1
|
Li S, Zhou Y, Wang H, Qu G, Zhao X, Wang X, Hou R, Guan Z, Liu D, Zheng J, Shi M. Advances in CAR optimization strategies based on CD28. Front Immunol 2025; 16:1548772. [PMID: 40181986 PMCID: PMC11966486 DOI: 10.3389/fimmu.2025.1548772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy, which utilizes genetic engineering techniques to modify T-cells to achieve specific targeting of cancer cells, has made significant breakthroughs in cancer treatment in recent years. All marketed CAR-T products are second-generation CAR-T cells containing co-stimulatory structural domains, and co-stimulatory molecules are critical for CAR-T cell activation and function. Although CD28-based co-stimulatory molecules have demonstrated potent cytotoxicity in the clinical application of CAR-T cells, they still suffer from high post-treatment relapse rates, poor efficacy durability, and accompanying severe adverse reactions. In recent years, researchers have achieved specific results in enhancing the anti-tumor function of CD28 by mutating its signaling motifs, combining the co-stimulatory structural domains, and modifying other CAR components besides co-stimulation. This paper reviewed the characteristics and roles of CD28 in CAR-T cell-mediated anti-tumor signaling and activation. We explored potential strategies to enhance CAR-T cell efficacy and reduce side effects by optimizing CD28 motifs and CAR structures, aiming to provide a theoretical basis for further clinical CAR-T cell therapy development.
Collapse
Affiliation(s)
- Sijin Li
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Yusi Zhou
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Hairong Wang
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Gexi Qu
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Xuan Zhao
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Xu Wang
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhangchun Guan
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Dan Liu
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Ming Shi
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Tserunyan V, Finley SD. A systems and computational biology perspective on advancing CAR therapy. Semin Cancer Biol 2023; 94:34-49. [PMID: 37263529 PMCID: PMC10529846 DOI: 10.1016/j.semcancer.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/24/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
In the recent decades, chimeric antigen receptor (CAR) therapy signaled a new revolutionary approach to cancer treatment. This method seeks to engineer immune cells expressing an artificially designed receptor, which would endue those cells with the ability to recognize and eliminate tumor cells. While some CAR therapies received FDA approval and others are subject to clinical trials, many aspects of their workings remain elusive. Techniques of systems and computational biology have been frequently employed to explain the operating principles of CAR therapy and suggest further design improvements. In this review, we sought to provide a comprehensive account of those efforts. Specifically, we discuss various computational models of CAR therapy ranging in scale from organismal to molecular. Then, we describe the molecular and functional properties of costimulatory domains frequently incorporated in CAR structure. Finally, we describe the signaling cascades by which those costimulatory domains elicit cellular response against the target. We hope that this comprehensive summary of computational and experimental studies will further motivate the use of systems approaches in advancing CAR therapy.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Sandouk A, Xu Z, Baruah S, Tremblay M, Hopkins JB, Chakravarthy S, Gakhar L, Schnicker NJ, Houtman JCD. GRB2 dimerization mediated by SH2 domain-swapping is critical for T cell signaling and cytokine production. Sci Rep 2023; 13:3505. [PMID: 36864087 PMCID: PMC9981690 DOI: 10.1038/s41598-023-30562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
GRB2 is an adaptor protein required for facilitating cytoplasmic signaling complexes from a wide array of binding partners. GRB2 has been reported to exist in either a monomeric or dimeric state in crystal and solution. GRB2 dimers are formed by the exchange of protein segments between domains, otherwise known as "domain-swapping". Swapping has been described between SH2 and C-terminal SH3 domains in the full-length structure of GRB2 (SH2/C-SH3 domain-swapped dimer), as well as between α-helixes in isolated GRB2 SH2 domains (SH2/SH2 domain-swapped dimer). Interestingly, SH2/SH2 domain-swapping has not been observed within the full-length protein, nor have the functional influences of this novel oligomeric conformation been explored. We herein generated a model of full-length GRB2 dimer with an SH2/SH2 domain-swapped conformation supported by in-line SEC-MALS-SAXS analyses. This conformation is consistent with the previously reported truncated GRB2 SH2/SH2 domain-swapped dimer but different from the previously reported, full-length SH2/C-terminal SH3 (C-SH3) domain-swapped dimer. Our model is also validated by several novel full-length GRB2 mutants that favor either a monomeric or a dimeric state through mutations within the SH2 domain that abrogate or promote SH2/SH2 domain-swapping. GRB2 knockdown and re-expression of selected monomeric and dimeric mutants in a T cell lymphoma cell line led to notable defects in clustering of the adaptor protein LAT and IL-2 release in response to TCR stimulation. These results mirrored similarly-impaired IL-2 release in GRB2-deficient cells. These studies show that a novel dimeric GRB2 conformation with domain-swapping between SH2 domains and monomer/dimer transitions are critical for GRB2 to facilitate early signaling complexes in human T cells.
Collapse
Affiliation(s)
- Aline Sandouk
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Sankar Baruah
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Mikaela Tremblay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jesse B Hopkins
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 2020; 92:e12951. [DOI: 10.1111/sji.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anette Hauge
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|
5
|
Guedan S, Madar A, Casado-Medrano V, Shaw C, Wing A, Liu F, Young RM, June CH, Posey AD. Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability. J Clin Invest 2020; 130:3087-3097. [PMID: 32069268 PMCID: PMC7260017 DOI: 10.1172/jci133215] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapies can eliminate relapsed and refractory tumors, but the durability of antitumor activity requires in vivo persistence. Differential signaling through the CAR costimulatory domain can alter the T cell metabolism, memory differentiation, and influence long-term persistence. CAR-T cells costimulated with 4-1BB or ICOS persist in xenograft models but those constructed with CD28 exhibit rapid clearance. Here, we show that a single amino acid residue in CD28 drove T cell exhaustion and hindered the persistence of CD28-based CAR-T cells and changing this asparagine to phenylalanine (CD28-YMFM) promoted durable antitumor control. In addition, CD28-YMFM CAR-T cells exhibited reduced T cell differentiation and exhaustion as well as increased skewing toward Th17 cells. Reciprocal modification of ICOS-containing CAR-T cells abolished in vivo persistence and antitumor activity. This finding suggests modifications to the costimulatory domains of CAR-T cells can enable longer persistence and thereby improve antitumor response.
Collapse
Affiliation(s)
- Sonia Guedan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Hematology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Aviv Madar
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carolyn Shaw
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Wing
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fang Liu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Regina M. Young
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carl H. June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
- Parker Institute for Cellular Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Avery D. Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
- Parker Institute for Cellular Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Thaker YR, Raab M, Strebhardt K, Rudd CE. GTPase-activating protein Rasal1 associates with ZAP-70 of the TCR and negatively regulates T-cell tumor immunity. Nat Commun 2019; 10:4804. [PMID: 31641113 PMCID: PMC6805919 DOI: 10.1038/s41467-019-12544-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy involving checkpoint blockades of inhibitory co-receptors is effective in combating cancer. Despite this, the full range of mediators that inhibit T-cell activation and influence anti-tumor immunity is unclear. Here, we identify the GTPase-activating protein (GAP) Rasal1 as a novel TCR-ZAP-70 binding protein that negatively regulates T-cell activation and tumor immunity. Rasal1 inhibits via two pathways, the binding and inhibition of the kinase domain of ZAP-70, and GAP inhibition of the p21ras-ERK pathway. It is expressed in activated CD4 + and CD8 + T-cells, and inhibits CD4 + T-cell responses to antigenic peptides presented by dendritic cells as well as CD4 + T-cell responses to peptide antigens in vivo. Furthermore, siRNA reduction of Rasal1 expression in T-cells shrinks B16 melanoma and EL-4 lymphoma tumors, concurrent with an increase in CD8 + tumor-infiltrating T-cells expressing granzyme B and interferon γ-1. Our findings identify ZAP-70-associated Rasal1 as a new negative regulator of T-cell activation and tumor immunity. Activation of T cells in the tumor microenvironment can be inhibited through a variety of mechanisms. Here, the authors show that Rasal1, a GTPase-activating protein, binds and inhibits signaling downstream of the T Cell Receptor complex and that consistently, its reduced expression enhances anti-tumor T-cell responses in two syngeneic cancer mouse models.
