1
|
Ahmed M, Billah MM, Yamazaki M. Effect of membrane tension on pore formation induced by antimicrobial peptides and other membrane-active peptides. Phys Biol 2025; 22:031001. [PMID: 40273930 DOI: 10.1088/1478-3975/add071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
Membrane tension plays an important role in various aspects of the dynamics and functions of cells. Here, we review recent studies of the effect of membrane tension on pore formation in lipid bilayers and pore formation induced by membrane-active peptides (MAPs) including antimicrobial peptides (AMPs). For this purpose, the micropipette aspiration method using a patch of cell membrane/lipid bilayers and a giant unilamellar vesicle (GUV)/a total cell, and the application of osmotic pressure (Π) to suspensions of large unilamellar vesicles (LUVs) have been used. However, these conventional methods have some drawbacks for the investigation of the effect of membrane tension on the actions of MAPs such as AMPs. Recently, to overcome these drawbacks, a new Π method using GUVs has been developed. Here, we focus on this Π method as a new technique for revealing the effect of membrane tension on the MAPs-induced pore formation. Firstly, we review studies of the effect of membrane tension on pore formation in lipid bilayers as determined by conventional methods. Secondly, after a brief review of studies of the effect of Π on LUVs, we describe the estimation of membrane tension in GUVs induced by Π and the Π-induced pore formation. Thirdly, after a review of the effect of membrane tension on the MAPs-induced pore formation as obtained by the conventional methods, we describe an application of the Π method to studies of the effect of membrane tension on AMP-induced pore formation. Finally, we discuss the advantages of the Π method over conventional methods and consider future perspectives.
Collapse
Affiliation(s)
- Marzuk Ahmed
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Md Masum Billah
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
- Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka 422-8529, Japan
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
2
|
Chen L, Yao F, Xue S, Yao K, Huang Y, Zhao H, Shao Q. Dynamic membrane changes and osmotic effects by sugar alcohols. NPJ Sci Food 2025; 9:46. [PMID: 40159509 PMCID: PMC11955526 DOI: 10.1038/s41538-025-00410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
Sugar alcohols are natural sweeteners with various physiological functions, commonly used in low-calorie foods and pharmaceuticals. Current research primarily focuses on their sweetening properties and metabolic effects, often overlooking their interactions with cell membranes. This study built a giant phospholipid vesicle model to examine vesicle deformation in erythritol (Ery) and xylitol (Xyl) environments. The permeation of these sugar alcohols through real cell membranes was also investigated. Fluorescence microscopy and zeta potential measurements showed that osmotic stress from concentration gradients disrupted vesicle membrane structure. Ery and Xyl reduced ROS levels in HEK-293 cells and influenced membrane permeability. Notably, Xyl increased vesicle adsorption on the cell membrane at the same concentration. The findings indicate that sugar alcohols interact with membrane lipids through hydrogen bonds or other non-covalent interactions, modifying cell membrane structure and properties, thus providing a theoretical foundation for understanding their role in physiological environments.
Collapse
Affiliation(s)
- Lichun Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, WE, Netherlands
| | - Feng Yao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Songwen Xue
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Kuang Yao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yun Huang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Huimin Zhao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qiong Shao
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
3
|
Quiescence of Escherichia coli Aerosols to Survive Mechanical Stress during High-Velocity Collection. Microorganisms 2023; 11:microorganisms11030647. [PMID: 36985220 PMCID: PMC10058004 DOI: 10.3390/microorganisms11030647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
A low cutpoint wetted wall bioaerosol sampling cyclone (LCP-WWC), with an aerosol sampling flow rate of 300 L/min at 55″ H2O pressure drop and a continuous liquid outflow rate of about 0.2 mL/min, was developed by upgrading an existing system. The laboratory strain Escherichia coli MG1655 was aerosolized using a six-jet Collison Nebulizer and collected at high velocity using the LCP-WWC for 10 min with different collection liquids. Each sample was quantitated during a 15-day archiving period after aerosolization for culturable counts (CFUs) and gene copy numbers (GCNs) using microbial plating and whole-cell quantitative polymerase chain (qPCR) reaction. The samples were analyzed for protein composition and antimicrobial resistance using protein gel electrophoresis and disc diffusion susceptibility testing. Aerosolization and collection were followed by an initial period of quiescence or dormancy. After 2 days of archiving at 4 °C and RT, the bacteria exhibited increased culturability and antibiotic resistance (ABR), especially to cell wall inhibitors (ampicillin and cephalothin). The number of resistant bacteria on Day 2 increased nearly four-times compared to the number of cells at the initial time of collection. The mechanical stress of aerosolization and high-velocity sampling likely stunned the cells triggering a response of dormancy, though with continued synthesis of vital proteins for survival. This study shows that an increase in intensity in environmental conditions surrounding airborne bacteria affects their ability to grow and their potential to develop antimicrobial resistance.
Collapse
|
4
|
Bairoliya S, Goel A, Mukherjee M, Koh Zhi Xiang J, Cao B. Monochloramine Induces Release of DNA and RNA from Bacterial Cells: Quantification, Sequencing Analyses, and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15791-15804. [PMID: 36215406 DOI: 10.1021/acs.est.2c06632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Monochloramine (MCA) is a widely used secondary disinfectant to suppress microbial growth in drinking water distribution systems. In monochloraminated drinking water, a significant amount of extracellular DNA (eDNA) has been reported, which has many implications ranging from obscuring DNA-based drinking water microbiome analyses to posing potential health concerns. To address this, it is imperative for us to know the origin of the eDNA in drinking water. Using Pseudomonas aeruginosa as a model organism, we report for the first time that MCA induces the release of nucleic acids from both biofilms and planktonic cells. Upon exposure to 2 mg/L MCA, massive release of DNA from suspended cells in both MilliQ water and 0.9% NaCl was directly visualized using live cell imaging in a CellASIC ONIX2 microfluidic system. Exposing established biofilms to MCA also resulted in DNA release from the biofilms, which was confirmed by increased detection of eDNA in the effluent. Intriguingly, massive release of RNA was also observed, and the extracellular RNA (eRNA) was also found to persist in water for days. Sequencing analyses of the eDNA revealed that it could be used to assemble the whole genome of the model organism, while in the water, certain fragments of the genome were more persistent than others. RNA sequencing showed that the eRNA contains non-coding RNA and mRNA, implying its role as a possible signaling molecule in environmental systems and a snapshot of the past metabolic state of the bacterial cells.
Collapse
Affiliation(s)
- Sakcham Bairoliya
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| | - Apoorva Goel
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Manisha Mukherjee
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| | - Jonas Koh Zhi Xiang
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| |
Collapse
|
5
|
Wray R, Wang J, Blount P, Iscla I. Activation of a Bacterial Mechanosensitive Channel, MscL, Underlies the Membrane Permeabilization of Dual-Targeting Antibacterial Compounds. Antibiotics (Basel) 2022; 11:970. [PMID: 35884223 PMCID: PMC9312261 DOI: 10.3390/antibiotics11070970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
Resistance to antibiotics is a serious and worsening threat to human health worldwide, and there is an urgent need to develop new antibiotics that can avert it. One possible solution is the development of compounds that possess multiple modes of action, requiring at least two mutations to acquire resistance. Compound SCH-79797 both avoids resistance and has two mechanisms of action: one inhibiting the folate pathway, and a second described as "membrane permeabilization"; however, the mechanism by which membranes from bacterial cells, but not the host, are disrupted has remained mysterious. The opening of the bacterial mechanosensitive channel of large conductance, MscL, which ordinarily serves the physiological role of osmotic emergency release valves gated by hypoosmotic shock, has been previously demonstrated to affect bacterial membrane permeabilization. MscL allows the rapid permeabilization of both ions and solutes through the opening of the largest known gated pore, which has a diameter of 30 Å. We found that SCH-79797 and IRS-16, a more potent derivative, directly bind to the MscL channel and produce membrane permeabilization as a result of its activation. These findings suggest that possessing or adding an MscL-activating component to an antibiotic compound could help to lower toxicity and evade antibiotic resistance.
