1
|
Jerry EM, Karnaneedi S, Ruethers T, Jerry DR, Condon K, Lopata AL. Allergen Diversity and Abundance in Different Tissues of the Redclaw Crayfish ( Cherax quadricarinatus). Foods 2024; 13:315. [PMID: 38275682 PMCID: PMC10815050 DOI: 10.3390/foods13020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Shellfish allergy affects ~2.5% of the global population and is a type I immune response resulting from exposure to crustacean and/or molluscan proteins. The Australian Redclaw crayfish (Cherax quadricarinatus) is a freshwater species endemic to and farmed in northern Australia and is becoming an aquaculture species of interest globally. Despite being consumed as food, allergenic proteins from redclaw have not been identified or characterised. In addition, as different body parts are often consumed, it is conceivable that redclaw tissues vary in allergenicity depending on tissue type and function. To better understand food-derived allergenicity, this study characterised allergenic proteins in various redclaw body tissues (the tail, claw, and cephalothorax) and how the stability of allergenic proteins was affected through cooking (raw vs. cooked tissues). The potential of redclaw allergens to cross-react and cause IgE-binding in patients allergic to other shellfish (i.e., shrimp) was also investigated. Raw and cooked extracts were prepared from each body part. SDS-PAGE followed by immunoblotting was performed to determine allergen-specific antibody reactivity to sarcoplasmic calcium-binding protein and hemocyanin, as well as to identify redclaw proteins binding to IgE antibodies from individual and pooled sera of shrimp-allergic patients. Liquid chromatography-mass spectrometry (LC/MS) was utilised to identify proteins and to determine the proportion within extracts. Known crustacean allergens were found in all tissues, with a variation in tissue distribution (e.g., higher levels of hemocyanin in the claw and cephalothorax than in the tail). The proportion of some allergens as a percentage of remaining heat-stable proteins increased in cooked tissues. Previously described heat-stable allergens (i.e., hemocyanin and sarcoplasmic calcium-binding protein) were found to be partially heat-labile. Immunoblotting indicated that shrimp-allergic patients cross-react to redclaw allergens. IgE-binding bands, analysed by LC/MS, identified up to 11 known shellfish allergens. The findings of this study provide fundamental knowledge into the diagnostic and therapeutic field of shellfish allergy.
Collapse
Affiliation(s)
- Emily M. Jerry
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.M.J.); (S.K.); (T.R.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, QLD 4811, Australia; (D.R.J.); (K.C.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- JCU AquaPATH Detection Laboratory, James Cook University, Townsville, QLD 4814, Australia
| | - Shaymaviswanathan Karnaneedi
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.M.J.); (S.K.); (T.R.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Thimo Ruethers
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.M.J.); (S.K.); (T.R.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Tropical Futures Institute, James Cook University, 149 Sims Drive, Singapore 387380, Singapore
| | - Dean R. Jerry
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, QLD 4811, Australia; (D.R.J.); (K.C.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- JCU AquaPATH Detection Laboratory, James Cook University, Townsville, QLD 4814, Australia
- Tropical Futures Institute, James Cook University, 149 Sims Drive, Singapore 387380, Singapore
| | - Kelly Condon
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, QLD 4811, Australia; (D.R.J.); (K.C.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- JCU AquaPATH Detection Laboratory, James Cook University, Townsville, QLD 4814, Australia
| | - Andreas L. Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.M.J.); (S.K.); (T.R.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, QLD 4811, Australia; (D.R.J.); (K.C.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Tropical Futures Institute, James Cook University, 149 Sims Drive, Singapore 387380, Singapore
| |
Collapse
|
2
|
McAndry C, Collins M, Tills O, Spicer JI, Truebano M. Regulation of gene expression during ontogeny of physiological function in the brackishwater amphipod Gammarus chevreuxi. Mar Genomics 2022; 63:100948. [PMID: 35427917 DOI: 10.1016/j.margen.2022.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
Embryonic development is a complex process involving the co-ordinated onset and integration of multiple morphological features and physiological functions. While the molecular basis of morphological development in embryos is relatively well known for traditional model species, the molecular underpinning of the development of physiological functions is not. Here, we used global gene expression profiling to investigate the transcriptional changes associated with the development of morphological and physiological function in the amphipod crustacean Gammarus chevreuxi. We compared the transcriptomes at three timepoints during the latter half of development, characterised by different stages of the development of heart form and function: 10 days post fertilisation (dpf, Early: no heart structure visible), 15 dpf (Middle: heart present but not fully functional), and 18 dpf (Late: regular heartbeat). Gene expression profiles differed markedly between developmental stages, likely representing a change in the activity of different processes throughout the latter period of G. chevreuxi embryonic development. Differentially expressed genes belonged to one of three distinct clusters based on their expression patterns across development. One of these clusters, which included key genes relating to cardiac contractile machinery and calcium handling, displayed a pattern of sequential up-regulation throughout the developmental period studied. Further analyses of these transcripts could reveal genes that may influence the onset of a regular heartbeat. We also identified morphological and physiological processes that may occur alongside heart development, such as development of digestive caeca and the cuticle. Elucidating the mechanisms underpinning morphological and physiological development of non-model organisms will support improved understanding of conserved mechanisms, addressing the current phylogenetic gap between relatively well known model species.
