1
|
Le Berre M, Tubiana T, Reuterswärd Waldner P, Lazar N, Li de la Sierra-Gallay I, Santos JM, Llinás M, Nessler S. Structural characterization of the ACDC domain from ApiAP2 proteins, a potential molecular target against apicomplexan parasites. Acta Crystallogr D Struct Biol 2025; 81:38-48. [PMID: 39820027 PMCID: PMC11740583 DOI: 10.1107/s2059798324012518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025] Open
Abstract
The apicomplexan AP2 (ApiAP2) proteins are the best characterized family of DNA-binding proteins in Plasmodium spp. malaria parasites. Apart from the AP2 DNA-binding domain, there is little sequence similarity between ApiAP2 proteins. However, a conserved AP2-coincident domain mostly at the C-terminus (ACDC domain) is observed in a subset of the ApiAP2 proteins. The structure and function of this domain remain unknown. We report two crystal structures of ACDC domains derived from distinct Plasmodium ApiAP2 proteins, revealing a conserved, unique, noncanonical, four-helix bundle architecture. We used these structures to perform in silico docking calculations against a library of known antimalarial compounds and identified potential small-molecule ligands that bind in a highly conserved hydrophobic pocket that is present in all apicomplexan ACDC domains. These ligands provide a new molecular basis for the future design of ACDC inhibitors.
Collapse
Affiliation(s)
- Marine Le Berre
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-SaclayCEA, CNRS91198Gif-sur-YvetteFrance
| | - Thibault Tubiana
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-SaclayCEA, CNRS91198Gif-sur-YvetteFrance
| | - Philippa Reuterswärd Waldner
- Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityState CollegePA16802USA
- Huck Center for Malaria ResearchThe Pennsylvania State UniversityState CollegePA16802USA
| | - Noureddine Lazar
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-SaclayCEA, CNRS91198Gif-sur-YvetteFrance
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-SaclayCEA, CNRS91198Gif-sur-YvetteFrance
| | - Joana M. Santos
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-SaclayCEA, CNRS91198Gif-sur-YvetteFrance
| | - Manuel Llinás
- Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityState CollegePA16802USA
- Huck Center for Malaria ResearchThe Pennsylvania State UniversityState CollegePA16802USA
- Department of ChemistryThe Pennsylvania State UniversityState CollegePA16802USA
| | - Sylvie Nessler
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-SaclayCEA, CNRS91198Gif-sur-YvetteFrance
| |
Collapse
|
2
|
Dalley NA, Stern KL, Kitchen RR, Lloyd KB, Price JL. Electrostatic origin of a stabilizing synergistic interaction among b-, c-, and f-residues in a trimeric coiled coil. Pept Sci (Hoboken) 2024; 116:e24336. [PMID: 38882551 PMCID: PMC11175585 DOI: 10.1002/pep2.24336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 06/18/2024]
Abstract
Coiled coils are one of most common protein quaternary structures and represent the best understood relationship between amino acid sequence and protein conformation. Whereas the roles of residues at the canonical heptad positions the a, d, e, and g are understood in precise detail, conventional approaches often assume that the solvent-exposed b-, c-, and f-positions can be varied broadly for application-specific purposes with minimal consequences. However, a growing body of evidence suggests that interactions among these b, c, and f residues can contribute substantially to coiled-coil conformational stability. In the trimeric coiled coil described here, we find that b-position Glu10 engages in a stabilizing long-range synergistic interaction with c-position Lys18 (ΔΔΔGf = -0.65 ± 0.02 kcal/mol). This favorable interaction depends strongly on the presence of two nearby f-position residues: Lys 7 and Tyr14. Extensive mutational analysis of these residues in the presence of added salt vs. denaturant suggests that this long-range synergistic interaction is primarily electrostatic in origin, but also depends on the precise location and acidity of a side-chain hydrogen-bond donor within f-position Tyr14.
Collapse
Affiliation(s)
- Nicholas A Dalley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Kimberlee L Stern
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Richard R Kitchen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Keegan B Lloyd
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Joshua L Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| |
Collapse
|
3
|
Li S, Hu Y, An C, Wen Q, Fan X, Zhang Z, Sherif A, Liu H, Xing Y. The amino acid residue E96 of Ghd8 is crucial for the formation of the flowering repression complex Ghd7-Ghd8-OsHAP5C in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1012-1025. [PMID: 36479821 DOI: 10.1111/jipb.13426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Ghd7 is an important gene involved in the photoperiod flowering pathway in rice. A Ghd7-involved transcriptional regulatory network has been established, but its translational regulatory pathway is poorly understood. The mutant suppressor of overexpression of Ghd7 (sog7) was identified from EMS-induced mutagenesis on the background of ZH11 overexpressing Ghd7. MutMap analysis revealed that SOG7 is allelic to Ghd8 and delayed flowering under long-day (LD) conditions. Biochemical assays showed that Ghd8 interacts with OsHAP5C and Ghd7 both in vivo and in vitro. Surprisingly, a point mutation E96K in the α2 helix of the Ghd8 histone fold domain (HFD) destroyed its ability to interact with Ghd7. The prediction of the structure shows that mutated amino acid is located in the interaction region of CCT/NF-YB/YC complexes, which alter the structure of α4 of Ghd8. This structural difference prevents the formation of complex NF-YB/YC. The triple complex of Ghd8-OsHAP5C-Ghd7 directly bound to the promotor of Hd3a and downregulated the expression of Ehd1, Hd3a and RFT1, and finally resulted in a delayed heading. These findings are helpful in deeply understanding the Ghd7-involved photoperiod flowering pathway and promote the elucidation of rice heading.
Collapse
Affiliation(s)
- Shuangle Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Hongshan Laboratory, Wuhan, 430070, China
| | - Yong Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Hongshan Laboratory, Wuhan, 430070, China
| | - Chen An
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Hongshan Laboratory, Wuhan, 430070, China
| | - Qingli Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Hongshan Laboratory, Wuhan, 430070, China
| | - Xiaowei Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Hongshan Laboratory, Wuhan, 430070, China
| | - Zhanyi Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Hongshan Laboratory, Wuhan, 430070, China
| | - Ahmed Sherif
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Hongshan Laboratory, Wuhan, 430070, China
| | - Haiyang Liu
- College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Hongshan Laboratory, Wuhan, 430070, China
- Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
4
|
Li Y, Champion JA. Self-assembling nanocarriers from engineered proteins: Design, functionalization, and application for drug delivery. Adv Drug Deliv Rev 2022; 189:114462. [PMID: 35934126 DOI: 10.1016/j.addr.2022.114462] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 01/24/2023]
Abstract
Self-assembling proteins are valuable building blocks for constructing drug nanocarriers due to their self-assembly behavior, monodispersity, biocompatibility, and biodegradability. Genetic and chemical modifications allow for modular design of protein nanocarriers with effective drug encapsulation, targetability, stimuli responsiveness, and in vivo half-life. Protein nanocarriers have been developed to deliver various therapeutic molecules including small molecules, proteins, and nucleic acids with proven in vitro and in vivo efficacy. This article reviews recent advances in protein nanocarriers that are not derived from natural protein nanostructures, such as protein cages or virus like particles. The protein nanocarriers described here are self-assembled from rationally or de novo designed recombinant proteins, as well as recombinant proteins complexed with other biomolecules, presenting properties that are unique from those of natural protein carriers. Design, functionalization, and therapeutic application of protein nanocarriers will be discussed.
