1
|
Nyíri K, Gál E, Laczkovich M, Vértessy BG. Antirepressor specificity is shaped by highly efficient dimerization of the staphylococcal pathogenicity island regulating repressors: Stl repressor dimerization perturbed by dUTPases. Sci Rep 2024; 14:1953. [PMID: 38263343 PMCID: PMC10806181 DOI: 10.1038/s41598-024-51260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
The excision and replication, thus the life cycle of pathogenicity islands in staphylococci are regulated by Stl master repressors that form strong dimers. It has been recently shown that SaPIbov1-Stl dimers are separated during the activation of the Staphylococcus aureus pathogenicity island (SaPI) transcription via helper phage proteins. To understand the mechanism of this regulation, a quantitative analysis of the dimerization characteristics is required. Due to the highly efficient dimerization process, such an analysis has to involve specific solutions that permit relevant experiments to be performed. In the present work, we focused on two staphylococcal Stls associated with high biomedical interest, namely Stl proteins of Staphylococcus aureus bov1 and Staphylococcus hominis ShoCI794_SEPI pathogenicity islands. Exploiting the interactions of these two Stl proteins with their antirepressor-mimicking interaction partners allowed precise determination of the Stl dimerization constant in the subnanomolar range.
Collapse
Affiliation(s)
- Kinga Nyíri
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary.
- Institute of Molecular Life Sciences, HUN-REN, Research Centre for Natural Sciences, Magyar Tudósok Krt 2., Budapest, 1117, Hungary.
| | - Enikő Gál
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
- Institute of Molecular Life Sciences, HUN-REN, Research Centre for Natural Sciences, Magyar Tudósok Krt 2., Budapest, 1117, Hungary
| | - Máté Laczkovich
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
- Institute of Molecular Life Sciences, HUN-REN, Research Centre for Natural Sciences, Magyar Tudósok Krt 2., Budapest, 1117, Hungary
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
- Institute of Molecular Life Sciences, HUN-REN, Research Centre for Natural Sciences, Magyar Tudósok Krt 2., Budapest, 1117, Hungary
| |
Collapse
|
2
|
Hwang CY, Cho BC, Kang JK, Park J, Hardies SC. Genomic Analysis of Two Cold-Active Pseudoalteromonas Phages Isolated from the Continental Shelf in the Arctic Ocean. Viruses 2023; 15:2061. [PMID: 37896838 PMCID: PMC10612066 DOI: 10.3390/v15102061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Cold-active bacteriophages are bacterial viruses that infect and replicate at low temperatures (≤4 °C). Understanding remains limited of how cold-active phage-host systems sustain high viral abundance despite the persistently low temperatures in pelagic sediments in polar seas. In this study, two Pseudoalteromonas phages, ACA1 and ACA2, were isolated from sediment core samples of the continental shelf in the western Arctic Ocean. These phages exhibited successful propagation at a low temperature of 1 °C and displayed typical myovirus morphology with isometric icosahedral heads and contractile tails. The complete genome sequences of phages ACA1 and ACA2 were 36,825 bp and 36,826 bp in size, respectively, sharing almost the same gene content. These are temperate phages encoding lysogeny-related proteins such as anti-repressor, immunity repressor and integrase. The absence of cross-infection between the host strains, which were genomically distinct Pseudoalteromonas species, can likely be attributed to heavy divergence in the anti-receptor apparently mediated by an associated diversity-generating retroelement. HHpred searching identified genes for all of the structural components of a P2-like phage (family Peduoviridae), although the whole of the Peduoviridae family appeared to be divided between two anciently diverged tail modules. In contrast, Blast matching and whole genome tree analysis are dominated by a nonstructural gene module sharing high similarity with Pseudoalteromonas phage C5a (founder of genus Catalunyavirus). This study expands the knowledge of diversity of P2-like phages known to inhabit Peudoalteromonas and demonstrates their presence in the Arctic niche.