Collapse
Affiliation(s)
- C McAndry
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - M Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - O Tills
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - J I Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - M Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
3
|
Ojha A, Zhang W. Characterization of gustatory receptor 7 in the brown planthopper reveals functional versatility. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 132:103567. [PMID: 33741431 DOI: 10.1016/j.ibmb.2021.103567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Insect pests consume tastants as their necessary energy and nutrient sources. Gustatory receptors play important roles in insect life and can form within an extremely complicated regulatory network. However, there are still many gustatory genes that have a significant impact on insect physiology, but their functional mechanism is still unknown. Here, we purified and characterized a gustatory receptor (protein) coding gene, NlGr7, from the brown planthopper (BPH) Nilaparvata lugens, which is an important insect pest of rice. Our results revealed that NlGr7 has an active association with various ligands, such as lectins, lipids (phospho- and sphingolipid) and copper. The mass-spectrometry result showed that NlGr7 is a sugar receptor, and NlGr7 is validated by different types of insoluble polysaccharides and a varied range of tastants. Further, we observed that NlGr7-bound ATP hydrolysed on the ATPase activity assay, which indicated that NlGr7 may be associated with important biological functions in the BPH. Furthermore, an injection of NlGr7 (protein), into newly emerged female adults of BPH, showed the reduced vitellogenin in ovary. The important NlGr7 for chemoreception has now been characterized in the BPH. We showed that NlGr7 in the BPH is required for various protein-ligands, as well as protein-sugars interactions, and for regulation of fecundity marker to play crucial roles in this pest. This study will provide valuable information for further functional studies of chemoreception mechanisms in this important agricultural pest.
Collapse
Affiliation(s)
- Abhishek Ojha
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
4
|
Mayall C, Dolar A, Jemec Kokalj A, Novak S, Razinger J, Barbero F, Puntes V, Drobne D. Stressor-Dependant Changes in Immune Parameters in the Terrestrial Isopod Crustacean, Porcellio scaber: A Focus on Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:934. [PMID: 33917492 PMCID: PMC8067488 DOI: 10.3390/nano11040934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
We compared the changes of selected immune parameters of Porcellio scaber to different stressors. The animals were either fed for two weeks with Au nanoparticles (NPs), CeO2 NPs, or Au ions or body-injected with Au NPs, CeO2 NPs, or lipopolysaccharide endotoxin. Contrary to expectations, the feeding experiment showed that both NPs caused a significant increase in the total haemocyte count (THC). In contrast, the ion-positive control resulted in a significantly decreased THC. Additionally, changes in phenoloxidase (PO)-like activity, haemocyte viability, and nitric oxide (NO) levels seemed to depend on the stressor. Injection experiments also showed stressor-dependant changes in measured parameters, such as CeO2 NPs and lipopolysaccharide endotoxin (LPS), caused more significant responses than Au NPs. These results show that feeding and injection of NPs caused an immune response and that the response differed significantly, depending on the exposure route. We did not expect the response to ingested NPs, due to the low exposure concentrations (100 μg/g dry weight food) and a firm gut epithelia, along with a lack of phagocytosis in the digestive system, which would theoretically prevent NPs from crossing the biological barrier. It remains a challenge for future research to reveal what the physiological and ecological significance is for the organism to sense and respond, via the immune system, to ingested foreign material.
Collapse
Affiliation(s)
- Craig Mayall
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (C.M.); (A.D.); (A.J.K.); (S.N.)
| | - Andraz Dolar
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (C.M.); (A.D.); (A.J.K.); (S.N.)
| | - Anita Jemec Kokalj
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (C.M.); (A.D.); (A.J.K.); (S.N.)
| | - Sara Novak
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (C.M.); (A.D.); (A.J.K.); (S.N.)
| | - Jaka Razinger
- Plant Protection Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia;
| | - Francesco Barbero
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona, Spain; (F.B.); (V.P.)
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona, Spain; (F.B.); (V.P.)
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (C.M.); (A.D.); (A.J.K.); (S.N.)
| |
Collapse
|
5
|
Molecular Cloning, Structure and Phylogenetic Analysis of a Hemocyanin Subunit from the Black Sea Crustacean Eriphia verrucosa (Crustacea, Malacostraca). Genes (Basel) 2021; 12:genes12010093. [PMID: 33450956 PMCID: PMC7828413 DOI: 10.3390/genes12010093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 11/30/2022] Open
Abstract
Hemocyanins are copper-binding proteins that play a crucial role in the physiological processes in crustaceans. In this study, the cDNA encoding hemocyanin subunit 5 from the Black sea crab Eriphia verrucosa (EvHc5) was cloned using EST analysis, RT-PCR and rapid amplification of the cDNA ends (RACE) approach. The full-length cDNA of EvHc5 was 2254 bp, consisting of a 5′ and 3′ untranslated regions and an open reading frame of 2022 bp, encoding a protein consisting of 674 amino acid residues. The protein has an N-terminal signal peptide of 14 amino acids as is expected for proteins synthesized in hepatopancreas tubule cells and secreted into the hemolymph. The 3D model showed the presence of three functional domains and six conserved histidine residues that participate in the formation of the copper active site in Domain 2. The EvHc5 is O-glycosylated and the glycan is exposed on the surface of the subunit similar to Panulirus interruptus. The phylogenetic analysis has shown its close grouping with γ-type of hemocyanins of other crustacean species belonging to order Decapoda, infraorder Brachyura.
Collapse
|
6
|
Mendoza-Porras O, Kamath S, Harris JO, Colgrave ML, Huerlimann R, Lopata AL, Wade NM. Resolving hemocyanin isoform complexity in haemolymph of black tiger shrimp Penaeus monodon - implications in aquaculture, medicine and food safety. J Proteomics 2020; 218:103689. [PMID: 32088355 DOI: 10.1016/j.jprot.2020.103689] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/21/2023]
Abstract
Hemocyanin (Hc) is a multifunctional macromolecule involved in oxygen transport and non-specific immunity in shrimp. Hc is crucial in physiology and nutrition linked with optimal performance in aquaculture production systems. In medicine, Hc has been approved for clinical use in humans as adjuvant and anticancer therapeutic. In contrast, Hc has also been identified as one of the proteins causing anaphylaxis following shrimp consumption. The role of individual Hc isoforms remains unknown due to a lack of resolved Hc isoforms. We successfully identified eleven different Penaeus monodon hemocyanin (PmoHc) γ isoforms including two truncated isoforms (50 and 20 kDa) and one PmoHc β isoform in haemolymph using proteomics informed by transcriptomics. Amino acid sequence homology ranged from 24 to 97% between putative PmoHc gene isoforms. Hc isoforms showed specific patterns of transcript expression in shrimp larval stages and adult hepatopancreas. These findings enable isoform level investigations aiming to define molecular mechanisms underpinning Hc functionality in shrimp physiology and immunity, as well as their individual immunogenic role in human allergy. Our research demonstrates the power of proteomics informed by transcriptomics to resolve isoform complexity in non-model organisms and lay the foundations for improved performance within the aquaculture industry and advance allergenic applications in medicine. SIGNIFICANCE: The roles of hemocyanin (Hc) in shrimp homeostasis and immunity as well as in human allergy are not well understood because the complexity of Hc isoforms has remained unresolved. Our results have confirmed the existence of at least 12 individual Hc isoforms in shrimp haemolymph and validated putative Hc gene assemblies from transcriptomics. Our findings will enable monitoring the expression of specific Hc isoforms in shrimp haemolymph during different environmental, nutritional and pathogenic conditions, thus providing insights into isoform specific functional roles. In medicine, the potential allergenicity of each Hc isoform could be determined and advance allergenic applications. Lastly, since Hc comprises up to 95% of the total protein in haemolymph, these isoforms become ideal targets for prawn provenance, traceability and food contamination studies.