Collapse
Affiliation(s)
- Yirui Li
- BioEngineering Program, Georgia Institute of Technology, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA 30332, United States; BioEngineering Program, Georgia Institute of Technology, United States.
| |
Collapse
|
5
|
Stern KL, Dalley NA, McMurray NT, Billings WM, Loftus TJ, Jones ZB, Hadfield JR, Price JL. Prerequisites for Stabilizing Long-Range Synergistic Interactions among b-, c-, and f-Residues in Coiled Coils. Biochemistry 2022; 61:319-326. [PMID: 35129961 PMCID: PMC9202806 DOI: 10.1021/acs.biochem.1c00760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coiled coils are among the most abundant tertiary and quaternary structures found in proteins. A growing body of evidence suggests that long-range synergistic interactions among solvent-exposed residues can contribute substantially to coiled-coil conformational stability, but our understanding of the key sequence and structural prerequisites of this effect is still developing. Here, we show that the strength of synergistic interaction involving a b-position Glu (i), an f-position Tyr (i + 4), and a c-position Lys (i + 8) depends on the identity of the f-position residue, the length and stability of the coiled coil, and its oligomerization stoichiometry/surface accessibility. Combined with previous observations, these results map out predictable sequence- and structure-based criteria for enhancing coiled-coil stability by up to -0.58 kcal/mol per monomer (or -2.32 kcal/mol per coiled-coil tetramer). Our observations expand the available tools for enhancing coiled coil stability by sequence variation at solvent-exposed b-, c-, and f-positions and suggest the need to exercise care in the choice of substitutions at these positions for application-specific purposes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joshua L. Price
- Corresponding Author: Joshua L. Price, C100 BNSN, Brigham Young University, Provo, UT 84602;
| |
Collapse
|
6
|
Sikdar S, Banerjee M, Vemparala S. Effect of cholesterol on the membrane partitioning dynamics of hepatitis A virus-2B peptide. SOFT MATTER 2021; 17:7963-7977. [PMID: 34378608 DOI: 10.1039/d1sm01019k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding viral peptide detection and partitioning and the subsequent host membrane composition-based response is essential for gaining insights into the viral mechanism. Here, we probe the crucial role of the presence of membrane lipid packing defects, depending on the membrane composition, in allowing the viral peptide belonging to C-terminal Hepatitis A Virus-2B (HAV-2B) to detect, attach and subsequently partition into host cell membrane mimics. Using molecular dynamics simulations, we conclusively show that the hydrophobic residues in the viral peptide detect transiently present lipid packing defects, insert themselves into such defects, form anchor points and facilitate the partitioning of the peptide, thereby inducing membrane disruption. We also show that the presence of cholesterol significantly alters such lipid packing defects, both in size and in number, thus mitigating the partitioning of the membrane active viral peptide into cholesterol-rich membranes. Our results are in excellent agreement with previously published experimental data and further explain the role of lipid defects in understanding such data. These results show differential ways in which the presence and absence of cholesterol can alter the permeability of the host membranes to the membrane active peptide component of HAV-2B virus, via lipid packing defects, and can possibly be a part of the general membrane detection mechanism for viroporins.
Collapse
Affiliation(s)
- Samapan Sikdar
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.
| | | | | |
Collapse
|
7
|
Gazi AD, Kokkinidis M, Fadouloglou VE. α-Helices in the Type III Secretion Effectors: A Prevalent Feature with Versatile Roles. Int J Mol Sci 2021; 22:ijms22115412. [PMID: 34063760 PMCID: PMC8196651 DOI: 10.3390/ijms22115412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Type III Secretion Systems (T3SSs) are multicomponent nanomachines located at the cell envelope of Gram-negative bacteria. Their main function is to transport bacterial proteins either extracellularly or directly into the eukaryotic host cell cytoplasm. Type III Secretion effectors (T3SEs), latest to be secreted T3S substrates, are destined to act at the eukaryotic host cell cytoplasm and occasionally at the nucleus, hijacking cellular processes through mimicking eukaryotic proteins. A broad range of functions is attributed to T3SEs, ranging from the manipulation of the host cell's metabolism for the benefit of the bacterium to bypassing the host's defense mechanisms. To perform this broad range of manipulations, T3SEs have evolved numerous novel folds that are compatible with some basic requirements: they should be able to easily unfold, pass through the narrow T3SS channel, and refold to an active form when on the other side. In this review, the various folds of T3SEs are presented with the emphasis placed on the functional and structural importance of α-helices and helical domains.
Collapse
Affiliation(s)
- Anastasia D. Gazi
- Unit of Technology & Service Ultrastructural Bio-Imaging (UTechS UBI), Institut Pasteur, 75015 Paris, France
- Correspondence: (A.D.G.); (V.E.F.)
| | - Michael Kokkinidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion, 70013 Crete, Greece;
- Department of Biology, Voutes University Campus, University of Crete, Heraklion, 70013 Crete, Greece
| | - Vasiliki E. Fadouloglou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence: (A.D.G.); (V.E.F.)
| |
Collapse
|
8
|
Dubois C, Planelles-Herrero VJ, Tillatte-Tripodi C, Delbecq S, Mammri L, Sirkia EM, Ropars V, Roumestand C, Barthe P. Pressure and Chemical Unfolding of an α-Helical Bundle Protein: The GH2 Domain of the Protein Adaptor GIPC1. Int J Mol Sci 2021; 22:ijms22073597. [PMID: 33808390 PMCID: PMC8037465 DOI: 10.3390/ijms22073597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023] Open
Abstract
When combined with NMR spectroscopy, high hydrostatic pressure is an alternative perturbation method used to destabilize globular proteins that has proven to be particularly well suited for exploring the unfolding energy landscape of small single-domain proteins. To date, investigations of the unfolding landscape of all-β or mixed-α/β protein scaffolds are well documented, whereas such data are lacking for all-α protein domains. Here we report the NMR study of the unfolding pathways of GIPC1-GH2, a small α-helical bundle domain made of four antiparallel α-helices. High-pressure perturbation was combined with NMR spectroscopy to unravel the unfolding landscape at three different temperatures. The results were compared to those obtained from classical chemical denaturation. Whatever the perturbation used, the loss of secondary and tertiary contacts within the protein scaffold is almost simultaneous. The unfolding transition appeared very cooperative when using high pressure at high temperature, as was the case for chemical denaturation, whereas it was found more progressive at low temperature, suggesting the existence of a complex folding pathway.
Collapse
Affiliation(s)
- Cécile Dubois
- Centre de Biologie Structurale INSERM U1054, CNRS UMR 5048, Université de Montpellier, 34090 Montpellier, France; (C.D.); (C.T.-T.); (S.D.); (L.M.); (P.B.)
| | - Vicente J. Planelles-Herrero
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248 Paris, France; (V.J.P.-H.); (E.M.S.); (V.R.)
| | - Camille Tillatte-Tripodi
- Centre de Biologie Structurale INSERM U1054, CNRS UMR 5048, Université de Montpellier, 34090 Montpellier, France; (C.D.); (C.T.-T.); (S.D.); (L.M.); (P.B.)
| | - Stéphane Delbecq
- Centre de Biologie Structurale INSERM U1054, CNRS UMR 5048, Université de Montpellier, 34090 Montpellier, France; (C.D.); (C.T.-T.); (S.D.); (L.M.); (P.B.)
| | - Léa Mammri
- Centre de Biologie Structurale INSERM U1054, CNRS UMR 5048, Université de Montpellier, 34090 Montpellier, France; (C.D.); (C.T.-T.); (S.D.); (L.M.); (P.B.)
| | - Elena M. Sirkia
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248 Paris, France; (V.J.P.-H.); (E.M.S.); (V.R.)
| | - Virginie Ropars
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248 Paris, France; (V.J.P.-H.); (E.M.S.); (V.R.)
| | - Christian Roumestand
- Centre de Biologie Structurale INSERM U1054, CNRS UMR 5048, Université de Montpellier, 34090 Montpellier, France; (C.D.); (C.T.-T.); (S.D.); (L.M.); (P.B.)
- Correspondence:
| | - Philippe Barthe
- Centre de Biologie Structurale INSERM U1054, CNRS UMR 5048, Université de Montpellier, 34090 Montpellier, France; (C.D.); (C.T.-T.); (S.D.); (L.M.); (P.B.)
| |
Collapse
|
9
|
Sano KI, Yuki T, Nomata Y, Nakayama N, Iida R, Mitomo H, Ijiro K, Osada Y. Intrahelical Interactions in an α-Helical Coiled Coil Determine the Structural Stability of Tropomyosin. Biochemistry 2020; 59:2194-2202. [DOI: 10.1021/acs.biochem.0c00203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ken-Ichi Sano
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501, Japan
- Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology, Miyashiro, Saitama 345-8501, Japan
| | - Tsubasa Yuki
- Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology, Miyashiro, Saitama 345-8501, Japan
| | - Yuta Nomata
- Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology, Miyashiro, Saitama 345-8501, Japan
| | - Norihisa Nakayama
- Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology, Miyashiro, Saitama 345-8501, Japan
| | - Ryo Iida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science and Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science and Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Yoshihito Osada
- Nano Medical Engineering Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Danielsson J, Noel JK, Simien JM, Duggan BM, Oliveberg M, Onuchic JN, Jennings PA, Haglund E. The Pierced Lasso Topology Leptin has a Bolt on Dynamic Domain Composed by the Disordered Loops I and III. J Mol Biol 2020; 432:3050-3063. [PMID: 32081588 DOI: 10.1016/j.jmb.2020.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
Leptin is an important signaling hormone, mostly known for its role in energy expenditure and satiety. Furthermore, leptin plays a major role in other proteinopathies, such as cancer, marked hyperphagia, impaired immune function, and inflammation. In spite of its biological relevance in human health, there are no NMR resonance assignments of the human protein available, obscuring high-resolution characterization of the soluble protein and/or its conformational dynamics, suggested as being important for receptor interaction and biological activity. Here, we report the nearly complete backbone resonance assignments of human leptin. Chemical shift-based secondary structure prediction confirms that in solution leptin forms a four-helix bundle including a pierced lasso topology. The conformational dynamics, determined on several timescales, show that leptin is monomeric, has a rigid four-helix scaffold, and a dynamic domain, including a transiently formed helix. The dynamic domain is anchored to the helical scaffold by a secondary hydrophobic core, pinning down the long loops of leptin to the protein body, inducing motional restriction without a well-defined secondary or tertiary hydrogen bond stabilized structure. This dynamic region is well suited for and may be involved in functional allosteric dynamics upon receptor binding.