Collapse
Affiliation(s)
- Chung Yeon Hwang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; (C.Y.H.); (B.C.C.); (J.K.K.); (J.P.)
| | - Byung Cheol Cho
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; (C.Y.H.); (B.C.C.); (J.K.K.); (J.P.)
- Saemangeum Environmental Research Center, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Jin Kyeong Kang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; (C.Y.H.); (B.C.C.); (J.K.K.); (J.P.)
| | - Jihye Park
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; (C.Y.H.); (B.C.C.); (J.K.K.); (J.P.)
| | - Stephen C. Hardies
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Silpe JE, Duddy OP, Johnson GE, Beggs GA, Hussain FA, Forsberg KJ, Bassler BL. Small protein modules dictate prophage fates during polylysogeny. Nature 2023; 620:625-633. [PMID: 37495698 PMCID: PMC10432266 DOI: 10.1038/s41586-023-06376-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Most bacteria in the biosphere are predicted to be polylysogens harbouring multiple prophages1-5. In studied systems, prophage induction from lysogeny to lysis is near-universally driven by DNA-damaging agents6. Thus, how co-residing prophages compete for cell resources if they respond to an identical trigger is unknown. Here we discover regulatory modules that control prophage induction independently of the DNA-damage cue. The modules bear little resemblance at the sequence level but share a regulatory logic by having a transcription factor that activates the expression of a neighbouring gene that encodes a small protein. The small protein inactivates the master repressor of lysis, which leads to induction. Polylysogens that harbour two prophages exposed to DNA damage release mixed populations of phages. Single-cell analyses reveal that this blend is a consequence of discrete subsets of cells producing one, the other or both phages. By contrast, induction through the DNA-damage-independent module results in cells producing only the phage sensitive to that specific cue. Thus, in the polylysogens tested, the stimulus used to induce lysis determines phage productivity. Considering the lack of potent DNA-damaging agents in natural habitats, additional phage-encoded sensory pathways to lysis likely have fundamental roles in phage-host biology and inter-prophage competition.
Collapse
Affiliation(s)
- Justin E Silpe
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Olivia P Duddy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Grace E Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Grace A Beggs
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Fatima A Hussain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin J Forsberg
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Characterization of a New Temperate Escherichia coli Phage vB_EcoP_ZX5 and Its Regulatory Protein. Pathogens 2022; 11:pathogens11121445. [PMID: 36558779 PMCID: PMC9782041 DOI: 10.3390/pathogens11121445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The study of the interaction between temperate phages and bacteria is vital to understand their role in the development of human diseases. In this study, a novel temperate Escherichia coli phage, vB_EcoP_ZX5, with a genome size of 39,565 bp, was isolated from human fecal samples. It has a short tail and belongs to the genus Uetakevirus and the family Podoviridae. Phage vB_EcoP_ZX5 encodes three lysogeny-related proteins (ORF12, ORF21, and ORF4) and can be integrated into the 3'-end of guaA of its host E. coli YO1 for stable transmission to offspring bacteria. Phage vB_EcoP_ZX5 in lysogenized E. coli YO1+ was induced spontaneously, with a free phage titer of 107 PFU/mL. The integration of vB_EcoP_ZX5 had no significant effect on growth, biofilm, environmental stress response, antibiotic sensitivity, adherence to HeLa cells, and virulence of E. coli YO1. The ORF4 anti-repressor, ORF12 integrase, and ORF21 repressors that affect the lytic-lysogenic cycle of vB_EcoP_ZX5 were verified by protein overexpression. We could tell from changes of the number of total phages and the transcription level of phage genes that repressor protein is the key determinant of lytic-to-lysogenic conversion, and anti-repressor protein promotes the conversion from lysogenic cycle to lytic cycle.