Collapse
Affiliation(s)
- Robin Wray
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA;
| | - Junmei Wang
- Computational Chemical Genomics Screening Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburg, PA 15261, USA
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA;
| | - Irene Iscla
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA;
| |
Collapse
|
6
|
Immadisetty K, Polasa A, Shelton R, Moradi M. Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel. Comput Struct Biotechnol J 2022; 20:2539-2550. [PMID: 35685356 PMCID: PMC9156883 DOI: 10.1016/j.csbj.2022.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Mechanosensitive channel of large conductance (MscL) detects and responds to changes in the pressure profile of cellular membranes and transduces the mechanical energy into electrical and/or chemical signals. MscL can be activated using ultrasonic or chemical activation methods to improve the absorption of medicines and bioactive compounds into cells. However, re-engineering chemical signals such as pH change can trigger channel activation in MscL. This study elucidates the activation mechanism of an engineered MscL at an atomic level through a combination of equilibrium and non-equilibrium (NE) molecular dynamics (MD) simulations. Comparing the wild-type (WT) and engineered MscL activation processes suggests that the two systems are likely associated with different active states and different transition pathways. These findings indicate that (1) periplasmic loops play a key role in the activation process of MscL, (2) the loss of various backbone-backbone hydrogen bonds and salt bridge interactions in the engineered MscL channel causes the spontaneous opening of the channel, and (3) the most significant interactions lost during the activation process are between the transmembrane helices 1 and 2 in engineered MscL channel. The orientation-based biasing approach for producing and optimizing an open MscL model used in this work is a promising way to characterize unknown protein functional states and investigate the activation processes in ion channels and transmembrane proteins in general. This work paves the way for a computational framework for engineering more efficient pH-sensing mechanosensitive channels.
Collapse
Affiliation(s)
- Kalyan Immadisetty
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Reid Shelton
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| |
Collapse
|
7
|
Behnami S, Bonetta D. With an Ear Up against the Wall: An Update on Mechanoperception in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2021; 10:1587. [PMID: 34451632 PMCID: PMC8398075 DOI: 10.3390/plants10081587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Cells interpret mechanical signals and adjust their physiology or development appropriately. In plants, the interface with the outside world is the cell wall, a structure that forms a continuum with the plasma membrane and the cytoskeleton. Mechanical stress from cell wall damage or deformation is interpreted to elicit compensatory responses, hormone signalling, or immune responses. Our understanding of how this is achieved is still evolving; however, we can refer to examples from animals and yeast where more of the details have been worked out. Here, we provide an update on this changing story with a focus on candidate mechanosensitive channels and plasma membrane-localized receptors.
Collapse
Affiliation(s)
| | - Dario Bonetta
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada;
| |
Collapse
|
8
|
Kawasaki H, Martinac B. Mechanosensitive channels of Corynebacterium glutamicum functioning as exporters of l-glutamate and other valuable metabolites. Curr Opin Chem Biol 2020; 59:77-83. [DOI: 10.1016/j.cbpa.2020.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/09/2020] [Accepted: 05/17/2020] [Indexed: 01/06/2023]
|
9
|
Schlegel AM, Haswell ES. Charged pore-lining residues are required for normal channel kinetics in the eukaryotic mechanosensitive ion channel MSL1. Channels (Austin) 2020; 14:310-325. [PMID: 32988273 PMCID: PMC7757850 DOI: 10.1080/19336950.2020.1818509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mechanosensitive (MS) ion channels are widespread mechanisms for cellular mechanosensation that can be directly activated by increasing membrane tension. The well-studied MscS family of MS ion channels is found in bacteria, archaea, and plants. MscS-Like (MSL)1 is localized to the inner mitochondrial membrane of Arabidopsis thaliana, where it is required for normal mitochondrial responses to oxidative stress. Like Escherichia coli MscS, MSL1 has a pore-lining helix that is kinked. However, in MSL1 this kink is comprised of two charged pore-lining residues, R326 and D327. Using single-channel patch-clamp electrophysiology in E. coli, we show that altering the size and charge of R326 and D327 leads to dramatic changes in channel kinetics. Modest changes in gating pressure were also observed while no effects on channel rectification or conductance were detected. MSL1 channel variants had differing physiological function in E. coli hypoosmotic shock assays, without clear correlation between function and particular channel characteristics. Taken together, these results demonstrate that altering pore-lining residue charge and size disrupts normal channel state stability and gating transitions, and led us to propose the “sweet spot” model. In this model, the transition to the closed state is facilitated by attraction between R326 and D327 and repulsion between R326 residues of neighboring monomers. In the open state, expansion of the channel reduces inter-monomeric repulsion, rendering open state stability influenced mainly by attractive forces. This work provides insight into how unique charge-charge interactions can be combined with an otherwise conserved structural feature to help modulate MS channel function.
Collapse
Affiliation(s)
- Angela M Schlegel
- Department of Biology, Washington University , St. Louis, Missouri, USA.,NSF Center for Engineering Mechanobiology, Washington University , St. Louis, Missouri, USA
| | - Elizabeth S Haswell
- Department of Biology, Washington University , St. Louis, Missouri, USA.,NSF Center for Engineering Mechanobiology, Washington University , St. Louis, Missouri, USA
| |
Collapse
|
10
|
Li J, Zhang X, Ashokkumar M, Liu D, Ding T. Molecular regulatory mechanisms of Escherichia coli O157:H7 in response to ultrasonic stress revealed by proteomic analysis. ULTRASONICS SONOCHEMISTRY 2020; 61:104835. [PMID: 31670254 DOI: 10.1016/j.ultsonch.2019.104835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/22/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
The antimicrobial effects of ultrasonic filed have been studied for years at the phenotypic level, but there is little research to reveal the molecular regulatory mechanisms underlying the phenotypes. In this study, isobaric tag for relative and absolute quantification (iTRAQ) proteome was applied to analyze the regulatory networks of Escherichia coli O157:H7 in response to ultrasonic stress in whole-genome scale. A total of 1856 differentially expressed proteins were identified, of which 1141 were significant up-regulated and 715 down-regulated compared with live control cells. The comprehensive proteome coverage analysis showed that ultrasonic filed influenced various metabolic pathways in Escherichia coli O157:H7 cells. The ultrasound-induced up-regulation of global stress response regulator RpoS, bacterial mechanosensitive channels and SOS response protein RecA were described from the molecular level for the first time. In addition, we proposed a possible action mechanism that the free radicals produced by acoustic cavitation might enter into cells via the activated mechanosensitive channels, leading to the elevated intracellular ROS level and subsequent cell death. Last but not the least, we illustrated the all-or-nothing phenomenon of power ultrasound might due to the destruction of crucial cell defensive systems, including heat shock proteins and oxidative response regulators. These new findings can let us understand the ultrasonic effects more deeply and will contribute to this area.
Collapse
Affiliation(s)
- Jiao Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China
| | - Xinglin Zhang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Donghong Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
11
|
Life with Bacterial Mechanosensitive Channels, from Discovery to Physiology to Pharmacological Target. Microbiol Mol Biol Rev 2020; 84:84/1/e00055-19. [PMID: 31941768 DOI: 10.1128/mmbr.00055-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
General principles in biology have often been elucidated from the study of bacteria. This is true for the bacterial mechanosensitive channel of large conductance, MscL, the channel highlighted in this review. This channel functions as a last-ditch emergency release valve discharging cytoplasmic solutes upon decreases in osmotic environment. Opening the largest gated pore, MscL passes molecules up to 30 Å in diameter; exaggerated conformational changes yield advantages for study, including in vivo assays. MscL contains structural/functional themes that recur in higher organisms and help elucidate how other, structurally more complex, channels function. These features of MscL include (i) the ability to directly sense, and respond to, biophysical changes in the membrane, (ii) an α helix ("slide helix") or series of charges ("knot in a rope") at the cytoplasmic membrane boundary to guide transmembrane movements, and (iii) important subunit interfaces that, when disrupted, appear to cause the channel to gate inappropriately. MscL may also have medical applications: the modality of the MscL channel can be changed, suggesting its use as a triggered nanovalve in nanodevices, including those for drug targeting. In addition, recent studies have shown that the antibiotic streptomycin opens MscL and uses it as one of the primary paths to the cytoplasm. Moreover, the recent identification and study of novel specific agonist compounds demonstrate that the channel is a valid drug target. Such compounds may serve as novel-acting antibiotics and adjuvants, a way of permeabilizing the bacterial cell membrane and, thus, increasing the potency of commonly used antibiotics.
