuclear envelopes of Drosophila larval salivary gland nuclei. The two-hybrid system was further used to map the domains of interaction among lamin, otefin, and YA. Lamin's rod domain interacts with the complete otefin protein, with otefin's hydrophilic NH2-terminal domain, and with two different fragments derived from this domain. Analogous probing of the interaction between lamin and YA showed that the lamin rod and tail plus part of its head domain are needed for interaction with full-length YA in the two-hybrid system. YA's COOH-terminal region is necessary and sufficient for interaction with lamin. Our results suggest that interactions with lamin might mediate or stabilize the localization of otefin and YA in the nuclear lamina. They also suggest that the need for both otefin and lamin in mediating association of vesicles with chromatin might reflect the function of a protein complex that includes these two proteins.
Collapse
Affiliation(s)
- M Goldberg
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Furukawa K, Fritze CE, Gerace L. The major nuclear envelope targeting domain of LAP2 coincides with its lamin binding region but is distinct from its chromatin interaction domain. J Biol Chem 1998; 273:4213-9. [PMID: 9461618 DOI: 10.1074/jbc.273.7.4213] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
LAP2 is an integral protein of the inner nuclear membrane which binds lamins and chromosomes and is suggested to have an important role in nuclear envelope organization. In a previous study we identified an internal 76-amino acid region of LAP2 which is required for stable targeting of the protein to the nuclear envelope. Here, we have mapped the lamin binding region of LAP2 and demonstrate that it coincides with this nuclear envelope targeting domain. In contrast, we found that the portion of LAP2 involved in binding to chromosomes resides in a separate region of the protein near its NH2 terminus. The minimal lamin binding region of LAP2 is capable of conferring stable nuclear envelope localization when attached to the transmembrane and partial lumenal domains of a protein that shows no nuclear envelope targeting activity. This directly supports the notion that a major mechanism for localization of integral membrane proteins at the inner nuclear membrane involves binding to lamins, which would constrain diffusion through the continuous nuclear envelope/endoplasmic reticulum membrane system.
Collapse
Affiliation(s)
- K Furukawa
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
32
|
Abstract
We review old and new insights into the structure of the nuclear envelope and the components responsible for its dynamic reassembly during mitosis. New information is coming to light about several of the proteins that mediate nuclear reassembly. These proteins include the lamins and their emerging relationship with proteins such as otefin and the MAN antigens: peripheral proteins that might participate in lamina structure. There are four identified proteins localized to the inner nuclear membrane: the lamina-associated proteins LAP1 and LAP2, emerin, and the lamin B receptor (LBR). LBR can interact independently with lamin B and a chromodomain protein, Hp1, and appears to be a central player in targeting nuclear membranes to chromatin. Intermediates in the assembly of nuclear pore complexes (NPCs) can now be studied biochemically and visualized by high resolution scanning electron microscopy. We discuss the possibility that the filament-forming proteins Tpr/p270, NuMA, and perhaps actin may have roles in nuclear assembly.
Collapse
Affiliation(s)
- T M Gant
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
33
|
Ulitzur N, Harel A, Goldberg M, Feinstein N, Gruenbaum Y. Nuclear membrane vesicle targeting to chromatin in a Drosophila embryo cell-free system. Mol Biol Cell 1997; 8:1439-48. [PMID: 9285817 PMCID: PMC276168 DOI: 10.1091/mbc.8.8.1439] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A Drosophila cell-free system was used to characterize proteins that are required for targeting vesicles to chromatin and for fusion of vesicles to form nuclear envelopes. Treatment of vesicles with 1 M NaCl abolished their ability to bind to chromatin. Binding of salt-treated vesicles to chromatin could be restored by adding the dialyzed salt extract. Lamin Dm is one of the peripheral proteins whose activity was required, since supplying interphase lamin isoforms Dm1, and Dm2 to the assembly extract restored binding. As opposed to the findings in Xenopus, okadaic acid had no effect on vesicle binding. Trypsin digestion of the salt-stripped vesicles eliminated their association with chromatin even in the presence of the dialyzed salt extract. One vesicles attached to chromatin surface, fusion events took place were found to be sensitive to guanosine 5'-[gamma-thio]triphosphate (GTP gamma S). These chromatin-attached vesicles contained lamin Dm and otefin but not gp210. Thus, these results show that in Drosophila there are two populations of nuclear vesicles. The population that interacts first with chromatin contains lamin and otefin and requires both peripheral and integral membrane proteins, whereas fusion of vesicles requires GTPase activity.
Collapse
Affiliation(s)
- N Ulitzur
- Department of Genetics, Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
34
|
Ashery-Padan R, Ulitzur N, Arbel A, Goldberg M, Weiss AM, Maus N, Fisher PA, Gruenbaum Y. Localization and posttranslational modifications of otefin, a protein required for vesicle attachment to chromatin, during Drosophila melanogaster development. Mol Cell Biol 1997; 17:4114-23. [PMID: 9199347 PMCID: PMC232265 DOI: 10.1128/mcb.17.7.4114] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Otefin is a peripheral protein of the inner nuclear membrane in Drosophila melanogaster. Here we show that during nuclear assembly in vitro, it is required for the attachment of membrane vesicles to chromatin. With the exception of sperm cells, otefin colocalizes with lamin Dm0 derivatives in situ and presumably in vivo and is present in all somatic cells examined during the different stages of Drosophila development. In the egg chamber, otefin accumulates in the cytoplasm, in the nuclear periphery, and within the nucleoplasm of the oocyte, in a pattern similar to that of lamin Dm0 derivatives. There is a relatively large nonnuclear pool of otefin present from stages 6 to 7 of egg chamber maturation through 6 to 8 h of embryonic development at 25 degrees C. In this pool, otefin is peripherally associated with a fraction containing the membrane vesicles. This association is biochemically different from the association of otefin with the nuclear envelope. Otefin is a phosphoprotein in vivo and is a substrate for in vitro phosphorylation by cdc2 kinase and cyclic AMP-dependent protein kinase. A major site for cdc2 kinase phosphorylation in vitro was mapped to serine 36 of otefin. Together, our data suggest an essential role for otefin in the assembly of the Drosophila nuclear envelope.
Collapse
Affiliation(s)
- R Ashery-Padan
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|