Collapse
Affiliation(s)
- Jens Danielsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | | | | | - Brendan Michael Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, USA
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, USA; Department of Physics and Astronomy, Department of Chemistry, And Department of Biosciences, Rice University, Houston, USA
| | - Patricia Ann Jennings
- Department of Chemistry and Biochemistry, The University of California at San Diego, La Jolla, USA
| | - Ellinor Haglund
- The Department of Chemistry, University of Hawaii, Manoa, Honolulu, USA.
| |
Collapse
|
11
|
The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183148. [PMID: 31825788 DOI: 10.1016/j.bbamem.2019.183148] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/15/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ion channels play crucial roles in cellular biology, physiology, and communication including sensory perception. Voltage-gated potassium (Kv) channels execute their function by sensor activation, pore-coupling, and pore opening leading to K+ conductance. SCOPE OF REVIEW This review focuses on a voltage-gated K+ ion channel KCNQ1 (Kv 7.1). Firstly, discussing its positioning in the human ion chanome, and the role of KCNQ1 in the multitude of cellular processes. Next, we discuss the overall channel architecture and current structural insights on KCNQ1. Finally, the gating mechanism involving members of the KCNE family and its interaction with non-KCNE partners. MAJOR CONCLUSIONS KCNQ1 executes its important physiological functions via interacting with KCNE1 and non-KCNE1 proteins/molecules: calmodulin, PIP2, PKA. Although, KCNQ1 has been studied in great detail, several aspects of the channel structure and function still remain unexplored. This review emphasizes the structural and biophysical studies of KCNQ1, its interaction with KCNE1 and non-KCNE1 proteins and focuses on several seminal findings showing the role of VSD and the pore domain in the channel activation and gating properties. GENERAL SIGNIFICANCE KCNQ1 mutations can result in channel defects and lead to several diseases including atrial fibrillation and long QT syndrome. Therefore, a thorough structure-function understanding of this channel complex is essential to understand its role in both normal and disease biology. Moreover, unraveling the molecular mechanisms underlying the regulation of this channel complex will help to find therapeutic strategies for several diseases.
Collapse
|
12
|
Pena-Francesch A, Demirel MC. Squid-Inspired Tandem Repeat Proteins: Functional Fibers and Films. Front Chem 2019; 7:69. [PMID: 30847338 PMCID: PMC6393770 DOI: 10.3389/fchem.2019.00069] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/25/2019] [Indexed: 02/05/2023] Open
Abstract
Production of repetitive polypeptides that comprise one or more tandem copies of a single unit with distinct amorphous and ordered regions have been an interest for the last couple of decades. Their molecular structure provides a rich architecture that can micro-phase-separate to form periodic nanostructures (e.g., lamellar and cylindrical repeating phases) with enhanced physicochemical properties via directed or natural evolution that often exceed those of conventional synthetic polymers. Here, we review programmable design, structure, and properties of functional fibers and films from squid-inspired tandem repeat proteins, with applications in soft photonics and advanced textiles among others.
Collapse
Affiliation(s)
- Abdon Pena-Francesch
- Center for Research on Advanced Fiber Technologies, Materials Research Institute, Pennsylvania State University, University Park, PA, United States
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, United States
| | - Melik C. Demirel
- Center for Research on Advanced Fiber Technologies, Materials Research Institute, Pennsylvania State University, University Park, PA, United States
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
13
|
Seung D, Smith AM. Starch granule initiation and morphogenesis-progress in Arabidopsis and cereals. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:771-784. [PMID: 30452691 DOI: 10.1093/jxb/ery412] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/06/2018] [Indexed: 05/13/2023]
Abstract
Starch, the major storage carbohydrate in plants, is synthesized in plastids as semi-crystalline, insoluble granules. Many organs and cell types accumulate starch at some point during their development and maturation. The biosynthesis of the starch polymers, amylopectin and amylose, is relatively well understood and mostly conserved between organs and species. However, we are only beginning to understand the mechanism by which starch granules are initiated, and the factors that control the number of granules per plastid and the size/shape of granules. Here, we review recent progress in understanding starch granule initiation and morphogenesis. In Arabidopsis, granule initiation requires several newly discovered proteins with specific locations within the chloroplast, and also on the availability of maltooligosaccharides which act as primers for initiation. We also describe progress in understanding granule biogenesis in the endosperm of cereal grains-within which there is large interspecies variation in granule initiation patterns and morphology. Investigating whether this diversity results from differences between species in the functions of known proteins, and/or from the presence of novel, unidentified proteins, is a promising area of future research. Expanding our knowledge in these areas will lead to new strategies for improving the quality of cereal crops by modifying starch granule size and shape in vivo.
Collapse
Affiliation(s)
- David Seung
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
14
|
Martinez D, Legrand A, Gronnier J, Decossas M, Gouguet P, Lambert O, Berbon M, Verron L, Grélard A, Germain V, Loquet A, Mongrand S, Habenstein B. Coiled-coil oligomerization controls localization of the plasma membrane REMORINs. J Struct Biol 2018; 206:12-19. [PMID: 29481850 DOI: 10.1016/j.jsb.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 12/20/2022]
Abstract
REMORINs are nanodomain-organized proteins located in the plasma membrane and involved in cellular responses in plants. The dynamic assembly of the membrane nanodomains represents an essential tool of the versatile membrane barriers to control and modulate cellular functions. Nevertheless, the assembly mechanisms and protein organization strategies of nanodomains are poorly understood and many structural aspects are difficult to visualize. Using an ensemble of biophysical approaches, including solid-state nuclear magnetic resonance, cryo-electron microscopy and in vivo confocal imaging, we provide first insights on the role and the structural mechanisms of REMORIN trimerization. Our results suggest that the formation of REMORIN coiled-coil trimers is essential for membrane recruitment and promotes REMORIN assembly in vitro into long filaments by trimer-trimer interactions that might participate in nanoclustering into membrane domains in vivo.
Collapse
Affiliation(s)
- Denis Martinez
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Universite Bordeaux, Institut Polytechnique Bordeaux, All. Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Anthony Legrand
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Universite Bordeaux, Institut Polytechnique Bordeaux, All. Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Julien Gronnier
- Laboratoire de Biogènese Membranaire - UMR 5200 - CNRS, Université de Bordeaux, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon Cédex, France
| | - Marion Decossas
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), CNRS, Universite Bordeaux, Institut Polytechnique Bordeaux, 14 All. Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Paul Gouguet
- Laboratoire de Biogènese Membranaire - UMR 5200 - CNRS, Université de Bordeaux, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon Cédex, France
| | - Olivier Lambert
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), CNRS, Universite Bordeaux, Institut Polytechnique Bordeaux, 14 All. Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Mélanie Berbon
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Universite Bordeaux, Institut Polytechnique Bordeaux, All. Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Loris Verron
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Universite Bordeaux, Institut Polytechnique Bordeaux, All. Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Axelle Grélard
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Universite Bordeaux, Institut Polytechnique Bordeaux, All. Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Veronique Germain
- Laboratoire de Biogènese Membranaire - UMR 5200 - CNRS, Université de Bordeaux, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon Cédex, France
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Universite Bordeaux, Institut Polytechnique Bordeaux, All. Geoffroy Saint-Hilaire, 33600 Pessac, France.
| | - Sébastien Mongrand
- Laboratoire de Biogènese Membranaire - UMR 5200 - CNRS, Université de Bordeaux, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon Cédex, France.
