1
|
Dong H, Chen B, Wang H, Cronan JE. The puzzle of two tandem acyl-CoA ligases of Pseudomonas putida F1. Appl Environ Microbiol 2024; 90:e0126724. [PMID: 39404437 PMCID: PMC11577802 DOI: 10.1128/aem.01267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/10/2024] [Indexed: 11/21/2024] Open
Abstract
The Pseudomonas putida F1 genome and those of many other pseudomonads contain two tandem genes encoding acyl-CoA ligases Pput_1340 (fadD1) and Pput_1339 (fadD2) with Pput_1339 (fadD2) being the upstream gene. The fadD designation was assigned when both genes were found to complement the growth of an Escherichia coli acyl-CoA synthetase fadD deletion strain with oleic acid as sole carbon source. Site-directed mutagenesis showed that residues of the ATP/AMP domain required for function of E. coli FadD were also essential for full function of FadD1 and FadD2. Growth of the constructed ∆fadD1, ∆fadD2, and ∆fadD1∆fadD2 strains was tested in minimal medium with different chain length fatty acids as sole carbon sources. Lack of FadD1 significantly retarded growth with different chain length fatty acids and lack of both FadD1 and FadD2 further retarded growth. Derivatives of the ∆fabA∆desA unsaturated fatty acid auxotrophic strain carrying a deletion of either ∆fadD1 or ∆fadD2 were constructed. Growth of the ∆fabA∆desA∆fadD1 strain was very weak, whereas the ∆fabA∆desA∆fadD2 strain grew as well as the ∆fabA∆desA parent strain. Overexpression of either fadD1 or fadD2 restored growth of the ∆fabA∆desA∆fadD1 strain with fadD2 overexpression having a greater effect than fadD1 overexpression. The ∆fadD1 or ∆fadD2 genes are cotranscribed although the expression level of fadD1 is much higher than that of fadD2. This is attributed to a fadD1 promoter located within the upstream FadD2 coding sequence. IMPORTANCE Pseudomonas bacteria demonstrate a great deal of metabolic diversity and consequently colonize a wide range of ecological niches. A characteristic of these bacteria is a pair of genes in tandem annotated as acyl-CoA ligases involved in fatty acid degradation. The Pseudomonas putida F1 genome is annotated as having at least nine genes encoding acyl-CoA ligases which are scattered around the chromosome excepting the tandem pair. Since similar tandem pairs are found in other pseudomonads, we have constructed and characterized deletion mutants of the tandem ligases. We report that the encoded proteins are authentic acyl-CoA ligases involved in fatty acid degradation.
Collapse
Affiliation(s)
- Huijuan Dong
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Bo Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haihong Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - John E. Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Mothersole R, Mothersole MK, Goddard HG, Liu J, Van Hamme JD. Enzyme Catalyzed Formation of CoA Adducts of Fluorinated Hexanoic Acid Analogues using a Long-Chain acyl-CoA Synthetase from Gordonia sp. Strain NB4-1Y. Biochemistry 2024; 63:2153-2165. [PMID: 39152907 PMCID: PMC11376266 DOI: 10.1021/acs.biochem.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Per and polyfluoroalkyl substances (PFAS) are a large family of anthropogenic fluorinated chemicals of increasing environmental concern. Over recent years, numerous microbial communities have been found to be capable of metabolizing some polyfluoroalkyl substances, generating a range of low-molecular-weight PFAS metabolites. One proposed pathway for the microbial breakdown of fluorinated carboxylates includes β-oxidation, this pathway is initiated by the formation of a CoA adduct. However, until recently no PFAS-CoA adducts had been reported. In a previous study, we were able to use a bacterial medium-chain acyl-CoA synthetase (mACS) to form CoA adducts of fluorinated adducts of propanoic acid and pentanoic acid but were not able to detect any products of fluorinated hexanoic acid analogues. Herein, we expressed and purified a long-chain acyl-CoA synthetase (lACS) and a A461K variant of mACS from the soil bacterium Gordonia sp. strain NB4-1Y and performed an analysis of substrate scope and enzyme kinetics using fluorinated and nonfluorinated carboxylates. We determined that lACS can catalyze the formation of CoA adducts of 1:5 fluorotelomer carboxylic acid (FTCA), 2:4 FTCA and 3:3 FTCA, albeit with generally low turnover rates (<0.02 s-1) compared with the nonfluorinated hexanoic acid (5.39 s-1). In addition, the A461K variant was found to have an 8-fold increase in selectivity toward hexanoic acid compared with wild-type mACS, suggesting that Ala-461 has a mechanistic role in selectivity toward substrate chain length. This provides further evidence to validate the proposed activation step involving the formation of CoA adducts in the enzymatic breakdown of PFAS.
Collapse
Affiliation(s)
- Robert
G. Mothersole
- Department
of Chemistry, Thompson Rivers University, 805 TRU Way, Kamloops, British Columbia V2C 0C8, Canada
| | - Mina K. Mothersole
- Department
of Biological Sciences, Thompson Rivers
University, 805 TRU Way, Kamloops, British Columbia V2C 0C8, Canada
| | - Hannah G. Goddard
- Department
of Biological Sciences, Thompson Rivers
University, 805 TRU Way, Kamloops, British Columbia V2C 0C8, Canada
| | - Jinxia Liu
- Department
of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Québec H3A 0C3, Canada
| | - Jonathan D. Van Hamme
- Department
of Biological Sciences, Thompson Rivers
University, 805 TRU Way, Kamloops, British Columbia V2C 0C8, Canada
| |
Collapse
|
3
|
Li X, Song S, Kong X, Chen X, Zhao Z, Lin Z, Jia Y, Zhang Y, Luo HB, Wang QP, Zhang LH, Qian W, Deng Y. Regulation of Burkholderia cenocepacia virulence by the fatty acyl-CoA ligase DsfR as a response regulator of quorum sensing signal. Cell Rep 2024; 43:114223. [PMID: 38748879 DOI: 10.1016/j.celrep.2024.114223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication mechanism mediated by small diffusible signaling molecules. Previous studies showed that RpfR controls Burkholderia cenocepacia virulence as a cis-2-dodecenoic acid (BDSF) QS signal receptor. Here, we report that the fatty acyl-CoA ligase DsfR (BCAM2136), which efficiently catalyzes in vitro synthesis of lauryl-CoA and oleoyl-CoA from lauric acid and oleic acid, respectively, acts as a global transcriptional regulator to control B. cenocepacia virulence by sensing BDSF. We show that BDSF binds to DsfR with high affinity and enhances the binding of DsfR to the promoter DNA regions of target genes. Furthermore, we demonstrate that the homolog of DsfR in B. lata, RS02960, binds to the target gene promoter, and perception of BDSF enhances the binding activity of RS02960. Together, these results provide insights into the evolved unusual functions of DsfR that control bacterial virulence as a response regulator of QS signal.
Collapse
Affiliation(s)
- Xia Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shihao Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhuoxian Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zizi Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yantao Jia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
4
|
Çolak NG, Eken NT, Ülger M, Frary A, Doğanlar S. Mapping of quantitative trait loci for the nutritional value of fresh market tomato. Funct Integr Genomics 2023; 23:121. [PMID: 37039853 DOI: 10.1007/s10142-023-01045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
The incidence of many diseases, such as cancer, cardiovascular diseases, and diabetes, is associated with malnutrition and an unbalanced daily diet. Vegetables are an important source of vitamins and essential compounds for human health. As a result, such metabolites have increasingly become the focus of breeding programs. Tomato is one of the most popular components of our daily diet. Therefore, the improvement of tomato's nutritional quality is an important goal. In the present study, we performed targeted metabolic profiling of an interspecific Solanum pimpinellifolium × S. lycopersicum inbred backcross line (IBL) population and identified quantitative trait loci responsible for the nutritional value of tomato. Transgressive segregation was apparent for many of the nutritional compounds such that some IBLs had extremely high levels of various amino acids and vitamins compared to their parents. A total of 117 QTLs for nutritional traits including 62 QTLs for amino acids, 18 QTLs for fatty acids, 12 QTLs for water-soluble vitamins, and 25 QTLs for fat-soluble vitamins were identified. Moreover, almost 24% of identified QTLs were confirmed in previous studies, and 40 possible gene candidates were found for 18 identified QTLs. These findings can help breeders to improve the nutritional value of tomato.
Collapse
Affiliation(s)
- Nergiz Gürbüz Çolak
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
- Plant Science and Technology Application and Research Center, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Neslihan Tek Eken
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Mehmet Ülger
- MULTI Tarım Seed Company, Antalya, 07112, Turkey
| | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey.
- Plant Science and Technology Application and Research Center, Izmir Institute of Technology, İzmir, 35430, Turkey.
| |
Collapse
|
5
|
Zhang F, Luo J, Shi C, Zhu L, He Q, Tian H, Wu J, Zhao J, Li C. Genome-wide analysis of the acyl-coenzyme A synthetase family and their association with the formation of goat milk flavour. Front Genet 2022; 13:980463. [PMID: 36160020 PMCID: PMC9490004 DOI: 10.3389/fgene.2022.980463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Goat milk is rich in fat and protein, thus, has high nutritional values and benefits human health. However, goaty flavour is a major concern that interferes with consumer acceptability of goat milk and the 4-alkyl-branched-chain fatty acids (vBCFAs) are the major substances relevant to the goaty flavour in goat milk. Previous research reported that the acyl-coenzyme A synthetases (ACSs) play a key role in the activation of fatty acids, which is a prerequisite for fatty acids entering anabolic and catabolic processes and highly involved in the regulation of vBCFAs metabolism. Although ACS genes have been identified in humans and mice, they have not been systematically characterized in goats. In this research, we performed genome-wide characterization of the ACS genes in goats, identifying that a total of 25 ACS genes (without ACSM2A) were obtained in the Capra hircus and each ACS protein contained the conserved AMP-binding domain. Phylogenetic analysis showed that out of the 25 genes, 21 belonged to the ACSS, ACSM, ACSL, ACSVL, and ACSBG subfamilies. However, AACS, AASDH, ACSF, and ACSF3 genes were not classified in the common evolutionary branch and belonged to the ACS superfamily. The genes in the same clade had similar conserved structures, motifs and protein domains. The expression analysis showed that the majority of ACS genes were expressed in multi tissues. The comparative analysis of expression patterns in non-lactation and lactation mammary glands of goat, sheep and cow indicated that ACSS2 and ACSF3 genes may participate in the formation mechanisms of goaty flavour in goat milk. In conclusion, current research provides important genomic resources and expression information for ACSs in goats, which will support further research on investigating the formation mechanisms of the goaty flavour in goat milk.