Collapse
Affiliation(s)
- Omar Mendoza-Porras
- CSIRO Livestock and Aquaculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, Australia.
| | - Sandip Kamath
- James Cook University, Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook Drive, Townsville, QLD 4811, Australia; James Cook University, Australian Institute of Tropical Health and Medicine, James Cook Drive, Townsville, QLD 4811, Australia
| | - James O Harris
- Flinders University, College of Science and Engineering, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Michelle L Colgrave
- CSIRO Livestock and Aquaculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, Australia
| | - Roger Huerlimann
- James Cook University, College of Science and Engineering, James Cook Drive, Townsville, QLD 4811, Australia; Australian Research Council Industrial Transformation Research Hub for Advanced Shrimp Breeding, Australia
| | - Andreas L Lopata
- James Cook University, Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook Drive, Townsville, QLD 4811, Australia; James Cook University, Australian Institute of Tropical Health and Medicine, James Cook Drive, Townsville, QLD 4811, Australia
| | - Nicholas M Wade
- CSIRO Livestock and Aquaculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, Australia; James Cook University, College of Science and Engineering, James Cook Drive, Townsville, QLD 4811, Australia; Australian Research Council Industrial Transformation Research Hub for Advanced Shrimp Breeding, Australia
| |
Collapse
|
7
|
Wang P, Xing C, Wang J, Su Y, Mao Y. Evolutionary adaptation analysis of immune defense and hypoxia tolerance in two closely related Marsupenaeus species based on comparative transcriptomics. FISH & SHELLFISH IMMUNOLOGY 2019; 92:861-870. [PMID: 31276791 DOI: 10.1016/j.fsi.2019.06.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/22/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Kuruma shrimp, a major farmed shrimp species in the world, includes two cryptic or sibling species, Form I (Marsupenaeus japonicus) and Form II (Marsupenaeus pulchricaudatus). Due to the lack of genomic resources, little is known about the molecular mechanisms associated with immune defense and hypoxia tolerance. Here, we sequenced the transcriptomes of two closely related Marsupenaeus species and compared genomic divergence. This study obtained 77049 and 84561 unigenes with N50 values of 1281bp and 1244bp for M. japonicus and M. pulchricaudatus, respectively, and 5036 pairs of putative orthologs were identified between two Marsupenaeus species. Estimation of Ka/Ks ratios indicated that 165 orthologous genes may be under positive selection (Ka/Ks > 0.5), including 49 pairs with a Ka/Ks ratio >1. According to the peak of synonymous rates, the divergence time between M. japonicus and M. pulchricaudatus was about 0.26-0.69 Mya. These positively selected orthologous genes related to the immune process mainly comprised single VWC domain protein, legumain, ras-related C3 botulinum, caspase, C-type lectin and were enriched in functions related to immune (Toll-like receptor and PI3K-Akt signaling) and hypoxia signaling (HIF-1 signaling and VEGF signaling). In this study, dozens of caspase-like unigenes were screened from two Marsupenaeus transcriptomes. Among these, the PjCaspase orthologous gene was subjected to positive selection (Ka/Ks = 1.22), which had different secondary and three-dimensional structure prediction. Based on the single copy caspase gene, eight populations of Marsupenaeus species were divided into two phylogeographic lineages from the East and South China. We characterized the transcriptomes of the two Marsupenaeus species and obtained several key orthologs associated with immune defense and hypoxia tolerance, which provides new insights into the immunity and genetic divergence of the two varieties. Moreover, this study will facilitate further comparative genomic studies of the two varieties.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chaofan Xing
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
8
|
Fan J, Li X, Lu H, Lin R, Aweya JJ, Zhang Y. N-terminal diversity of Litopenaeus vannamei hemocyanin and immunity. Mol Immunol 2019; 112:360-368. [PMID: 31261021 DOI: 10.1016/j.molimm.2019.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Hemocyanin is primarily a respiratory copper-containing glycoprotein present in the hemolymph of mollusks and arthropods. Recently, hemocyanin has attracted huge research interest due to its multifunctionality and polymorphism. Most previous immune-related studies on shrimp hemocyanin have focused on the C-terminal. Moreover, we previously reported that the C-terminal domain of Litopenaeus vannamei hemocyanin possesses single nucleotide polymorphisms (SNPs), but little is known about the molecular diversity of the N-terminal domain. In the current study, diversity within the N-terminal domain of L. vannamei hemocyanin (LvHMC-N) was explored using bioinformatics and molecular biology techniques as well as immune challenge. Twenty-five LvHMC-N variants were identified using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and DNA sequencing, with multiple sequence alignment showing that the 25 variants shared 87%-99 % sequence homology with LvHMC (AJ250830.1). In different shrimp individuals and different shrimp tissues (i.e., hemocytes, stomach, muscle and hepatopancreas), the LvHMC-N variants were expressed differently. Pathogen challenge could modulate the molecular diversity of LvHMC-N, as three LvHMC-Nr variants (LvHMC-Nr1, LvHMC-Nr2 and LvHMC-Nr3) were identified by sequencing following Vibrio parahaemolyticus challenge. Most importantly, recombinant proteins of these three variants (rLvHMC-Nr1, rLvHMC-Nr2 and rLvHMC- Nr3) had relatively high in vitro agglutinative activities against V. parahaemolyticus, Vibrio alginolyticus and Streptoccocus iniae. Our present data indicates that the N-terminus of L. vannamei hemocyanin also possess molecular diversity, which seems to be associated with immune resistance to pathogenic infections.