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Universite Bordeaux, Institut Polytechnique Bordeaux, All. Geoffroy Saint-Hilaire, 33600 Pessac, France.
| |
Collapse
|
15
|
Bai Y, Wang C, Liang G, Lai W, Xue H, Ling Y, Cheng M, Liu K. Precisely Designed Isopeptide Bridge-Crosslinking Endows Artificial Hydrolases with High Stability and Catalytic Activity under Extreme Denaturing Conditions. Chem Asian J 2017; 12:2539-2543. [PMID: 28742253 DOI: 10.1002/asia.201701021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Indexed: 11/09/2022]
Abstract
Enzymes normally lose their activities under extreme conditions due to the dissociation of their active tertiary structure. If an enzyme could maintain its catalytic activity under non-physiological or denaturing conditions, it might be used in more applications in the pharmaceutical and chemical industries. Recently, we reported a coiled-coil six-helical bundle (6HB) structure as a scaffold for designing artificial hydrolytic enzymes. Here, intermolecular isopeptide bonds were incorporated to enhance the stability and activity of such biomolecules under denaturing conditions. These isopeptide bridge-tethered 6HB enzymes showed exceptional stability against unfolding and retained or even had increased catalytic activity for a model hydrolysis reaction under thermal and chemical denaturing conditions. Thus, isopeptide bond-tethering represents an efficient route to construct ultrastable artificial hydrolases, with promising potential to maintain biocatalysis under extreme conditions.
Collapse
Affiliation(s)
- Yu Bai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Guodong Liang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wenqing Lai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Huifang Xue
- Key Laboratory of Structure-Based Drug Design and, Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanbo Ling
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and, Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
16
|
Matityahu A, Onn I. A new twist in the coil: functions of the coiled-coil domain of structural maintenance of chromosome (SMC) proteins. Curr Genet 2017; 64:109-116. [PMID: 28835994 DOI: 10.1007/s00294-017-0735-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
The higher-order organization of chromosomes ensures their stability and functionality. However, the molecular mechanism by which higher order structure is established is poorly understood. Dissecting the activity of the relevant proteins provides information essential for achieving a comprehensive understanding of chromosome structure. Proteins of the structural maintenance of chromosome (SMC) family of ATPases are the core of evolutionary conserved complexes. SMC complexes are involved in regulating genome dynamics and in maintaining genome stability. The structure of all SMC proteins resembles an elongated rod that contains a central coiled-coil domain, a common protein structural motif in which two α-helices twist together. In recent years, the imperative role of the coiled-coil domain to SMC protein activity and regulation has become evident. Here, we discuss recent advances in the function of the SMC coiled coils. We describe the structure of the coiled-coil domain of SMC proteins, modifications and interactions that are mediated by it. Furthermore, we assess the role of the coiled-coil domain in conformational switches of SMC proteins, and in determining the architecture of the SMC dimer. Finally, we review the interplay between mutations in the coiled-coil domain and human disorders. We suggest that distinctive properties of coiled coils of different SMC proteins contribute to their distinct functions. The discussion clarifies the mechanisms underlying the activity of SMC proteins, and advocates future studies to elucidate the function of the SMC coiled coil domain.
Collapse
Affiliation(s)
- Avi Matityahu
- Faculty of Medicine in the Galilee, Bar-Ilan University, 8 Henrietta Szold St., P.O. Box 1589, 1311502, Safed, Israel
| | - Itay Onn
- Faculty of Medicine in the Galilee, Bar-Ilan University, 8 Henrietta Szold St., P.O. Box 1589, 1311502, Safed, Israel.
| |
Collapse
|
17
|
Haddad JF, Yang Y, Yeung S, Couture JF. Recognizing asymmetry in pseudo-symmetry; structural insights into the interaction between amphipathic α-helices and X-bundle proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1605-1612. [PMID: 28652208 DOI: 10.1016/j.bbapap.2017.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/14/2017] [Accepted: 06/21/2017] [Indexed: 11/27/2022]
Abstract
An α-helix bundle is a small and compact protein fold always composed of more than 2 α-helices that typically run nearly parallel or antiparallel to each other. The repertoire of arrangements of α-helix bundle is such that these domains bind to a myriad of molecular entities including DNA, RNA, proteins and small molecules. A special instance of α-helical bundle is the X-type in which the arrangement of two α-helices interact at 45° to form an X. Among those, some X-helix bundle proteins bind to the hydrophobic section of an amphipathic α-helix in a seemingly orientation and sequence specific manner. In this review, we will compare the binding mode of amphipathic α-helices to X-helix bundle and α-helical bundle proteins. From these structures, we will highlight potential regulatory paradigms that may control the specific interactions of X-helix bundle proteins to amphipathic α-helices. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- John Faissal Haddad
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Yidai Yang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sylvain Yeung
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
18
|
Affiliation(s)
- Yun Jung Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Angela L. Holmberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
19
|
Luo Q, Hou C, Bai Y, Wang R, Liu J. Protein Assembly: Versatile Approaches to Construct Highly Ordered Nanostructures. Chem Rev 2016; 116:13571-13632. [PMID: 27587089 DOI: 10.1021/acs.chemrev.6b00228] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nature endows life with a wide variety of sophisticated, synergistic, and highly functional protein assemblies. Following Nature's inspiration to assemble protein building blocks into exquisite nanostructures is emerging as a fascinating research field. Dictating protein assembly to obtain highly ordered nanostructures and sophisticated functions not only provides a powerful tool to understand the natural protein assembly process but also offers access to advanced biomaterials. Over the past couple of decades, the field of protein assembly has undergone unexpected and rapid developments, and various innovative strategies have been proposed. This Review outlines recent advances in the field of protein assembly and summarizes several strategies, including biotechnological strategies, chemical strategies, and combinations of these approaches, for manipulating proteins to self-assemble into desired nanostructures. The emergent applications of protein assemblies as versatile platforms to design a wide variety of attractive functional materials with improved performances have also been discussed. The goal of this Review is to highlight the importance of this highly interdisciplinary field and to promote its growth in a diverse variety of research fields ranging from nanoscience and material science to synthetic biology.
Collapse
Affiliation(s)
- Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yushi Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macau SAR 999078, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
20
|
Yang J, Shimada Y, Olsthoorn RCL, Snaar-Jagalska BE, Spaink HP, Kros A. Application of Coiled Coil Peptides in Liposomal Anticancer Drug Delivery Using a Zebrafish Xenograft Model. ACS NANO 2016; 10:7428-35. [PMID: 27504667 DOI: 10.1021/acsnano.6b01410] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The complementary coiled coil forming peptides E4 [(EIAALEK)4] and K4 [(KIAALKE)4] are known to trigger liposomal membrane fusion when tethered to lipid vesicles in the form of lipopeptides. In this study, we examined whether these coiled coil forming peptides can be used for drug delivery applications. First, we prepared E4 peptide modified liposomes containing the far-red fluorescent dye TO-PRO-3 iodide (E4-Lipo-TP3) and confirmed that E4-liposomes could deliver TP3 into HeLa cells expressing K4 peptide on the membrane (HeLa-K) under cell culture conditions in a selective manner. Next, we prepared doxorubicin-containing E4-liposomes (E4-Lipo-DOX) and confirmed that E4-liposomes could also deliver DOX into HeLa-K cells. Moreover, E4-Lipo-DOX showed enhanced cytotoxicity toward HeLa-K cells compared to free doxorubicin. To prove the suitability of E4/K4 coiled coil formation for in vivo drug delivery, we injected E4-Lipo-TP3 or E4-Lipo-DOX into zebrafish xenografts of HeLa-K. As a result, E4-liposomes delivered TP3 to the implanted HeLa-K cells, and E4-Lipo-DOX could suppress cancer proliferation in the xenograft when compared to nontargeted conditions (i.e., zebrafish xenograft with free DOX injection). These data demonstrate that coiled coil formation enables drug selectivity and efficacy in vivo. It is envisaged that these findings are a step forward toward biorthogonal targeting systems as a tool for clinical drug delivery.