Collapse
Affiliation(s)
| | - Jun Luo
- *Correspondence: Jun Luo, ; Cong Li,
| | | | | | | | | | | | | | - Cong Li
- *Correspondence: Jun Luo, ; Cong Li,
| |
Collapse
|
6
|
Hao X, Chen W, Amato A, Jouhet J, Maréchal E, Moog D, Hu H, Jin H, You L, Huang F, Moosburner M, Allen AE, Gong Y. Multiplexed CRISPR/Cas9 editing of the long-chain acyl-CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids. THE NEW PHYTOLOGIST 2022; 233:1797-1812. [PMID: 34882804 DOI: 10.1111/nph.17911] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Long-chain acyl-CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil-producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown. In P. tricornutum, a family of five genes (ptACSL1-ptACSL5) encodes LACS activities. We generated single lacs knockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations. ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. The ptACSL3 mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl-CoAs for lipid synthesis. Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae.
Collapse
Affiliation(s)
- Xiahui Hao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Recherche Agronomique, Université Grenoble Alpes, UMR 5168, Grenoble, F-38041, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Recherche Agronomique, Université Grenoble Alpes, UMR 5168, Grenoble, F-38041, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Recherche Agronomique, Université Grenoble Alpes, UMR 5168, Grenoble, F-38041, France
| | - Daniel Moog
- Laboratory for Cell Biology, Philipps-University Marburg, Marburg, D-35032, Germany
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hu Jin
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lingjie You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Mark Moosburner
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Yangmin Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
7
|
Chen J, Liu L, Wang Y, Li Z, Wang G, Kraus GA, Pichersky E, Xu H. Characterization of a Cytosolic Acyl-Activating Enzyme Catalyzing the Formation of 4-Methylvaleryl-CoA for Pogostone Biosynthesis in Pogostemon Cablin. PLANT & CELL PHYSIOLOGY 2021; 62:1556-1571. [PMID: 34255851 PMCID: PMC8643619 DOI: 10.1093/pcp/pcab111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Pogostone, a compound with various pharmaceutical activities, is a major constituent of the essential oil preparation called Pogostemonis Herba, which is obtained from the plant Pogostemon cablin. The biosynthesis of pogostone has not been elucidated, but 4-methylvaleryl-CoA (4MVCoA) is a likely precursor. We analyzed the distribution of pogostone in P. cablin using gas chromatography-mass spectrometry (GC-MS) and found that pogostone accumulates at high levels in the main stems and leaves of young plants. A search for the acyl-activating enzyme (AAE) that catalyzes the formation of 4MVCoA from 4-methylvaleric acid was launched, using an RNAseq-based approach to identify 31 unigenes encoding putative AAEs including the PcAAE2, the transcript profile of which shows a strong positive correlation with the distribution pattern of pogostone. The protein encoded by PcAAE2 was biochemically characterized in vitro and shown to catalyze the formation of 4MVCoA from 4-methylvaleric acid. Phylogenetic analysis showed that PcAAE2 is closely related to other AAE proteins in P. cablin and other species that are localized to the peroxisomes. However, PcAAE2 lacks a peroxisome targeting sequence 1 (PTS1) and is localized in the cytosol.
Collapse
Affiliation(s)
- Jing Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Lang Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Ying Wang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - George A Kraus
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
8
|
Billey E, Magneschi L, Leterme S, Bedhomme M, Andres-Robin A, Poulet L, Michaud M, Finazzi G, Dumas R, Crouzy S, Laueffer F, Fourage L, Rébeillé F, Amato A, Collin S, Jouhet J, Maréchal E. Characterization of the Bubblegum acyl-CoA synthetase of Microchloropsis gaditana. PLANT PHYSIOLOGY 2021; 185:815-835. [PMID: 33793914 PMCID: PMC8133546 DOI: 10.1093/plphys/kiaa110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 05/15/2023]
Abstract
The metabolic pathways of glycerolipids are well described in cells containing chloroplasts limited by a two-membrane envelope but not in cells containing plastids limited by four membranes, including heterokonts. Fatty acids (FAs) produced in the plastid, palmitic and palmitoleic acids (16:0 and 16:1), are used in the cytosol for the synthesis of glycerolipids via various routes, requiring multiple acyl-Coenzyme A (CoA) synthetases (ACS). Here, we characterized an ACS of the Bubblegum subfamily in the photosynthetic eukaryote Microchloropsis gaditana, an oleaginous heterokont used for the production of lipids for multiple applications. Genome engineering with TALE-N allowed the generation of MgACSBG point mutations, but no knockout was obtained. Point mutations triggered an overall decrease of 16:1 in lipids, a specific increase of unsaturated 18-carbon acyls in phosphatidylcholine and decrease of 20-carbon acyls in the betaine lipid diacylglyceryl-trimethyl-homoserine. The profile of acyl-CoAs highlighted a decrease in 16:1-CoA and 18:3-CoA. Structural modeling supported that mutations affect accessibility of FA to the MgACSBG reaction site. Expression in yeast defective in acyl-CoA biosynthesis further confirmed that point mutations affect ACSBG activity. Altogether, this study supports a critical role of heterokont MgACSBG in the production of 16:1-CoA and 18:3-CoA. In M. gaditana mutants, the excess saturated and monounsaturated FAs were diverted to triacylglycerol, thus suggesting strategies to improve the oil content in this microalga.
Collapse
Affiliation(s)
- Elodie Billey
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Total Raffinage-Chimie, Tour Coupole, 2 Place Jean Millier, 92078 Paris La Défense, France
| | - Leonardo Magneschi
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Sébastien Leterme
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Mariette Bedhomme
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Total Raffinage-Chimie, Tour Coupole, 2 Place Jean Millier, 92078 Paris La Défense, France
| | - Amélie Andres-Robin
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Laurent Poulet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Renaud Dumas
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Serge Crouzy
- Laboratoire de Chimie et Biologie des Métaux, Unité mixte de Recherche 5249 CNRS–CEA–Univ. Grenoble Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Frédéric Laueffer
- Total Raffinage-Chimie, Tour Coupole, 2 Place Jean Millier, 92078 Paris La Défense, France
| | - Laurent Fourage
- Total Raffinage-Chimie, Tour Coupole, 2 Place Jean Millier, 92078 Paris La Défense, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Séverine Collin
- Total Raffinage-Chimie, Tour Coupole, 2 Place Jean Millier, 92078 Paris La Défense, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de Recherche 5168 CNRS–CEA–INRA–Univ. Grenoble-Alpes, IRIG, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| |
Collapse
|
9
|
Gao L, Wang Z, van der Veen S. Gonococcal Adaptation to Palmitic Acid Through farAB Expression and FadD Activity Mutations Increases In Vivo Fitness in a Murine Genital Tract Infection Model. J Infect Dis 2020; 224:141-150. [PMID: 33170275 DOI: 10.1093/infdis/jiaa701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Neisseria gonorrhoeae is a bacterial pathogen that colonizes mucosal epithelia that are rich in antimicrobial molecules such as long-chain fatty acids. Here we studied the mechanisms involved in palmitic acid resistance and their impact on in vivo biological fitness in a murine genital tract infection model. A stable palmitic acid-resistant derivative was obtained by serial passage with incremental palmitic acid concentrations. This derivative outcompeted its parent strain for colonization and survival in the murine infection model. Subsequent whole-genome sequencing resulted in the identification of the 3 resistance-related SNPs ihfAC5T, fadDC772T, and farAG-52T (promoter) that were verified for resistance against palmitic acid. Subsequent characterization of the associated resistance determinants showed that ihfAC5T and farAG-52T induced gene expression of the FarAB efflux pump, whereas fadDC772T increased the maximum enzyme activity of the FadD long-chain fatty acid-coenzyme A ligase. Our results highlight the mechanisms involved in gonococcal adaptation to the murine host environment.
Collapse
Affiliation(s)
- Lingyu Gao
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhemin Wang
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Tian W, Wang D, Wang Z, Jiang K, Li Z, Tian Y, Kang X, Liu X, Li H. Evolution, expression profile, and regulatory characteristics of ACSL gene family in chicken (Gallus gallus). Gene 2020; 764:145094. [PMID: 32860898 DOI: 10.1016/j.gene.2020.145094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Long chain acyl-CoA synthetases (ACSLs), which drive the conversion of long chain fatty acid into acyl-CoA, an ingredient of lipid synthesis, have been well-acknowledged to exert an indispensable role in many metabolic processes in mammals, especially lipid metabolism. However, in chicken, the evolutionary characteristics, expression profiles and regulatory mechanisms of ACSL gene family are rarely understood. Here, we analyzed the genomic synteny, gene structure, evolutionary event and functional domains of the ACSL gene family members using bioinformatics methods. The spatiotemporal expression profiles of ACSL gene family, and their regulatory mechanism were investigated via bioinformatics analysis incorporated with in vivo and in vitro estrogen-treated experiments. Our results indicated that ACSL2 gene was indeed evolutionarily lost in the genome of chicken. Chicken ACSLs shared an AMP-binding functional domain, as well as highly conversed ATP/AMP and FACS signature motifs, and were clustered into two clades, ACSL1/5/6 and ACSL3/4, based on high sequence similarity, similar gene features and conversed motifs. Chicken ACSLs showed differential tissue expression distributions, wherein the significantly decreased expression level of ACSL1 and the significantly increased expression level of ACSL5 were found, respectively, the expression levels of the other ACSL members remained unchanged in the liver of peak-laying hens versus pre-laying hens. Moreover, the transcription activity of ACSL1, ACSL3 and ACSL4 was silenced and ACSL6 was activated by estrogen, but no response to ACSL5. In conclusion, though having highly conversed functional domains, chicken ACSL gene family is organized into two separate groups, ACSL1/5/6 and ACSL3/4, and exhibits varying expression profiles and estrogen effects. These results not only pave the way for better understanding the specific functions of ACSL genes in avian lipid metabolism, but also provide a valuable evidence for gene family characteristics.
Collapse
Affiliation(s)
- Weihua Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Dandan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Keren Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China.