Collapse
Affiliation(s)
- Youg Raj Thaker
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,School of Biological Science, Protein Structure and Disease Mechanisms, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christopher E Rudd
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Département de Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, QC, H1T 2M4, Canada. .,Département de Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
7
|
Malde AK, Hill TA, Iyer A, Fairlie DP. Crystal Structures of Protein-Bound Cyclic Peptides. Chem Rev 2019; 119:9861-9914. [DOI: 10.1021/acs.chemrev.8b00807] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alpeshkumar K. Malde
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abishek Iyer
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:85-133. [PMID: 31758532 DOI: 10.1007/978-981-32-9717-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T-cell receptor (TCR)-mediated antigen-specific stimulation is essential for initiating T-cell activation. However, signaling through the TCR alone is not sufficient for inducing an effective response. In addition to TCR-mediated signaling, signaling through antigen-independent co-stimulatory or co-inhibitory receptors is critically important not only for the full activation and functional differentiation of T cells but also for the termination and suppression of T-cell responses. Many studies have investigated the signaling pathways underlying the function of each molecular component. Co-stimulatory and co-inhibitory receptors have no kinase activity, but their cytoplasmic region contains unique functional motifs and potential phosphorylation sites. Engagement of co-stimulatory receptors leads to recruitment of specific binding partners, such as adaptor molecules, kinases, and phosphatases, via recognition of a specific motif. Consequently, each co-stimulatory receptor transduces a unique pattern of signaling pathways. This review focuses on our current understanding of the intracellular signaling pathways provided by co-stimulatory and co-inhibitory molecules, including B7:CD28 family members, immunoglobulin, and members of the tumor necrosis factor receptor superfamily.
Collapse
|
9
|
Taylor A, Rudd CE. Glycogen Synthase Kinase 3 Inactivation Compensates for the Lack of CD28 in the Priming of CD8 + Cytotoxic T-Cells: Implications for anti-PD-1 Immunotherapy. Front Immunol 2017; 8:1653. [PMID: 29312284 PMCID: PMC5732207 DOI: 10.3389/fimmu.2017.01653] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/13/2017] [Indexed: 01/23/2023] Open
Abstract
The rescue of exhausted CD8+ cytolytic T-cells (CTLs) by anti-Programmed Cell Death-1 (anti-PD-1) blockade has been found to require CD28 expression. At the same time, we have shown that the inactivation of the serine/threonine kinase glycogen synthase kinase (GSK)-3α/β with small-interfering RNAs (siRNAs) and small molecule inhibitors (SMIs) specifically down-regulates PD-1 expression for enhanced CD8+ CTL function and clearance of tumors and viral infections. Despite this, it has been unclear whether the GSK-3α/β pathway accounts for CD28 costimulation of CD8+ CTL function. In this article, we show that inactivation of GSK-3α/β through siRNA or by SMIs during priming can substitute CD28 co-stimulation in the potentiation of cytotoxic CD8+ CTL function against the EL-4 lymphoma cells expressing OVA peptide. The effect was seen using several structurally distinct GSK-3 SMIs and was accompanied by an increase in Lamp-1 and GZMB expression. Conversely, CD28 crosslinking obviated the need for GSK-3α/β inhibition in its enhancement of CTL function. Our findings support a model where GSK-3 is the central cosignal for CD28 priming of CD8+ CTLs in anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Alison Taylor
- Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, St James's University Hospital, Leeds, United Kingdom
| | - Christopher E Rudd
- Division of Immunology-Oncology Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,Département de Médecine, Université de Montréal, Montreal, QC, Canada.,Department of Pathology, Cell Signalling Section, Cambridge University, Cambridge, United Kingdom.,Immune Venture Ltd., London, United Kingdom
| |
Collapse
|
10
|
Jeswin J, Jeong SM, Jeong JM, Bae JS, Kim MC, Kim DH, Park CI. Molecular characterization of a T cell co-stimulatory receptor, CD28 of rock bream (Oplegnathus fasciatus): Transcriptional expression during bacterial and viral stimulation. FISH & SHELLFISH IMMUNOLOGY 2017; 66:354-359. [PMID: 28478261 DOI: 10.1016/j.fsi.2017.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
CD28 is a co-stimulatory receptor that provides a critical second signal alongside T cell receptors for the activation of naive T cells. We characterized the CD28 gene of rock bream, which has a deduced amino acid sequence of 221 residues with an extracellular Ig-superfamily V domain, transmembrane region, and cytoplasmic tail. The conservation in domain structures and other motifs shows that it is highly likely that RbCD28 is a homologue of mammalian CD28 and may have related co-stimulatory functions. RbCD28 is constitutively expressed in most tissues that were analysed, with a relatively higher expression in teleost lymphoid organs, such as spleens, gills, trunk kidneys and skin. Unlike human CD28, RbCD28 is highly expressed in skin and gill-associated lymphoid organs. Although gills showed constitutive expression of RbCD28 in control animals, after a pathogen challenge, induction of CD28 was low, particularly in RSIV and E. tarda infection. Whereas induction of RbCD28 was observed in kidney during E. tarda and S. iniae infection, downregulation was observed during RSIV infection. In the case of the liver, E. tarda caused an initial upregulation of RbCD28. RbCD28 activation of T cells in the spleen was limited to S. iniae infection. Activation of RbCD28 observed in lymphoid organs during infection of various pathogens shows its key role as a co-stimulatory receptor of T cells.
Collapse
Affiliation(s)
- Joseph Jeswin
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Seon-Myeong Jeong
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Ji-Min Jeong
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Jin-Sol Bae
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Mu-Chan Kim
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu., Busan, Republic of Korea.
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
11
|
Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. CD28 Costimulation: From Mechanism to Therapy. Immunity 2016; 44:973-88. [PMID: 27192564 PMCID: PMC4932896 DOI: 10.1016/j.immuni.2016.04.020] [Citation(s) in RCA: 627] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 02/07/2023]
Abstract
Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members.
Collapse
Affiliation(s)
- Jonathan H Esensten
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | - Ynes A Helou
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Arthur Weiss
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center and Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
12
|
Porciello N, Tuosto L. CD28 costimulatory signals in T lymphocyte activation: Emerging functions beyond a qualitative and quantitative support to TCR signalling. Cytokine Growth Factor Rev 2016; 28:11-9. [PMID: 26970725 DOI: 10.1016/j.cytogfr.2016.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/22/2016] [Indexed: 01/22/2023]
Abstract
CD28 is one of the most important co-stimulatory receptors necessary for full T lymphocyte activation. By binding its cognate ligands, B7.1/CD80 or B7.2/CD86, expressed on the surface of professional antigen presenting cells (APC), CD28 initiates several signalling cascades, which qualitatively and quantitatively support T cell receptor (TCR) signalling. More recent data evidenced that human CD28 can also act as a TCR-independent signalling unit, by delivering specific signals, which regulate the expression of pro-inflammatory cytokine/chemokines. Despite the enormous progresses made in identifying the mechanisms and molecules involved in CD28 signalling properties, much remains to be elucidated, especially in the light of the functional differences observed between human and mouse CD28. In this review we provide an overview of the current mechanisms and molecules through which CD28 support TCR signalling and highlight recent findings on the specific signalling motifs that regulate the unique pro-inflammatory activity of human CD28.
Collapse
Affiliation(s)
- Nicla Porciello
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Loretta Tuosto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
13
|
Brzostek J, Gascoigne NRJ, Rybakin V. Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition. Front Immunol 2016; 7:24. [PMID: 26870040 PMCID: PMC4740375 DOI: 10.3389/fimmu.2016.00024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 01/07/2023] Open
Abstract
B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs.
Collapse
Affiliation(s)
- Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Vasily Rybakin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, Singapore, Singapore; Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Helou YA, Petrashen AP, Salomon AR. Vav1 Regulates T-Cell Activation through a Feedback Mechanism and Crosstalk between the T-Cell Receptor and CD28. J Proteome Res 2015; 14:2963-75. [PMID: 26043137 DOI: 10.1021/acs.jproteome.5b00340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vav1, a Rac/Rho guanine nucleotide exchange factor and a critical component of the T-cell receptor (TCR) signaling cascade is tyrosine phosphorylated rapidly in response to T-cell activation. Vav1 has established roles in proliferation, cytokine secretion, Ca(2+) responses, and actin cytoskeleton regulation; however, its function in the regulation of phosphorylation of TCR components, including the ζ chain, the CD3 δ, ε, γ chains, and the associated kinases Lck and ZAP-70, is not well established. To obtain a more comprehensive picture of the role of Vav1 in receptor proximal signaling, we performed a wide-scale characterization of Vav1-dependent tyrosine phosphorylation events using quantitative phosphoproteomic analysis of Vav1-deficient T cells across a time course of TCR stimulation. Importantly, this study revealed a new function for Vav1 in the negative feedback regulation of the phosphorylation of immunoreceptor tyrosine-based activation motifs within the ζ chains, CD3 δ, ε, γ chains, as well as activation sites on the critical T cell tyrosine kinases Itk, Lck, and ZAP-70. Our study also uncovered a previously unappreciated role for Vav1 in crosstalk between the CD28 and TCR signaling pathways.