Collapse
Affiliation(s)
- Jian Yang
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Yasuhito Shimada
- Institute of Biology, Leiden University , Leiden 2311 EZ, The Netherlands
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine , Mie 514-8507, Japan
| | - René C L Olsthoorn
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | | | - Herman P Spaink
- Institute of Biology, Leiden University , Leiden 2311 EZ, The Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
21
|
Dwivedi P, Rodriguez J, Ibe NU, Weers PMM. Deletion of the N- or C-Terminal Helix of Apolipophorin III To Create a Four-Helix Bundle Protein. Biochemistry 2016; 55:3607-15. [PMID: 27280697 DOI: 10.1021/acs.biochem.6b00381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apolipophorin III (apoLp-III) is an exchangeable apolipoprotein found in insects and plays an important function in lipid transport. The protein has an unusual five-helix bundle architecture, deviating from the common four-helix bundle motif. To understand the role of the additional helix in apoLp-III, the N-terminal or C-terminal helix was deleted to create a putative four-helix bundle protein. While the protein lacking helix-1 could be expressed in bacteria albeit at reduced yields, apoLp-III lacking helix-5 could not be produced. Mutational analysis by truncating helix-5 showed that a minimum segment of approximately one-third of the C-terminal helix is required for protein expression. The variant lacking helix-5 was produced by inserting a methionine residue between helix-4 and -5; subsequent cyanogenbromide cleavage generated the four-helix variant. Both N- and C-terminal helix deletion variants displayed significantly reduced helical content, protein stability, and tertiary structure. Despite the significantly altered structure, the variants were still fully functional. The rate of dimyristoylphosphatidylcholine vesicle solubilization was enhanced 4-5-fold compared to the wild-type protein, and the deletion variants were effective in binding to lipolyzed low density lipoprotein thereby preventing lipoprotein aggregation. These results show that the additional helix of apoLp-III is not essential for lipid binding but is required for proper folding to keep the protein into a stable conformation.
Collapse
Affiliation(s)
- Pankaj Dwivedi
- Department of Chemistry and Biochemistry, California State University , Long Beach, California 90840, United States
| | - Johana Rodriguez
- Department of Chemistry and Biochemistry, California State University , Long Beach, California 90840, United States
| | - Nnejiuwa U Ibe
- Department of Chemistry and Biochemistry, California State University , Long Beach, California 90840, United States
| | - Paul M M Weers
- Department of Chemistry and Biochemistry, California State University , Long Beach, California 90840, United States
| |
Collapse
|
22
|
Yang S, He J. Organic–inorganic rod–coil block copolymers comprising substituted polyacetylene and poly(dimethylsiloxane) segments. Polym Chem 2016. [DOI: 10.1039/c6py00810k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic–inorganic rod–coil diblock copolymers comprising substituted polyacetylene and PDMS were synthesized through a precursor route based on anionic polymerization.
Collapse
Affiliation(s)
- Shaohui Yang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| | - Junpo He
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| |
Collapse
|
23
|
Wang M, Likhtman AE, Olsen BD. Crossover between activated reptation and arm retraction mechanisms in entangled rod-coil block copolymers. J Chem Phys 2015; 143:184904. [PMID: 26567681 DOI: 10.1063/1.4933427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Using a coarse-grained slip-spring model, the dynamics of rod-coil block copolymers is explored over a wide parameter space to fully capture the crossover between the short rod (activated reptation) and long rod (arm retraction) limits. An analytical, closed-form expression for curvilinear diffusion by activated reptation was derived by separating the drag into individual components for the rod and coil block. Curvilinear diffusion in the intermediate rod regime, where both mechanisms are important, was then found to be faster than predicted when both mechanisms are independently combined. The discrepancy in the crossover regime arises because the rod-coil copolymer's exploration of space is not accurately described by either a coil homopolymer (assumed by activated reptation) or a rod homopolymer (assumed by arm retraction). This effect is explored by tracking the rod orientation as the polymer reptates, confirming that the polymer reptates along a path that becomes more rodlike as the rod fraction is increased. Thus, activated reptation under-predicts diffusion because the rod can choose reptation paths that are more extended than the coil homopolymer by renewal of the entanglement tube from the ends. Arm retraction under-predicts diffusion because minor rotations of the rod allow some motion before full retractions of the coil block. Finally, more familiar 3-dimensional center-of-mass diffusion measurements are related to the curvilinear diffusion analysis because the ratio of these two quantities varies smoothly between the coil and rod homopolymer limits as the reptation path becomes more extended.
Collapse
Affiliation(s)
- Muzhou Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alexei E Likhtman
- School of Mathematical and Physical Sciences, University of Reading, Reading RG6 6AX, United Kingdom
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
24
|
Watkins A, Wuo MG, Arora PS. Protein-Protein Interactions Mediated by Helical Tertiary Structure Motifs. J Am Chem Soc 2015; 137:11622-30. [PMID: 26302018 PMCID: PMC4577960 DOI: 10.1021/jacs.5b05527] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 12/26/2022]
Abstract
The modulation of protein-protein interactions (PPIs) by means of creating or stabilizing secondary structure conformations is a rapidly growing area of research. Recent success in the inhibition of difficult PPIs by secondary structure mimetics also points to potential limitations, because often, specific cases require tertiary structure mimetics. To streamline protein structure-based inhibitor design, we have previously described the examination of protein complexes in the Protein Data Bank where α-helices or β-strands form critical contacts. Here, we examined coiled coils and helix bundles that mediate complex formation to create a platform for the discovery of potential tertiary structure mimetics. Though there has been extensive analysis of coiled coil motifs, the interactions between pre-formed coiled coils and globular proteins have not been systematically analyzed. This article identifies critical features of these helical interfaces with respect to coiled coil and other helical PPIs. We expect the analysis to prove useful for the rational design of modulators of this fundamental class of protein assemblies.
Collapse
Affiliation(s)
- Andrew
M. Watkins
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Michael G. Wuo
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
25
|
Hierarchical cascades of instability govern the mechanics of coiled coils: helix unfolding precedes coil unzipping. Biophys J 2015; 107:477-484. [PMID: 25028889 DOI: 10.1016/j.bpj.2014.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/13/2014] [Accepted: 06/03/2014] [Indexed: 12/31/2022] Open
Abstract
Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies.
Collapse
|
26
|
Wang M, Timachova K, Olsen BD. Self-Diffusion and Constraint Release in Isotropic Entangled Rod–Coil Block Copolymers. Macromolecules 2015. [DOI: 10.1021/ma501954k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Muzhou Wang
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ksenia Timachova
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Kurochkina NA, Iadarola MJ. Helical assemblies: structure determinants. J Theor Biol 2015; 369:80-84. [PMID: 25613414 DOI: 10.1016/j.jtbi.2015.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 11/30/2022]
Abstract
Protein structural motifs such as helical assemblies and α/β barrels combine secondary structure elements with various types of interactions. Helix-helix interfaces of assemblies - Ankyrin, ARM/HEAT, PUM, LRR, and TPR repeats - exhibit unique amino acid composition and patterns of interactions that correlate with curvature of solenoids, surface geometry and mutual orientation of the helical edges. Inner rows of ankyrin, ARM/HEAT, and PUM-HD repeats utilize edges (i-1, i) and (i+1, i+2) for the interaction of the given α-helix with preceding and following helices correspondingly, whereas outer rows of these proteins and LRR repeats invert this pattern and utilize edges (i-1, i) and (i-3, i-2). Arrangement of contacts observed in protein ligands that bind helical assemblies has to mimic the assembly pattern to provide the same curvature as a determinant of binding specificity. These characteristics are important for understanding fold recognition, specificity of protein-protein interactions, and design of new drugs and materials.
Collapse
Affiliation(s)
- Natalya A Kurochkina
- The School of Theoretical Modeling, 1629 K St NW s 300, Washington, DC 20006, United States.
| | - Michael J Iadarola
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, NIH, Building 10, Room 2C401, 10 Center Drive, MSC 1510, Bethesda, MD 20892, United States.
| |
Collapse
|
28
|
Treviño MA, García-Mayoral MF, Jiménez MÁ, Bastolla U, Bruix M. Emergence of structure through protein-protein interactions and pH changes in dually predicted coiled-coil and disordered regions of centrosomal proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1808-19. [PMID: 25091198 DOI: 10.1016/j.bbapap.2014.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023]
Abstract
Human centrosomal proteins show a significant, 3.5 fold, bias to be both unstructured and coiled-coils with respect to generic human proteins, based on results from state of the art bioinformatics tools. We hypothesize that this bias means that these proteins adopt an ensemble of disordered and partially helical conformations, with the latter becoming stabilized when these proteins form complexes. Characterization of the structural properties of 13 peptides from 10 different centrosomal proteins ranging in size from 20 to 61 residues by biophysical methods led us to confirm our hypothesis in most cases. Interestingly, the secondary structure adopted by most of these peptides becomes stabilized at acidic pH and it is concentration dependent. For two of them, PIK3R1(453-513) and BRCA1(1253-1273), we observed not only the stabilization of helical structure through self-association, but also the presence of β-structures linked to the formation of high molecular weight oligomers. These oligomers are the predominant forms detected by CD, but unobservable by liquid state NMR. BRCA1(1397-1424) and MAP3K11(396-441) populate helical structures that can also self-associate at pH3 through oligomeric species. Four peptides, derived from three proteins, namely CCNA2(103-123), BRCA1(1253-1273), BRCA1(1397-1424) and PIK3R1(453-513), can form intermolecular associations that are concomitant with alpha or beta structure stabilization. The self-phosphorylation previously described for the kinase NEK2 did not lead to any stabilization in the peptide's structure of NEK2(303-333), NEK2(341-361), and NEK2(410-430). Based on these results, obtained from a series of peptides derived from a significant number of different centrosomal proteins, we propose that conformational polymorphism, modulated by intermolecular interactions is a general property of centrosomal proteins.