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China.
| |
Collapse
|
11
|
Two Functional Fatty Acyl Coenzyme A Ligases Affect Free Fatty Acid Metabolism To Block Biosynthesis of an Antifungal Antibiotic in Lysobacter enzymogenes. Appl Environ Microbiol 2020; 86:AEM.00309-20. [PMID: 32144106 PMCID: PMC7205486 DOI: 10.1128/aem.00309-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/04/2020] [Indexed: 11/20/2022] Open
Abstract
In Lysobacter enzymogenes OH11, RpfB1 and RpfB2 were predicted to encode acyl coenzyme A (CoA) ligases. RpfB1 is located in the Rpf gene cluster. Interestingly, we found an RpfB1 homolog (RpfB2) outside this canonical gene cluster, and nothing is known about its functionality or mechanism. Here, we report that rpfB1 and rpfB2 can functionally replace EcFadD in the Escherichia coli fadD mutant JW1794. RpfB activates long-chain fatty acids (n-C16:0 and n-C18:0) for the corresponding fatty acyl-CoA ligase (FCL) activity in vitro, and Glu-361 plays critical roles in the catalytic mechanism of RpfB1 and RpfB2. Deletion of rpfB1 and rpfB2 resulted in significantly increased heat-stable antifungal factor (HSAF) production, and overexpression of rpfB1 or rpfB2 completely suppressed HSAF production. Deletion of rpfB1 and rpfB2 resulted in increased L. enzymogenes diffusible signaling factor 3 (LeDSF3) synthesis in L. enzymogenes Overall, our results showed that changes in intracellular free fatty acid levels significantly altered HSAF production. Our report shows that intracellular free fatty acids are required for HSAF production and that RpfB affects HSAF production via FCL activity. The global transcriptional regulator Clp directly regulated the expression of rpfB1 and rpfB2 In conclusion, these findings reveal new roles of RpfB in antibiotic biosynthesis in L. enzymogenes IMPORTANCE Understanding the biosynthetic and regulatory mechanisms of heat-stable antifungal factor (HSAF) could improve the yield in Lysobacter enzymogenes Here, we report that RpfB1 and RpfB2 encode acyl coenzyme A (CoA) ligases. Our research shows that RpfB1 and RpfB2 affect free fatty acid metabolism via fatty acyl-CoA ligase (FCL) activity to reduce the substrate for HSAF synthesis and, thereby, block HSAF production in L. enzymogenes Furthermore, these findings reveal new roles for the fatty acyl-CoA ligases RpfB1 and RpfB2 in antibiotic biosynthesis in L. enzymogenes Importantly, the novelty of this work is the finding that RpfB2 lies outside the Rpf gene cluster and plays a key role in HSAF production, which has not been reported in other diffusible signaling factor (DSF)/Rpf-producing bacteria.
Collapse
|
12
|
Radka CD, Frank MW, Rock CO, Yao J. Fatty acid activation and utilization by Alistipes finegoldii, a representative Bacteroidetes resident of the human gut microbiome. Mol Microbiol 2020; 113:807-825. [PMID: 31876062 DOI: 10.1111/mmi.14445] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Members of the Bacteroidetes phylum, represented by Alistipes finegoldii, are prominent anerobic, Gram-negative inhabitants of the gut microbiome. The lipid biosynthetic pathways were analyzed using bioinformatic analyses, lipidomics, metabolic labeling and biochemistry to characterize exogenous fatty acid metabolism. A. finegoldii only produced the saturated fatty acids. The most abundant lipids were phosphatidylethanolamine (PE) and sulfonolipid (SL). Neither phosphatidylglycerol nor cardiolipin are present. PE synthesis is initiated by the PlsX/PlsY/PlsC pathway, whereas the SL pathway is related to sphingolipid biosynthesis. A. finegoldii incorporated medium-chain fatty acids (≤14 carbons) into PE and SL after their elongation, whereas long-chain fatty acids (≥16 carbons) were not elongated. Fatty acids >16 carbons were primarily incorporated into the 2-position of phosphatidylethanolamine at the PlsC step, the only biosynthetic enzyme that utilizes long-chain acyl-ACP. The ability to assimilate a broad-spectrum of fatty acid chain lengths present in the gut environment is due to the expression of two acyl-acyl carrier protein (ACP) synthetases. Acyl-ACP synthetase 1 had a substrate preference for medium-chain fatty acids and synthetase 2 had a substrate preference for long-chain fatty acids. This unique combination of synthetases allows A. finegoldii to utilize both the medium- and long-chain fatty acid nutrients available in the gut environment to assemble its membrane lipids.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
13
|
Local Fatty Acid Channeling into Phospholipid Synthesis Drives Phagophore Expansion during Autophagy. Cell 2019; 180:135-149.e14. [PMID: 31883797 DOI: 10.1016/j.cell.2019.12.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/29/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022]
Abstract
Autophagy is a conserved catabolic homeostasis process central for cellular and organismal health. During autophagy, small single-membrane phagophores rapidly expand into large double-membrane autophagosomes to encapsulate diverse cargoes for degradation. It is thought that autophagic membranes are mainly derived from preformed organelle membranes. Instead, here we delineate a pathway that expands the phagophore membrane by localized phospholipid synthesis. Specifically, we find that the conserved acyl-CoA synthetase Faa1 accumulates on nucleated phagophores and locally activates fatty acids (FAs) required for phagophore elongation and autophagy. Strikingly, using isotopic FA tracing, we directly show that Faa1 channels activated FAs into the synthesis of phospholipids and promotes their assembly into autophagic membranes. Indeed, the first committed steps of de novo phospholipid synthesis at the ER, which forms stable contacts with nascent autophagosomes, are essential for autophagy. Together, our work illuminates how cells spatially tune synthesis and flux of phospholipids for autophagosome biogenesis during autophagy.
Collapse
|
14
|
Gregson BH, Metodieva G, Metodiev MV, McKew BA. Differential protein expression during growth on linear versus branched alkanes in the obligate marine hydrocarbon-degrading bacterium Alcanivorax borkumensis SK2 T. Environ Microbiol 2019; 21:2347-2359. [PMID: 30951249 PMCID: PMC6850023 DOI: 10.1111/1462-2920.14620] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/19/2019] [Indexed: 02/02/2023]
Abstract
Alcanivorax borkumensis SK2T is an important obligate hydrocarbonoclastic bacterium (OHCB) that can dominate microbial communities following marine oil spills. It possesses the ability to degrade branched alkanes which provides it a competitive advantage over many other marine alkane degraders that can only degrade linear alkanes. We used LC–MS/MS shotgun proteomics to identify proteins involved in aerobic alkane degradation during growth on linear (n‐C14) or branched (pristane) alkanes. During growth on n‐C14, A. borkumensis expressed a complete pathway for the terminal oxidation of n‐alkanes to their corresponding acyl‐CoA derivatives including AlkB and AlmA, two CYP153 cytochrome P450s, an alcohol dehydrogenase and an aldehyde dehydrogenase. In contrast, during growth on pristane, an alternative alkane degradation pathway was expressed including a different cytochrome P450, an alcohol oxidase and an alcohol dehydrogenase. A. borkumensis also expressed a different set of enzymes for β‐oxidation of the resultant fatty acids depending on the growth substrate utilized. This study significantly enhances our understanding of the fundamental physiology of A. borkumensis SK2T by identifying the key enzymes expressed and involved in terminal oxidation of both linear and branched alkanes. It has also highlights the differential expression of sets of β‐oxidation proteins to overcome steric hinderance from branched substrates.
Collapse
Affiliation(s)
- Benjamin H Gregson
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Gergana Metodieva
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Metodi V Metodiev
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Boyd A McKew
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
15
|
Engineering Arabidopsis long-chain acyl-CoA synthetase 9 variants with enhanced enzyme activity. Biochem J 2019; 476:151-164. [DOI: 10.1042/bcj20180787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022]
Abstract
Abstract
Long-chain acyl-CoA synthetase (LACS, EC 6.2.1.3) catalyzes the ATP-dependent activation of free fatty acid to form acyl-CoA, which, in turn, serves as the major acyl donor for various lipid metabolic pathways. Increasing the size of acyl-CoA pool by enhancing LACS activity appears to be a useful approach to improve the production and modify the composition of fatty acid-derived compounds, such as triacylglycerol. In the present study, we aimed to improve the enzyme activity of Arabidopsis thaliana LACS9 (AtLACS9) by introducing random mutations into its cDNA using error-prone PCR. Two AtLACS9 variants containing multiple amino acid residue substitutions were identified with enhanced enzyme activity. To explore the effect of each amino acid residue substitution, single-site mutants were generated and the amino acid substitutions C207F and D238E were found to be primarily responsible for the increased activity of the two variants. Furthermore, evolutionary analysis revealed that the beneficial amino acid site C207 is conserved among LACS9 from plant eudicots, whereas the other beneficial amino acid site D238 might be under positive selection. Together, our results provide valuable information for the production of LACS variants for applications in the metabolic engineering of lipid biosynthesis in oleaginous organisms.
Collapse
|
16
|
Clark L, Leatherby D, Krilich E, Ropelewski AJ, Perozich J. In silico analysis of class I adenylate-forming enzymes reveals family and group-specific conservations. PLoS One 2018; 13:e0203218. [PMID: 30180199 PMCID: PMC6122825 DOI: 10.1371/journal.pone.0203218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022] Open
Abstract
Luciferases, aryl- and fatty-acyl CoA synthetases, and non-ribosomal peptide synthetase proteins belong to the class I adenylate-forming enzyme superfamily. The reaction catalyzed by the adenylate-forming enzymes is categorized by a two-step process of adenylation and thioesterification. Although all of these proteins perform a similar two-step process, each family may perform the process to yield completely different results. For example, luciferase proteins perform adenylation and oxidation to produce the green fluorescent light found in fireflies, while fatty-acyl CoA synthetases perform adenylation and thioesterification with coenzyme A to assist in metabolic processes involving fatty acids. This study aligned a total of 374 sequences belonging to the adenylate-forming superfamily. Analysis of the sequences revealed five fully conserved residues throughout all sequences, as well as 78 more residues conserved in at least 60% of sequences aligned. Conserved positions are involved in magnesium and AMP binding and maintaining enzyme structure. Also, ten conserved sequence motifs that included most of the conserved residues were identified. A phylogenetic tree was used to assign sequences into nine different groups. Finally, group entropy analysis identified novel conservations unique to each enzyme group. Common group-specific positions identified in multiple groups include positions critical to coordinating AMP and the CoA-bound product, a position that governs active site shape, and positions that help to maintain enzyme structure through hydrogen bonds and hydrophobic interactions. These positions could serve as excellent targets for future research.
Collapse
Affiliation(s)
- Louis Clark
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States of America
| | - Danielle Leatherby
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States of America
| | - Elizabeth Krilich
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States of America
| | - Alexander J Ropelewski
- Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - John Perozich
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States of America
| |
Collapse
|
17
|
Lopes-Marques M, Machado AM, Ruivo R, Fonseca E, Carvalho E, Castro LFC. Expansion, retention and loss in the Acyl-CoA synthetase "Bubblegum" (Acsbg) gene family in vertebrate history. Gene 2018; 664:111-118. [PMID: 29694909 DOI: 10.1016/j.gene.2018.04.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
Abstract
Fatty acids (FAs) constitute a considerable fraction of all lipid molecules with a fundamental role in numerous physiological processes. In animals, the majority of complex lipid molecules are derived from the transformation of FAs through several biochemical pathways. Yet, for FAs to enroll in these pathways they require an activation step. FA activation is catalyzed by the rate limiting action of Acyl-CoA synthases. Several Acyl-CoA enzyme families have been previously described and classified according to the chain length of FAs they process. Here, we address the evolutionary history of the ACSBG gene family which activates, FAs with >16 carbons. Currently, two different ACSBG gene families, ACSBG1 and ACSBG2, are recognized in vertebrates. We provide evidence that a wider and unequal ACSBG gene repertoire is present in vertebrate lineages. We identify a novel ACSBG-like gene lineage which occurs specifically in amphibians, ray finned fishes, coelacanths and cartilaginous fishes named ACSBG3. Also, we show that the ACSBG2 gene lineage duplicated in the Theria ancestor. Our findings, thus offer a far richer understanding on FA activation in vertebrates and provide key insights into the relevance of comparative and functional analysis to perceive physiological differences, namely those related with lipid metabolic pathways.