Collapse
|
5
|
Pavlin A, Lovše A, Bajc G, Otoničar J, Kujović A, Lengar Ž, Gutierrez-Aguirre I, Kostanjšek R, Konc J, Fornelos N, Butala M. A small bacteriophage protein determines the hierarchy over co-residential jumbo phage in Bacillus thuringiensis serovar israelensis. Commun Biol 2022; 5:1286. [PMID: 36434275 PMCID: PMC9700832 DOI: 10.1038/s42003-022-04238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Bacillus thuringiensis serovar israelensis is the most widely used biopesticide against insects, including vectors of animal and human diseases. Among several extrachromosomal elements, this endospore-forming entomopathogen harbors two bacteriophages: a linear DNA replicon named GIL01 that does not integrate into the chromosome during lysogeny and a circular-jumbo prophage known as pBtic235. Here, we show that GIL01 hinders the induction of cohabiting prophage pBtic235. The GIL01-encoded small protein, gp7, which interacts with the host LexA repressor, is a global transcription regulator and represses the induction of pBtic235 after DNA damage to presumably allow GIL01 to multiply first. In a complex with host LexA in stressed cells, gp7 down-regulates the expression of more than 250 host and pBtic235 genes, many of which are involved in the cellular functions of genome maintenance, cell-wall transport, and membrane and protein stability. We show that gp7 homologs that are found exclusively in bacteriophages act in a similar fashion to enhance LexA's binding to DNA, while likely also affecting host gene expression. Our results provide evidence that GIL01 influences both its host and its co-resident bacteriophage.
Collapse
Affiliation(s)
- Anja Pavlin
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anže Lovše
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia ,Genialis, Inc., Boston, MA USA
| | - Gregor Bajc
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Otoničar
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Amela Kujović
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Živa Lengar
- grid.419523.80000 0004 0637 0790Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutierrez-Aguirre
- grid.419523.80000 0004 0637 0790Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Rok Kostanjšek
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Konc
- grid.454324.00000 0001 0661 0844Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Nadine Fornelos
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Matej Butala
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Mascolo E, Adhikari S, Caruso SM, deCarvalho T, Folch Salvador A, Serra-Sagristà J, Young R, Erill I, Curtis PD. The transcriptional regulator CtrA controls gene expression in Alphaproteobacteria phages: Evidence for a lytic deferment pathway. Front Microbiol 2022; 13:918015. [PMID: 36060776 PMCID: PMC9437464 DOI: 10.3389/fmicb.2022.918015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Pilitropic and flagellotropic phages adsorb to bacterial pili and flagella. These phages have long been used to investigate multiple aspects of bacterial physiology, such as the cell cycle control in the Caulobacterales. Targeting cellular appendages for adsorption effectively constrains the population of infectable hosts, suggesting that phages may have developed strategies to maximize their infective yield. Brevundimonas phage vB_BsubS-Delta is a recently characterized pilitropic phage infecting the Alphaproteobacterium Brevundimonas subvibrioides. Like other Caulobacterales, B. subvibrioides divides asymmetrically and its cell cycle is governed by multiple transcriptional regulators, including the master regulator CtrA. Genomic characterization of phage vB_BsubS-Delta identified the presence of a large intergenic region with an unusually high density of putative CtrA-binding sites. A systematic analysis of the positional distribution of predicted CtrA-binding sites in complete phage genomes reveals that the highly skewed distribution of CtrA-binding sites observed in vB_BsubS-Delta is an unequivocal genomic signature that extends to other pilli- and flagellotropic phages infecting the Alphaproteobacteria. Moreover, putative CtrA-binding sites in these phage genomes localize preferentially to promoter regions and have higher scores than those detected in other phage genomes. Phylogenetic and comparative genomics analyses show that this genomic signature has evolved independently in several phage lineages, suggesting that it provides an adaptive advantage to pili/flagellotropic phages infecting the Alphaproteobacteria. Experimental results demonstrate that CtrA binds to predicted CtrA-binding sites in promoter regions and that it regulates transcription of phage genes in unrelated Alphaproteobacteria-infecting phages. We propose that this focused distribution of CtrA-binding sites reflects a fundamental new aspect of phage infection, which we term lytic deferment. Under this novel paradigm, pili- and flagellotropic phages exploit the CtrA transduction pathway to monitor the host cell cycle state and synchronize lysis with the presence of infectable cells.