Collapse
|
12
|
Wray R, Herrera N, Iscla I, Wang J, Blount P. An agonist of the MscL channel affects multiple bacterial species and increases membrane permeability and potency of common antibiotics. Mol Microbiol 2019; 112:896-905. [PMID: 31177589 PMCID: PMC6736685 DOI: 10.1111/mmi.14325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
The bacterial MscL channel normally functions as an emergency release valve discharging cytoplasmic solutes upon osmotic stress. The channel opens and passes molecules up to 30 Å and its pore is the largest of any gated channel. Opening the MscL pore inappropriately is detrimental to the bacterial cell, suggesting MscL as a potential novel drug target. A small-molecule compound, 011A, has been shown to increase sensitivity of the Escherichia coli MscL channel, slow growth, and even decrease viability of quiescent cultures. The mscL gene is highly conserved and found in the vast majority of bacterial species, including pathogens. Here, we test the hypothesis that 011A can influence the growth and viability of other bacterial species, specifically Staphylococcus aureus and Mycobacterium smegmatis, in a MscL-dependent manner. Furthermore, we demonstrate that the 011A compound can increase potency of other antibiotics, presumably by permeabilizing the membrane and allowing easier access of the antibiotic into the cytoplasm. Thus, MscL activators have potential as novel broad-spectrum antibiotics or adjuvants that work with antibiotics to selectively allow passage across bacterial membranes.
Collapse
Affiliation(s)
- Robin Wray
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX
| | - Nadia Herrera
- Division of Chemistry and Chemical Engineering 114-96, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA
| | - Irene Iscla
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy
| | - Paul Blount
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX
| |
Collapse
|
13
|
|
14
|
Wray R, Iscla I, Kovacs Z, Wang J, Blount P. Novel compounds that specifically bind and modulate MscL: insights into channel gating mechanisms. FASEB J 2019; 33:3180-3189. [PMID: 30359098 PMCID: PMC6404570 DOI: 10.1096/fj.201801628r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
The bacterial mechanosensitive channel of large conductance (MscL) normally functions as an emergency release valve discharging cytoplasmic solutes upon osmotic stress. Opening the large pore of MscL inappropriately is detrimental to the cell, and thus it has been speculated to be a potential antibiotic target. Although MscL is one of the best studied mechanosensitive channels, no chemical that influenced bacterial growth by modulating MscL is known. We therefore used a high-throughput screen to identify compounds that slowed growth in an MscL-dependent manner. We characterized 2 novel sulfonamide compounds identified in the screen. We demonstrated that, although both increase MscL gating, one of these compounds does not work through the folate pathway, as other antimicrobial sulfonamides; indeed, the sulfonamide portion of the compound is not needed for activity. The only mode of action appears to be MscL activation. The binding pocket is where an α-helix runs along the cytoplasmic membrane and interacts with a neighboring subunit; analogous motifs have been observed in several prokaryotic and eukaryotic channels. The data not only demonstrate that MscL is a viable antibiotic target, but also give insight into the gating mechanisms of MscL, and they may have implications for developing agonists for other channels.-Wray, R., Iscla, I., Kovacs, Z., Wang, J., Blount, P. Novel compounds that specifically bind and modulate MscL: insights into channel gating mechanisms.
Collapse
Affiliation(s)
- Robin Wray
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Irene Iscla
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Chabanon M, Ho JCS, Liedberg B, Parikh AN, Rangamani P. Pulsatile Lipid Vesicles under Osmotic Stress. Biophys J 2017; 112:1682-1691. [PMID: 28445759 DOI: 10.1016/j.bpj.2017.03.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/11/2017] [Accepted: 03/23/2017] [Indexed: 11/25/2022] Open
Abstract
The response of lipid bilayers to osmotic stress is an important part of cellular function. Recent experimental studies showed that when cell-sized giant unilamellar vesicles (GUVs) are exposed to hypotonic media, they respond to the osmotic assault by undergoing a cyclical sequence of swelling and bursting events, coupled to the membrane's compositional degrees of freedom. Here, we establish a fundamental and quantitative understanding of the essential pulsatile behavior of GUVs under hypotonic conditions by advancing a comprehensive theoretical model of vesicle dynamics. The model quantitatively captures the experimentally measured swell-burst parameters for single-component GUVs, and reveals that thermal fluctuations enable rate-dependent pore nucleation, driving the dynamics of the swell-burst cycles. We further extract constitutional scaling relationships between the pulsatile dynamics and GUV properties over multiple timescales. Our findings provide a fundamental framework that has the potential to guide future investigations on the nonequilibrium dynamics of vesicles under osmotic stress.
Collapse
Affiliation(s)
- Morgan Chabanon
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California
| | - James C S Ho
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bo Liedberg
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Atul N Parikh
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore; Departments of Biomedical Engineering and Chemical Engineering and Materials Science, University of California Davis, Davis, California
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California.
| |
Collapse
|
16
|
Abstract
There is increasing evidence that all cells sense mechanical forces in order to perform their functions. In animals, mechanotransduction has been studied during the establishment of cell polarity, fate, and division in single cells, and increasingly is studied in the context of a multicellular tissue. What about plant systems? Our goal in this review is to summarize what is known about the perception of mechanical cues in plants, and to provide a brief comparison with animals.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, Mailbox 1137, Saint Louis, MO, 63130, USA.
| |
Collapse
|
17
|
Hamant O, Haswell ES. Life behind the wall: sensing mechanical cues in plants. BMC Biol 2017. [PMID: 28697754 DOI: 10.1186/s12915-017-0403-405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
There is increasing evidence that all cells sense mechanical forces in order to perform their functions. In animals, mechanotransduction has been studied during the establishment of cell polarity, fate, and division in single cells, and increasingly is studied in the context of a multicellular tissue. What about plant systems? Our goal in this review is to summarize what is known about the perception of mechanical cues in plants, and to provide a brief comparison with animals.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, Mailbox 1137, Saint Louis, MO, 63130, USA.
| |
Collapse
|
18
|
|
19
|
Nomura T, Sokabe M, Yoshimura K. Voltage-Dependent Inactivation of MscS Occurs Independently of the Positively Charged Residues in the Transmembrane Domain. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2401657. [PMID: 28101504 PMCID: PMC5213669 DOI: 10.1155/2016/2401657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 11/23/2022]
Abstract
MscS (mechanosensitive channel of small conductance) is ubiquitously found among bacteria and plays a major role in avoiding cell lysis upon rapid osmotic downshock. The gating of MscS is modulated by voltage, but little is known about how MscS senses membrane potential. Three arginine residues (Arg-46, Arg-54, and Arg-74) in the transmembrane (TM) domain are possible to respond to voltage judging from the MscS structure. To examine whether these residues are involved in the voltage dependence of MscS, we neutralized the charge of each residue by substituting with asparagine (R46N, R54N, and R74N). Mechanical threshold for the opening of the expressed wild-type MscS and asparagine mutants did not change with voltage in the range from -40 to +100 mV. By contrast, inactivation process of wild-type MscS was strongly affected by voltage. The wild-type MscS inactivated at +60 to +80 mV but not at -60 to +40 mV. The voltage dependence of the inactivation rate of all mutants tested, that is, R46N, R54N, R74N, and R46N/R74N MscS, was almost indistinguishable from that of the wild-type MscS. These findings indicate that the voltage dependence of the inactivation occurs independently of the positive charges of R46, R54, and R74.