Collapse
Affiliation(s)
- Ynes A Helou
- †Department of Molecular Pharmacology, Physiology, and Biotechnology and ‡Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, United States
| | - Anna P Petrashen
- †Department of Molecular Pharmacology, Physiology, and Biotechnology and ‡Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, United States
| | - Arthur R Salomon
- †Department of Molecular Pharmacology, Physiology, and Biotechnology and ‡Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, United States
| |
Collapse
|
15
|
Muscolini M, Camperio C, Porciello N, Caristi S, Capuano C, Viola A, Galandrini R, Tuosto L. Phosphatidylinositol 4–Phosphate 5–Kinase α and Vav1 Mutual Cooperation in CD28-Mediated Actin Remodeling and Signaling Functions. THE JOURNAL OF IMMUNOLOGY 2015; 194:1323-1333. [DOI: 10.4049/jimmunol.1401643] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Phosphatidylinositol 4,5–biphosphate (PIP2) is a cell membrane phosphoinositide crucial for cell signaling and activation. Indeed, PIP2 is a pivotal source for second messenger generation and controlling the activity of several proteins regulating cytoskeleton reorganization. Despite its critical role in T cell activation, the molecular mechanisms regulating PIP2 turnover remain largely unknown. In human primary CD4+ T lymphocytes, we have recently demonstrated that CD28 costimulatory receptor is crucial for regulating PIP2 turnover by allowing the recruitment and activation of the lipid kinase phosphatidylinositol 4–phosphate 5–kinase (PIP5Kα). We also identified PIP5Kα as a key modulator of CD28 costimulatory signals leading to the efficient T cell activation. In this study, we extend these data by demonstrating that PIP5Kα recruitment and activation is essential for CD28-mediated cytoskeleton rearrangement necessary for organizing a complete signaling compartment leading to downstream signaling functions. We also identified Vav1 as the linker molecule that couples the C-terminal proline-rich motif of CD28 to the recruitment and activation of PIP5Kα, which in turn cooperates with Vav1 in regulating actin polymerization and CD28 signaling functions.
Collapse
Affiliation(s)
- Michela Muscolini
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Cristina Camperio
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Nicla Porciello
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Silvana Caristi
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Cristina Capuano
- †Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Antonella Viola
- ‡The Venetian Institute of Molecular Medicine, Padova 35129, Italy; and
- §Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | | | - Loretta Tuosto
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
16
|
Thaker YR, Schneider H, Rudd CE. TCR and CD28 activate the transcription factor NF-κB in T-cells via distinct adaptor signaling complexes. Immunol Lett 2014; 163:113-9. [PMID: 25455592 PMCID: PMC4286576 DOI: 10.1016/j.imlet.2014.10.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/28/2014] [Accepted: 10/15/2014] [Indexed: 01/07/2023]
Abstract
CD28 and TCR receptors use independent pathways to regulate NF-κB activation in T-cells. CD28 mediated NF-κB activation is dependent on the YMN-FM site for GRB-2 adaptor binding. The adaptors ADAP and SKAP1 are dispensable for direct CD28 activation of NF-κB. TCR driven NF-κB activation requires adaptor ADAP expression.
The transcription factor NF-κB is needed for the induction of inflammatory responses in T-cells. Whether its activation by the antigen-receptor and CD28 is mediated by the same or different intracellular signaling pathways has been unclear. Here, using T-cells from various knock-out (Cd28−/−, adap−/−) and knock-in (i.e. Cd28 Y-170F) mice in conjunction with transfected Jurkat T-cells, we show that the TCR and CD28 use distinct pathways to activate NF-κB in T-cells. Anti-CD28 ligation alone activated NF-κB in primary and Jurkat T-cells as measured by NF-κB reporter and EMSA assays. Anti-CD28 also activated NF-κB normally in primary T-cells from adap−/− mice, while anti-CD3 stimulation required the adaptor ADAP. Over-expression of ADAP or its binding partner SKAP1 failed to enhance anti-CD28 activation of NF-κB, while ADAP greatly increased anti-CD3 induced NF-κB activity. By contrast, CD28 activation of NF-κB depended on GRB-2 binding to CD28 as seen in CD28 deficient Jurkat T-cells reconstituted with the CD28 YMN-FM mutant, and in primary T-cells from CD28 Y170F mutant knock-in mice. CD28 associated with GRB-2, and GRB-2 siRNA impaired CD28 NF-κB activation. GRB-2 binding partner and guanine nucleotide exchange factor, VAV1, greatly enhanced anti-CD28 driven activation of NF-κB. Further, unlike in the case of anti-CD28, NF-κB activation by anti-CD3 and its cooperation with ADAP was strictly dependent on LAT expression. Overall, we provide evidence that CD28 and the TCR complex regulate NF-κB via different signaling modules of GRB-2/VAV1 and LAT/ADAP pathways respectively.
Collapse
Affiliation(s)
- Youg Raj Thaker
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| | - Helga Schneider
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Christopher E Rudd
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
17
|
Boomer JS, Deppong CM, Shah DD, Bricker TL, Green JM. Cutting edge: A double-mutant knockin of the CD28 YMNM and PYAP motifs reveals a critical role for the YMNM motif in regulation of T cell proliferation and Bcl-xL expression. THE JOURNAL OF IMMUNOLOGY 2014; 192:3465-9. [PMID: 24639356 DOI: 10.4049/jimmunol.1301240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD28 is a critical regulator of T cell function, augmenting proliferation, cytokine secretion, and cell survival. Our previous work using knockin mice expressing point mutations in CD28 demonstrated that the distal proline motif was primarily responsible for much of CD28 function, whereas in marked contrast to prior studies, mutation of the PI3K-binding motif had little discernible effect. In this study, we examined the phenotype of mice in which both motifs are simultaneously mutated. We found that mutation of the PYAP motif unmasks a critical role for the proximal tyrosine motif in regulating T cell proliferation and expression of Bcl-xL but not cytokine secretion. In addition, we demonstrated that, although function is more severely impaired in the double mutant than in either single mutant, there remained residual CD28-dependent responses, definitively establishing that additional motifs can partially mediate CD28 function.
Collapse
Affiliation(s)
- Jonathan S Boomer
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
| | | | | | | | | |
Collapse
|
18
|
Higo K, Oda M, Morii H, Takahashi J, Harada Y, Ogawa S, Abe R. Quantitative analysis by surface plasmon resonance of CD28 interaction with cytoplasmic adaptor molecules Grb2, Gads and p85 PI3K. Immunol Invest 2014; 43:278-91. [DOI: 10.3109/08820139.2013.875039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Abstract
T cell activation is a key event in the adaptive immune response and vital to the generation of both cellular and humoral immunity. Activation is required not only for effective CD4 T cell responses but also to provide help for B cells and the generation of cytotoxic T cell responses. Unsurprisingly, impaired T cell activation results in infectious pathology, whereas dysregulated activation can result in autoimmunity. The decision to activate is therefore tightly regulated and the CD28/CTLA-4 pathway represents this apical decision point at the molecular level. In particular, CTLA-4 (CD152) is an essential checkpoint control for autoimmunity; however, the molecular mechanism(s) by which CTLA-4 achieves its regulatory function are not well understood, especially how it functionally intersects with the CD28 pathway. In this chapter, we review the established molecular and cellular concepts relating to CD28 and CTLA-4 biology, and attempt to integrate these by discussing the transendocytosis of ligands as a new model of CTLA-4 function.
Collapse
Affiliation(s)
- Blagoje Soskic
- School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | | | - Tiezheng Hou
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, United Kingdom
| | - David M Sansom
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, United Kingdom.
| |
Collapse
|
20
|
Ogawa S, Watanabe M, Sakurai Y, Inutake Y, Watanabe S, Tai X, Abe R. CD28 signaling in primary CD4+ T cells: identification of both tyrosine phosphorylation-dependent and phosphorylation-independent pathways. Int Immunol 2013; 25:671-81. [DOI: 10.1093/intimm/dxt028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
21
|
Bjørgo E, Moltu K, Taskén K. Phosphodiesterases as targets for modulating T-cell responses. Handb Exp Pharmacol 2011:345-63. [PMID: 21695648 DOI: 10.1007/978-3-642-17969-3_15] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The cAMP-protein kinase A (PKA) signaling pathway is strongly involved in the regulation and modulation of immune responses, and cAMP is the most potent and acute inhibitor of T-cell activation. Thus, cAMP levels in the cell must be tightly regulated. Cyclic AMP-specific phosphodiesterases (PDEs) provide the only mechanism for degrading cAMP in cells, thereby functioning as key regulators of signaling. To obtain a complete immune response with optimal cytokine production and T-cell proliferation, ligation of both the T-cell receptor (TCR) and the CD28 receptor is required. However, engagement of the TCR in primary T cells is followed by rapid cAMP production in lipid rafts and activation of the cAMP- PKA-Csk pathway inhibiting proximal T-cell signaling. In contrast, TCR/CD28 costimulation leads to the recruitment of a PDE4/β-arrestin complex to rafts in a phosphatidylinositol 3-kinase (PI3K)-dependent manner, resulting in the downregulation of cAMP levels. Thus, the activities of both PKA and PDE4 seem to be important for regulation of TCR-induced signaling and T-cell function. The use of selective inhibitors has revealed that PDEs are important drug targets in several diseases with an inflammatory component where immune function is important such as asthma, chronic obstructive pulmonary disease (COPD), cardiovascular diseases, and neurological disorders. PDEs are also interesting drug targets in immunosuppression following transplantation and for modulation of immune responses.