Collapse
Affiliation(s)
- Mónica Lopes-Marques
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Matosinhos, Portugal.
| | - André M Machado
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Matosinhos, Portugal
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Matosinhos, Portugal
| | - Elza Fonseca
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), Department of Biology, University of Porto (U. Porto), Porto, Portugal
| | - Estela Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Matosinhos, Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Matosinhos, Portugal; Faculty of Sciences (FCUP), Department of Biology, University of Porto (U. Porto), Porto, Portugal.
| |
Collapse
|
18
|
Hu Y, Zhu Z, Nielsen J, Siewers V. Heterologous transporter expression for improved fatty alcohol secretion in yeast. Metab Eng 2018; 45:51-58. [DOI: 10.1016/j.ymben.2017.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/01/2017] [Accepted: 11/18/2017] [Indexed: 11/25/2022]
|
19
|
Reversal of β-oxidative pathways for the microbial production of chemicals and polymer building blocks. Metab Eng 2017; 42:33-42. [PMID: 28550000 DOI: 10.1016/j.ymben.2017.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/28/2017] [Accepted: 05/22/2017] [Indexed: 12/30/2022]
Abstract
β-Oxidation is the ubiquitous metabolic strategy to break down fatty acids. In the course of this four-step process, two carbon atoms are liberated per cycle from the fatty acid chain in the form of acetyl-CoA. However, typical β-oxidative strategies are not restricted to monocarboxylic (fatty) acid degradation only, but can also be involved in the utilization of aromatic compounds, amino acids and dicarboxylic acids. Each enzymatic step of a typical β-oxidation cycle is reversible, offering the possibility to also take advantage of reversed metabolic pathways for applied purposes. In such cases, 3-oxoacyl-CoA thiolases, which catalyze the final chain-shortening step in the catabolic direction, mediate the condensation of an acyl-CoA starter molecule with acetyl-CoA in the anabolic direction. Subsequently, the carbonyl-group at C3 is stepwise reduced and dehydrated yielding a chain-elongated product. In the last years, several β-oxidation pathways have been studied in detail and reversal of these pathways already proved to be a promising strategy for the production of chemicals and polymer building blocks in several industrially relevant microorganisms. This review covers recent advancements in this field and discusses constraints and bottlenecks of this metabolic strategy in comparison to alternative production pathways.
Collapse
|
20
|
Chen G, Liu H, Wei Q, Zhao H, Liu J, Yu Y. The acyl-activating enzyme PhAAE13 is an alternative enzymatic source of precursors for anthocyanin biosynthesis in petunia flowers. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:457-467. [PMID: 28204578 PMCID: PMC5441920 DOI: 10.1093/jxb/erw426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Anthocyanins, a class of flavonoids, are responsible for the orange to blue coloration of flowers and act as visual attractors to aid pollination and seed dispersal. Malonyl-CoA is the precursor for the formation of flavonoids and anthocyanins. Previous studies have suggested that malonyl-CoA is formed almost exclusively by acetyl-CoA carboxylase, which catalyzes the ATP-dependent formation of malonyl-CoA from acetyl-CoA and bicarbonate. In the present study, the full-length cDNA of Petunia hybrida acyl-activating enzyme 13 (PhAAE13), a member of clade VII of the AAE superfamily that encodes malonyl-CoA synthetase, was isolated. The expression of PhAAE13 was highest in corollas and was down-regulated by ethylene. Virus-induced gene silencing of petunia PhAAE13 significantly reduced anthocyanin accumulation, fatty acid content, and cuticular wax components content, and increased malonic acid content in flowers. The silencing of PhAAE3 and PhAAE14, the other two genes in clade VII of the AAE superfamily, did not change the anthocyanin content in petunia flowers. This study provides strong evidence indicating that PhAAE13, among clade VII of the AAE superfamily, is specifically involved in anthocyanin biosynthesis in petunia flowers.
Collapse
Affiliation(s)
- Guoju Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Heping Liu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Qian Wei
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Huina Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yixun Yu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Lauciello L, Lack G, Scapozza L, Perozzo R. A high yield optimized method for the production of acylated ACPs enabling the analysis of enzymes involved in P. falciparum fatty acid biosynthesis. Biochem Biophys Rep 2016; 8:310-317. [PMID: 28955970 PMCID: PMC5613970 DOI: 10.1016/j.bbrep.2016.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022] Open
Abstract
The natural substrates of the enzymes involved in type-II fatty acid biosynthesis (FAS-II) are acylated acyl carrier proteins (acyl-ACPs). The state of the art method to produce acyl-ACPs involves the transfer of a phosphopantetheine moiety from CoA to apo-ACP by E. coli holo-ACP synthase (EcACPS), yielding holo-ACP which subsequently becomes thioesterified with free fatty acids by the E. coli acyl-ACP synthase (EcAAS). Alternatively, acyl-ACPs can be synthesized by direct transfer of acylated phosphopantetheine moieties from acyl-CoA to apo-ACP by means of EcACPS. The need for native substrates to characterize the FAS-II enzymes of P. falciparum prompted us to investigate the potential and limit of the two methods to efficiently acylate P. falciparum ACP (PfACP) with respect to chain length and β-modification and in preparative amounts. The EcAAS activity is found to be independent from the oxidation state at the β-position and accepts fatty acids as substrates with chain lengths starting from C8 to C20, whereas EcACPS accepts very efficiently acyl-CoAs with chain lengths up to C16, and with decreasing activity also longer chains (C18 to C20). Methods were developed to synthesize and purify preparative amounts of high quality natural substrates that are fully functional for the enzymes of the P. falciparum FAS-II system. The apo-form of P. falciparum ACP (PfACP) has been purified to homogeneity. PfACP can be acylated very efficiently and in preparative amounts using the improved EcACPS and EcAAS methods. Small and long chain fatty acids can be transferred. The acylation reaction is independent of the oxidation state at the β-position of the acyl-chains. Acyl-PfACPs are fully functional substrates of the corresponding P. falciparum FAS-II enzymes.
Collapse
|
22
|
van der Sluis R, Erasmus E. Xenobiotic/medium chain fatty acid: CoA ligase - a critical review on its role in fatty acid metabolism and the detoxification of benzoic acid and aspirin. Expert Opin Drug Metab Toxicol 2016; 12:1169-79. [PMID: 27351777 DOI: 10.1080/17425255.2016.1206888] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Activation of fatty acids by the acyl-CoA synthetases (ACSs) is the vital first step in fatty acid metabolism. The enzymatic and physiological characterization of the human xenobiotic/medium chain fatty acid: CoA ligases (ACSMs) has been severely neglected even though xenobiotics, such as benzoate and salicylate, are detoxified through this pathway. AREAS COVERED This review will focus on the nomenclature and substrate specificity of the human ACSM ligases; the biochemical and enzymatic characterization of ACSM1 and ACSM2B; the high sequence homology of the ACSM2 genes (ACSM2A and ACSM2B) as well as what is currently known regarding disease association studies. EXPERT OPINION Several discrepancies exist in the current literature that should be taken note of. For example, the single nucleotide polymorphisms (SNPs) reported to be associated with aspirin metabolism and multiple risk factors of metabolic syndrome are incorrect. Kinetic data on the substrate specificity of the human ACSM ligases are non-existent and currently no data exist on the influence of SNPs on the enzyme activity of these ligases. One of the biggest obstacles currently in the field is that glycine conjugation is continuously studied as a one-step process, which means that key regulatory factors of the two individual steps remain unknown.
Collapse
Affiliation(s)
- Rencia van der Sluis
- a Centre for Human Metabolomics, Biochemistry Division , North-West University , Potchefstroom , South Africa
| | - Elardus Erasmus
- a Centre for Human Metabolomics, Biochemistry Division , North-West University , Potchefstroom , South Africa
| |
Collapse
|
23
|
Narita T, Naganuma T, Sase Y, Kihara A. Long-chain bases of sphingolipids are transported into cells via the acyl-CoA synthetases. Sci Rep 2016; 6:25469. [PMID: 27136724 PMCID: PMC4853782 DOI: 10.1038/srep25469] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/18/2016] [Indexed: 01/19/2023] Open
Abstract
Transport of dietary lipids into small-intestinal epithelial cells is pathologically and nutritionally important. However, lipid uptake remains an almost unexplored research area. Although we know that long-chain bases (LCBs), constituents of sphingolipids, can enter into cells efficiently, the molecular mechanism of LCB uptake is completely unclear. Here, we found that the yeast acyl-CoA synthetases (ACSs) Faa1 and Faa4 are redundantly involved in LCB uptake. In addition to fatty acid-activating activity, transporter activity toward long-chain fatty acids (LCFAs) has been suggested for ACSs. Both LCB and LCFA transports were largely impaired in faa1Δ faa4Δ cells. Furthermore, LCB and LCFA uptakes were mutually competitive. However, the energy dependency was different for their transports. Sodium azide/2-deoxy-D-glucose treatment inhibited import of LCFA but not that of LCB. Furthermore, the ATP-AMP motif mutation FAA1 S271A largely impaired the metabolic activity and LCFA uptake, while leaving LCB import unaffected. These results indicate that only LCFA transport requires ATP. Since ACSs do not metabolize LCBs as substrates, Faa1 and Faa4 are likely directly involved in LCB transport. Furthermore, we revealed that ACSs are also involved in LCB transport in mammalian cells. Thus, our findings provide strong support for the hypothesis that ACSs directly transport LCFAs.