Collapse
Affiliation(s)
- Miguel A Treviño
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.
| | | | - M Ángeles Jiménez
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.
| | - Ugo Bastolla
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM, Cantoblanco, Madrid, Spain.
| | - Marta Bruix
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.
| |
Collapse
|
29
|
Liu F, Wei XL, Li H, Wei JF, Wang YQ, Gong XJ. Molecular evolution of the vertebrate FK506 binding protein 25. Int J Genomics 2014; 2014:402603. [PMID: 24724077 PMCID: PMC3958658 DOI: 10.1155/2014/402603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/16/2014] [Indexed: 02/05/2023] Open
Abstract
FK506 binding proteins (FKBPs) belong to immunophilins with peptidyl-prolyl isomerases (PPIases) activity. FKBP25 (also known as FKBP3) is one of the nuclear DNA-binding proteins in the FKBPs family, which plays an important role in regulating transcription and chromatin structure. The calculation of nonsynonymous and synonymous substitution rates suggested that FKBP25 undergoes purifying selection throughout the whole vertebrate evolution. Moreover, the result of site-specific tests showed that no sites were detected under positive selection. Only one PPIase domain was detected by searching FKBP25 sequences at Pfam and SMART domain databases. Mammalian FKBP25 possess exon-intron conservation, although conservation in the whole vertebrate lineage is incomplete. The result of this study suggests that the purifying selection triggers FKBP25 evolutionary history, which allows us to discover the complete role of the PPIase domain in the interaction between FKBP25 and nuclear proteins. Moreover, intron alterations during FKBP25 evolution that regulate gene splicing may be involved in the purifying selection.
Collapse
Affiliation(s)
- Fei Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
- Research Division of Clinical Pharmacology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Hao Li
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
- Research Division of Clinical Pharmacology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
- *Yong-Qing Wang: and
| | - Xiao-Jian Gong
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
- *Xiao-Jian Gong:
| |
Collapse
|
30
|
Boruah BM, Liu D, Ye D, Gu TJ, Jiang CL, Qu M, Wright E, Wang W, He W, Liu C, Gao B. Single domain antibody multimers confer protection against rabies infection. PLoS One 2013; 8:e71383. [PMID: 23977032 PMCID: PMC3748109 DOI: 10.1371/journal.pone.0071383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/02/2013] [Indexed: 12/23/2022] Open
Abstract
Post-exposure prophylactic (PEP) neutralizing antibodies against Rabies are the most effective way to prevent infection-related fatality. The outer envelope glycoprotein of the Rabies virus (RABV) is the most significant surface antigen for generating virus-neutralizing antibodies. The small size and uncompromised functional specificity of single domain antibodies (sdAbs) can be exploited in the fields of experimental therapeutic applications for infectious diseases through formatting flexibilities to increase their avidity towards target antigens. In this study, we used phage display technique to select and identify sdAbs that were specific for the RABV glycoprotein from a naïve llama-derived antibody library. To increase their neutralizing potencies, the sdAbs were fused with a coiled-coil peptide derived from the human cartilage oligomeric matrix protein (COMP48) to form homogenous pentavalent multimers, known as combodies. Compared to monovalent sdAbs, the combodies, namely 26424 and 26434, exhibited high avidity and were able to neutralize 85-fold higher input of RABV (CVS-11 strain) pseudotypes in vitro, as a result of multimerization, while retaining their specificities for target antigen. 26424 and 26434 were capable of neutralizing CVS-11 pseudotypes in vitro by 90–95% as compared to human rabies immunoglobulin (HRIG), currently used for PEP in Rabies. The multimeric sdAbs were also demonstrated to be partially protective for mice that were infected with lethal doses of rabies virus in vivo. The results demonstrate that the combodies could be valuable tools in understanding viral mechanisms, diagnosis and possible anti-viral candidate for RABV infection.
Collapse
Affiliation(s)
- Bhargavi M. Boruah
- CAS Key Laboratory for Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dawei Liu
- CAS Key Laboratory for Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Duan Ye
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - Tie-jun Gu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - Chun-lai Jiang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - Mingsheng Qu
- CAS Key Laboratory for Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Wei Wang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wen He
- CAS Key Laboratory for Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Biochemistry Teaching and Research Office, Hebei Medical University, Shijiazhuang, China
| | - Changzhen Liu
- CAS Key Laboratory for Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Gao
- CAS Key Laboratory for Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- China-Japan Joint Laboratory of Molecular Immunology and Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
31
|
Wang M, Timachova K, Olsen BD. Diffusion Mechanisms of Entangled Rod–Coil Diblock Copolymers. Macromolecules 2013. [DOI: 10.1021/ma400653g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Muzhou Wang
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| | - Ksenia Timachova
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| | - Bradley D. Olsen
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|
32
|
Wang M, Timachova K, Olsen BD. Experimental measurement of coil-rod-coil block copolymer tracer diffusion through entangled coil homopolymers. Macromolecules 2013; 46:1651-1658. [PMID: 25484454 PMCID: PMC4256073 DOI: 10.1021/ma302065r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diffusion of coil-rod-coil triblock copolymers in entangled coil homopolymers is experimentally measured and demonstrated to be significantly slower than rod or coil homopolymers of the same molecular weight. A model coil-rod-coil triblock was prepared by expressing rodlike alanine-rich α-helical polypeptides in E. coli and conjugating coillike poly(ethylene oxide) (PEO) to both ends to form coil-rod-coil triblock copolymers. Tracer diffusion through entangled PEO homopolymer melts was measured using forced Rayleigh scattering at various rod lengths, coil molecular weights, and coil homopolymer concentrations. For rod lengths, L, that are close to the entanglementh length, a, the ratio between triblock diffusivity and coil homopolymer diffusivity decreases monotonically and is only a function of L/a, in quantitative agreement with previous simulation results. For large rod lengths, diffusion follows an arm retraction scaling, which is also consistent with previous theoretical predictions. These experimental results support the key predictions of theory and simulation, suggesting that the mismatch in curvature between rod and coil entanglement tubes leads to the observed diffusional slowing.
Collapse
Affiliation(s)
- Muzhou Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ksenia Timachova
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
33
|
|
34
|
Wang M, Alexander-Katz A, Olsen BD. Diffusion of Entangled Rod-Coil Block Copolymers. ACS Macro Lett 2012; 1:676-680. [PMID: 35607086 DOI: 10.1021/mz300127s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diffusion of entangled rod-coil block copolymers is investigated by molecular dynamics (MD) simulations, and theories are introduced that describe the observed features and underlying physics. The reptation of rod-coil block copolymers is dominated by the mismatch between the curvature of the rod and coil entanglement tubes, which results in dramatically slower diffusion of rod-coils compared to the rod and coil homopolymers. For small rods, a local curvature-dependent free energy penalty results in a rough energy surface inside the entanglement tube, causing diffusivity to decrease with rod length. For large rods, rotational hindrances on the rod dominate, causing the coil block to relax by an arm retraction mechanism and diffusivity to decrease exponentially with coil size.