Collapse
Affiliation(s)
- Elia Mascolo
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Satish Adhikari
- Department of Biology, University of Mississippi, Oxford, MS, United States
| | - Steven M. Caruso
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Tagide deCarvalho
- Keith R. Porter Imaging Facility, College of Natural and Mathematical Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, United States
| | | | | | - Ry Young
- Center for Phage Technology, Texas A&M University, College Station, TX, United States
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Patrick D. Curtis
- Department of Biology, University of Mississippi, Oxford, MS, United States
| |
Collapse
|
7
|
Nepal R, Houtak G, Shaghayegh G, Bouras G, Shearwin K, Psaltis AJ, Wormald PJ, Vreugde S. Prophages encoding human immune evasion cluster genes are enriched in Staphylococcus aureus isolated from chronic rhinosinusitis patients with nasal polyps. Microb Genom 2021; 7:000726. [PMID: 34907894 PMCID: PMC8767322 DOI: 10.1099/mgen.0.000726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Prophages affect bacterial fitness on multiple levels. These include bacterial infectivity, toxin secretion, virulence regulation, surface modification, immune stimulation and evasion and microbiome competition. Lysogenic conversion arms bacteria with novel accessory functions thereby increasing bacterial fitness, host adaptation and persistence, and antibiotic resistance. These properties allow the bacteria to occupy a niche long term and can contribute to chronic infections and inflammation such as chronic rhinosinusitis (CRS). In this study, we aimed to identify and characterize prophages present in Staphylococcus aureus from patients suffering from CRS in relation to CRS disease phenotype and severity. Prophage regions were identified using PHASTER. Various in silico tools like ResFinder and VF Analyzer were used to detect virulence genes and antibiotic resistance genes respectively. Progressive MAUVE and maximum likelihood were used for multiple sequence alignment and phylogenetics of prophages respectively. Disease severity of CRS patients was measured using computed tomography Lund-Mackay scores. Fifty-eight S. aureus clinical isolates (CIs) were obtained from 28 CRS patients without nasal polyp (CRSsNP) and 30 CRS patients with nasal polyp (CRSwNP). All CIs carried at least one prophage (average=3.6) and prophages contributed up to 7.7 % of the bacterial genome. Phage integrase genes were found in 55/58 (~95 %) S. aureus strains and 97/211 (~46 %) prophages. Prophages belonging to Sa3int integrase group (phiNM3, JS01, phiN315) (39/97, 40%) and Sa2int (phi2958PVL) (14/97, 14%) were the most prevalent prophages and harboured multiple virulence genes such as sak, scn, chp, lukE/D, sea. Intact prophages were more frequently identified in CRSwNP than in CRSsNP (P=0.0021). Intact prophages belonging to the Sa3int group were more frequent in CRSwNP than in CRSsNP (P=0.0008) and intact phiNM3 were exclusively found in CRSwNP patients (P=0.007). Our results expand the knowledge of prophages in S. aureus isolated from CRS patients and their possible role in disease development. These findings provide a platform for future investigations into potential tripartite associations between bacteria-prophage-human immune system, S. aureus evolution and CRS disease pathophysiology.