Collapse
Affiliation(s)
- Tomomi Narita
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Tatsuro Naganuma
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yurie Sase
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
24
|
Alves-Bezerra M, Klett EL, De Paula IF, Ramos IB, Coleman RA, Gondim KC. Long-chain acyl-CoA synthetase 2 knockdown leads to decreased fatty acid oxidation in fat body and reduced reproductive capacity in the insect Rhodnius prolixus. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:650-62. [PMID: 27091636 DOI: 10.1016/j.bbalip.2016.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Long-chain acyl-CoA esters are important intermediates in lipid metabolism and are synthesized from fatty acids by long-chain acyl-CoA synthetases (ACSL). The hematophagous insect Rhodnius prolixus, a vector of Chagas' disease, produces glycerolipids in the midgut after a blood meal, which are stored as triacylglycerol in the fat body and eggs. We identified twenty acyl-CoA synthetase genes in R. prolixus, two encoding ACSL isoforms (RhoprAcsl1 and RhoprAcsl2). RhoprAcsl1 transcripts increased in posterior midgut on the second day after feeding, and RhoprAcsl2 was highly transcribed on the tenth day. Both enzymes were expressed in Escherichia coli. Recombinant RhoprACSL1 and RhoprACSL2 had broad pH optima (7.5-9.5 and 6.5-9.5, respectively), were inhibited by triacsin C, and were rosiglitazone-insensitive. Both showed similar apparent Km for palmitic and oleic acid (2-6 μM), but different Km for arachidonic acid (0.5 and 6 μM for RhoprACSL1-Flag and RhoprACSL2-Flag, respectively). The knockdown of RhoprAcsl1 did not result in noticeable phenotypes. However, RhoprACSL2 deficient insects exhibited a 2.5-fold increase in triacylglycerol content in the fat body, and 90% decrease in fatty acid β-oxidation. RhoprAcsl2 knockdown also resulted in 20% increase in lifespan, delayed digestion, 30% reduced oviposition, and 50% reduction in egg hatching. Laid eggs and hatched nymphs showed remarkable alterations in morphology. In summary, R. prolixus ACSL isoforms have distinct roles on lipid metabolism. Although RhoprACSL1 functions remain unclear, we propose that RhoprACSL2 is the main contributor for the formation of the intracellular acyl-CoA pool channeled for β-oxidation in the fat body, and is also required for normal reproduction.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric L Klett
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Iron F De Paula
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Isabela B Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
25
|
Soid-Raggi G, Sánchez O, Ramos-Balderas JL, Aguirre J. The Adenylate-Forming Enzymes AfeA and TmpB Are Involved in Aspergillus nidulans Self-Communication during Asexual Development. Front Microbiol 2016; 7:353. [PMID: 27047469 PMCID: PMC4804170 DOI: 10.3389/fmicb.2016.00353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
Aspergillus nidulans asexual sporulation (conidiation) is triggered by different environmental signals and involves the differentiation of specialized structures called conidiophores. The elimination of genes flbA-E, fluG, and tmpA results in a fluffy phenotype characterized by delayed conidiophore development and decreased expression of the conidiation essential gene brlA. While flbA-E encode regulatory proteins, fluG and tmpA encode enzymes involved in the biosynthesis of independent signals needed for normal conidiation. Here we identify afeA and tmpB as new genes encoding members the adenylate-forming enzyme superfamily, whose inactivation cause different fluffy phenotypes and decreased conidiation and brlA expression. AfeA is most similar to unknown function coumarate ligase-like (4CL-Lk) enzymes and consistent with this, a K544N active site modification eliminates AfeA function. TmpB, identified previously as a larger homolog of the oxidoreductase TmpA, contains a NRPS-type adenylation domain. A high degree of synteny in the afeA-tmpA and tmpB regions in the Aspergilli suggests that these genes are part of conserved gene clusters. afeA, tmpA, and tmpB double and triple mutant analysis as well as afeA overexpression experiments indicate that TmpA and AfeA act in the same conidiation pathway, with TmpB acting in a different pathway. Fluorescent protein tagging shows that functional versions of AfeA are localized in lipid bodies and the plasma membrane, while TmpA and TmpB are localized at the plasma membrane. We propose that AfeA participates in the biosynthesis of an acylated compound, either a p-cuomaryl type or a fatty acid compound, which might be oxidized by TmpA and/or TmpB, while TmpB adenylation domain would be involved in the activation of a hydrophobic amino acid, which in turn would be oxidized by the TmpB oxidoreductase domain. Both, AfeA-TmpA and TmpB signals are involved in self-communication and reproduction in A. nidulans.
Collapse
Affiliation(s)
| | | | | | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| |
Collapse
|
26
|
Black PN, Ahowesso C, Montefusco D, Saini N, DiRusso CC. Fatty Acid Transport Proteins: Targeting FATP2 as a Gatekeeper Involved in the Transport of Exogenous Fatty Acids. MEDCHEMCOMM 2016; 7:612-622. [PMID: 27446528 DOI: 10.1039/c6md00043f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fatty acid transport proteins (FATP) are classified as members of the Solute Carrier 27 (Slc27) family of proteins based on their ability to function in the transport of exogenous fatty acids. These proteins, when localized to the plasma membrane or at intracellular membrane junctions with the endoplasmic reticulum, function as a gate in the regulated transport of fatty acids and thus represent a therapeutic target to delimit the acquisition of fatty acids that contribute to disease as in the case of fatty acid overload. To date, FATP1, FATP2, and FATP4 have been used as targets in the selection of small molecule inhibitors with the goal of treating insulin resistance and attenuating dietary absorption of fatty acids. Several studies targeting FATP1 and FATP4 were based on the intrinsic acyl CoA synthetase activity of these proteins and not on transport directly. While several classes of compounds were identified as potential inhibitors of fatty acid transport, in vivo studies using a mouse model failed to provide evidence these compounds were effective in blocking or attenuating fatty acid transport. Studies targeting FATP2 employed a naturally occurring splice variant, FATP2b, which lacks intrinsic acyl CoA synthetase due to the deletion of exon 3, yet is fully functional in fatty acid transport. These studies identified two compounds, 5'-bromo-5-phenyl-spiro[3H-1,3,4-thiadiazole-2,3'-indoline]-2'-one), now referred to as Lipofermata, and 2-benzyl-3-(4-chlorophenyl)-5-(4-nitrophenyl)pyrazolo[1,5-a]pyrimidin-7(4H)-one, now called Grassofermata, that are effective fatty acid transport inhibitors both in vitro using a series of model cell lines and in vivo using a mouse model.
Collapse
Affiliation(s)
- Paul N Black
- Department of Biochemistry, University of Nebraska, Lincoln, NE
| | | | | | - Nipun Saini
- Department of Biochemistry, University of Nebraska, Lincoln, NE
| | | |
Collapse
|
27
|
Oberhardt MA, Zarecki R, Reshef L, Xia F, Duran-Frigola M, Schreiber R, Henry CS, Ben-Tal N, Dwyer DJ, Gophna U, Ruppin E. Systems-Wide Prediction of Enzyme Promiscuity Reveals a New Underground Alternative Route for Pyridoxal 5'-Phosphate Production in E. coli. PLoS Comput Biol 2016; 12:e1004705. [PMID: 26821166 PMCID: PMC4731195 DOI: 10.1371/journal.pcbi.1004705] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022] Open
Abstract
Recent insights suggest that non-specific and/or promiscuous enzymes are common and active across life. Understanding the role of such enzymes is an important open question in biology. Here we develop a genome-wide method, PROPER, that uses a permissive PSI-BLAST approach to predict promiscuous activities of metabolic genes. Enzyme promiscuity is typically studied experimentally using multicopy suppression, in which over-expression of a promiscuous 'replacer' gene rescues lethality caused by inactivation of a 'target' gene. We use PROPER to predict multicopy suppression in Escherichia coli, achieving highly significant overlap with published cases (hypergeometric p = 4.4e-13). We then validate three novel predicted target-replacer gene pairs in new multicopy suppression experiments. We next go beyond PROPER and develop a network-based approach, GEM-PROPER, that integrates PROPER with genome-scale metabolic modeling to predict promiscuous replacements via alternative metabolic pathways. GEM-PROPER predicts a new indirect replacer (thiG) for an essential enzyme (pdxB) in production of pyridoxal 5'-phosphate (the active form of Vitamin B6), which we validate experimentally via multicopy suppression. We perform a structural analysis of thiG to determine its potential promiscuous active site, which we validate experimentally by inactivating the pertaining residues and showing a loss of replacer activity. Thus, this study is a successful example where a computational investigation leads to a network-based identification of an indirect promiscuous replacement of a key metabolic enzyme, which would have been extremely difficult to identify directly.
Collapse
Affiliation(s)
- Matthew A. Oberhardt
- School of Computer Sciences and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Bioinformatics and Computational Biology, Department of Computer Science, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (MAO); (ER)
| | - Raphy Zarecki
- School of Computer Sciences and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leah Reshef
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Fangfang Xia
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Miquel Duran-Frigola
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Rachel Schreiber
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Christopher S. Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel J. Dwyer
- Department of Cell Biology and Molecular Genetics, Institute for Physical Science and Technology, Department of Bioengineering, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Uri Gophna
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Ruppin
- School of Computer Sciences and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Center for Bioinformatics and Computational Biology, Department of Computer Science, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (MAO); (ER)
| |
Collapse
|
28
|
Guo F, Zhang H, Payne HR, Zhu G. Differential Gene Expression and Protein Localization of Cryptosporidium parvum Fatty Acyl-CoA Synthetase Isoforms. J Eukaryot Microbiol 2015; 63:233-46. [PMID: 26411755 DOI: 10.1111/jeu.12272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 11/28/2022]
Abstract
Cryptosporidium parvum is unable to synthesize fatty acids de novo, but possesses three long-chain fatty acyl-CoA synthetase (CpACS) isoforms for activating fatty acids. We have recently shown that these enzymes could be targeted to kill the parasite in vitro and in vivo. Here, we demonstrated that the CpACS genes were differentially expressed during the parasite life cycle, and their proteins were localized to different subcellular structures by immunofluorescence and immuno-electron microscopies. Among them, CpACS1 displayed as an apical protein in sporozoites and merozoites, but no or little presence during the intracellular merogony until the release of merozoites, suggesting that CpACS1 probably functioned mainly during the parasite invasion and/or early stage of intracellular development. Both CpACS2 and CpACS3 proteins were present in all parasite life cycle stages, in which CpACS2 was present in the parasite and the parasitophorous vacuole membranes (PVM), whereas CpACS3 was mainly present in the parasite plasma membranes with little presence in the PVM. These observations suggest that CpACS2 and CpACS3 may participate in scavenging and transport of fatty acids across the PVM and the parasite cytoplasmic membranes, respectively.
Collapse
Affiliation(s)
- Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Harold Ross Payne
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
29
|
Fatty acid transport proteins in disease: New insights from invertebrate models. Prog Lipid Res 2015; 60:30-40. [PMID: 26416577 DOI: 10.1016/j.plipres.2015.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/18/2015] [Indexed: 11/22/2022]
Abstract
The dysregulation of lipid metabolism has been implicated in various diseases, including diabetes, cardiopathies, dermopathies, retinal and neurodegenerative diseases. Mouse models have provided insights into lipid metabolism. However, progress in the understanding of these pathologies is hampered by the multiplicity of essential cellular processes and genes that modulate lipid metabolism. Drosophila and Caenorhabditis elegans have emerged as simple genetic models to improve our understanding of these metabolic diseases. Recent studies have characterized fatty acid transport protein (fatp) mutants in Drosophila and C. elegans, establishing new models of cardiomyopathy, retinal degeneration, fat storage disease and dermopathies. These models have generated novel insights into the physiological role of the Fatp protein family in vivo in multicellular organisms, and are likely to contribute substantially to progress in understanding the etiology of various metabolic disorders. Here, we describe and discuss the mechanisms underlying invertebrate fatp mutant models in the light of the current knowledge relating to FATPs and lipid disorders in vertebrates.