Collapse
Affiliation(s)
- Elisa Bjørgo
- The Biotechnology Centre of Oslo and Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 1125, Blindern 0317, Oslo, Norway
| | | | | |
Collapse
|
22
|
Acosta YY, Zafra MP, Ojeda G, Bernardone IS, Dianzani U, Portolés P, Rojo JM. Biased binding of class IA phosphatidyl inositol 3-kinase subunits to inducible costimulator (CD278). Cell Mol Life Sci 2011; 68:3065-79. [PMID: 21188463 PMCID: PMC11115116 DOI: 10.1007/s00018-010-0606-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 11/12/2010] [Accepted: 11/26/2010] [Indexed: 12/01/2022]
Abstract
To better understand T lymphocyte costimulation by inducible costimulator (ICOS; H4; CD278), we analyzed proteins binding to ICOS peptides phosphorylated at the Y(191)MFM motif. Phosphorylated ICOS binds class IA phosphatidyl inositol 3-kinase (PI3-K) p85α, p50-55α and p85β regulatory subunits and p110α, p110δ and p110β catalytic subunits. Intriguingly, T cells expressed high levels of both p110α or p110δ catalytic subunits, yet ICOS peptides, cell surface ICOS or PI3-kinase class IA regulatory subunits preferentially coprecipitated p110α catalytic subunits. Silencing p110α or p110δ partially inhibited Akt/PKB activation induced by anti-CD3 plus anti-ICOS antibodies. However, silencing p110α enhanced and silencing p110δ inhibited Erk activation. Both p110α- and p110δ-specific inhibitors blocked cytokine secretion induced by TCR/CD3 activation with or without ICOS costimulus, but only p110α inhibitors blocked ICOS-induced cell elongation. Thus, p110α and p110δ are essential to optimal T cell activation, but their abundance and activity differentially tune up distinct ICOS signaling pathways.
Collapse
Affiliation(s)
- Yenny Y. Acosta
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Maria Paz Zafra
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Gloria Ojeda
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Ilaria Seren Bernardone
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
- Department of Medical Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, 28100 Novara, Italy
| | - Umberto Dianzani
- Department of Medical Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, 28100 Novara, Italy
| | - Pilar Portolés
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Jose M. Rojo
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
23
|
Choi S, Schwartz RH. Impairment of immunological synapse formation in adaptively tolerant T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:805-16. [PMID: 21685322 DOI: 10.4049/jimmunol.1003314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adaptive tolerance is a hyporesponsive state in which lymphocyte Ag receptor signaling becomes desensitized after prolonged in vivo encounter with Ag. The molecular mechanisms underlying this hyporesponsive state in T cells are not fully understood, although a major signaling block has been shown to be present at the level of ZAP70 phosphorylation of linker for activation of T cells (LAT). In this study, we investigated the ability of adaptively tolerant mouse T cells to form conjugates with Ag-bearing APCs and to translocate signaling molecules into the interface between the T cells and APCs. Compared with naive or preactivated T cells, adaptively tolerant T cells showed no dramatic impairment in their formation of conjugates with APCs. In contrast, there was a large impairment in immunological synapse formation. Adaptively tolerant T cells were defective in their translocation of signaling molecules, such as ZAP70, LAT, and phospholipase C γ1, into the T cell-APC contact sites. Although Ag-induced activation of VAV1 was normal, VAV's recruitment into the synapse was also impaired. Interestingly, expressions of both IL-2-inducible T cell kinase and growth factor receptor-bound protein 2-related adaptor downstream of SHC were decreased by 60-80% in adaptively tolerant T cells. These decreases, in addition to the impairment in LAT phosphorylation by ZAP70, appear to be the major impediments to the phosphorylation of SLP76 (SRC homology 2 domain-containing leukocyte protein of 76 kDa) and the recruitment of VAV1, which are important for stable immunological synapse formation.
Collapse
Affiliation(s)
- Seeyoung Choi
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0420, USA
| | | |
Collapse
|
24
|
Muscolini M, Sajeva A, Caristi S, Tuosto L. A novel association between filamin A and NF-κB inducing kinase couples CD28 to inhibitor of NF-κB kinase α and NF-κB activation. Immunol Lett 2011; 136:203-12. [PMID: 21277899 DOI: 10.1016/j.imlet.2011.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/13/2011] [Accepted: 01/16/2011] [Indexed: 12/13/2022]
Abstract
CD28 costimulatory molecule plays a critical role in the activation of NF-κB. Indeed, while stimulation of T cells with either professional APCs or anti-TCR plus anti-CD28 antibodies efficiently activates NF-κB, TCR alone fails to do that. Moreover, CD28 stimulation by B7 in the absence of TCR may activate IκB kinase α (IKKα) and a non-canonical NF-κB2-like pathway, in human primary CD4(+) T cells. Despite its functional relevance in NF-κB activation, the molecules connecting autonomous CD28-mediated signals to IKKα and NF-κB activation remain still unknown. In searching for specific upstream activators linking CD28 to the IKKα/NF-κB cascade, we identify a novel constitutive association between filamin A (FLNa) and the NF-κB inducing kinase (NIK), in both Jurkat and human primary T cells. Following CD28 engagement by B7, in the absence of TCR, FLNa-associated NIK is activated and induces IKKα kinase activity. Both proline (P(208)YAP(211)P(212)) and tyrosine residues (Y(206)QPY(209)APP) within the C-terminal proline-rich motif of CD28 are involved in the recruitment of FLNa/NIK complexes to the membrane as well as in the activation of NIK and IKKα.
Collapse
Affiliation(s)
- Michela Muscolini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | | | | | | |
Collapse
|
25
|
Kadkhoda K, Wang S, Fan Y, Qiu H, Basu S, Halayko AJ, Yang X. ICOS ligand expression is essential for allergic airway hyperresponsiveness. Int Immunol 2011; 23:239-49. [PMID: 21402623 DOI: 10.1093/intimm/dxq476] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inducible co-stimulator ligand (ICOSL) is a rather newly defined co-stimulatory molecule, which, through interaction with ICOS expressed on T cells, plays an important role in T-cell activation, differentiation and function. T(h)2-type immune responses are critical for the development and maintenance of allergic responses including asthma. Using knockout (KO) mice, we have assessed the role of ICOSL in allergic airway inflammation and responsiveness using a standard mouse asthma model induced by ovalbumin (OVA) sensitization and challenge. Our data show that OVA-treated ICOSL KO mice exhibit significantly less lung eosinophilic infiltration, histopathology, mucus production and virtually no airway hyperresponsiveness in contrast to wild-type (Wt) counterparts. Serum antibody analysis showed that antigen-specific IgG1, IgG2a and IgE titers in ICOSL KO mice were significantly lower than those of Wt controls. Also, CD4(+) T cells isolated from ICOSL KO mice produced less T(h)2 cytokines (IL-4, IL-5, IL-10 and IL-13) but more T(h)1 (IFN-γ) and IL-17 than their Wt controls. Taken together, we conclude that ICOSL plays an important role in predisposing individuals to allergic airway hyperresponsiveness by enhancing IgE antibody class switching and T(h)2 cytokine production and diminishing the T(h)17 response and airway eosinophilia.