Collapse
Affiliation(s)
- Muzhou Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Alfredo Alexander-Katz
- Department
of Materials Science
and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| |
Collapse
|
35
|
Hartleb H, Kröker K, Hertel T. Density gradient ultracentrifugation and stability of SWNT–peptide conjugates. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.03.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Langedijk JP, Zekveld MJ, Ruiter M, Corti D, Back JW. Helical peptide arrays for lead identification and interaction site mapping. Anal Biochem 2011; 417:149-55. [PMID: 21708118 DOI: 10.1016/j.ab.2011.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
|
37
|
Maekawa T, Cheng W, Spiridon LN, Töller A, Lukasik E, Saijo Y, Liu P, Shen QH, Micluta MA, Somssich IE, Takken FLW, Petrescu AJ, Chai J, Schulze-Lefert P. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 2011; 9:187-199. [PMID: 21402358 DOI: 10.1016/j.chom.2011.02.008] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/08/2010] [Accepted: 02/07/2011] [Indexed: 11/24/2022]
Abstract
Plants and animals have evolved structurally related innate immune sensors, designated NLRs, to detect intracellular nonself molecules. NLRs are modular, consisting of N-terminal coiled-coil (CC) or TOLL/interleukin-1 receptor (TIR) domains, a central nucleotide-binding (NB) domain, and C-terminal leucine-rich repeats (LRRs). The polymorphic barley mildew A (MLA) locus encodes CC-containing allelic immune receptors recognizing effectors of the pathogenic powdery mildew fungus. We report the crystal structure of an MLA receptor's invariant CC domain, which reveals a rod-shaped homodimer. MLA receptors also self-associate in vivo, but self-association appears to be independent of effector-triggered receptor activation. MLA CC mutants that fail to self-interact impair in planta cell death activity triggered by the CC domain alone and by an autoactive full-length MLA receptor that mimics its ATP-bound state. Thus, CC domain-dependent dimerization of the immune sensor defines a minimal functional unit and implies a role for the dimeric CC module in downstream immune signaling.
Collapse
Affiliation(s)
- Takaki Maekawa
- Department of Plant-Microbe Interactions, Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Wei Cheng
- Beijing Normal University, Haidian District, 19 Xinjiekouwai Street, 100875 Beijing, China; National Institute of Biological Sciences, Number 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China
| | - Laurentiu N Spiridon
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060036, Bucharest, Romania
| | - Armin Töller
- Department of Plant-Microbe Interactions, Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Ewa Lukasik
- Department of Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Yusuke Saijo
- Department of Plant-Microbe Interactions, Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Peiyuan Liu
- National Institute of Biological Sciences, Number 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, 100101 Beijing, China
| | - Marius A Micluta
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060036, Bucharest, Romania
| | - Imre E Somssich
- Department of Plant-Microbe Interactions, Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Frank L W Takken
- Department of Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060036, Bucharest, Romania
| | - Jijie Chai
- National Institute of Biological Sciences, Number 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China; College of Biological Sciences, Tsinghua University, Haidian District, 100084 Beijing, China.
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linne Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
38
|
An exact solution for the modified nonlinear Schrödinger’s equation for Davydov solitons in α-helix proteins. Math Biosci 2010; 227:68-71. [DOI: 10.1016/j.mbs.2010.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 11/18/2022]
|
39
|
Robson Marsden H, Kros A. Self-assembly of coiled coils in synthetic biology: inspiration and progress. Angew Chem Int Ed Engl 2010; 49:2988-3005. [PMID: 20474034 DOI: 10.1002/anie.200904943] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biological self-assembly is very complex and results in highly functional materials. In effect, it takes a bottom-up approach using biomolecular building blocks of precisely defined shape, size, hydrophobicity, and spatial distribution of functionality. Inspired by, and drawing lessons from self-assembly processes in nature, scientists are learning how to control the balance of many small forces to increase the complexity and functionality of self-assembled nanomaterials. The coiled-coil motif, a multipurpose building block commonly found in nature, has great potential in synthetic biology. In this review we examine the roles that the coiled-coil peptide motif plays in self-assembly in nature, and then summarize the advances that this has inspired in the creation of functional units, assemblies, and systems.
Collapse
Affiliation(s)
- Hana Robson Marsden
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
40
|
Garcia C, Khan NZ, Nannmark U, Aronsson H. The chloroplast protein CPSAR1, dually localized in the stroma and the inner envelope membrane, is involved in thylakoid biogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:73-85. [PMID: 20408996 DOI: 10.1111/j.1365-313x.2010.04225.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Thylakoid biogenesis is a crucial step for plant development involving the combined action of many cellular actors. CPSAR1 is shown here to be required for the normal organization of mature thylakoid stacks, and ultimately for embryo development. CPSAR1 is a chloroplast protein that has a dual localization in the stroma and the inner envelope membrane, according to microscopy studies and subfractionation analysis. CPSAR1 is close to the Obg nucleotide binding protein subfamily and displays GTPase activity, as demonstrated by in vitro assays. Disruption of the CPSAR1 gene via T-DNA insertion results in the arrest of embryo development. In addition, transmission electron microscopy analysis indicates that mutant embryos are unable to develop thylakoid membranes, and remain white. Unstacked membrane structures resembling single lamellae accumulate in the stroma, and do not assemble into mature thylakoid stacks. CPSAR1 RNA interference induces partially developed thylakoids leading to pale-green embryos. Altogether, the presented data demonstrate that CPSAR1 is a protein essential for the formation of normal thylakoid membranes, and suggest a possible involvement in the initiation of vesicles from the inner envelope membrane for the transfer of lipids to the thylakoids.
Collapse
Affiliation(s)
- Christel Garcia
- Department of Plant and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden
| | | | | | | |
Collapse
|
41
|
Wallace EJ, D'Rozario RSG, Sanchez BM, Sansom MSP. A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices. NANOSCALE 2010; 2:967-975. [PMID: 20648294 DOI: 10.1039/b9nr00355j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The dispersion and manipulation of carbon nanotubes (CNTs) are of great importance if we are to utilise the unique properties of CNTs in a range of biological, electrical and mechanical applications. Recently, a designed amphiphilic peptide helix termed nano-1 has been shown to solubilise CNTs in aqueous solution. Furthermore, the peptide is capable of assembling these coated tubes into fibres. We use a multiscale molecular dynamics approach to study the adsorption profile of nano-1 on a CNT surface. We find that nano-1 interacts with a CNT in a preferred orientation, such that its hydrophobic surface is in contact with the tube. The adsorption profile is unchanged upon increasing the number of peptides on the CNT. Interestingly, when few peptides are adsorbed onto the CNT surface we find that the secondary structure of the peptide is unstable. However, the helical secondary structure is stabilised upon increasing the number of peptides on the CNT surface. This study sheds light on the adsorption of peptides on CNTs, and may be exploitable to enhance the selective solubilisation and manipulation of CNTs.
Collapse
Affiliation(s)
- E Jayne Wallace
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | |
Collapse
|
42
|
A myopathy-linked tropomyosin mutation severely alters thin filament conformational changes during activation. Proc Natl Acad Sci U S A 2010; 107:9807-12. [PMID: 20457903 DOI: 10.1073/pnas.1001733107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human point mutations in beta- and gamma-tropomyosin induce contractile deregulation, skeletal muscle weakness, and congenital myopathies. The aim of the present study was to elucidate the hitherto unknown underlying molecular mechanisms. Hence, we recorded and analyzed the X-ray diffraction patterns of human membrane-permeabilized muscle cells expressing a particular beta-tropomyosin mutation (R133W) associated with a loss in cell force production, in vivo muscle weakness, and distal arthrogryposis. Upon addition of calcium, we notably observed less intensified changes, compared with controls, (i) in the second (1/19 nm(-1)), sixth (1/5.9 nm(-1)), and seventh (1/5.1 nm(-1)) actin layer lines of cells set at a sarcomere length, allowing an optimal thin-thick filament overlap; and (ii) in the second actin layer line of overstretched cells. Collectively, these results directly prove that during activation, switching of a positive to a neutral charge at position 133 in the protein partially hinders both calcium- and myosin-induced tropomyosin movement over the thin filament, blocking actin conformational changes and consequently decreasing the number of cross-bridges and subsequent force production.