Collapse
Affiliation(s)
- Takeshi Nomura
- International Cooperative Research Project (ICORP)/Solution Oriented Research for Science and Technology (SORST), Cell-Mechanosensing Project, Japan Science and Technology Agency, Nagoya 466-8550, Japan
- Department of Rehabilitation, Kyushu Nutrition Welfare University, Kitakyushu 800-029, Japan
| | - Masahiro Sokabe
- International Cooperative Research Project (ICORP)/Solution Oriented Research for Science and Technology (SORST), Cell-Mechanosensing Project, Japan Science and Technology Agency, Nagoya 466-8550, Japan
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kenjiro Yoshimura
- International Cooperative Research Project (ICORP)/Solution Oriented Research for Science and Technology (SORST), Cell-Mechanosensing Project, Japan Science and Technology Agency, Nagoya 466-8550, Japan
- Department of Machinery and Control Systems, Shibaura Institute of Technology, Saitama 337-8570, Japan
| |
Collapse
|
20
|
Zhu L, Wu J, Liu L, Liu Y, Yan Y, Cui Q, Chen X. Gating mechanism of mechanosensitive channel of large conductance: a coupled continuum mechanical-continuum solvation approach. Biomech Model Mechanobiol 2016; 15:1557-1576. [PMID: 27009075 DOI: 10.1007/s10237-016-0783-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
Gating transition of the mechanosensitive channel of large conductance (MscL) represents a good example of important biological processes that are difficult to describe using atomistic simulations due to the large (submicron) length scale and long (millisecond) time scale. Here we develop a novel computational framework that tightly couples continuum mechanics with continuum solvation models to study the detailed gating behavior of E. coli-MscL. The components of protein molecules are modeled by continuum elements that properly describe their shape, material properties and physicochemical features (e.g., charge distribution). The lipid membrane is modeled as a three-layer material in which the lipid head group and tail regions are treated separately, taking into account the fact that fluidic lipid bilayers do not bear shear stress. Coupling between mechanical and chemical responses of the channel is realized by an iterative integration of continuum mechanics (CM) modeling and continuum solvation (CS) computation. Compared to previous continuum mechanics studies, the present model is capable of capturing the most essential features of the gating process in a much more realistic fashion: due mainly to the apolar solvation contribution, the membrane tension for full opening of MscL is reduced substantially to the experimental measured range. Moreover, the pore size stabilizes constantly during gating because of the intricate interactions of the multiple components of the system, implying the mechanism for sub-conducting states of MscL gating. A significant fraction ([Formula: see text]2/3) of the gating membrane strain is required to reach the first sub-conducting state of our model, which is featured with a relative conductance of 0.115 to the fully opened state. These trends agree well with experimental observations. We anticipate that the coupled CM/CS modeling framework is uniquely suited for the analysis of many biomolecules and their assemblies under external mechanical stimuli.
Collapse
Affiliation(s)
- Liangliang Zhu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.,Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA
| | - Jiazhong Wu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Ling Liu
- Department of Mechanical and Aerospace Engineering, Utah State University, Logan, UT, 84322, USA
| | - Yilun Liu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yuan Yan
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xi Chen
- Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
21
|
Abstract
Escherichia coli and Salmonella encounter osmotic pressure variations in natural environments that include host tissues, food, soil, and water. Osmotic stress causes water to flow into or out of cells, changing their structure, physics, and chemistry in ways that perturb cell functions. E. coli and Salmonella limit osmotically induced water fluxes by accumulating and releasing electrolytes and small organic solutes, some denoted compatible solutes because they accumulate to high levels without disturbing cell functions. Osmotic upshifts inhibit membrane-based energy transduction and macromolecule synthesis while activating existing osmoregulatory systems and specifically inducing osmoregulatory genes. The osmoregulatory response depends on the availability of osmoprotectants (exogenous organic compounds that can be taken up to become compatible solutes). Without osmoprotectants, K+ accumulates with counterion glutamate, and compatible solute trehalose is synthesized. Available osmoprotectants are taken up via transporters ProP, ProU, BetT, and BetU. The resulting compatible solute accumulation attenuates the K+ glutamate response and more effectively restores cell hydration and growth. Osmotic downshifts abruptly increase turgor pressure and strain the cytoplasmic membrane. Mechanosensitive channels like MscS and MscL open to allow nonspecific solute efflux and forestall cell lysis. Research frontiers include (i) the osmoadaptive remodeling of cell structure, (ii) the mechanisms by which osmotic stress alters gene expression, (iii) the mechanisms by which transporters and channels detect and respond to osmotic pressure changes, (iv) the coordination of osmoregulatory programs and selection of available osmoprotectants, and (v) the roles played by osmoregulatory mechanisms as E. coli and Salmonella survive or thrive in their natural environments.
Collapse
|
22
|
Iscla I, Wray R, Eaton C, Blount P. Scanning MscL Channels with Targeted Post-Translational Modifications for Functional Alterations. PLoS One 2015; 10:e0137994. [PMID: 26368283 PMCID: PMC4569298 DOI: 10.1371/journal.pone.0137994] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/25/2015] [Indexed: 01/20/2023] Open
Abstract
Mechanosensitive channels are present in all living organisms and are thought to underlie the senses of touch and hearing as well as various important physiological functions like osmoregulation and vasoregulation. The mechanosensitive channel of large conductance (MscL) from Escherichia coli was the first protein shown to encode mechanosensitive channel activity and serves as a paradigm for how a channel senses and responds to mechanical stimuli. MscL plays a role in osmoprotection in E. coli, acting as an emergency release valve that is activated by membrane tension due to cell swelling after an osmotic down-shock. Using an osmotically fragile strain in an osmotic down-shock assay, channel functionality can be directly determined in vivo. In addition, using thiol reagents and expressed MscL proteins with a single cysteine substitution, we have shown that targeted post-translational modifications can be performed, and that any alterations that lead to dysfunctional proteins can be identified by this in vivo assay. Here, we present the results of such a scan performed on 113 MscL cysteine mutants using five different sulfhydryl-reacting probes to confer different charges or hydrophobicity to each site. We assessed which of these targeted modifications affected channel function and the top candidates were further studied using patch clamp to directly determine how channel activity was affected. This comprehensive screen has identified many residues that are critical for channel function as well as highlighted MscL domains and residues that undergo the most drastic environmental changes upon gating.
Collapse
Affiliation(s)
- Irene Iscla
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Robin Wray
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Christina Eaton
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Chi G, Rohde PR, Ridone P, Hankamer B, Martinac B, Landsberg MJ. Functional similarities between heterogeneously and homogenously expressed MscL constructs. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:589-98. [PMID: 26233759 DOI: 10.1007/s00249-015-1062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/29/2015] [Accepted: 07/14/2015] [Indexed: 11/30/2022]
Abstract
The mechanosensitive channel of large conductance MscL is a well-characterized mechanically gated non-selective ion channel, which often serves as a prototype mechanosensitive channel for mechanotransduction studies. However, there are some discrepancies between MscL constructs used in these studies, most notably unintended heterogeneous expression from some MscL expression constructs. In this study we investigate the possible cause of this expression pattern, and compare the original non-homogenously expressing constructs with our new homogeneously expressing one to confirm that there is little functional difference between them. In addition, a new MscL construct has been developed with an improved molar extinction coefficient at 280 nm, enabling more accurate protein quantification.
Collapse
Affiliation(s)
- Gamma Chi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Rasmussen T, Rasmussen A, Singh S, Galbiati H, Edwards MD, Miller S, Booth IR. Properties of the Mechanosensitive Channel MscS Pore Revealed by Tryptophan Scanning Mutagenesis. Biochemistry 2015; 54:4519-30. [PMID: 26126964 PMCID: PMC4519979 DOI: 10.1021/acs.biochem.5b00294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Bacterial mechanosensitive channels
gate when the transmembrane
turgor rises to levels that compromise the structural integrity of
the cell wall. Gating creates a transient large diameter pore that
allows hydrated solutes to pass from the cytoplasm at rates close
to those of diffusion. In the closed conformation, the channel limits
transmembrane solute movement, even that of protons. In the MscS crystal
structure (Protein Data Bank entry 2oau), a narrow, hydrophobic opening is visible
in the crystal structure, and it has been proposed that a vapor lock
created by the hydrophobic seals, L105 and L109, is the barrier to
water and ions. Tryptophan scanning mutagenesis has proven to be a
highly valuable tool for the analysis of channel structure. Here Trp
residues were introduced along the pore-forming TM3a helix and in
selected other parts of the protein. Mutants were investigated for
their expression, stability, and activity and as fluorescent probes
of the physical properties along the length of the pore. Most Trp
mutants were expressed at levels similar to that of the parent (MscS
YFF) and were stable as heptamers in detergent in the presence and
absence of urea. Fluorescence data suggest a long hydrophobic region
with low accessibility to aqueous solvents, extending from L105/L109
to G90. Steady-state fluorescence anisotropy data are consistent with
significant homo-Förster resonance energy transfer between
tryptophan residues from different subunits within the narrow pore.