Collapse
Affiliation(s)
- Jiaohong Fan
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Xianmei Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Hui Lu
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Ruihong Lin
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
9
|
Head TB, Mykles DL, Tomanek L. Proteomic analysis of the crustacean molting gland (Y-organ) over the course of the molt cycle. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:193-210. [DOI: 10.1016/j.cbd.2018.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
|
10
|
Johnson JG, Paul MR, Kniffin CD, Anderson PE, Burnett LE, Burnett KG. High CO2 alters the hypoxia response of the Pacific whiteleg shrimp (Litopenaeus vannamei) transcriptome including known and novel hemocyanin isoforms. Physiol Genomics 2015; 47:548-58. [DOI: 10.1152/physiolgenomics.00031.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/17/2015] [Indexed: 01/19/2023] Open
Abstract
Acclimation to low O2 in many organisms involves changes at the level of the transcriptome. Here we used high-throughput RNA sequencing (RNA-Seq) to explore the global transcriptomic response and specific involvement of a suite of hemocyanin (Hc) subunits to low O2 alone and in combination with high CO2, which naturally co-occurs with low O2. Hepatopancreas mRNA of juvenile L. vannamei exposed to air-saturated water, low O2, or low O2/high CO2 for 4 or 24 h was pooled, sequenced (HiSeq 2500) and assembled (Trinity: 52,190 contigs) to create a deep strand-specific reference transcriptome. Annotation of the assembly revealed sequences encoding the previously described small Hc subunit (HcS), and three full-length isoforms of the large subunit (HcL1-3). In addition to this, a previously unidentified full-length Hc subunit was discovered. Phylogenetic analysis demonstrated the subunit to be a β-type Hc subunit (denoted HcB), making this the first report of a β-type hemocyanin subunit in the Penaeoidea. RNAs of individual shrimp were sequenced; regulated genes identified from pairwise comparisons demonstrated a distinct pattern of regulation between prolonged low O2 and low O2/high CO2 treatments by GO term enrichment analysis (Roff-Bentzen, P < 0.0001), showcasing the stabilization of energetically costly translational machinery, mobilization of energy stores, and downregulation of the ubiquitin/proteasomal degradation machinery. Exposure to hypoxia for 24 h resulted in an increase in all of the full-length hemocyanin subunits (HcS, HcL1, HcL2, HcL3, and HcB). The addition of CO2 to hypoxia muted the transcriptomic response of all the Hc subunits to low O2, except for the β-type subunit.
Collapse
Affiliation(s)
- Jillian G. Johnson
- Grice Marine Laboratory, College of Charleston, Hollings Marine Laboratory, Charleston, South Carolina; and
| | - Matthew R. Paul
- Grice Marine Laboratory, College of Charleston, Hollings Marine Laboratory, Charleston, South Carolina; and
| | - Casey D. Kniffin
- Grice Marine Laboratory, College of Charleston, Hollings Marine Laboratory, Charleston, South Carolina; and
| | - Paul E. Anderson
- Department of Computer Science, College of Charleston, Charleston, South Carolina
| | - Louis E. Burnett
- Grice Marine Laboratory, College of Charleston, Hollings Marine Laboratory, Charleston, South Carolina; and
| | - Karen G. Burnett
- Grice Marine Laboratory, College of Charleston, Hollings Marine Laboratory, Charleston, South Carolina; and
| |
Collapse
|
11
|
Pinnow P, Fabrizius A, Pick C, Burmester T. Identification and characterisation of hemocyanin of the fish louse Argulus (Crustacea: Branchiura). J Comp Physiol B 2015; 186:161-8. [PMID: 26515963 DOI: 10.1007/s00360-015-0943-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 02/03/2023]
Abstract
Hemocyanin transports oxygen in the hemolymph of many arthropod species. Within the crustaceans, this copper-containing protein was thought to be restricted to Malacostraca, while other crustacean classes were assumed to employ hemoglobin or lack any respiratory protein. Only recently it has become evident that hemocyanins also occur in Remipedia and Ostracoda. Here we report for the first time the identification and characterisation of hemocyanin in the fish louse Argulus, which belongs to the class of Branchiura. This finding indicates that hemocyanin was the principal oxygen carrier in the stem lineage of the pancrustaceans, but has been lost independently multiple times in crustacean taxa. We obtained the full-length cDNA sequences of two hemocyanin subunits of Argulus foliaceus by a combination of RT-PCR, RACE and Illumina sequencing of the transcriptome. In addition, one full-length and one partial cDNA sequence were derived from the transcriptome data of Argulus siamensis. Western blot analysis confirmed the presence of at least two hemocyanin subunits in A. foliaceus, which are expressed at the mRNA level at a 1:3.5 ratio. The addition to the branchiuran hemocyanin subunits to a multiple sequence alignment of arthropod, hemocyanins improved the phylogenetic resolution within the pancrustacean hemocyanins. Malacostracan, ostracod and branchiuran hemocyanins are distinct from the hexapod and remipede hemocyanins, reinforcing the hypothesis of a close relationship of Remipedia and Hexapoda. Notably, the ostracod hemocyanins are paraphyletic with respect to the branchiuran hemocyanins, indicating ancient divergence and differential loss of distinct subunit types.