Collapse
Affiliation(s)
- Roshan Nepal
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Ghais Houtak
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Keith Shearwin
- School of Biological Sciences, Faculty of Sciences, The University of Adelaide, Adelaide, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery – Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Sánchez-Osuna M, Cortés P, Lee M, Smith AT, Barbé J, Erill I. Non-canonical LexA proteins regulate the SOS response in the Bacteroidetes. Nucleic Acids Res 2021; 49:11050-11066. [PMID: 34614190 PMCID: PMC8565304 DOI: 10.1093/nar/gkab773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Lesions to DNA compromise chromosome integrity, posing a direct threat to cell survival. The bacterial SOS response is a widespread transcriptional regulatory mechanism to address DNA damage. This response is coordinated by the LexA transcriptional repressor, which controls genes involved in DNA repair, mutagenesis and cell-cycle control. To date, the SOS response has been characterized in most major bacterial groups, with the notable exception of the Bacteroidetes. No LexA homologs had been identified in this large, diverse and ecologically important phylum, suggesting that it lacked an inducible mechanism to address DNA damage. Here, we report the identification of a novel family of transcriptional repressors in the Bacteroidetes that orchestrate a canonical response to DNA damage in this phylum. These proteins belong to the S24 peptidase family, but are structurally different from LexA. Their N-terminal domain is most closely related to CI-type bacteriophage repressors, suggesting that they may have originated from phage lytic phase repressors. Given their role as SOS regulators, however, we propose to designate them as non-canonical LexA proteins. The identification of a new class of repressors orchestrating the SOS response illuminates long-standing questions regarding the origin and plasticity of this transcriptional network.
Collapse
Affiliation(s)
- Miquel Sánchez-Osuna
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Ivan Erill
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
9
|
Hao N, Agnew D, Krishna S, Dodd IB, Shearwin KE. Analysis of Infection Time Courses Shows CII Levels Determine the Frequency of Lysogeny in Phage 186. Pharmaceuticals (Basel) 2021; 14:ph14100998. [PMID: 34681220 PMCID: PMC8538670 DOI: 10.3390/ph14100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/29/2022] Open
Abstract
Engineered phage with properties optimised for the treatment of bacterial infections hold great promise, but require careful characterisation by a number of approaches. Phage–bacteria infection time courses, where populations of bacteriophage and bacteria are mixed and followed over many infection cycles, can be used to deduce properties of phage infection at the individual cell level. Here, we apply this approach to analysis of infection of Escherichia coli by the temperate bacteriophage 186 and explore which properties of the infection process can be reliably inferred. By applying established modelling methods to such data, we extract the frequency at which phage 186 chooses the lysogenic pathway after infection, and show that lysogenisation increases in a graded manner with increased expression of the lysogenic establishment factor CII. The data also suggest that, like phage λ, the rate of lysogeny of phage 186 increases with multiple infections.
Collapse
Affiliation(s)
- Nan Hao
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (N.H.); (D.A.); (I.B.D.)
- CSIRO Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT 2601, Australia
| | - Dylan Agnew
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (N.H.); (D.A.); (I.B.D.)
| | - Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India;
| | - Ian B. Dodd
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (N.H.); (D.A.); (I.B.D.)
| | - Keith E. Shearwin
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (N.H.); (D.A.); (I.B.D.)
- Correspondence: ; Tel.: +61-8-83135361
| |
Collapse
|
10
|
Llarena AK, Aspholm M, O'Sullivan K, Wêgrzyn G, Lindbäck T. Replication Region Analysis Reveals Non-lambdoid Shiga Toxin Converting Bacteriophages. Front Microbiol 2021; 12:640945. [PMID: 33868197 PMCID: PMC8044961 DOI: 10.3389/fmicb.2021.640945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
Shiga toxin is the major virulence factor of enterohemorrhagic Escherichia coli (EHEC), and the gene encoding it is carried within the genome of Shiga toxin-converting phages (Stx phages). Numerous Stx phages have been sequenced to gain a better understanding of their contribution to the virulence potential of EHEC. The Stx phages are classified into the lambdoid phage family based on similarities in lifestyle, gene arrangement, and nucleotide sequence to the lambda phages. This study explores the replication regions of non-lambdoid Stx phages that completely lack the O and P genes encoding the proteins involved in initiating replication in the lambdoid phage genome. Instead, they carry sequences encoding replication proteins that have not been described earlier, here referred to as eru genes (after EHEC phage replication unit genes). This study identified three different types of Eru-phages, where the Eru1-type is carried by the highly pathogenic EHEC strains that caused the Norwegian O103:H25 outbreak in 2006 and the O104:H4 strain that caused the large outbreak in Europe in 2011. We show that Eru1-phages exhibit a less stable lysogenic state than the classical lambdoid Stx phages. As production of phage particles is accompanied by production of Stx toxin, the Eru1-phage could be associated with a high-virulence phenotype of the host EHEC strain. This finding emphasizes the importance of classifying Stx phages according to their replication regions in addition to their Stx-type and could be used to develop a novel strategy to identify highly virulent EHEC strains for improved risk assessment and management.