Collapse
|
30
|
Ford TJ, Way JC. Enhancement of E. coli acyl-CoA synthetase FadD activity on medium chain fatty acids. PeerJ 2015; 3:e1040. [PMID: 26157619 PMCID: PMC4493641 DOI: 10.7717/peerj.1040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/31/2015] [Indexed: 12/22/2022] Open
Abstract
FadD catalyses the first step in E. coli beta-oxidation, the activation of free fatty acids into acyl-CoA thioesters. This activation makes fatty acids competent for catabolism and reduction into derivatives like alcohols and alkanes. Alcohols and alkanes derived from medium chain fatty acids (MCFAs, 6-12 carbons) are potential biofuels; however, FadD has low activity on MCFAs. Herein, we generate mutations in fadD that enhance its acyl-CoA synthetase activity on MCFAs. Homology modeling reveals that these mutations cluster on a face of FadD from which the co-product, AMP, is expected to exit. Using FadD homology models, we design additional FadD mutations that enhance E. coli growth rate on octanoate and provide evidence for a model wherein FadD activity on octanoate can be enhanced by aiding product exit. These studies provide FadD mutants useful for producing MCFA derivatives and a rationale to alter the substrate specificity of adenylating enzymes.
Collapse
Affiliation(s)
- Tyler J Ford
- Department of Systems Biology, Harvard Medical School , Boston, MA , USA
| | - Jeffrey C Way
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
31
|
Regulatory and functional diversity of methylmercaptopropionate coenzyme A ligases from the dimethylsulfoniopropionate demethylation pathway in Ruegeria pomeroyi DSS-3 and other proteobacteria. J Bacteriol 2014; 196:1275-85. [PMID: 24443527 DOI: 10.1128/jb.00026-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The organosulfur compound dimethylsulfoniopropionate (DMSP) is produced by phytoplankton and is ubiquitous in the surface ocean. Once released from phytoplankton, marine bacteria degrade DMSP by either the cleavage pathway to form the volatile gas dimethylsulfide (DMS) or the demethylation pathway, yielding methanethiol (MeSH), which is readily assimilated or oxidized. The enzyme DmdB, a methylmercaptopropionate (MMPA)-coenzyme A (CoA) ligase, catalyzes the second step in the demethylation pathway and is a major regulatory point. The two forms of DmdB present in the marine roseobacter Ruegeria pomeroyi DSS-3, RPO_DmdB1 and RPO_DmdB2, and the single form in the SAR11 clade bacterium "Candidatus Pelagibacter ubique" HTCC1062, PU_DmdB1, were characterized in detail. DmdB enzymes were also examined from Ruegeria lacuscaerulensis ITI-1157, Pseudomonas aeruginosa PAO1, and Burkholderia thailandensis E264. The DmdB enzymes separated into two phylogenetic clades. All enzymes had activity with MMPA and were sensitive to inhibition by salts, but there was no correlation between the clades and substrate specificity or salt sensitivity. All Ruegeria species enzymes were inhibited by physiological concentrations (70 mM) of DMSP. However, ADP reversed the inhibition of RPO_DmdB1, suggesting that this enzyme was responsive to cellular energy charge. MMPA reversed the inhibition of RPO_DmdB2 as well as both R. lacuscaerulensis ITI-1157 DmdB enzymes, suggesting that a complex regulatory system exists in marine bacteria. In contrast, the DmdBs of the non-DMSP-metabolizing P. aeruginosa PAO1 and B. thailandensis E264 were not inhibited by DMSP, suggesting that DMSP inhibition is a specific adaptation of DmdBs from marine bacteria.
Collapse
|
32
|
Janßen HJ, Steinbüchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:7. [PMID: 24405789 PMCID: PMC3896788 DOI: 10.1186/1754-6834-7-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/24/2013] [Indexed: 05/04/2023]
Abstract
The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed.
Collapse
Affiliation(s)
- Helge Jans Janßen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Zheng MG, Huang YJ, Zheng L, Sun ZT, Wang L. Cloning, expression and stress-respondent transcription of long-chain acyl-coenzyme A synthetase cDNA gene of Nannochloropsis gaditana and its involvement in the biosynthesis of eicosapentaenoic and decosahexaenoic acids. Biotechnol Lett 2013; 36:141-5. [PMID: 24068506 DOI: 10.1007/s10529-013-1342-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/02/2013] [Indexed: 11/25/2022]
Abstract
A novel cDNA gene, NgLACS, that encodes a long-chain acyl-CoA sythetase (LACS), was cloned from Nannochloropsis gaditana and characterized. The cDNA was 2,360 bp in length, consisting of an ORF of 1,950 bp, a 5'-untranslated region of 88 bp and a 3'-untranslated region of 322 bp. The deduced amino acid sequence of LACS was 649 amino acid residues in length with a predicted molecular weight of 71 kDa and an isoelectric point of pH 7.8. When the alga was treated with excessive nitrogen and iron, and at 15 °C, the proportion of long-chain polyunsaturated acyl-CoAs in the total acyl-CoAs and the abundance of NgLACS cDNA gene transcript were up-regulated. Over-expression of NgLACS in Saccharomyces cerevisiae caused the accumulation of eicosapentaenoic acid and docosahexaenoic acid.
Collapse
Affiliation(s)
- Ming-Gang Zheng
- The First Institute of Oceanography, State Oceanic Administration of China, Qingdao, 266061, People's Republic of China,
| | | | | | | | | |
Collapse
|
34
|
Physiological role of Acyl coenzyme A synthetase homologs in lipid metabolism in Neurospora crassa. EUKARYOTIC CELL 2013; 12:1244-57. [PMID: 23873861 DOI: 10.1128/ec.00079-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acyl coenzyme A (CoA) synthetase (ACS) enzymes catalyze the activation of free fatty acids (FAs) to CoA esters by a two-step thioesterification reaction. Activated FAs participate in a variety of anabolic and catabolic lipid metabolic pathways, including de novo complex lipid biosynthesis, FA β-oxidation, and lipid membrane remodeling. Analysis of the genome sequence of the filamentous fungus Neurospora crassa identified seven putative fatty ACSs (ACS-1 through ACS-7). ACS-3 was found to be the major activator for exogenous FAs for anabolic lipid metabolic pathways, and consistent with this finding, ACS-3 localized to the endoplasmic reticulum, plasma membrane, and septa. Double-mutant analyses confirmed partial functional redundancy of ACS-2 and ACS-3. ACS-5 was determined to function in siderophore biosynthesis, indicating alternative functions for ACS enzymes in addition to fatty acid metabolism. The N. crassa ACSs involved in activation of FAs for catabolism were not specifically defined, presumably due to functional redundancy of several of ACSs for catabolism of exogenous FAs.
Collapse
|
35
|
Zarzycki-Siek J, Norris MH, Kang Y, Sun Z, Bluhm AP, McMillan IA, Hoang TT. Elucidating the Pseudomonas aeruginosa fatty acid degradation pathway: identification of additional fatty acyl-CoA synthetase homologues. PLoS One 2013; 8:e64554. [PMID: 23737986 PMCID: PMC3667196 DOI: 10.1371/journal.pone.0064554] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/16/2013] [Indexed: 01/22/2023] Open
Abstract
The fatty acid (FA) degradation pathway of Pseudomonas aeruginosa, an opportunistic pathogen, was recently shown to be involved in nutrient acquisition during BALB/c mouse lung infection model. The source of FA in the lung is believed to be phosphatidylcholine, the major component of lung surfactant. Previous research indicated that P. aeruginosa has more than two fatty acyl-CoA synthetase genes (fadD; PA3299 and PA3300), which are responsible for activation of FAs using ATP and coenzyme A. Through a bioinformatics approach, 11 candidate genes were identified by their homology to the Escherichia coli FadD in the present study. Four new homologues of fadD (PA1617, PA2893, PA3860, and PA3924) were functionally confirmed by their ability to complement the E. coli fadD mutant on FA-containing media. Growth phenotypes of 17 combinatorial fadD mutants on different FAs, as sole carbon sources, indicated that the four new fadD homologues are involved in FA degradation, bringing the total number of P. aeruginosa fadD genes to six. Of the four new homologues, fadD4 (PA1617) contributed the most to the degradation of different chain length FAs. Growth patterns of various fadD mutants on plant-based perfumery substances, citronellic and geranic acids, as sole carbon and energy sources indicated that fadD4 is also involved in the degradation of these plant-derived compounds. A decrease in fitness of the sextuple fadD mutant, relative to the ΔfadD1D2 mutant, was only observed during BALB/c mouse lung infection at 24 h.
Collapse
Affiliation(s)
- Jan Zarzycki-Siek
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Michael H. Norris
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Yun Kang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Zhenxin Sun
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Andrew P. Bluhm
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Ian A. McMillan
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Tung T. Hoang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
36
|
Liu Y, Chen SH, Jin X, Li YM. Analysis of differentially expressed genes and microRNAs in alcoholic liver disease. Int J Mol Med 2013; 31:547-54. [PMID: 23337955 DOI: 10.3892/ijmm.2013.1243] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/16/2012] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to screen differentially expressed genes and microRNAs in order to find a new target for the accurate diagnosis and effective therapy of alcoholic liver disease (ALD) at the gene and microRNA levels. The total RNA of liver tissues was extracted from four groups of patients, ten subjects each. Microarrays were utilized to detect differentially expressed genes and microRNAs. According to gene values, significance levels and false discovery rate with a random variance model, gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, node genes and key microRNAs in networks were obtained and analyzed. A total of 878 differentially expressed genes and 26 microRNAs were found. In co-expression genetic networks, node genes modulating the network were Acyl-coenzyme A synthetase-3 (ACSF3), Frizzled-5 (FZD5), LOC727987 and C1orf222. In microRNA-gene networks, the key microRNAs were hsa-miR-570, hsa-miR-122, hsa-miR-34b, hsa-miR-29c, hsa-miR-922 and hsa-miR-185, which negatively regulated approximately 79 downstream target genes. In the course of ALD, we found 4 differentially expressed node genes and analyzed ACSF3 and FZD5. ACSF3 was significantly upregulated, and was involved in fatty acid and lipid metabolism and accelerated liver injury. These two genes were involved in fatty acids and lipid metabolism. FZD5 was downregulated and reduced the synthesis of membrane transport protein in the hepatic membrane and the membrane stability, and accelerated the liver cell apoptosis process. Six key microRNAs regulated numerous biological functions such as the immune response, the inflammatory response and glutathione metabolism. This finding provides valuable insight into the diagnosis and treatment of ALD.