The data provide new insights into MscS structure and gating.
Collapse
Affiliation(s)
- Tim Rasmussen
- †School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Akiko Rasmussen
- †School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Shivani Singh
- †School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Heloisa Galbiati
- †School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Michelle D Edwards
- †School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Samantha Miller
- †School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Ian R Booth
- †School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.,‡Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
25
|
Iscla I, Wray R, Wei S, Posner B, Blount P. Streptomycin potency is dependent on MscL channel expression. Nat Commun 2014; 5:4891. [PMID: 25205267 PMCID: PMC4161981 DOI: 10.1038/ncomms5891] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 01/15/2023] Open
Abstract
The antibiotic streptomycin is widely used in the treatment of microbial infections. The primary mechanism of action is inhibition of translation by binding to the ribosome, but how it enters the bacterial cell is unclear. Early in the study of this antibiotic, a mysterious streptomycin-induced K+-efflux preceding any decrease in viability was observed; it was speculated that this changed the electrochemical gradient such that streptomycin better accessed the cytoplasm. Here we use a high throughput screen to search for compounds targeting the mechanosensitive channel of large conductance (MscL) and find dihydrostreptomycin among the “hits”. Furthermore, we find that MscL is not only necessary for the previously described streptomycin-induced K+-efflux, but also directly increases MscL activity in electrophysiological studies. The data suggest that gating MscL is a novel mode of action of dihydrostreptomycin, and that MscL’s large pore may provide a mechanism for cell entry.
Collapse
Affiliation(s)
- Irene Iscla
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9040, USA
| | - Robin Wray
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9040, USA
| | - Shuguang Wei
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9040, USA
| |
Collapse
|
26
|
Hilder TA, Ridone P, Nakayama Y, Martinac B, Chung SH. Binding of fullerenes and nanotubes to MscL. Sci Rep 2014; 4:5609. [PMID: 25030051 PMCID: PMC4101527 DOI: 10.1038/srep05609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/13/2014] [Indexed: 12/17/2022] Open
Abstract
Multi-drug resistance is becoming an increasing problem in the treatment of bacterial infections and diseases. The mechanosensitive channel of large conductance (MscL) is highly conserved among prokaryotes. Evidence suggests that a pharmacological agent that can affect the gating of, or block the current through, MscL has significant potential as a new class of antimicrobial compound capable of targeting a range of pathogenic bacteria with minimal side-effects to infected patients. Using molecular dynamics we examine the binding of fullerenes and nanotubes to MscL and demonstrate that both are stable within the MscL pore. We predict that fullerenes will attenuate the flow of ions through MscL by reducing the pore volume available to water and ions, but nanotubes will prevent pore closure resulting in a permanently open pore. Moreover, we confirm experimentally that it is possible to attenuate the flow of ions through MscL using a C60-γ cyclodextrin complex.
Collapse
Affiliation(s)
- Tamsyn A. Hilder
- Computational Biophysics Group, Research School of Biology, Australian National University, ACT 0200, Australia
| | - Pietro Ridone
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, NSW 2010, Australia
| | - Yoshitaka Nakayama
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, NSW 2010, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, NSW 2010, Australia
- St Vincent's Clinical School, The University of New South Wales, Victoria St, St Vincent's Hospital Darlinghurst NSW 2010, Australia
| | - Shin-Ho Chung
- Computational Biophysics Group, Research School of Biology, Australian National University, ACT 0200, Australia
| |
Collapse
|
27
|
Toyota M, Gilroy S. Gravitropism and mechanical signaling in plants. AMERICAN JOURNAL OF BOTANY 2013; 100:111-25. [PMID: 23281392 DOI: 10.3732/ajb.1200408] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mechanical stress is a critical signal affecting morphogenesis and growth and is caused by a large variety of environmental stimuli such as touch, wind, and gravity in addition to endogenous forces generated by growth. On the basis of studies dating from the early 19th century, the plant mechanical sensors and response components related to gravity can be divided into two types in terms of their temporal character: sensors of the transient stress of reorientation (phasic signaling) and sensors capable of monitoring and responding to the extended, continuous gravitropic signal for the duration of the tropic growth response (tonic signaling). In the case of transient stress, changes in the concentrations of ions in the cytoplasm play a central role in mechanosensing and are likely a key component of initial gravisensing. Potential candidates for mechanosensitive channels have been identified in Arabidopsis thaliana and may provide clues to these rapid, ionic gravisensing mechanisms. Continuous mechanical stress, on the other hand, may be sensed by other mechanisms in addition to the rapidly adapting mechnaosensitive channels of the phasic system. Sustaining such long-term responses may be through a network of biochemical signaling cascades that would therefore need to be maintained for the many hours of the growth response once they are triggered. However, classical physiological analyses and recent simulation studies also suggest involvement of the cytoskeleton in sensing/responding to long-term mechanoresponse independently of the biochemical signaling cascades triggered by initial graviperception events.
Collapse
Affiliation(s)
- Masatsugu Toyota
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
28
|
Doerner JF, Febvay S, Clapham DE. Controlled delivery of bioactive molecules into live cells using the bacterial mechanosensitive channel MscL. Nat Commun 2012; 3:990. [PMID: 22871809 PMCID: PMC3651673 DOI: 10.1038/ncomms1999] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/10/2012] [Indexed: 12/22/2022] Open
Abstract
Bacterial mechanosensitive channels are some of the largest pores in nature. In particular, MscL, with a pore diameter >25 Å, allows passage of large organic ions and small proteins. Functional MscL reconstitution into lipids has been proposed for applications in vesicular-based drug release. Here we show that these channels can be functionally expressed in mammalian cells to afford rapid controlled uptake of membrane-impermeable molecules. We first demonstrate that MscL gating in response to increased membrane tension is preserved in mammalian cell membranes. Molecular delivery is controlled by adopting an established method of MscL charge-induced activation. We then determine pore size limitations using fluorescently labelled model cargoes. Finally, we activate MscL to introduce the cell-impermeable bi-cyclic peptide phalloidin, a specific marker for actin filaments, into cells. We propose that MscL will be a useful tool for gated and controlled delivery of bioactive molecules into cells.
Collapse
Affiliation(s)
- Julia F Doerner
- HHMI, Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
29
|
Bialecka-Fornal M, Lee HJ, DeBerg HA, Gandhi CS, Phillips R. Single-cell census of mechanosensitive channels in living bacteria. PLoS One 2012; 7:e33077. [PMID: 22427953 PMCID: PMC3302805 DOI: 10.1371/journal.pone.0033077] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 02/09/2012] [Indexed: 12/13/2022] Open
Abstract
Bacteria are subjected to a host of different environmental stresses. One such insult occurs when cells encounter changes in the osmolarity of the surrounding media resulting in an osmotic shock. In recent years, a great deal has been learned about mechanosensitive (MS) channels which are thought to provide osmoprotection in these circumstances by opening emergency release valves in response to membrane tension. However, even the most elementary physiological parameters such as the number of MS channels per cell, how MS channel expression levels influence the physiological response of the cells, and how this mean number of channels varies from cell to cell remain unanswered. In this paper, we make a detailed quantitative study of the expression of the mechanosensitive channel of large conductance (MscL) in different media and at various stages in the growth history of bacterial cultures. Using both quantitative fluorescence microscopy and quantitative Western blots our study complements earlier electrophysiology-based estimates and results in the following key insights: i) the mean number of channels per cell is much higher than previously estimated, ii) measurement of the single-cell distributions of such channels reveals marked variability from cell to cell and iii) the mean number of channels varies under different environmental conditions. The regulation of MscL expression displays rich behaviors that depend strongly on culturing conditions and stress factors, which may give clues to the physiological role of MscL. The number of stress-induced MscL channels and the associated variability have far reaching implications for the in vivo response of the channels and for modeling of this response. As shown by numerous biophysical models, both the number of such channels and their variability can impact many physiological processes including osmoprotection, channel gating probability, and channel clustering.