Collapse
Affiliation(s)
- Pauline Pinnow
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Andrej Fabrizius
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Christian Pick
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Thorsten Burmester
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| |
Collapse
|
12
|
Burnett KG, Burnett LE. Respiratory and Metabolic Impacts of Crustacean Immunity: Are there Implications for the Insects? Integr Comp Biol 2015. [DOI: 10.1093/icb/icv094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
13
|
Burmester T. Evolution of Respiratory Proteins across the Pancrustacea. Integr Comp Biol 2015; 55:792-801. [PMID: 26130703 DOI: 10.1093/icb/icv079] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Respiratory proteins enhance the capacity of the blood for oxygen transport and support intracellular storage and delivery of oxygen. Hemocyanin and hemoglobin are the respiratory proteins that occur in the Pancrustacea. The copper-containing hemocyanins evolved from phenoloxidases in the stem lineage of arthropods. For a long time, hemocyanins had only been known from the malacostracan crustaceans but recent studies identified hemocyanin also in Remipedia, Ostracoda, and Branchiura. Hemoglobins are common in the Branchiopoda but have also been sporadically found in other crustacean classes (Malacostraca, Copepoda, Thecostraca). Respiratory proteins had long been considered unnecessary in the hexapods because of the tracheal system. Only chironomids, some backswimmers, and the horse botfly, which all live under hypoxic conditions, were known exceptions and possess hemoglobins. However, recent data suggest that hemocyanins occur in most ametabolous and hemimetabolous insects. Phylogenetic analysis showed the hemocyanins of insects and Remipedia to be similar, suggesting a close relationship of these taxa. Hemocyanin has been lost in dragonflies, mayflies, and Eumetabola (Hemiptera + Holometabola). In cockroaches and grasshoppers, hemocyanin expression is restricted to the developing embryo while in adults oxygen is supplied solely by the tracheal system. This pattern suggests that hemocyanin was the oxygen-transport protein in the hemolymph of the last common ancestor of the pancrustaceans. The loss was probably associated with miniaturization, a period of restricted availability of oxygen, a change in life-style, or morphological changes. Once lost, hemocyanin was not regained. Some pancrustaceans also possess cellular globin genes with uncertain functions, which are expressed at low levels. When a respiratory protein was again required, hemoglobins evolved several times independently from cellular globins.
Collapse
Affiliation(s)
- Thorsten Burmester
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| |
Collapse
|
14
|
Thonig A, Oellermann M, Lieb B, Mark FC. A new haemocyanin in cuttlefish (Sepia officinalis) eggs: sequence analysis and relevance during ontogeny. EvoDevo 2014; 5:6. [PMID: 24499521 PMCID: PMC3945787 DOI: 10.1186/2041-9139-5-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/20/2013] [Indexed: 01/22/2023] Open
Abstract
Background Haemocyanin is the respiratory protein of most of the Mollusca. In cephalopods and gastropods at least two distinct isoforms are differentially expressed. However, their physiological purpose is unknown. For the common cuttlefish Sepia officinalis, three isoforms are known so far, whereas for only two of them the complete mRNA sequences are available. In this study, we sequenced the complete mRNA of the third haemocyanin isoform and measured the relative expression of all three isoforms during embryogenesis to reveal a potential ontogenetic relevance. Results The cDNA of isoform 3 clearly correlates to the known Sepia officinalis haemocyanin subunits consisting of eight functional units and an internal duplicated functional unit d. Our molecular phylogenetic analyses reveal the third isoform representing a potentially ancestral haemocyanin isoform, and the analyses of the expression of haemocyanin type 3 reveal that haemocyanin type 3 only can be observed within eggs and during early development. Isoforms 1 and 2 are absent at these stages. After hatching, isoform 3 is downregulated, and isoform 1 and 2 are upregulated. Conclusions Our study clearly shows an embryonic relevance of the third isoform, which will be further discussed in the light of the changes in the physiological function of haemocyanin during ontogeny. Taken together with the fact that it could also be the isoform closest related to the common ancestor of cuttlefish haemocyanin, the phylogeny of cuttlefish haemocyanin may be recapitulated during its ontogeny.
Collapse
Affiliation(s)
| | | | | | - Felix Christopher Mark
- Integrative Ecophysiology, Alfred Wegener Institute for Polar and Marine Research, 27570 Bremerhaven, Germany.
| |
Collapse
|
15
|
Glazer L, Tom M, Weil S, Roth Z, Khalaila I, Mittelman B, Sagi A. Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith. ACTA ACUST UNITED AC 2013; 216:1898-904. [PMID: 23393281 DOI: 10.1242/jeb.080945] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gastroliths are transient extracellular calcium deposits formed by the crayfish Cherax quadricarinatus von Martens on both sides of the stomach wall during pre-molt. Gastroliths are made of a rigid chitinous organic matrix, constructed as sclerotized chitin-protein microfibrils within which calcium carbonate is deposited. Although gastroliths share many characteristics with the exoskeleton, they are simpler in structure and relatively homogeneous in composition, making them an excellent cuticle-like model for the study of cuticular proteins. In searching for molt-related proteins involved in gastrolith formation, two integrated approaches were employed, namely the isolation and mass spectrometric analysis of proteins from the gastrolith matrix, and 454-sequencing of mRNAs from both the gastrolith-forming and sub-cuticular epithelia. SDS-PAGE separation of gastrolith proteins revealed a set of bands at apparent molecular masses of 75-85 kDa; mass spectrometry data matched peptide sequences from the deduced amino acid sequences of seven hemocyanin transcripts. This assignment was then examined by immunoblot analysis using anti-hemocyanin antibodies, also used to determine the spatial distribution of the proteins in situ. Apart from contributing to oxygen transport, crustacean hemocyanins were previously suggested to be involved in several aspects of the molt cycle, including hardening of the new post-molt exoskeleton via phenoloxidation. The phenoloxidase activity of gastrolith hemocyanins was demonstrated. It was also noted that hemocyanin transcript expression during pre-molt was specific to the hepatopancreas. Our results thus reflect a set of functionally versatile proteins, expressed in a remote metabolic tissue and dispersed via the hemolymph to perform different roles in various organs and structures.