Collapse
Affiliation(s)
- Ying Liu
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin, Heilongjiang 150036, PR China
| | | | | | | |
Collapse
|
37
|
Use of comparative proteomics to identify the effects of creatine pyruvate on lipid and protein metabolism in broiler chickens. Vet J 2012; 193:514-21. [PMID: 22398130 DOI: 10.1016/j.tvjl.2012.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/30/2011] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
Abstract
Four hundred male chickens were selected to study the effects of pyruvate (Pyr), creatine pyruvate (CrPyr) and creatine (Cr) on the expression of hepatic mitochondrial and cytoplasm proteins associated with lipid and protein metabolism. Mitochondrial purification was accomplished using the two-step differential centrifugation and density gradient method, and the activities of organelle-specific marker enzymes were determined to assess the purity of the mitochondria. Proteins were extracted and fractionated by two-dimensional electrophoresis and the differential protein spots were assessed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. CrPyr reduced fatty acid accumulation by down-regulating adipose differentiation-related protein, inhibited ATP synthase expression, and reduced cholesteryl ester transfer protein (CETP) expression, thus reducing the levels of high density lipoprotein and triglycerol (TG) levels (thereby lowering fat and cholesterol deposition). CrPyr increased the expression of eukaryotic translation initiation factor (eIF) 2B, calreticulin (CRT) and eIF3a, thus promoting protein synthesis. CrPyr up-regulated the expression of fatty acid-binding proteins, CETP and apolipoprotein A-IV in cytoplasmic extracts, and these proteins accelerated the decomposition of fatty acids and TG, thus reducing fat deposition. In conclusion, CrPyr plays an important role in lipolysis and protein synthesis, and this effect was more pronounced than was the effect of Pyr and Cr.
Collapse
|
38
|
Lasek R, Dziewit L, Bartosik D. Plasmid pP62BP1 isolated from an Arctic Psychrobacter sp. strain carries two highly homologous type II restriction-modification systems and a putative organic sulfate metabolism operon. Extremophiles 2012; 16:363-76. [PMID: 22392282 PMCID: PMC3346939 DOI: 10.1007/s00792-012-0435-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/21/2012] [Indexed: 11/28/2022]
Abstract
The complete nucleotide sequence of plasmid pP62BP1 (34,467 bp), isolated from Arctic Psychrobacter sp. DAB_AL62B, was determined and annotated. The conserved plasmid backbone is composed of several genetic modules, including a replication system (REP) with similarities to the REP region of the iteron-containing plasmid pPS10 of Pseudomonas syringae. The additional genetic load of pP62BP1 includes two highly related type II restriction-modification systems and a set of genes (slfRCHSL) encoding enzymes engaged in the metabolism of organic sulfates, plus a putative transcriptional regulator (SlfR) of the AraC family. The pP62BP1 slf locus has a compact and unique structure. It is predicted that the enzymes SlfC, SlfH, SlfS and SlfL carry out a chain of reactions leading to the transformation of alkyl sulfates into acyl-CoA, with dodecyl sulfate (SDS) as a possible starting substrate. Comparative analysis of the nucleotide sequences of pP62BP1 and other Psychrobacter spp. plasmids revealed their structural diversity. However, the presence of a few highly conserved DNA segments in pP62BP1, plasmid 1 of P. cryohalolentis K5 and pRWF-101 of Psychrobacter sp. PRwf-1 is indicative of recombinational shuffling of genetic information, and is evidence of lateral gene transfer in the Arctic environment.
Collapse
Affiliation(s)
- Robert Lasek
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | | | | |
Collapse
|
39
|
Watkins PA, Ellis JM. Peroxisomal acyl-CoA synthetases. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1411-20. [PMID: 22366061 DOI: 10.1016/j.bbadis.2012.02.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/12/2012] [Accepted: 02/10/2012] [Indexed: 01/26/2023]
Abstract
Peroxisomes carry out many essential lipid metabolic functions. Nearly all of these functions require that an acyl group-either a fatty acid or the acyl side chain of a steroid derivative-be thioesterified to coenzyme A (CoA) for subsequent reactions to proceed. This thioesterification, or "activation", reaction, catalyzed by enzymes belonging to the acyl-CoA synthetase family, is thus central to cellular lipid metabolism. However, despite our rather thorough understanding of peroxisomal metabolic pathways, surprisingly little is known about the specific peroxisomal acyl-CoA synthetases that participate in these pathways. Of the 26 acyl-CoA synthetases encoded by the human and mouse genomes, only a few have been reported to be peroxisomal, including ACSL4, SLC27A2, and SLC27A4. In this review, we briefly describe the primary peroxisomal lipid metabolic pathways in which fatty acyl-CoAs participate. Then, we examine the evidence for presence and functions of acyl-CoA synthetases in peroxisomes, much of which was obtained before the existence of multiple acyl-CoA synthetase isoenzymes was known. Finally, we discuss the role(s) of peroxisome-specific acyl-CoA synthetase isoforms in lipid metabolism.
Collapse
|
40
|
Bonnett SA, Papireddy K, Higgins S, del Cardayre S, Reynolds KA. Functional characterization of an NADPH dependent 2-alkyl-3-ketoalkanoic acid reductase involved in olefin biosynthesis in Stenotrophomonas maltophilia. Biochemistry 2011; 50:9633-40. [PMID: 21958090 DOI: 10.1021/bi201096w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OleD is shown to play a key reductive role in the generation of alkenes (olefins) from acyl thioesters in Stenotrophomonas maltophilia. The gene coding for OleD clusters with three other genes, oleABC, and all appear to be transcribed in the same direction as an operon in various olefin producing bacteria. In this study, a series of substrates varying in chain length and stereochemistry were synthesized and used to elucidate the functional role and substrate specificity of OleD. We demonstrated that OleD, which is an NADP(H) dependent reductase, is a homodimer which catalyzes the reversible stereospecific reduction of 2-alkyl-3-ketoalkanoic acids. Maximal catalytic efficiency was observed with syn-2-decyl-3-hydroxytetradecanoic acid, with a k(cat)/K(m) 5- and 8-fold higher than for syn-2-octyl-3-hydroxydodecanoic acid and syn-2-hexyl-3-hydroxydecanoic acid, respectively. OleD activity was not observed with syn-2-butyl-3-hydroxyoctanoic acid and compounds lacking a 2-alkyl group such as 3-ketodecanoic and 3-hydroxydecanoic acids, suggesting the necessity of the 2-alkyl chain for enzyme recognition and catalysis. Using diastereomeric pairs of substrates and 4 enantiopure isomers of 2-hexyl-3-hydroxydecanoic acid of known stereochemistry, OleD was shown to have a marked stereochemical preference for the (2R,3S)-isomer. Finally, experiments involving OleA and OleD demonstrate the first 3 steps and stereochemical course in olefin formation from acyl thioesters; condensation to form a 2-alkyl-3-ketoacyl thioester, subsequent thioester hydrolysis, and ketone reduction.
Collapse
Affiliation(s)
- Shilah A Bonnett
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | | | | | | | | |
Collapse
|
41
|
Opaque7 encodes an acyl-activating enzyme-like protein that affects storage protein synthesis in maize endosperm. Genetics 2011; 189:1281-95. [PMID: 21954158 DOI: 10.1534/genetics.111.133967] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In maize, a series of seed mutants with starchy endosperm could increase the lysine content by decreased amount of zeins, the main storage proteins in endosperm. Cloning and characterization of these mutants could reveal regulatory mechanisms for zeins accumulation in maize endosperm. Opaque7 (o7) is a classic maize starchy endosperm mutant with large effects on zeins accumulation and high lysine content. In this study, the O7 gene was cloned by map-based cloning and confirmed by transgenic functional complementation and RNAi. The o7-ref allele has a 12-bp in-frame deletion. The four-amino-acid deletion caused low accumulation of o7 protein in vivo. The O7 gene encodes an acyl-activating enzyme with high similarity to AAE3. The opaque phenotype of the o7 mutant was produced by the reduction of protein body size and number caused by a decrease in the α-zeins concentrations. Analysis of amino acids and metabolites suggested that the O7 gene might affect amino acid biosynthesis by affecting α-ketoglutaric acid and oxaloacetic acid. Transgenic rice seeds containing RNAi constructs targeting the rice ortholog of maize O7 also produced lower amounts of seed proteins and displayed an opaque endosperm phenotype, indicating a conserved biological function of O7 in cereal crops. The cloning of O7 revealed a novel regulatory mechanism for storage protein synthesis and highlighted an effective target for the genetic manipulation of storage protein contents in cereal seeds.
Collapse
|
42
|
The maize high-lysine mutant opaque7 is defective in an acyl-CoA synthetase-like protein. Genetics 2011; 189:1271-80. [PMID: 21926304 DOI: 10.1534/genetics.111.133918] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Maize (Zea mays) has a large class of seed mutants with opaque or nonvitreous endosperms that could improve the nutritional quality of our food supply. The phenotype of some of them appears to be linked to the improper formation of protein bodies (PBs) where zein storage proteins are deposited. Although a number of genes affecting endosperm vitreousness have been isolated, it has been difficult to clone opaque7 (o7), mainly because of its low penetrance in many genetic backgrounds. The o7-reference (o7-ref) mutant arose spontaneously in a W22 inbred, but is poorly expressed in other lines. We report here the isolation of o7 with a combination of map-based cloning and transposon tagging. We first identified an o7 candidate gene by map-based cloning. The putative o7-ref allele has a 12-bp in-frame deletion of codons 350-353 in a 528-codon-long acyl-CoA synthetase-like gene (ACS). We then confirmed this candidate gene by generating another mutant allele from a transposon-tagging experiment using the Activator/Dissociation (Ac/Ds) system in a W22 background. The second allele, isolated from ∼1 million gametes, presented a 2-kb Ds insertion that resembles the single Ds component of double-Ds, McClintock's original Dissociation element, at codon 496 of the ACS gene. PBs exhibited striking membrane invaginations in the o7-ref allele and a severe number reduction in the Ds-insertion mutant, respectively. We propose a model in which the ACS enzyme plays a key role in membrane biogenesis, by taking part in protein acylation, and that altered PBs render the seed nonvitreous.