Collapse
Affiliation(s)
- Maja Bialecka-Fornal
- Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, California, United States of America
| | - Heun Jin Lee
- Department of Applied Physics, California Institute of Technology, Pasadena, California, United States of America
| | - Hannah A. DeBerg
- Department of Physics and the Center for Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Chris S. Gandhi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Rob Phillips
- Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, California, United States of America
- Department of Applied Physics, California Institute of Technology, Pasadena, California, United States of America
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Booth IR, Rasmussen T, Edwards MD, Black S, Rasmussen A, Bartlett W, Miller S. Sensing bilayer tension: bacterial mechanosensitive channels and their gating mechanisms. Biochem Soc Trans 2011; 39:733-40. [PMID: 21599642 DOI: 10.1042/bst0390733] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025]
Abstract
Mechanosensitive channels sense and respond to changes in bilayer tension. In many respects, this is a unique property: the changes in membrane tension gate the channel, leading to the transient formation of open non-selective pores. Pore diameter is also high for the bacterial channels studied, MscS and MscL. Consequently, in cells, gating has severe consequences for energetics and homoeostasis, since membrane depolarization and modification of cytoplasmic ionic composition is an immediate consequence. Protection against disruption of cellular integrity, which is the function of the major channels, provides a strong evolutionary rationale for possession of such disruptive channels. The elegant crystal structures for these channels has opened the way to detailed investigations that combine molecular genetics with electrophysiology and studies of cellular behaviour. In the present article, the focus is primarily on the structure of MscS, the small mechanosensitive channel. The description of the structure is accompanied by discussion of the major sites of channel-lipid interaction and reasoned, but limited, speculation on the potential mechanisms of tension sensing leading to gating.
Collapse
Affiliation(s)
- Ian R Booth
- Department of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, U.K.
| | | | | | | | | | | | | |
Collapse
|
31
|
Caldwell DB, Malcolm HR, Elmore DE, Maurer JA. Identification and experimental verification of a novel family of bacterial cyclic nucleotide-gated (bCNG) ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1750-6. [PMID: 20529663 DOI: 10.1016/j.bbamem.2010.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/16/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
Studies of bacterial ion channels have provided significant insights into the structure-function relationships of mechanosensitive and voltage-gated ion channels. However, to date, very few bacterial channels that respond to small molecules have been identified, cloned, and characterized. Here, we use bioinformatics to identify a novel family of bacterial cyclic nucleotide-gated (bCNG) ion channels containing a channel domain related by sequence homology to the mechanosensitive channel of small conductance (MscS). In this initial report, we clone selected members of this channel family, use electrophysiological measurements to verify their ability to directly gate in response to cyclic nucleotides, and use osmotic downshock to demonstrate their lack of mechanosensitivity. In addition to providing insight into bacterial physiology, these channels will provide researchers with a useful model system to investigate the role of ligand-gated ion channels (LGICs) in the signaling processes of higher organisms. The identification of these channels provides a foundation for structural and functional studies of LGICs that would be difficult to perform on mammalian channels. Moreover, the discovery of bCNG channels implies that bacteria have cyclic nucleotide-gated and cyclic nucleotide-modulated ion channels, which are analogous to the ion channels involved in eukaryotic secondary messenger signaling pathways.
Collapse
Affiliation(s)
- David B Caldwell
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
32
|
Rasmussen T, Edwards MD, Black SS, Rasmussen A, Miller S, Booth IR. Tryptophan in the pore of the mechanosensitive channel MscS: assessment of pore conformations by fluorescence spectroscopy. J Biol Chem 2009; 285:5377-84. [PMID: 20037156 PMCID: PMC2820766 DOI: 10.1074/jbc.m109.071472] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural changes in channel proteins give critical insights required for understanding the gating transitions that underpin function. Tryptophan (Trp) is uniquely sensitive to its environment and can be used as a reporter of conformational changes. Here, we have used site-directed Trp insertion within the pore helices of the small mechanosensitive channel protein, MscS, to monitor conformational transitions. We show that Trp can be inserted in place of Leu at the two pore seal positions, Leu(105) and Leu(109), resulting in functional channels. Using Trp(105) as a probe, we demonstrate that the A106V mutation causes a modified conformation in the purified channel protein consistent with a more open state in solution. Moreover, we show that solubilized MscS changes to a more open conformation in the presence of phospholipids or their lysoforms.
Collapse
Affiliation(s)
- Tim Rasmussen
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
33
|
Balleza D, Gómez-Lagunas F. Conserved motifs in mechanosensitive channels MscL and MscS. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:1013-27. [PMID: 19424690 DOI: 10.1007/s00249-009-0460-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 03/27/2009] [Accepted: 04/08/2009] [Indexed: 11/29/2022]
Abstract
Mechanosensitive (MS) channels play a major role in protecting bacterial cells against hypo-osmotic shock. To understand their function, it is important to identify the conserved motifs using sequence analysis methods. In this study, the sequence conservation was investigated by an in silico analysis to generate sequence logos. We have identified new conserved motifs in the domains TM1, TM2 and the cytoplasmic helix from 231 homologs of MS channel of large conductance (MscL). In addition, we have identified new motifs for the TM3 and the cytoplasmic carboxy-terminal domain from 309 homologs of MS channel of small conductance (MscS). We found that the conservation in MscL homologs is high for TM1 and TM2 in the three domains of life. The conservation in MscS homologs is high only for TM3 in Bacteria and Archaea.
Collapse
Affiliation(s)
- Daniel Balleza
- Laboratory of Molecular Biology, University of Wisconsin, 1525 Linden Drive, Madison, WI, 53706, USA.
| | | |
Collapse
|
34
|
Tang Y, Yoo J, Yethiraj A, Cui Q, Chen X. Mechanosensitive channels: insights from continuum-based simulations. Cell Biochem Biophys 2008; 52:1-18. [PMID: 18787764 PMCID: PMC2651832 DOI: 10.1007/s12013-008-9024-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2008] [Indexed: 11/25/2022]
Abstract
Mechanotransduction plays an important role in regulating cell functions and it is an active topic of research in biophysics. Despite recent advances in experimental and numerical techniques, the intrinsic multiscale nature imposes tremendous challenges for revealing the working mechanisms of mechanosensitive channels. Recently, a continuum-mechanics-based hierarchical modeling and simulation framework has been established and applied to study the mechanical responses and gating behaviors of a prototypical mechanosensitive channel, the mechanosensitive channel of large conductance (MscL) in bacteria Escherichia coli (E. coli), from which several putative gating mechanisms have been tested and new insights are deduced. This article reviews these latest findings using the continuum mechanics framework and suggests possible improvements for future simulation studies. This computationally efficient and versatile continuum-mechanics-based protocol is poised to make contributions to the study of a variety of mechanobiology problems.