Collapse
Affiliation(s)
- Kamran Kadkhoda
- Immune Regulation of Allergy Research Group, Laboratory for Infection and Immunity, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0W3, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Tuosto L. NF-κB family of transcription factors: Biochemical players of CD28 co-stimulation. Immunol Lett 2011; 135:1-9. [DOI: 10.1016/j.imlet.2010.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/09/2010] [Accepted: 09/14/2010] [Indexed: 12/31/2022]
|
27
|
Engels N, Wienands J. The signaling tool box for tyrosine-based costimulation of lymphocytes. Curr Opin Immunol 2011; 23:324-9. [PMID: 21324660 DOI: 10.1016/j.coi.2011.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 12/31/2022]
Abstract
Triggering lymphocyte effector functions is controlled by a diverse array of immune cell coreceptors that dampen or potentiate the primary activation signal from antigen receptors. Attenuation of lymphocyte activation has been shown to be accomplished by immunoreceptor tyrosine-based inhibition motifs that upon phosphorylation recruit protein or lipid phosphatases. By contrast, a general concept of signal amplification and/or diversification is still out. However, the recent discovery of antigen receptor-intrinsic costimulation by membrane-bound immunoglobulins in class-switched memory B cells identified a consensus phosphorylation motif that can boost antigen-induced signal chains and is also employed by costimulatory receptors on T and Natural Killer cells to provide secondary signals for cellular activation. Here we define a common basis of tyrosine-based lymphocyte costimulation comprising immunoglobulin tail tyrosine (ITT)-like phosphorylation motifs and their proximal effectors, growth factor receptor-bound protein (Grb) 2 and phosphatidylinositol-3 kinase (PI3K) enzymes of class IA.
Collapse
Affiliation(s)
- Niklas Engels
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | | |
Collapse
|
28
|
Riha P, Rudd CE. CD28 co-signaling in the adaptive immune response. SELF NONSELF 2010; 1:231-240. [PMID: 21487479 DOI: 10.4161/self.1.3.12968] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/12/2010] [Indexed: 12/20/2022]
Abstract
T-cell proliferation and function depends on signals from the antigen-receptor complex (TCR/CD3) and by various co-receptors such as CD28 and CTLA-4. The balance of positive and negative signals determines the outcome of the T-cell response to foreign and self-antigen. CD28 is a prominent co-receptor in naïve and memory T-cell responses. Its blockade has been exploited clinically to dampen T-cell responses to self-antigen. Current evidence shows that CD28 both potentiates TCR signaling and engages a unique array of mediators (PI3K, Grb2, FLNa) in the regulation of aspects of T-cell signaling including the transcription factor NFkB. In this mini-review, we provide an up-to-date overview of our understanding of the signaling mechanisms that underlie CD28 function and its potential application to the modulation of reactivity to autoimmunity.
Collapse
Affiliation(s)
- Pavel Riha
- Cell Signaling Section; Department of Pathology; University of Cambridge; Cambridge, UK
| | | |
Collapse
|
29
|
Abstract
CD28 costimulation regulates a wide range of cellular processes, from proliferation and survival to promoting the differentiation of specialized T-cell subsets. Since first being identified over 20 years ago, CD28 has remained a subject of intense study because of its profound consequences on T cell function and its potential for therapeutic manipulation. In this review we highlight the signaling cascades initiated by the major signaling motifs in CD28, focusing on PI-3 kinase-dependent and -independent pathways and how these are linked to specific cellular outcomes. Recent studies using gene targeted knockin mice have clarified the relative importance of these motifs on in vivo immune responses; however, much remains to be elucidated. Understanding the mechanism behind costimulation holds great potential for development of new clinically relevant reagents, a fact beginning to be realized with the advent of drugs that prevent CD28 ligation and signaling.
Collapse
Affiliation(s)
- Jonathan S Boomer
- Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
30
|
Cross talk between phosphatidylinositol 3-kinase and cyclic AMP (cAMP)-protein kinase a signaling pathways at the level of a protein kinase B/beta-arrestin/cAMP phosphodiesterase 4 complex. Mol Cell Biol 2010; 30:1660-72. [PMID: 20086095 DOI: 10.1128/mcb.00696-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Engagement of the T-cell receptor (TCR) in human primary T cells activates a cyclic AMP (cAMP)-protein kinase A (PKA)-Csk inhibitory pathway that prevents full T-cell activation in the absence of a coreceptor stimulus. Here, we demonstrate that stimulation of CD28 leads to recruitment to lipid rafts of a beta-arrestin/phosphodiesterase 4 (PDE4) complex that serves to degrade cAMP locally. Redistribution of the complex from the cytosol depends on Lck and phosphatidylinositol 3-kinase (PI3K) activity. Protein kinase B (PKB) interacts directly with beta-arrestin to form part of the supramolecular complex together with sequestered PDE4. Translocation is mediated by the PKB plextrin homology (PH) domain, thus revealing a new role for PKB as an adaptor coupling PI3K and cAMP signaling. Functionally, PI3K activation and phosphatidylinositol-(3,4,5)-triphosphate (PIP3) production, leading to recruitment of the supramolecular PKB/beta-arrestin/PDE4 complex to the membrane via the PKB PH domain, results in degradation of the TCR-induced cAMP pool located in lipid rafts, thereby allowing full T-cell activation to proceed.
Collapse
|
31
|
Engels N, König LM, Heemann C, Lutz J, Tsubata T, Griep S, Schrader V, Wienands J. Recruitment of the cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor-intrinsic costimulation to class-switched B cells. Nat Immunol 2009; 10:1018-25. [PMID: 19668218 DOI: 10.1038/ni.1764] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/04/2009] [Indexed: 12/27/2022]
Abstract
The improved antibody responses of class-switched memory B cells depend on enhanced signaling from their B cell antigen receptors (BCRs). However, BCRs on both naive and antigen-experienced B cells use the canonical immunoglobulin-associated alpha and beta-protein signaling subunits. Here we identified a BCR isotype-specific signal-amplification mechanism. Whereas immunoglobulin M (IgM)-containing BCRs initiated intracellular signals exclusively through immunoglobulin-associated alpha- and beta-proteins, IgG- and IgE-containing BCRs also used a conserved tyrosine residue in the cytoplasmic segments of immunoglobulin heavy chains. When phosphorylated, this tyrosine recruited the adaptor Grb2, resulting in sustained protein kinase activation and prolonged generation of second messengers, which together culminated in enhanced B cell proliferation. Hence, membrane-bound IgG and IgE exert antigen recognition as well as costimulatory functions, thereby rendering memory B cells less dependent on T cell help.
Collapse
Affiliation(s)
- Niklas Engels
- Institute of Cellular and Molecular Immunology, Georg-August-University Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
SUMMARY Programmed death-1 (PD-1) is a cell surface molecule that regulates the adaptive immune response. Engagement of PD-1 by its ligands PD-L1 or PD-L2 transduces a signal that inhibits T-cell proliferation, cytokine production, and cytolytic function. While a great deal is known concerning the biologic roles PD-1 plays in regulating the primary immune response and in T-cell exhaustion, comparatively little is known regarding how PD-1 ligation alters signaling pathways. PD-1 ligation is known to inhibit membrane-proximal T-cell signaling events, while ligation of the related inhibitory molecule cytotoxic T-lymphocyte antigen-4 appears to target more downstream signaling pathways. A major obstacle to an in-depth understanding of PD-1 signaling is the lack of physiologic models in which to study signal transduction. This review focuses on: (i) signaling pathways altered by PD-1 ligation, (ii) factors recruited upon PD-1 phosphorylation, and (iii) exploring the hypothesis that PD-1 ligation induces distinct signals during various stages of immune-cell differentiation. Lastly, we describe models to dissect the function of the PD-1 cytoplasmic tail using primary cells in the absence of agonist antibodies.
Collapse
Affiliation(s)
- James L Riley
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, The University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Abstract
SUMMARY T-cell activation is mediated by antigen-specific signals from the TCRzeta/CD3 and CD4-CD8-p56lck complexes in combination with additional co-signals provided by coreceptors such as CD28, inducible costimulator (ICOS), cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death (PD-1), and others. CD28 and ICOS provide positive signals that promote and sustain T-cell responses, while CTLA-4 and PD-1 limit responses. The balance between stimulatory and inhibitory co-signals determines the ultimate nature of T-cell responses where response to foreign pathogen is achieved without excess inflammation and autoimmunity. In this review, we outline the current knowledge of the CD28 and CTLA-4 signaling mechanisms [involving phosphatidylinositol 3 kinase (PI3K), growth factor receptor-bound protein 2 (Grb2), Filamin A, protein kinase C theta (PKCtheta), and phosphatases] that control T-cell immunity. We also present recent findings on T-cell receptor-interacting molecule (TRIM) regulation of CTLA-4 surface expression, and a signaling pathway involving CTLA-4 activation of PI3K and protein kinase B (PKB)/AKT by which cell survival is ensured under conditions of anergy induction.