Collapse
|
43
|
Kurochkina N. Helix–helix interactions and their impact on protein motifs and assemblies. J Theor Biol 2010; 264:585-92. [DOI: 10.1016/j.jtbi.2010.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 01/24/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
|
44
|
Robson Marsden H, Kros A. Selbstorganisation von Coiled-Coils in der synthetischen Biologie: Inspiration und Fortschritt. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904943] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
|
46
|
Kirwan JP, Hodges RS. Critical interactions in the stability control region of tropomyosin. J Struct Biol 2010; 170:294-306. [PMID: 20144718 DOI: 10.1016/j.jsb.2010.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/28/2010] [Accepted: 01/28/2010] [Indexed: 11/16/2022]
Abstract
Our laboratory has recently described a stability control region in the two-stranded alpha-helical coiled-coil alpha-tropomyosin that accounts for overall protein stability but is not required for folding (Hodges et al., 2009). We have used a synthetic peptide approach to investigate three stability control sites within the stability control region (residues 97-118). Two of the sites, electrostatic cluster 1 (97-104, EELDRAQE) and electrostatic cluster 2 (112-118, KLEEAEK), feature sequences with unusually high charge density and the potential to form multiple intrachain and interchain salt bridges (ionic attractions). A third site (105-111, RLATALQ) features an e position Leu residue, an arrangement known previously to enhance coiled-coil stability modestly. A native peptide and seven peptide analogs of the tropomyosin sequence 85-119 were prepared by Fmoc solid-phase peptide synthesis. Thermal stability measurements by circular dichroism (CD) spectroscopy revealed the following T(m) values for the native peptide and three key analogs: 52.9 degrees C (Native), 46.0 degrees C (R101A), 45.3 degrees C (K112A/K118A), and 27.9 degrees C (L110A). The corresponding DeltaT(m) values for the analogs, relative to the native peptide, are -6.9 degrees C, -7.6 degrees C, and -25.0 degrees C, respectively. The dramatic contribution to stability made by L110e is three times greater than the contribution of either electrostatic cluster 1 or 2, likely resulting from a novel hydrophobic interaction not previously observed. These thermal stability results were corroborated by temperature profiling analyses using reversed-phase high-performance liquid chromatography (RP-HPLC). We believe that the combined contributions of the interactions within the three stability control sites are responsible for the effect of the stability control region in tropomyosin, with the Leu110e contribution being most critical.
Collapse
Affiliation(s)
- J Paul Kirwan
- Program in Structural Biology and Biophysics, Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
47
|
Akanuma S, Matsuba T, Ueno E, Umeda N, Yamagishi A. Mimicking the evolution of a thermally stable monomeric four-helix bundle by fusion of four identical single-helix peptides. J Biochem 2009; 147:371-9. [PMID: 19889751 DOI: 10.1093/jb/mvp179] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Internal symmetry is a common feature of the tertiary structures of proteins and protein domains. Probably, because the genes of homo-oligomeric proteins duplicated and fused, their evolutionary descendants are proteins with internal symmetry. To identify any advantages that cause monomeric proteins with internal symmetry to be selected evolutionarily, we characterized some of the physical properties of a recombinant protein with a sequence consisting of two tandemly fused copies of the Escherichia coli Lac repressor C-terminal alpha-helix. This polypeptide exists in solution mainly as dimer that likely maintains a four-helix bundle motif. Thermal unfolding experiments demonstrate that the protein is considerably more stable at elevated temperatures than is a homotetramer consisting of four non-covalently associated copies of a 21-residue polypeptide similar in sequence to that of the Lac repressor C-terminal alpha-helix. A tandem duplication of our helix-loop-helix polypeptide yields an even more thermally stable protein. Our results exemplify the concept that fusion of non-covalently assembled polypeptide chains leads to enhanced protein stability. Herein, we discuss how our work relates to the evolutionary selective-advantages realized when symmetrical homo-oligomers evolve into monomers. Moreover, our thermally stable single-chain four-helix bundle protein may provide a robust scaffold for development of new biomaterials.
Collapse
Affiliation(s)
- Satoshi Akanuma
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | |
Collapse
|
48
|
McFarlane AA, Orriss GL, Stetefeld J. The use of coiled-coil proteins in drug delivery systems. Eur J Pharmacol 2009; 625:101-7. [PMID: 19835864 PMCID: PMC7094320 DOI: 10.1016/j.ejphar.2009.05.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/08/2009] [Accepted: 05/19/2009] [Indexed: 11/17/2022]
Abstract
The coiled-coil motif is found in approximately 10% of all protein sequences and is responsible for the oligomerization of proteins in a highly specific manner. Coiled-coil proteins exhibit a large diversity of function (e.g. gene regulation, cell division, membrane fusion, drug extrusion) thus demonstrating the significance of oligomerization in biological systems. The classical coiled-coil domain comprises a series of consecutive heptad repeats in the protein sequence that are readily identifiable by the location of hydrophobic residues at the 'a' and 'd' positions. This gives rise to an alpha-helical structure in which between 2 and 7 helices are wound around each other in the form of a left-handed supercoil. More recently, structures of coiled-coil domains have been solved that have an 11 residue (undecad) or a 15 residue (pentadecad) repeat, which show the formation of a right-handed coiled-coil structure. The high stability of coiled coils, together with the presence of large internal cavities in the pentameric coiled-coil domain of cartilage oligomerization matrix protein (COMPcc) and the tetrameric right-handed coiled coil of Staphylothermus marinus (RHCC) has led us and others to look for therapeutic applications. In this review, we present evidence in support of a vitamin A and vitamin D(3) binding activity for the pentameric COMPcc molecule. In addition, we will discuss exciting new developments which show that the RHCC tetramer is capable of binding the major anticancer drug cisplatin and the ability to fuse it to an antigenic epitope for the development of a new generation of vaccines.
Collapse
Affiliation(s)
- Ainsley A McFarlane
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2.
| | | | | |
Collapse
|
49
|
Conformational and dynamics simulation study of antimicrobial peptide hedistin-heterogeneity of its helix-turn-helix motif. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2497-508. [PMID: 19819221 DOI: 10.1016/j.bbamem.2009.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 09/27/2009] [Accepted: 10/02/2009] [Indexed: 11/23/2022]
Abstract
Hedistin is an antimicrobial peptide isolated from the coelomocytes of Nereis diversicolor, possessing activity against a large spectrum of bacteria including the methicillin resistant Staphylococcus aureus and Vibrio alginolyticus. The three-dimensional structure of hedistin in both aqueous solution and deuterated dodecylphosphocholine (DPC) micelles was examined using circular dichroism (CD) and nuclear magnetic resonance (NMR) techniques. And, the early events of the antibacterial process of hedistin were simulated using palmitoyl-oleoyl-phophatidylcholine (POPC) lipid bilayers and molecular dynamics (MD) simulation methods. Hedistin lacks secondary structure in aqueous solution, however, in DPC micelles, it features with a heterogeneous helix-turn-helix moiety and exhibits obvious amphipathic nature. The turn region (residues Val9-Thr12) in the moiety is a four-residue hinge, lying in between the first N-terminal alpha-helix (residues Leu5-Lys8) and the second alpha-helix (residues Val13-Ala17) regions and causing an approximately 120 degrees angle between the axes of the two helices. The segmental and nonlinear nature of hedistin structure is referred to as the heterogeneity of its helix-turn-helix motif which was found to be corresponding to a kind of discrete dynamics behavior, herein coined as its dynamical heterogeneity, at the early stage (0-50 ns) of the MD simulations. That is, the first helix segment, prior to (at 310 K) or following (at 363 K) the second helix, binds to the lipid head-group region and subsequently permeates into the hydrophobic lipid tail region, and the hinge is the last portion entering the lipid environment. This result implies that hedistin may adopt a "carpet" model action when disrupting bacterial membrane.
Collapse
|
50
|
Narayanaswami V, Kiss RS, Weers PMM. The helix bundle: a reversible lipid binding motif. Comp Biochem Physiol A Mol Integr Physiol 2009; 155:123-33. [PMID: 19770066 DOI: 10.1016/j.cbpa.2009.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 01/01/2023]
Abstract
Apolipoproteins are the protein components of lipoproteins that have the innate ability to inter convert between a lipid-free and a lipid-bound form in a facile manner, a remarkable property conferred by the helix bundle motif. Composed of a series of four or five amphipathic alpha-helices that fold to form a helix bundle, this motif allows the en face orientation of the hydrophobic faces of the alpha-helices in the protein interior in the lipid-free state. A conformational switch then permits helix-helix interactions to be substituted by helix-lipid interactions upon lipid binding interaction. This review compares the apolipoprotein high-resolution structures and the factors that trigger this switch in insect apolipophorin III and the mammalian apolipoproteins, apolipoprotein E and apolipoprotein A-I, pointing out the commonalities and key differences in the mode of lipid interaction. Further insights into the lipid-bound conformation of apolipoproteins are required to fully understand their functional role under physiological conditions.
Collapse
Affiliation(s)
- Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach CA 90840, USA
| | | | | |
Collapse
|