Collapse
Affiliation(s)
- Ann-Katrin Llarena
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristin O'Sullivan
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Grzegorz Wêgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
11
|
Das A, Mandal S, Hemmadi V, Ratre V, Biswas M. Studies on the gene regulation involved in the lytic-lysogenic switch in Staphylococcus aureus temperate bacteriophage Phi11. J Biochem 2020; 168:659-668. [PMID: 32702081 DOI: 10.1093/jb/mvaa080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 07/13/2020] [Indexed: 01/28/2023] Open
Abstract
Antirepressor proteins of bacteriophages are chiefly involved in interfering with the function of the repressor protein and forcing the bacteriophage to adopt the lytic cycle. The genome of Staphylococcus aureus phage, Phi11 has already been sequenced; from the genome sequence, we amplified gp07 gene and analysed its involvement in the developmental pathway of Phi11. Our results indicate that Gp07 functions as a novel antirepressor and regulates the developmental pathway of Phi11 by enhancing the binding of the Cro repressor protein to its cognate operator. We also report our finding that the CI repressor protein of Phi11 binds to the putative operator of Gp07 and regulates its expression. We further report that S.aureus transcriptional repressor LexA and coprotease RecA play a crucial role in the lytic-lysogenic switching in Phi11. We also identified that the N-terminal domain (Bro-N) of Gp07 is actually responsible for enhancing the binding of Cro repressor to its cognate operator. Our results suggest that Phi11 prophage induction is different from other bacteriophages. This study furnishes a first-hand report regarding the regulation involved in the developmental pathway of Phi11.
Collapse
Affiliation(s)
- Avijit Das
- Department of Biological Sciences, BITS Pilani K K Birla Goa Campus, NH17B, Zuarinagar, Goa 403726, India
| | - Sukhendu Mandal
- Department of Biochemistry, Bose Institute, Kolkata 700054, India
| | - Vijay Hemmadi
- Department of Biological Sciences, BITS Pilani K K Birla Goa Campus, NH17B, Zuarinagar, Goa 403726, India
| | - Vivek Ratre
- Department of Biological Sciences, BITS Pilani K K Birla Goa Campus, NH17B, Zuarinagar, Goa 403726, India
| | - Malabika Biswas
- Department of Biological Sciences, BITS Pilani K K Birla Goa Campus, NH17B, Zuarinagar, Goa 403726, India
| |
Collapse
|
12
|
Murchland IM, Ahlgren-Berg A, Pietsch JMJ, Isabel A, Dodd IB, Shearwin KE. Instability of CII is needed for efficient switching between lytic and lysogenic development in bacteriophage 186. Nucleic Acids Res 2020; 48:12030-12041. [PMID: 33211866 PMCID: PMC7708051 DOI: 10.1093/nar/gkaa1065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
The CII protein of temperate coliphage 186, like the unrelated CII protein of phage λ, is a transcriptional activator that primes expression of the CI immunity repressor and is critical for efficient establishment of lysogeny. 186-CII is also highly unstable, and we show that in vivo degradation is mediated by both FtsH and RseP. We investigated the role of CII instability by constructing a 186 phage encoding a protease resistant CII. The stabilised-CII phage was defective in the lysis-lysogeny decision: choosing lysogeny with close to 100% frequency after infection, and forming prophages that were defective in entering lytic development after UV treatment. While lysogenic CI concentration was unaffected by CII stabilisation, lysogenic transcription and CI expression was elevated after UV. A stochastic model of the 186 network after infection indicated that an unstable CII allowed a rapid increase in CI expression without a large overshoot of the lysogenic level, suggesting that instability enables a decisive commitment to lysogeny with a rapid attainment of sensitivity to prophage induction.