Collapse
Affiliation(s)
- Christopher E Rudd
- Department of Pathology, Cell Signalling Section, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
34
|
Targeted knock-in mice expressing mutations of CD28 reveal an essential pathway for costimulation. Mol Cell Biol 2009; 29:3710-21. [PMID: 19398586 DOI: 10.1128/mcb.01869-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite extensive study, the role of phosphatidylinositol 3-kinase (PI3-kinase) activation in CD28 function has been highly contentious. To definitively address this question, we generated knock-in mice expressing mutations in two critical domains of the cytoplasmic tail of CD28. Mutation of the proximal tyrosine motif interrupted PI3-kinase binding and prevented CD28-dependent phosphorylation of protein kinase B (PKB)/Akt; however, there was no detectable effect on interleukin-2 (IL-2) secretion, expression of Bcl-X(L), or on T-cell function in vivo. Furthermore, we demonstrate that signaling initiated by the C-terminal proline motif is directly responsible for tyrosine phosphorylation of phosphoinosotide-dependent kinase 1, protein kinase C theta, and glycogen synthase kinase 3beta, as well as contributing to threonine phosphorylation of PKB. T cells mutated in this domain were profoundly impaired in IL-2 secretion, and the mice had marked impairment of humoral responses as well as less severe disease manifestations in experimental allergic encephalomyelitis. These data demonstrate that the distal proline motif initiates a critical nonredundant signaling pathway, whereas direct activation of PI3-kinase by the proximal tyrosine motif of CD28 is not required for normal T-cell function.
Collapse
|
35
|
Abstract
CD28 is recognized as the primary costimulatory molecule involved in the activation of naïve T cells. However, the biochemical signaling pathways that are activated by CD28 and how these pathways are integrated with TCR signaling are still not understood. We have recently shown that there are at least two independent activation pathways induced by CD28 costimulation. One is integrated with TCR signaling in the context of the immunological synapse and is mediated through transcriptional enhancement and the second is mediated through the induction of mRNA stability. Here, we review the immunological consequences and biochemical mechanisms associated with CD28 costimulation and discuss the major questions that need to be resolved to understand the molecular mechanisms that transduce CD28 costimulation.
Collapse
|
36
|
Sanchez-Lockhart M, Graf B, Miller J. Signals and sequences that control CD28 localization to the central region of the immunological synapse. THE JOURNAL OF IMMUNOLOGY 2008; 181:7639-48. [PMID: 19017952 DOI: 10.4049/jimmunol.181.11.7639] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During T cell interaction with APC, CD28 is recruited to the central region (cSMAC) of the immunological synapse. CD28-mediated signaling through PI3K results in the recruitment of protein kinase C-theta (PKCtheta) to the cSMAC, activation of NF-kappaB, and up-regulation of IL-2 transcription. However, the mechanism that mediates CD28 localization to the cSMAC and the functional consequences of CD28 localization to the cSMAC are not understood. In this report, we show that CD28 recruitment and persistence at the immunological synapse requires TCR signals and CD80 engagement. Addition of mAb to either MHC class II or CD80 results in the rapid displacement of CD28 from the immunological synapse. Ligand binding is not sufficient for CD28 localization to the immunological synapse, as truncation of the cytosolic tail of CD28 disrupts synapse localization without effecting the ability of CD28 to bind CD80. Furthermore, a single point mutation in the CD28 cytosolic tail (tyrosine 188) interferes with the ability of CD28 to preferentially accumulate at the cSMAC. PKCtheta distribution at the immunological synapse mirrors the distribution of tyrosine 188-mutated CD28, indicating that CD28 drives the localization of PKCtheta even when CD28 is not localized to the cSMAC. Mutation of tyrosine 188 also results in diminished activation of NF-kappaB, suggesting that CD28-mediated localization of PKCtheta to the cSMAC is important for efficient signal transduction. These data reinforce the importance of the interplay of signals between TCR and CD28 and suggest that CD28 signaling through PCKtheta may be mediated through localization to the cSMAC region of the immunological synapse.
Collapse
Affiliation(s)
- Mariano Sanchez-Lockhart
- The David H Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | |
Collapse
|
37
|
Gogishvili T, Elias F, Emery JL, McPherson K, Okkenhaug K, Hünig T, Dennehy KM. Proliferative signals mediated by CD28 superagonists require the exchange factor Vav1 but not phosphoinositide 3-kinase in primary peripheral T cells. Eur J Immunol 2008; 38:2528-33. [PMID: 18792405 DOI: 10.1002/eji.200838223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Almost all responses of naive T cells require co-stimulation, i.e. engagement of the clonotypic TCR with relevant antigen/MHC and the co-stimulatory molecule CD28. How CD28 contributes to T-cell proliferation remains poorly understood, with widely conflicting reports existing which may reflect different methods of co-ligating receptors. Some CD28 mAb, however, can stimulate T-cell proliferation without the need for TCR co-ligation, and thus provide unique tools to dissect proliferative signals mediated through CD28 alone. Using primary peripheral T cells from CD28-transgenic mice, we show that both the YMNM and Lck-binding motifs, but not the Itk-binding motif, in CD28 are required for proliferation. Given that the YMNM motif recruits both phosphoinositide 3-kinase (PI3K) and the exchange factor Vav1, we investigated the role of these two molecules in CD28-mediated proliferation. In p110delta(D910A/D910A) transgenic T cells, which are defective in PI3K activation following CD28 ligation, proliferation was comparable to that in wild-type cells. By contrast, T-cell proliferation was abolished in Vav1(-/-) cells. Although we did not address the role of Grb2 in CD28 signalling, these results indicate that CD28 can mediate Lck- and Vav1-dependent proliferative signals independently of PI3K.
Collapse
Affiliation(s)
- Tea Gogishvili
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Schneider H, Rudd CE. CD28 and Grb-2, relative to Gads or Grap, preferentially co-operate with Vav1 in the activation of NFAT/AP-1 transcription. Biochem Biophys Res Commun 2008; 369:616-21. [PMID: 18295596 PMCID: PMC4186964 DOI: 10.1016/j.bbrc.2008.02.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 12/11/2022]
Abstract
The co-receptor CD28 binds to several intracellular proteins including PI3 kinase, Grb-2, Gads and ITK. Grb-2 and PI3 kinase binding has been mapped to the pYMNM motif within the cytoplasmic tail of CD28 and has been shown to play a role in co-stimulation. In this study, we demonstrate that amongst the Grb-2 family adapter proteins, CD28 precipitated Grb-2 and specifically co-operated in the up-regulation of NFAT/AP-1 transcription. By contrast, Gads and Grap either failed or only weakly collaborated with CD28 ligation. Further, the loss of Grb-2 binding interferes with the ability of Vav1 to co-operate with CD28. Anti-CD28 ligation alone was capable for co-operating with Grb-2 or Grb-2-Vav1. Our findings define a pathway involving CD28 binding to Grb-2 and its co-operativity with Vav1 in the regulation of T-cell co-stimulation.
Collapse
Affiliation(s)
- Helga Schneider
- Cell Signalling Section, Division of Immunology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Christopher E. Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
39
|
CD28 provides T-cell costimulation and enhances PI3K activity at the immune synapse independently of its capacity to interact with the p85/p110 heterodimer. Blood 2008; 111:1464-71. [PMID: 18006698 DOI: 10.1182/blood-2007-08-108050] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Activation of PI3K is among the earliest signaling events observed in T cells after conjugate formation with antigen-presenting cells (APCs). The relevant PI3K catalytic isoform and relative contribution of the TcR and CD28 to PI3K activity at the immune synapse have not been determined unequivocally. Using a quantitative imaging-based assay, we show that the PI3K activity at the T cell–APC contact area is dependent on the p110δ, but not the p110γ, isoform of PI3K. CD28 enhanced PIP3 production at the T-cell synapse independently of its YMNM PI3K-recruitment motif that instead was required for efficient PKCθ recruitment. CD28 could partially compensate for the lack of p110δ activity during T-cell activation, which indicates that CD28 and p110δ act in parallel and complementary pathways to activate T cells. Consistent with this, CD28 and p110δ double-deficient mice were severely immune compromised. We therefore suggest that combined pharmaceutic targeting of p110δ activity and CD28 costimulation has potent therapeutic potential.
Collapse
|
40
|
Freund C, Schmalz HG, Sticht J, Kühne R. Proline-rich sequence recognition domains (PRD): ligands, function and inhibition. Handb Exp Pharmacol 2008:407-29. [PMID: 18491062 DOI: 10.1007/978-3-540-72843-6_17] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Low-affinity protein-protein interactions (PPI) between domains of modular proteins and short, solvent-exposed peptide sequences within their binding partners play an essential role in intracellular signaling. An important class of PPIs comprises proline-rich motifs (PRM) that are specifically recognized by PRM-binding domains (PRD). Aromatic side chains of the PRDs define the binding pockets that often recognize individual proline residues, while flanking sequences mediate specificity. Several of these PRM:PRD interactions are associated with cellular malfunction, cancer or infectious diseases. Thus, the design of PRM:PRD inhibitors by using structure-based molecular modeling as well as peptidomimetic approaches and high-throughput screening strategies is of great pharmacological interest. In this chapter we describe the molecular basis of PRM:PRD interactions, highlight their functional role in certain cellular processes and give an overview of recent strategies of inhibitor design.