Collapse
Affiliation(s)
- Lilah Glazer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | | | | | | | | | | | | |
Collapse
|
16
|
Marxen JC, Pick C, Kwiatkowski M, Burmester T. Molecular characterization and evolution of haemocyanin from the two freshwater shrimps Caridina multidentata (Stimpson, 1860) and Atyopsis moluccensis (De Haan, 1849). J Comp Physiol B 2013; 183:613-24. [PMID: 23338600 DOI: 10.1007/s00360-013-0740-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 11/22/2012] [Accepted: 12/29/2012] [Indexed: 01/28/2023]
Abstract
Haemocyanin (Hc) is a copper-containing respiratory protein, floating freely dissolved in the hemolymph of many arthropod species. A typical haemocyanin is a hexamer or oligohexamer of six identical or similar subunits, with a molecular mass around 75 kDa each. In the crustaceans, the haemocyanins appear to be restricted to the remipedes and the malacostracans. We have investigated the haemocyanins of two freshwater shrimps, the Amano shrimp Caridina multidentata and the bamboo shrimp Atyopsis moluccensis. We obtained three full-length and one partial cDNA sequences of haemocyanin subunits from the Amano shrimp, which were assigned to the α- and γ-types of decapod haemocyanin subunits. Three complete and two partial haemocyanin cDNA sequences were obtained from the bamboo shrimp, which represent subunit types α, β and γ. This is the first time that sequences of all three subunit types of the decapod haemocyanins were obtained from a single species. However, mass spectrometry analyses identified only α- and γ-type subunits, suggesting that a β-subunit is not a major component of the native haemocyanin of the bamboo shrimp. Phylogenetic and molecular clock analyses showed that malacostracan haemocyanins commenced to diversify into distinct subunit types already ~515 million years ago. β-subunits diverged first, followed by α- and γ-type subunits ~396 million years ago. The haemocyanins of phyllocarids and peracarids form distinct clades within the α/γ-cluster. Within the Caridea, an early divergence of distinct α-type subunits occurred ~200 MYA. The tree of the γ-subunits suggests a common clade of the Caridea (shrimps) and Penaeidae (prawns).
Collapse
Affiliation(s)
- Julia C Marxen
- Institute of Zoology and Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | | | | | | |
Collapse
|
17
|
Strobel A, Hu MY, Gutowska MA, Lieb B, Lucassen M, Melzner F, Pörtner HO, Mark FC. Influence of Temperature, Hypercapnia, and Development on the Relative Expression of Different Hemocyanin Isoforms in the Common CuttlefishSepia officinalis. ACTA ACUST UNITED AC 2012; 317:511-23. [DOI: 10.1002/jez.1743] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 05/21/2012] [Accepted: 06/05/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Anneli Strobel
- Integrative Ecophysiology; Alfred Wegener Institute for Polar and Marine Research; Bremerhaven; Germany
| | | | | | - Bernhard Lieb
- Institute of Zoology; Johannes Gutenberg University of Mainz; Mainz; Germany
| | - Magnus Lucassen
- Integrative Ecophysiology; Alfred Wegener Institute for Polar and Marine Research; Bremerhaven; Germany
| | - Frank Melzner
- Biological Oceanography; Helmholtz Centre for Ocean Research Kiel (GEOMAR); Kiel; Germany
| | - Hans O. Pörtner
- Integrative Ecophysiology; Alfred Wegener Institute for Polar and Marine Research; Bremerhaven; Germany
| | - Felix C. Mark
- Integrative Ecophysiology; Alfred Wegener Institute for Polar and Marine Research; Bremerhaven; Germany
| |
Collapse
|
18
|
Towle DW, Henry RP, Terwilliger NB. Microarray-detected changes in gene expression in gills of green crabs (Carcinus maenas) upon dilution of environmental salinity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:115-25. [DOI: 10.1016/j.cbd.2010.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/04/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
|
19
|
Characterization of hemocyanin from the peacock mantis shrimp Odontodactylus scyllarus (Malacostraca: Hoplocarida). J Comp Physiol B 2010; 180:1235-45. [PMID: 20640429 DOI: 10.1007/s00360-010-0495-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/17/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Hemocyanin is the blue respiratory protein of many arthropod species. While its structure, evolution, and physiological function have been studied in detail in Decapoda, there is little information on hemocyanins from other crustacean taxa. Here, we have investigated the hemocyanin of the peacock mantis shrimp Odontodactylus scyllarus, which belongs to the Stomatopoda (Hoplocarida). O. scyllarus hemocyanin forms a dodecamer (2 × 6-mer), which is composed of at least four distinct subunit types. We obtained the full-length cDNA sequences of three hemocyanin subunits, while a fourth cDNA was incomplete at its 5' end. The complete full-length cDNAs of O. scyllarus hemocyanin translate into polypeptides of 650-662 amino acids, which include signal peptides of 16 or 17 amino acids. The predicted molecular masses of 73.1-75.1 kDa correspond well with the main hemolymph proteins detected by SDS-PAGE and Western blotting using various anti-hemocyanin antibodies. Phylogenetic analyses show that O. scyllarus hemocyanins belong to the β-type of malacostracan hemocyanin subunits, which diverged from the other subunits before the radiation of the malacostracan subclasses around 520 million years ago. Molecular clock analysis revealed an ancient and complex pattern of hemocyanin subunit evolution in Malacostraca and also allowed dating divergence times of malacostracan taxa.