Collapse
Affiliation(s)
- Yuye Tang
- Nanomechanics Research Center, Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027
| | - Jejoong Yoo
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin, Madison, WI 53706
| | - Arun Yethiraj
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin, Madison, WI 53706
| | - Qiang Cui
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin, Madison, WI 53706
| | - Xi Chen
- Nanomechanics Research Center, Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027
| |
Collapse
|
35
|
Debret G, Valadié H, Stadler AM, Etchebest C. New insights of membrane environment effects on MscL channel mechanics from theoretical approaches. Proteins 2007; 71:1183-96. [DOI: 10.1002/prot.21810] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Interaction between the cytoplasmic and transmembrane domains of the mechanosensitive channel MscS. Biophys J 2007; 94:1638-45. [PMID: 17993482 DOI: 10.1529/biophysj.107.114785] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial mechanosensitive channel MscS protects the bacteria from rupture on hypoosmotic shock. MscS is composed of a transmembrane domain with an ion permeation pore and a large cytoplasmic vestibule that undergoes significant conformational changes on gating. In this study, we investigated whether specific residues in the transmembrane and cytoplasmic domains of MscS influence each other during gating. When Asp-62, a negatively charged residue located in the loop that connects the first and second transmembrane helices, was replaced with either a neutral (Cys or Asn) or basic (Arg) amino acid, increases in both the gating threshold and inactivation rate were observed. Similar effects were observed after neutralization or reversal of the charge of either Arg-128 or Arg-131, which are both located near Asp-62 on the upper surface of the cytoplasmic domain. Interestingly, the effects of replacing Asp-62 with arginine were complemented by reversing the charge of Arg-131. Complementation was not observed after simultaneous neutralization of the charge of these residues. These findings suggest that the cytoplasmic domain of MscS affects both the mechanosensitive gating and the channel inactivation rate through the electrostatic interaction between Asp-62 and Arg-131.
Collapse
|
37
|
Rasmussen A, Rasmussen T, Edwards MD, Schauer D, Schumann U, Miller S, Booth IR. The role of tryptophan residues in the function and stability of the mechanosensitive channel MscS from Escherichia coli. Biochemistry 2007; 46:10899-908. [PMID: 17718516 DOI: 10.1021/bi701056k] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tryptophan (Trp) residues play important roles in many proteins. In particular they are enriched in protein surfaces involved in protein docking and are often found in membrane proteins close to the lipid head groups. However, they are usually absent from the membrane domains of mechanosensitive channels. Three Trp residues occur naturally in the Escherichia coli MscS (MscS-Ec) protein: W16 lies in the periplasm, immediately before the first transmembrane span (TM1), whereas W240 and W251 lie at the subunit interfaces that create the cytoplasmic vestibule portals. The role of these residues in MscS function and stability were investigated using site-directed mutagenesis. Functional channels with altered properties were created when any of the Trp residues were replaced by another amino acid, with the greatest retention of function associated with phenylalanine (Phe) substitutions. Analysis of the fluorescence properties of purified mutant MscS proteins containing single Trp residues revealed that W16 and W251 are relatively inaccessible, whereas W240 is accessible to quenching agents. The data point to a significant role for W16 in the gating of MscS, and an essential role for W240 in MscS oligomer stability.
Collapse
Affiliation(s)
- Akiko Rasmussen
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Booth IR, Edwards MD, Black S, Schumann U, Miller S. Mechanosensitive channels in bacteria: signs of closure? Nat Rev Microbiol 2007; 5:431-40. [PMID: 17505523 DOI: 10.1038/nrmicro1659] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial mechanosensitive channels are activated by increases in tension in the lipid bilayer of the cytoplasmic membrane, where they transiently create large pores in a controlled manner. Mechanosensitive channel research has benefited from advances in electrophysiology, genomics and molecular genetics as well as from the application of biophysical techniques. Most recently, new analytical methods have been used to complement existing knowledge and generate insights into the molecular interactions that take place between mechanosensitive channel proteins and the surrounding membrane lipids. This article reviews the latest developments.
Collapse
Affiliation(s)
- Ian R Booth
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | | | | | | | | |
Collapse
|
39
|
Li C, Edwards MD, Jeong H, Roth J, Booth IR. Identification of mutations that alter the gating of the Escherichia coli mechanosensitive channel protein, MscK. Mol Microbiol 2007; 64:560-74. [PMID: 17493135 PMCID: PMC1890815 DOI: 10.1111/j.1365-2958.2007.05672.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanosensitive channels allow bacteria to survive rapid increases in turgor pressure. Substantial questions remain as to how these channels sense and respond to mechanical stress. Here we describe a set of mutants with alterations in their MscK channel protein. The mutants were detected fortuitously by their enhanced ability to modify the accumulation of quinolinic acid. Some amino acid changes lie in the putative pore region of MscK, but others affect sequences that lie amino-terminal to the domain aligning with MscS. We demonstrate that the alterations in MscK cause the channel to open more frequently in the absence of excessive mechanical stress. This is manifested in changes in sensitivity to external K+ by cells expressing the mutant proteins. Single-channel analysis highlighted a range of gating behaviours: activation at lower pressures than the wild type, inability to achieve the fully open state or a modified requirement for K+. Thus, the dominant uptake phenotype of these mutants may result from a defect in their ability to regulate the gating of MscK. The locations of the substituted residues suggest that the overall gating mechanism of MscK is comparable to that of MscS, but with subtleties introduced by the additional protein sequences in MscK.
Collapse
Affiliation(s)
- Chan Li
- School of Medical Sciences, University of Aberdeen, Institute of Medical SciencesForesterhill, Aberdeen AB25 2ZD, UK.
| | - Michelle D Edwards
- School of Medical Sciences, University of Aberdeen, Institute of Medical SciencesForesterhill, Aberdeen AB25 2ZD, UK.
- * For correspondence. E-mail ; Tel. (+44) 1224 555761; Fax (+44) 1224 555844
| | - Hochterl Jeong
- College of Biological Sciences, Section of Microbiology, University of CaliforniaDavis, CA 95616-5270, USA.
| | - John Roth
- College of Biological Sciences, Section of Microbiology, University of CaliforniaDavis, CA 95616-5270, USA.
| | - Ian R Booth
- School of Medical Sciences, University of Aberdeen, Institute of Medical SciencesForesterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
40
|
|
41
|
Booth IR, Edwards MD, Black S, Schumann U, Bartlett W, Rasmussen T, Rasmussen A, Miller S. Physiological analysis of bacterial mechanosensitive channels. Methods Enzymol 2007; 428:47-61. [PMID: 17875411 DOI: 10.1016/s0076-6879(07)28003-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial mechanosensitive (MS) channels play a significant role in protecting cells against hypoosmotic shock. Bacteria that have been diluted from high osmolarity medium into dilute solution are required to cope with sudden water influx associated with an osmotic imbalance equivalent to 10 to 14 atm. The cell wall is only poorly expansive and the cytoplasmic membrane even less so. Thus, swelling is not an option and the cell must rapidly eject solutes to diminish the osmotic gradient and thereby preserve structural integrity. This chapter describes cellular assays of MS channel function and their interpretation.
Collapse
Affiliation(s)
- Ian R Booth
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Structure–Function Relations of MscS. CURRENT TOPICS IN MEMBRANES 2007. [DOI: 10.1016/s1063-5823(06)58010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
|
43
|
3.5 Billion Years of Mechanosensory Transduction: Structure and Function of Mechanosensitive Channels in Prokaryotes. CURRENT TOPICS IN MEMBRANES 2007. [DOI: 10.1016/s1063-5823(06)58002-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Wahome PG, Setlow P. The synthesis and role of the mechanosensitive channel of large conductance in growth and differentiation of Bacillus subtilis. Arch Microbiol 2006; 186:377-83. [PMID: 16897034 DOI: 10.1007/s00203-006-0152-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 06/29/2006] [Accepted: 07/10/2006] [Indexed: 11/24/2022]
Abstract
A translational lacZ fusion of the Bacillus subtilis mscL gene that encodes the mechanosensitive channel of large conductance (MscL) was expressed at significant levels during log phase growth of B. subtilis, and the level of mscL-lacZ expression was increased 1.5-fold by growth in medium with high salt (1 M NaCl). However, in growth media with either low or high salt, mscL-lacZ expression fell drastically beginning in the late log phase of growth, and fell to even lower levels during sporulation, although a significant amount of beta-galactosidase from mscL to lacZ was accumulated in the developing spore. Deletion of mscL had no effect on B. subtilis growth, sporulation or subsequent spore germination. The DeltamscL strain also grew as well as the wild-type parental strain in medium with 1.2 M NaCl. While log phase wild-type cells grown with 1.2 M NaCl survived a rapid 0.9 M osmotic downshift, log phase DeltamscL cells rapidly lost viability and lysed when subjected to this same osmotic downshift. However, by the early stationary phase of growth, DeltamscL cells had become resistant to a 0.9 M osmotic downshift.