Collapse
Affiliation(s)
- C Freund
- Protein Engineering, Molecular Modeling Group, FU and FMP Berlin, Robert-Rössle-Str. 10, Berlin, Germany.
| | | | | | | |
Collapse
|
41
|
Phosphatidylinositol 3-kinase activation is required to form the NKG2D immunological synapse. Mol Cell Biol 2007; 27:8583-99. [PMID: 17923698 DOI: 10.1128/mcb.01477-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The receptor NKG2D allows natural killer (NK) cells to detect virally infected, stressed, and tumor cells. In human cells, NKG2D signaling is mediated through the associated DAP10 adapter. Here we show that engagement of NKG2D by itself is sufficient to stimulate the formation of the NK immunological synapse (NKIS), with recruitment of NKG2D to the center synapse. Mutagenesis studies of DAP10 revealed that the phosphatidylinositol 3-kinase binding site, but not the Grb2 binding site, was required and sufficient for recruitment of DAP10 to the NKIS. Surprisingly, we found that in the absence of the Grb2 binding site, Grb2 was still recruited to the NKIS. Since the recruitment of Grb2 was dependent on phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), we explored the possibility that recruitment to the NKIS is mediated by a pleckstrin homology (PH) domain-containing binding partner for Grb2. We found that the PH domain of SOS1, but not that of Vav1, was able to be recruited by PIP3. These results provide new insights into the mechanism of immunological synapse formation and also demonstrate how multiple mechanisms can be used to recruit the same signaling proteins to the plasma membrane.
Collapse
|
42
|
Tai X, Van Laethem F, Sharpe AH, Singer A. Induction of autoimmune disease in CTLA-4-/- mice depends on a specific CD28 motif that is required for in vivo costimulation. Proc Natl Acad Sci U S A 2007; 104:13756-61. [PMID: 17702861 PMCID: PMC1949493 DOI: 10.1073/pnas.0706509104] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CTLA-4-deficient mice develop a lethal autoimmune lymphoproliferative disorder that is strictly dependent on in vivo CD28 costimulation. Nevertheless, it is not known whether there is a specific site on the CD28 molecule that is required for induction of autoimmunity. Using CTLA-4-deficient mice expressing CD28 molecules with various point mutations in the CD28 cytosolic tail, the present study documents that in vivo costimulation for induction of autoimmune disease strictly requires an intact C-terminal proline motif that promotes lymphocyte-specific protein tyrosine kinase Lck binding to the CD28 cytosolic tail, because point mutations in C-terminal proline residues (Pro-187 and Pro-190) completely prevented disease induction. In contrast, in vivo costimulation for disease induction did not require either an intact YMNM motif or an intact N-terminal proline motif, which, respectively, promote phosphoinositide 3-kinase and IL2-inducible T cell kinase binding to the CD28 cytosolic tail. Thus, in vivo CD28 costimulation for induction of autoimmune disease is strictly and specifically dependent on an intact C-terminal proline motif that serves as a lymphocyte-specific protein tyrosine Lck kinase binding site in the CD28 cytosolic tail.
Collapse
Affiliation(s)
- Xuguang Tai
- *Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892; and
| | - Francois Van Laethem
- *Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892; and
| | - Arlene H. Sharpe
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Alfred Singer
- *Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892; and
- To whom correspondence should be addressed at:
Experimental Immunology Branch, National Cancer Institute, Building 10, Room 4B36, Bethesda, MD 20892. E-mail:
| |
Collapse
|
43
|
Badour K, McGavin MKH, Zhang J, Freeman S, Vieira C, Filipp D, Julius M, Mills GB, Siminovitch KA. Interaction of the Wiskott-Aldrich syndrome protein with sorting nexin 9 is required for CD28 endocytosis and cosignaling in T cells. Proc Natl Acad Sci U S A 2007; 104:1593-8. [PMID: 17242350 PMCID: PMC1785243 DOI: 10.1073/pnas.0610543104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Wiskott-Aldrich syndrome protein (WASp) plays a major role in coupling T cell antigen receptor (TCR) stimulation to induction of actin cytoskeletal changes required for T cell activation. Here, we report that WASp inducibly binds the sorting nexin 9 (SNX9) in T cells and that WASp, SNX9, p85, and CD28 colocalize within clathrin-containing endocytic vesicles after TCR/CD28 costimulation. SNX9, implicated in clathrin-mediated endocytosis, binds WASp via its SH3 domain and uses its PX domain to interact with the phosphoinositol 3-kinase regulatory subunit p85 and product, phosphoinositol (3,4,5)P3. The data reveal ligation-induced CD28 endocytosis to be clathrin- and phosphoinositol 3-kinase-dependent and TCR/CD28-evoked CD28 internalization and NFAT activation to be markedly enhanced by SNX9 overexpression, but severely impaired by expression of an SNX9 mutant (SNX9DeltaPX) lacking p85-binding capacity. CD28 endocytosis and CD28-evoked actin polymerization also are impaired in WASp-deficient T cells. These findings suggest that SNX9 couples WASp to p85 and CD28 so as to link CD28 engagement to its internalization and to WASp-mediated actin remodeling required for CD28 cosignaling. Thus, the WASp/SNX9/p85/CD28 complex enables a unique interface of endocytic, actin polymerizing, and signal transduction pathways required for CD28-mediated T cell costimulation.
Collapse
Affiliation(s)
- Karen Badour
- *Departments of Medicine, Immunology, Medical Genetics, and Microbiology, University of Toronto, Toronto General Hospital and Samuel Lunenfeld Research Institutes, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5
| | - Mary K. H. McGavin
- *Departments of Medicine, Immunology, Medical Genetics, and Microbiology, University of Toronto, Toronto General Hospital and Samuel Lunenfeld Research Institutes, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5
| | - Jinyi Zhang
- *Departments of Medicine, Immunology, Medical Genetics, and Microbiology, University of Toronto, Toronto General Hospital and Samuel Lunenfeld Research Institutes, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5
| | - Spencer Freeman
- *Departments of Medicine, Immunology, Medical Genetics, and Microbiology, University of Toronto, Toronto General Hospital and Samuel Lunenfeld Research Institutes, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5
| | - Claudia Vieira
- *Departments of Medicine, Immunology, Medical Genetics, and Microbiology, University of Toronto, Toronto General Hospital and Samuel Lunenfeld Research Institutes, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5
| | - Dominik Filipp
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5; and
| | - Michael Julius
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5; and
| | - Gordon B. Mills
- Department of Molecular Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Katherine A. Siminovitch
- *Departments of Medicine, Immunology, Medical Genetics, and Microbiology, University of Toronto, Toronto General Hospital and Samuel Lunenfeld Research Institutes, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Dennehy KM, Elias F, Na SY, Fischer KD, Hünig T, Lühder F. Mitogenic CD28 Signals Require the Exchange Factor Vav1 to Enhance TCR Signaling at the SLP-76-Vav-Itk Signalosome. THE JOURNAL OF IMMUNOLOGY 2007; 178:1363-71. [PMID: 17237383 DOI: 10.4049/jimmunol.178.3.1363] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Almost all physiological T cell responses require costimulation-engagement of the clonotypic TCR with MHC/Ag and CD28 by its ligands CD80/86. Whether CD28 provides signals that are qualitatively unique or quantitatively amplify TCR signaling is poorly understood. In this study, we use superagonistic CD28 Abs, which induce T cell proliferation without TCR coligation, to determine how CD28 contributes to mitogenic responses. We show that mitogenic CD28 signals require but do not activate the proximal TCR components TCRzeta and Zap-70 kinase. In cell lines lacking proximal TCR signaling, an early defect in the CD28 pathway is in phosphorylation of the adaptor molecule SLP-76, which we show is essential for recruitment of the exchange factor Vav leading to Ca(2+) flux and IL-2 production. Point mutations in CD28 that result in diminished Vav phosphorylation also result in defective Ca(2+) flux, IL-2 production, and Tec-kinase phosphorylation. Using Vav1-deficient mice, we further demonstrate the importance of Vav1 for efficient proliferation, IL-2 production, and Ca(2+) flux. Our results indicate that CD28 signals feed into the TCR signaling pathway at the level of the SLP-76 signalosome.