Collapse
|
20
|
Stillman JH, Colbourne JK, Lee CE, Patel NH, Phillips MR, Towle DW, Eads BD, Gelembuik GW, Henry RP, Johnson EA, Pfrender ME, Terwilliger NB. Recent advances in crustacean genomics. Integr Comp Biol 2008; 48:852-68. [DOI: 10.1093/icb/icn096] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Spicer JI, Rundle SD. Plasticity in the timing of physiological development: Physiological heterokairy — What is it, how frequent is it, and does it matter? Comp Biochem Physiol A Mol Integr Physiol 2007; 148:712-9. [PMID: 17632024 DOI: 10.1016/j.cbpa.2007.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 11/23/2022]
Abstract
The study of developmental sequences of physiological traits could be an important way of placing comparative developmental physiology (CDP) within the research agenda being forged by work on developmental plasticity. Here we focus on the concept of heterokairy defined by Spicer & Burggren in 2003 as changes in the timing of physiological development in an individual. The role of this concept in the future of the CDP is discussed. First we provide an historical perspective of the ideas that have led to the investigation of sequences in CDP. This is followed by a re-examination and clarification of the definition of physiological heterokairy before empirical case studies that (explicitly or implicitly) demonstrate physiological heterokairy are reviewed. We suggest that physiological heterokairy can be demonstrated through a wide range of invertebrate and vertebrate examples. However, care must be taken when inferring that heterokairy as a pattern is always the result of heterokairic processes as there is evidence that physiological heterokairy could result from the altered timing of both homologous or analogous physiological mechanisms. We conclude by discussing the potential link between heterokairy and heterochrony and suggest that the investigation of this link should be a major goal for workers in both CDP and developmental plasticity.
Collapse
Affiliation(s)
- John I Spicer
- Marine Biology and Ecology and Research Centre, School of Biological Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| | | |
Collapse
|
22
|
Giomi F, Beltramini M. The molecular heterogeneity of hemocyanin: Its role in the adaptive plasticity of Crustacea. Gene 2007; 398:192-201. [PMID: 17555892 DOI: 10.1016/j.gene.2007.02.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/14/2007] [Accepted: 02/22/2007] [Indexed: 11/24/2022]
Abstract
Crustacean hemocyanin (Hc) represents a unique case of molecular heterogeneity among oxygen-carrying proteins. The existence of different genes, encoding single polypeptide chains, constitutes the genetic basis for the inter- and intra-specific polymorphism. In addition, the large number of Hc subunits within crustacean species, together with their flexible expression, provides an efficient intrinsic mechanism of modulation of oxygen transport. This review presents a description and classification of the various aspects of crustacean Hc heterogeneity and defines its role in a perspective of crustacean adaptive physiology.
Collapse
Affiliation(s)
- F Giomi
- Department of Biology, University of Padova, Viale G. Colombo 3, I-35131 Padova, Italy
| | | |
Collapse
|
23
|
Terwilliger NB, Ryan MC, Towle D. Evolution of novel functions: cryptocyanin helps build new exoskeleton in Cancer magister. ACTA ACUST UNITED AC 2005; 208:2467-74. [PMID: 15961732 DOI: 10.1242/jeb.01667] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hemocyanin, the blue blood protein of many arthropods and molluscs, reversibly binds oxygen at its highly conserved copper-oxygen-binding sites and supplies tissues with oxygen. Cryptocyanin, closely related structurally and phylogenetically to arthropod hemocyanin, lacks several of the six critical copper-binding histidines, however, and has lost the ability to bind oxygen. Despite this loss of function, cryptocyanin continues to be synthesized, an indication that it has been exploited to carry out new functions. Here, we show that cryptocyanin is present in extremely high concentrations in the hemolymph of the crab during the premolt portion of the molt cycle. Both proteins are specifically expressed in the same type of cell in the hepatopancreas and secreted into the hemolymph, but cryptocyanin plays a major role in forming the new exoskeleton, while hemocyanin functions in oxygen transport. A cessation in cryptocyanin, but not hemocyanin, synthesis after eyestalk ablation supports our hypothesis that cryptocyanin is closely regulated by molting hormones. The contrasts between the two gene products illustrate how a gene duplication of a copper-oxygen protein and its subsequent mutation may work in concert with the evolution of new regulatory mechanisms, leading to the assumption of new functions.
Collapse
Affiliation(s)
- N B Terwilliger
- Oregon Institute of Marine Biology, University of Oregon, Box 5389, Charleston, OR 97420, USA.
| | | | | |
Collapse
|
24
|
Hagner-Holler S, Kusche K, Hembach A, Burmester T. Biochemical and molecular characterisation of hemocyanin from the amphipod Gammarus roeseli: complex pattern of hemocyanin subunit evolution in Crustacea. J Comp Physiol B 2005; 175:445-52. [PMID: 16025337 DOI: 10.1007/s00360-005-0012-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 05/25/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
Hemocyanin is a copper-containing respiratory protein that is widespread within the arthropod phylum. Among the Crustacea, hemocyanins are apparently restricted to the Malacostraca. While well-studied in Decapoda, no hemocyanin sequence has been known from the 'lower' Malacostraca. The hemocyanin of the amphipod Gammarus roeseli is a hexamer that consists of at least five distinct subunits. The complete cDNA sequence of one subunit and a tentative partial sequence of another subunit have been determined. The complete G. roeseli hemocyanin subunit comprises 2,150 bp, which translates in a protein of 672 amino acids with a molecular mass of 76.3 kDa. Phylogenetic analyses show that, in contrast to previous assumptions, the amphipod hemocyanins do not belong to the alpha-type of crustacean hemocyanin subunits. Rather, amphipod hemocyanins split from the clade leading to alpha and gamma-subunits most likely at the time of separation of peracarid and eucarid Crustacea about 300 million years ago. Molecular clock analyses further suggest that the divergence of beta-type subunits and other crustacean hemocyanins occurred around 315 million years ago (MYA) in the malacostracan stemline, while alpha- and gamma-type subunits separated 258 MYA, and pseudohemocyanins and gamma-subunits 210 million years ago.