Collapse
Affiliation(s)
- Paul G Wahome
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| | | |
Collapse
|
45
|
Nomura T, Sokabe M, Yoshimura K. Lipid-protein interaction of the MscS mechanosensitive channel examined by scanning mutagenesis. Biophys J 2006; 91:2874-81. [PMID: 16861270 PMCID: PMC1578463 DOI: 10.1529/biophysj.106.084541] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanosensitive channel of small conductance (MscS) is a bacterial mechanosensitive channel that opens in response to rapid hypoosmotic stress. Since MscS can be opened solely by membrane stretch without help from any accessory protein, the lipid-protein interface must play a crucial role in sensing membrane tension. In this study, the hydrophobic residues in the lipid-protein interface were substituted one by one with a hydrophilic amino acid, asparagine, to modify the interaction between the protein and the lipid. Function of the mutant MscSs was examined by patch-clamp and hypoosmotic shock experiments. An increase in the gating threshold and a decrease in the viability on hypoosmotic shock were observed when the hydrophobic residues near either end of the first or the second transmembrane helix (TM1 or TM2) were replaced with asparagine. This observation indicates that the lipid-protein interaction at the ends of both helices (TM1 and TM2) is essential to MscS function.
Collapse
Affiliation(s)
- Takeshi Nomura
- ICORP/SORST, Cell Mechanosensing, Japan Science and Technology Agency, Nagoya, Japan
| | | | | |
Collapse
|
46
|
Tang Y, Cao G, Chen X, Yoo J, Yethiraj A, Cui Q. A finite element framework for studying the mechanical response of macromolecules: application to the gating of the mechanosensitive channel MscL. Biophys J 2006; 91:1248-63. [PMID: 16731564 PMCID: PMC1518658 DOI: 10.1529/biophysj.106.085985] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gating pathways of mechanosensitive channels of large conductance (MscL) in two bacteria (Mycobacterium tuberculosis and Escherichia coli) are studied using the finite element method. The phenomenological model treats transmembrane helices as elastic rods and the lipid membrane as an elastic sheet of finite thickness; the model is inspired by the crystal structure of MscL. The interactions between various continuum components are derived from molecular-mechanics energy calculations using the CHARMM all-atom force field. Both bacterial MscLs open fully upon in-plane tension in the membrane and the variation of pore diameter with membrane tension is found to be essentially linear. The estimated gating tension is close to the experimental value. The structural variations along the gating pathway are consistent with previous analyses based on structural models with experimental constraints and biased atomistic molecular-dynamics simulations. Upon membrane bending, neither MscL opens substantially, although there is notable and nonmonotonic variation in the pore radius. This emphasizes that the gating behavior of MscL depends critically on the form of the mechanical perturbation and reinforces the idea that the crucial gating parameter is lateral tension in the membrane rather than the curvature of the membrane. Compared to popular all-atom-based techniques such as targeted or steered molecular-dynamics simulations, the finite element method-based continuum-mechanics framework offers a unique alternative to bridge detailed intermolecular interactions and biological processes occurring at large spatial scales and long timescales. It is envisioned that such a hierarchical multiscale framework will find great value in the study of a variety of biological processes involving complex mechanical deformations such as muscle contraction and mechanotransduction.
Collapse
Affiliation(s)
- Yuye Tang
- Department of Civil Engineering and Engineering Mechanics, Nanomechanics Research Center, Columbia University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Prokaryotic mechanosensitive channels function as molecular switches that transduce bilayer deformations into protein motion. These protein structural rearrangements generate large non-selective pores that function as a prokaryotic 'last line of defence' to sudden osmotic challenges. Once considered an electrophysiological artefact, recent structural, spectroscopic and functional data have placed this class of protein at the centre of efforts to understand the molecular basis of lipid-protein interactions and their influence on protein function.
Collapse
Affiliation(s)
- Eduardo Perozo
- Department of Biochemistry and Molecular Biology, and Institute of Molecular Pediatric Science, University of Chicago Pritzker School of Medicine, 929 East 57th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
48
|
Abstract
Toward the realization of nanoscale device control, we report a molecular valve embedded in a membrane that can be opened by illumination with long-wavelength ultraviolet (366 nanometers) light and then resealed by visible irradiation. The valve consists of a channel protein, the mechanosensitive channel of large conductance (MscL) from Escherichia coli, modified by attachment of synthetic compounds that undergo light-induced charge separation to reversibly open and close a 3-nanometer pore. The system is compatible with a classical encapsulation system, the liposome, and external photochemical control over transport through the channel is achieved.
Collapse
Affiliation(s)
- Armagan Koçer
- BiOMaDe Technology Foundation, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | | | | | | |
Collapse
|
49
|
Kloda A, Martinac B. Common evolutionary origins of mechanosensitive ion channels in Archaea, Bacteria and cell-walled Eukarya. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:35-44. [PMID: 15803657 PMCID: PMC2685541 DOI: 10.1155/2002/419261] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ubiquity of mechanosensitive (MS) channels triggered a search for their functional homologs in Archaea. Archaeal MS channels were found to share a common ancestral origin with bacterial MS channels of large and small conductance, and sequence homology with several proteins that most likely function as MS ion channels in prokaryotic and eukaryotic cell-walled organisms. Although bacterial and archaeal MS channels differ in conductive and mechanosensitive properties, they share similar gating mechanisms triggered by mechanical force transmitted via the lipid bilayer. In this review, we suggest that MS channels of Archaea can bridge the evolutionary gap between bacterial and eukaryotic MS channels, and that MS channels of Bacteria, Archaea and cell-walled Eukarya may serve similar physiological functions and may have evolved to protect the fragile cellular membranes in these organisms from excessive dilation and rupture upon osmotic challenge.
Collapse
Affiliation(s)
- Anna Kloda
- Department of Pharmacology, University of Western Australia, Crawley, WA 6009, Australia
| | - Boris Martinac
- Department of Pharmacology, University of Western Australia, Crawley, WA 6009, Australia
- Corresponding author ()
| |
Collapse
|
50
|
Tsai IJ, Liu ZW, Rayment J, Norman C, McKinley A, Martinac B. The role of the periplasmic loop residue glutamine 65 for MscL mechanosensitivity. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 34:403-12. [PMID: 15812636 DOI: 10.1007/s00249-005-0476-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/23/2005] [Accepted: 02/28/2005] [Indexed: 11/29/2022]
Abstract
The periplasmic loop of MscL, the mechanosensitive channel of large conductance, acts as a spring resisting the opening of the channel. Recently, a high-throughput functional screening of a range of MscL structural mutants indicated that the substitution of residue glutamine (Q) 65 with arginine (R) or leucine (L) leads to a wild-type (WT)-like and a loss-of-function (LOF) phenotype, respectively. We used electron paramagnetic resonance (EPR) spectroscopy, single-channel recording and in vivo experiments to investigate further the effect of R and L mutation of Q65 on the gating mechanism of MscL. Structural analysis of Q65R and Q65L was carried out by coupling the site-directed spin labeling (SDSL) with EPR spectroscopy. A SDSL cysteine mutant of the isoleucine 24 residue (I24C-SL) in the first transmembrane domain, TM1, of MscL served as a reporter residue in EPR experiments. This was due to its strong spin-spin interaction with the neighboring I24C-SL residues in the MscL channel pentamer. The effects of bilayer incorporation of lysophosphatidylcholine on the MscL mutants were also investigated. Functional analysis was carried out using patch-clamp recordings from these mutants and WT MscL reconstituted into artificial liposomes. Although our data are largely in agreement with the high-throughput mutational analysis of Maurer and Dougherty, this study shows that Q65R and Q65L form functional channels and that these mutations lead to partial gain-of-function (GOF) and LOF mutation, respectively. Overall, our study confirms and advances the notion that the periplasmic loop plays a role in setting the channel mechanosensitivity.
Collapse
Affiliation(s)
- I-Jung Tsai
- School of Medicine and Pharmacology, University of Western Australia, QE II Medical Center, Nedlands, WA 6009, Australia
| | | | | | | | | | | |
Collapse
|