Collapse
Affiliation(s)
- Kevin M Dennehy
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Watanabe R, Harada Y, Takeda K, Takahashi J, Ohnuki K, Ogawa S, Ohgai D, Kaibara N, Koiwai O, Tanabe K, Toma H, Sugamura K, Abe R. Grb2 and Gads exhibit different interactions with CD28 and play distinct roles in CD28-mediated costimulation. THE JOURNAL OF IMMUNOLOGY 2006; 177:1085-91. [PMID: 16818765 DOI: 10.4049/jimmunol.177.2.1085] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although both CD28 and ICOS bind PI3K and provide stimulatory signal for T cell activation, unlike CD28, ICOS does not costimulate IL-2 secretion. CD28 binds both PI3K and Grb2, whereas ICOS binds only PI3K. We have generated an ICOS mutant, which can bind Grb2 by replacement of its PI3K binding motif YMFM with the CD28 YMNM motif, and shown that it induces significant activation of the IL-2 promoter. However, this mutant ICOS was insufficient to activate the NF-kappaB pathway. In this study, we show that Gads, but not Grb2, is essential for CD28-mediated NF-kappaB activation, and its binding to CD28 requires the whole CD28 cytoplasmic domain in addition to the YMNM motif. Mutagenesis experiments have indicated that mutations in the N-terminal and/or C-terminal PXXP motif(s) of CD28 significantly reduce their association with Gads, whereas their associations with Grb2 are maintained. They induced strong activity of the NFAT/AP-1 reporter comparable with the CD28 wild type, but weak activity of the NF-kappaB reporter. Grb2- and Gads-dominant-negative mutants had a strong effect on NFAT/AP-1 reporter, but only Gads-dominant-negative significantly inhibited NF-kappaB reporter. Our data suggest that, in addition to the PI3K binding motif, the PXXP motif in the CD28 cytoplasmic domain may also define a functional difference between the CD28- and ICOS-mediated costimulatory signals by binding to Gads.
Collapse
Affiliation(s)
- Ryosuke Watanabe
- Research Institute for Biological Sciences, Faculty of Science and Technology, Tokyo University of Science, 1669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Friend LD, Shah DD, Deppong C, Lin J, Bricker TL, Juehne TI, Rose CM, Green JM. A dose-dependent requirement for the proline motif of CD28 in cellular and humoral immunity revealed by a targeted knockin mutant. ACTA ACUST UNITED AC 2006; 203:2121-33. [PMID: 16908623 PMCID: PMC2118406 DOI: 10.1084/jem.20052230] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of naive T cells requires the integration of signals through the antigen receptor and CD28. Although there is agreement on the importance of CD28, there remains controversy on the mechanism by which CD28 regulates T cell function. We have generated a gene-targeted knockin mouse expressing a mutation in the C-terminal proline-rich region of the cytoplasmic tail of CD28. Our analysis conclusively showed that this motif is essential for CD28-dependent regulation of interleukin 2 secretion and proliferation. In vivo analysis revealed that mutation of this motif-dissociated CD28-dependent regulation of cellular and humoral responses in an allergic airway inflammation model. Furthermore, we find an important gene dosage effect on the phenotype of the mutation and provide a mechanistic explanation for the conflicting data on the significance of this motif in CD28 function.
Collapse
Affiliation(s)
- Lindzy D Friend
- Program in Immunology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wood JE, Schneider H, Rudd CE. TcR and TcR-CD28 engagement of protein kinase B (PKB/AKT) and glycogen synthase kinase-3 (GSK-3) operates independently of guanine nucleotide exchange factor VAV-1. J Biol Chem 2006; 281:32385-94. [PMID: 16905544 DOI: 10.1074/jbc.m604878200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
TcRzeta/CD3 and TcRzeta/CD3-CD28 signaling requires the guanine nucleotide exchange factor (GEF) Vav-1 as well as the activation of phosphatidylinositol 3-kinase, protein kinase B (PKB/AKT), and its inactivation of glycogen synthase kinase-3 (GSK-3). Whether these two pathways are connected or operate independently of each other in T-cells has been unclear. Here, we report that anti-CD3 and anti-CD3/CD28 can induce PKB and GSK-3alpha phosphorylation in the Vav-1(-/-) Jurkat cell line J. Vav.1 and in primary CD4-positive Vav-1(-/-) T-cells. Reduced GSK-3alpha phosphorylation was observed in Vav-1,2,3(-/-) T-cells together with a complete loss of FOXO1 phosphorylation. Furthermore, PKB and GSK-3 phosphorylation was unperturbed in the presence of GEF-inactive Vav-1 that inhibited interleukin-2 gene activation and a form of Src homology 2 domain-containing lymphocytic protein of 76-kDa (SLP-76) that is defective in binding to Vav-1. The pathway also was intact under conditions of c-Jun N-terminal kinase (JNK) inhibition and disruption of the actin cytoskeleton by cytochalasin D. Both events are down-stream targets of Vav-1. Overall, our findings indicate that the TcR and TcR-CD28 driven PKB-GSK-3 pathway can operate independently of Vav-1 in T-cells.
Collapse
Affiliation(s)
- Joanne E Wood
- Molecular Immunology Section, Department of Immunology, Imperial College London, London W12 ONN, United Kingdom
| | | | | |
Collapse
|
48
|
van Berkel MEAT, Oosterwegel MA. CD28 and ICOS: Similar or separate costimulators of T cells? Immunol Lett 2006; 105:115-22. [PMID: 16580736 DOI: 10.1016/j.imlet.2006.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 02/18/2006] [Indexed: 01/29/2023]
Abstract
Numerous studies have revealed that the B7.1/B7.2-CD28 and B7RP-1-ICOS (Inducible COStimulator) pathways provide crucial costimulatory signals to T cells. We have compared the contribution of these pathways during primary and effector responses, in vitro and in vivo, molecularly as well as functionally. This comparison between CD28 an ICOS after initiation of T cell activation demonstrates that both CD28 and ICOS function similarly during expansion, survival and differentiation of T cells and that both CD28 and ICOS are necessary for proper IgG responses. The major differences between CD28 and ICOS are differences in expression of both receptors and ligands, and the fact that CD28 induces IL-2 production, whereas ICOS does not. In addition, ICOS is more potent in the induction of IL-10 production, a cytokine important for suppressive function of T regulatory cells. All data available at present indicate that both molecules are very suitable candidates for immunotherapy, each in their own unique way.
Collapse
|
49
|
Gavrieli M, Murphy KM. Association of Grb-2 and PI3K p85 with phosphotyrosile peptides derived from BTLA. Biochem Biophys Res Commun 2006; 345:1440-5. [PMID: 16725108 DOI: 10.1016/j.bbrc.2006.05.036] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 05/08/2006] [Indexed: 11/21/2022]
Abstract
B and T lymphocyte attenuator (BTLA) is a recently identified inhibitory receptor expressed by B and T cells. We previously identified two tyrosine-containing signaling motifs in the cytoplasmic domain of BTLA that interact with the SHP-1 and SHP-2 phosphatases. BTLA has a third conserved tyrosine-containing motif within the cytoplasmic domain, similar in sequence to a Grb-2 recruitment site. To identify specific interacting proteins that would be recruited to this motif, we carried out an unbiased screen by using synthetic peptides in active (e.g., phosphotyrosil-containing) or control (e.g., non-phosphorylated) forms as baits. Using mass spectrometry, we identified two specific interacting proteins, Grb-2 and the p85 subunit of PI3K. Further, we demonstrate that the interaction with Grb-2 is direct, whereas the recruitment of the p85 subunit by BTLA phosphotyrosile-containing peptides may be indirect via its association with Grb-2. These findings may provide biochemical basis for previously unexplained actions of BTLA.
Collapse
Affiliation(s)
- Maya Gavrieli
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
50
|
Stradal TEB, Pusch R, Kliche S. Molecular regulation of cytoskeletal rearrangements during T cell signalling. Results Probl Cell Differ 2006; 43:219-44. [PMID: 17068974 DOI: 10.1007/400_022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Regulation of the cytoskeleton in cells of the haematopoietic system is essential for fulfilling diverse tasks such as migration towards a chemoattractant, phagocytosis or cell-cell communication. This is particularly true for the many types of T cells, which are at the foundation of the adaptive immune system in vertebrates. Deregulation of actin filament turnover is known to be involved in the development of severe immunodeficiencies or immunoproliferative diseases. Therefore, molecular dissection of signalling complexes and effector molecules, which leads to controlled cytoskeletal assembly, has been the focus of immunological research in the last decade. In the past, cytoskeletal remodelling was frequently understood as the finish line of signalling, while today it becomes increasingly evident that actin and microtubule dynamics are required for proper signal transmission in many processes such as T cell activation. Significant effort is made in many laboratories to further elucidate the contribution of cytoskeletal remodelling to immune function. The objective of this article is to summarise the current knowledge on how actin and microtubules are reorganised to support the formation of structures as diverse as the immunological synapse and peripheral protrusions during cell migration.
Collapse
Affiliation(s)
- Theresia E B Stradal
- Signalling and Motility Group, German Research Centre for Biotechnology (GBF), Braunschweig, Germany
| | | | | |
Collapse
|