Collapse
Affiliation(s)
- Silke Hagner-Holler
- Institute of Zoology, University of Mainz, Müllerweg 6, 55099 Mainz, Germany.
| | | | | | | |
Collapse
|
25
|
Chavez-Crooker P, Garrido N, Ahearn GA. Copper transport by lobster (Homarus americanus) hepatopancreatic mitochondria. J Exp Biol 2002; 205:405-13. [PMID: 11854377 DOI: 10.1242/jeb.205.3.405] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Mechanisms of copper transport into purified mitochondrial suspensions prepared from the hepatopancreas of the Atlantic lobster Homarus americanus were investigated. Mitochondria were purified by combining methods of differential and Percoll-gradient centrifugation, and copper transport was studied using the copper-sensitive fluorescent dye Phen Green. Copper transport by this mitochondrial preparation was kinetically the sum of saturable and non-saturable transfer components. Addition of 500 μmol l–1 Ca2+ or 500 nmol l–1 Ruthenium Red abolished the non-saturable copper transport component, significantly (P<0.01) reduced the apparent binding affinity of the saturable transport component, but was without effect (P>0.05) on the apparent maximal transport velocity of the saturable transfer process. The antiport inhibitor diltiazem (500 μmol l–1) acted as a mixed inhibitor of the saturable transport mechanism, but had no effect on the non-saturable component of transfer. These results suggest that the non-saturable copper influx process was probably by way of the well-known Ruthenium-Red-sensitive Ca2+ uniporter and that the saturable transport component was probably due to a combination of both the Na+-dependent, diltiazem-sensitive 1Ca2+/2Na+ antiporter and the Na+-independent, diltiazem-insensitive 1Ca2+/2H+ antiporter. A model is discussed relating these mitochondrial copper uptake processes to the transfer of metal ions across the epithelial brush-border membrane.
Collapse
Affiliation(s)
- Pamela Chavez-Crooker
- Department of Zoology, 2538 The Mall, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
26
|
Abstract
In the American lobster, Homarus americanus, oxygen is transported by a hemocyanin that is composed 2 x 6 subunits. N-terminal sequencing show the presence of three distinct subunit types (alpha, beta and gamma). We cloned the cDNA of one of these subunits that belong to the alpha-type. It encodes a hemocyanin subunit of 654 amino acids with a molecular mass of 84.8 kDa, which is synthesized in the hepatopancreas. Phylogenetic analyses of the crustacean hemocyanin sequences show two well-separated clades, which correspond to the alpha and gamma-type subunits. Sequences of beta-type subunits are still unknown. The gamma-sequences have evolved about 15% faster than the alpha-subunits, consistent with the proposed conservative function of the latter. Under the assumption of a molecular clock we calculated that alpha- and gamma-subunits split about 214 +/- 14 million years ago, suggesting their divergence only in the decapod Crustacea.
Collapse
Affiliation(s)
- K Kusche
- Institute of Zoology, University of Mainz, Müllerweg 6, Mainz, D-55099, Germany
| | | |
Collapse
|
27
|
Terwilliger N, Dumler K. Ontogeny of decapod crustacean hemocyanin: effects of temperature and nutrition. J Exp Biol 2001; 204:1013-20. [PMID: 11171424 DOI: 10.1242/jeb.204.5.1013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hemocyanin is present throughout the decapod crustacean's life, usually as one-hexamer and two-hexamer oligomers. Hemocyanins of some decapod crustaceans undergo changes in subunit composition and oxygen affinity during development. Maternal hemocyanin is taken up from the hemolymph via endocytosis by the oocyte. Embryo hemocyanin differs in subunit composition from hemocyanin of oocyte and adult crab and may represent the onset of hemocyanin synthesis. Complex changes in expression of hemocyanin subunits occur through megalopa and early juvenile stages of the crab Cancer magister, culminating in the pattern of adult hemocyanin. The influences of food availability and temperature on development, growth and hemocyanin ontogeny in early juvenile C. magister have been studied. Crabs were raised in warm or cold sea water and fed high or low levels of food for 6 months. While intermolt period was shorter in crabs fed high food levels, especially those raised in warm water, crabs reared in cold water with high food levels attained the largest sizes. Thus increased food availability affects growth more than increased temperature. Adult hemocyanin appeared at about the same number of weeks after the start of the experiment for crabs in the warm water/high food, warm water/low food and cold water/high food groups, even though warm water/low food crabs had molted fewer times. Crabs in the cold water/low food group expressed adult hemocyanin much later than the other groups. Molt stage and maturation from juvenile to adult are not absolutely coupled, and food availability has a greater influence than temperature on hemocyanin ontogeny.
Collapse
Affiliation(s)
- N Terwilliger
- Oregon Institute of Marine Biology, University of Oregon, Charleston, OR 97420, USA.
| | | |
Collapse
|
28
|
Terwilliger NB, Dangott L, Ryan M. Cryptocyanin, a crustacean molting protein: evolutionary link with arthropod hemocyanins and insect hexamerins. Proc Natl Acad Sci U S A 1999; 96:2013-8. [PMID: 10051586 PMCID: PMC26728 DOI: 10.1073/pnas.96.5.2013] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryptocyanin, a copper-free hexameric protein in crab (Cancer magister) hemolymph, has been characterized and the amino acid sequence has been deduced from its cDNA. It is markedly similar in sequence, size, and structure to hemocyanin, the copper-containing oxygen-transport protein found in many arthropods. Cryptocyanin does not bind oxygen, however, and lacks three of the six highly conserved copper-binding histidine residues of hemocyanin. Cryptocyanin has no phenoloxidase activity, although a phenoloxidase is present in the hemolymph. The concentration of cryptocyanin in the hemolymph is closely coordinated with the molt cycle and reaches levels higher than hemocyanin during premolt. Cryptocyanin resembles insect hexamerins in the lack of copper, molt cycle patterns of biosynthesis, and potential contributions to the new exoskeleton. Phylogenetic analysis of sequence similarities between cryptocyanin and other members of the hemocyanin gene family shows that cryptocyanin is closely associated with crustacean hemocyanins and suggests that cryptocyanin arose as a result of a hemocyanin gene duplication. The presence of both hemocyanin and cryptocyanin in one animal provides an example of how insect hexamerins might have evolved from hemocyanin. Our results suggest that multiple members of the hemocyanin gene family-hemocyanin, cryptocyanin, phenoloxidase, and hexamerins-may participate in two vital functions of molting animals, oxygen binding and molting. Cryptocyanin may provide important molecular data to further investigate evolutionary relationships among all molting animals.
Collapse
Affiliation(s)
- N B Terwilliger
- Oregon Institute of Marine Biology, University of Oregon, Charleston, OR 97420, USA.
| | | | | |
Collapse
|