Collapse
|
43
|
Deng Y, Fong SS. Laboratory evolution and multi-platform genome re-sequencing of the cellulolytic actinobacterium Thermobifida fusca. J Biol Chem 2011; 286:39958-66. [PMID: 21914801 DOI: 10.1074/jbc.m111.239616] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biological utilization of cellulose is a complex process involving the coordinated expression of different cellulases, often in a synergistic manner. One possible means of inducing an organism-level change in cellulase activity is to use laboratory adaptive evolution. In this study, evolved strains of the cellulolytic actinobacterium, Thermobifida fusca, were generated for two different scenarios: continuous exposure to cellobiose (strain muC) or alternating exposure to cellobiose and glucose (strain muS). These environmental conditions produced a phenotype specialized for growth on cellobiose (muC) and an adaptable, generalist phenotype (muS). Characterization of cellular phenotypes and whole genome re-sequencing were conducted for both the muC and muS strains. Phenotypically, the muC strain showed decreased cell yield over the course of evolution concurrent with decreased cellulase activity, increased intracellular ATP concentrations, and higher end-product secretions. The muS strain increased its cell yield for growth on glucose and exhibited a more generalist phenotype with higher cellulase activity and growth capabilities on different substrates. Whole genome re-sequencing identified 48 errors in the reference genome and 18 and 14 point mutations in the muC and muS strains, respectively. Among these mutations, the site mutation of Tfu_1867 was found to contribute the specialist phenotype and the site mutation of Tfu_0423 was found to contribute the generalist phenotype. By conducting and characterizing evolution experiments on Thermobifida fusca, we were able to show that evolutionary changes balance ATP energetic considerations with cellulase activity. Increased cellulase activity is achieved in stress environments (switching carbon sources), otherwise cellulase activity is minimized to conserve ATP.
Collapse
Affiliation(s)
- Yu Deng
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | | |
Collapse
|
44
|
Tissue- and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in Caenorhabditis elegans. Biochem J 2011; 437:231-41. [PMID: 21539519 DOI: 10.1042/bj20102099] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ACBP (acyl-CoA-binding protein) is a small primarily cytosolic protein that binds acyl-CoA esters with high specificity and affinity. ACBP has been identified in all eukaryotic species, indicating that it performs a basal cellular function. However, differential tissue expression and the existence of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs: four basal forms and three ACBP domain proteins. We find that each of these paralogues is capable of complementing the growth of ACBP-deficient yeast cells, and that they exhibit distinct temporal and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however, we find that functional loss of ACBP-1 leads to reduced triacylglycerol (triglyceride) levels and aberrant lipid droplet morphology and number in the intestine. We also show that worms lacking ACBP-2 show a severe decrease in the β-oxidation of unsaturated fatty acids. A quadruple mutant, lacking all basal ACBPs, is slightly developmentally delayed, displays abnormal intestinal lipid storage, and increased β-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans.
Collapse
|
45
|
Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria. Nat Genet 2011; 43:883-6. [PMID: 21841779 PMCID: PMC3163731 DOI: 10.1038/ng.908] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 07/15/2011] [Indexed: 11/08/2022]
Abstract
We used exome sequencing to identify the genetic basis of combined malonic and methylmalonic aciduria (CMAMMA). We sequenced the exome of an individual with CMAMMA and followed up with sequencing of eight additional affected individuals (cases). This included one individual who was identified and diagnosed by searching an exome database. We identify mutations in ACSF3, encoding a putative methylmalonyl-CoA and malonyl-CoA synthetase as a cause of CMAMMA. We also examined a canine model of CMAMMA, which showed pathogenic mutations in a predicted ACSF3 ortholog. ACSF3 mutant alleles occur with a minor allele frequency of 0.0058 in ∼1,000 control individuals, predicting a CMAMMA population incidence of ∼1:30,000. ACSF3 deficiency is the first human disorder identified as caused by mutations in a gene encoding a member of the acyl-CoA synthetase family, a diverse group of evolutionarily conserved proteins, and may emerge as one of the more common human metabolic disorders.
Collapse
|
46
|
Kaur J, Tiwari R, Kumar A, Singh N. Bioinformatic Analysis of Leishmania donovani Long-Chain Fatty Acid-CoA Ligase as a Novel Drug Target. Mol Biol Int 2011; 2011:278051. [PMID: 22091399 PMCID: PMC3198602 DOI: 10.4061/2011/278051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/29/2011] [Accepted: 04/13/2011] [Indexed: 11/20/2022] Open
Abstract
Fatty acyl-CoA synthetase (fatty acid: CoA ligase, AMP-forming; (EC 6.2.1.3)) catalyzes the formation of fatty acyl-CoA by a two-step process that proceeds through the hydrolysis of pyrophosphate. Fatty acyl-CoA represents bioactive compounds that are involved in protein transport, enzyme activation, protein acylation, cell signaling, and transcriptional control in addition to serving as substrates for beta oxidation and phospholipid biosynthesis. Fatty acyl-CoA synthetase occupies a pivotal role in cellular homeostasis, particularly in lipid metabolism. Our interest in fatty acyl-CoA synthetase stems from the identification of this enzyme, long-chain fatty acyl-CoA ligase (LCFA) by microarray analysis. We found this enzyme to be differentially expressed by Leishmania donovani amastigotes resistant to antimonial treatment. In the present study, we confirm the presence of long-chain fatty acyl-CoA ligase gene in the genome of clinical isolates of Leishmania donovani collected from the disease endemic area in India. We predict a molecular model for this enzyme for in silico docking studies using chemical library available in our institute. On the basis of the data presented in this work, we propose that long-chain fatty acyl-CoA ligase enzyme serves as an important protein and a potential target candidate for development of selective inhibitors against leishmaniasis.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Drug Target Discovery & Development Division, Central Drug Research Institute (CSIR), Chattar Manzil Palace, Lucknow 226001, India
| | | | | | | |
Collapse
|
47
|
Zalatan F, Black P. Characterization of long-chain fatty acid uptake in Caulobacter crescentus. Arch Microbiol 2011; 193:479-87. [PMID: 21442318 DOI: 10.1007/s00203-011-0694-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/09/2011] [Indexed: 11/26/2022]
Abstract
Studies evaluating the uptake of long-chain fatty acids in Caulobacter crescentus are consistent with a protein-mediated process. Using oleic acid (C18:1) as a substrate, fatty acid uptake was linear for up to 15 min. This process was saturable giving apparent V(max) and K(m) values of 374 pmol oleate transported/min/mg total protein and 61 μM oleate, respectively, consistent with the notion that one or more proteins are likely involved. The rates of fatty acid uptake in C. crescentus were comparable to those defined in Escherichia coli. Uncoupling the electron transport chain inhibited oleic acid uptake, indicating that like the long-chain fatty acid uptake systems defined in other gram-negative bacteria, this process is energy-dependent in C. crescentus. Long-chain acyl CoA synthetase activities were also evaluated to address whether vectorial acylation represented a likely mechanism driving fatty acid uptake in C. crescentus. These gram-negative bacteria have considerable long-chain acyl CoA synthetase activity (940 pmol oleoyl CoA formed/min/mg total protein), consistent with the notion that the formation of acyl CoA is coincident with uptake. These results suggest that long-chain fatty acid uptake in C. crescentus proceeds through a mechanism that is likely to involve one or more proteins.
Collapse
Affiliation(s)
- Fred Zalatan
- Department of Biology, State University of New York College at Oneonta, Oneonta, 13820, USA.
| | | |
Collapse
|
48
|
Zhang Z, Zhou R, Sauder JM, Tonge PJ, Burley SK, Swaminathan S. Structural and functional studies of fatty acyl adenylate ligases from E. coli and L. pneumophila. J Mol Biol 2011; 406:313-24. [PMID: 21185305 PMCID: PMC3040979 DOI: 10.1016/j.jmb.2010.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 11/29/2010] [Accepted: 12/05/2010] [Indexed: 11/15/2022]
Abstract
Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 Å, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.
Collapse
Affiliation(s)
- Zhening Zhang
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | |
Collapse
|
49
|
Kraas FI, Helmetag V, Wittmann M, Strieker M, Marahiel MA. Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation. ACTA ACUST UNITED AC 2011; 17:872-80. [PMID: 20797616 DOI: 10.1016/j.chembiol.2010.06.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/01/2010] [Accepted: 06/03/2010] [Indexed: 11/18/2022]
Abstract
Although the N-terminally attached fatty acids are key structural elements of nonribosomally assembled lipopeptide antibiotics, little is known about the mechanism of lipid transfer during the initial step of biosynthesis. In this study, we investigated the activity of the dissected initiation module (C-A(Glu)-PCP) of surfactin synthetase SrfAA in vitro to gain further insights into the lipoinitiation reaction. The dissected condensation (C) domain catalyzes the transfer of CoA-activated 3-hydroxy fatty acid with high substrate specificity at its donor site to the peptidyl carrier protein (PCP) bound amino acid glutamate (Glu(1)). Additionally, biochemical studies on four putative acyl CoA ligases in Bacillus subtilis revealed that two of them activate 3-hydroxy fatty acids for surfactin biosynthesis in vitro and that the disruption of corresponding genes has a significant influence on surfactin production.
Collapse
Affiliation(s)
- Femke I Kraas
- Department of Chemistry, Biochemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Kang Y, Zarzycki-Siek J, Walton CB, Norris MH, Hoang TT. Multiple FadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa. PLoS One 2010; 5:e13557. [PMID: 21042406 PMCID: PMC2958839 DOI: 10.1371/journal.pone.0013557] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/28/2010] [Indexed: 12/28/2022] Open
Abstract
A close interconnection between nutrient metabolism and virulence factor expression contributes to the pathophysiology of Pseudomonas aeruginosa as a successful pathogen. P. aeruginosa fatty acid (FA) degradation is complicated with multiple acyl-CoA synthetase homologs (FadDs) expressed in vivo in lung tissue during cystic fibrosis infections. The promoters of two genetically linked P. aeruginosa fadD genes (fadD1 and fadD2) were mapped and northern blot analysis indicated they could exist on two different transcripts. These FadDs contain ATP/AMP signature and FA-binding motifs highly homologous to those of the Escherichia coli FadD. Upon introduction into an E. coli fadD-/fadR- double mutant, both P. aeruginosa fadDs functionally complemented the E. coli fadD-/fadR- mutant, allowing degradation of different chain-length FAs. Chromosomal mutagenesis, growth analysis, induction studies, and determination of kinetic parameters suggested that FadD1 has a substrate preference for long-chain FAs while FadD2 prefers shorter-chain FAs. When compared to the wild type strain, the fadD2 mutant exhibited decreased production of lipase, protease, rhamnolipid and phospholipase, and retardation of both swimming and swarming motilities. Interestingly, fadD1 mutant showed only increased swarming motility. Growth analysis of the fadD mutants showed noticeable deficiencies in utilizing FAs and phosphatidylcholine (major components of lung surfactant) as the sole carbon source. This defect translated into decreased in vivo fitness of P. aeruginosa in a BALB/c mouse lung infection model, supporting the role of lipids as a significant nutrient source for this bacterium in vivo.
Collapse
Affiliation(s)
- Yun Kang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Jan Zarzycki-Siek
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Chad B. Walton
- Department of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Michael H. Norris
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Tung T. Hoang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|