Collapse
Affiliation(s)
- Iain M Murchland
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Alexandra Ahlgren-Berg
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Julian M J Pietsch
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Alejandra Isabel
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ian B Dodd
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Keith E Shearwin
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
13
|
Pedersen M, Neergaard JT, Cassias J, Rasmussen KK, Lo Leggio L, Sneppen K, Hammer K, Kilstrup M. Repression of the lysogenic P R promoter in bacteriophage TP901-1 through binding of a CI-MOR complex to a composite O M-O R operator. Sci Rep 2020; 10:8659. [PMID: 32457340 PMCID: PMC7250872 DOI: 10.1038/s41598-020-65493-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/04/2020] [Indexed: 11/09/2022] Open
Abstract
A functional genetic switch from the lactococcal bacteriophage TP901-1, deciding which of two divergently transcribing promoters becomes most active and allows this bi-stable decision to be inherited in future generations requires a DNA region of less than 1 kb. The fragment encodes two repressors, CI and MOR, transcribed from the PR and PL promoters respectively. CI can repress the transcription of the mor gene at three operator sites (OR, OL, and OD), leading to the immune state. Repression of the cI gene, leading to the lytic (anti-immune) state, requires interaction between CI and MOR by an unknown mechanism, but involving a CI:MOR complex. A consensus for putative MOR binding sites (OM sites), and a common topology of three OM sites adjacent to the OR motif was here identified in diverse phage switches that encode CI and MOR homologs, in a search for DNA sequences similar to the TP901-1 switch. The OR site and all putative OM sites are important for establishment of the anti-immune repression of PR, and a putative DNA binding motif in MOR is needed for establishment of the anti-immune state. Direct evidence for binding between CI and MOR is here shown by pull-down experiments, chemical crosslinking, and size exclusion chromatography. The results are consistent with two possible models for establishment of the anti-immune repression of cI expression at the PR promoter.
Collapse
Affiliation(s)
- Margit Pedersen
- University of Copenhagen, Department of Biology, Copenhagen, DK2200, Denmark
| | - Jesper Tvenge Neergaard
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark
| | - Johan Cassias
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark
| | | | - Leila Lo Leggio
- University of Copenhagen, Department of Chemistry, Copenhagen, DK2200, Denmark
| | - Kim Sneppen
- University of Copenhagen, Center for Models of Life, Copenhagen, DK2200, Denmark
| | - Karin Hammer
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark
| | - Mogens Kilstrup
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, DK2800, Denmark.
| |
Collapse
|
14
|
Silpe JE, Bridges AA, Huang X, Coronado DR, Duddy OP, Bassler BL. Separating Functions of the Phage-Encoded Quorum-Sensing-Activated Antirepressor Qtip. Cell Host Microbe 2020; 27:629-641.e4. [PMID: 32101705 DOI: 10.1016/j.chom.2020.01.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 01/21/2023]
Abstract
Quorum sensing is a process of chemical communication that bacteria use to track cell density and coordinate gene expression across a population. Bacteria-infecting viruses, called phages, can encode quorum-sensing components that enable them to integrate host cell density information into the lysis-lysogeny decision. Vibriophage VP882 is one such phage, and activation of its quorum-sensing pathway leads to the production of an antirepressor called Qtip. Qtip interferes with the prophage repressor (cIVP882), leading to host-cell lysis. Here, we show that Qtip interacts with the N terminus of cIVP882, inhibiting both cIVP882 DNA binding and cIVP882 autoproteolysis. Qtip also sequesters cIVP882, localizing it to the poles. Qtip can localize to the poles independently of cIVP882. Alanine-scanning mutagenesis of Qtip shows that its localization and interference with cIVP882 activities are separable. Comparison of Qtip to a canonical phage antirepressor reveals that despite both proteins interacting with their partner repressors, only Qtip drives polar localization.
Collapse
Affiliation(s)
- Justin E Silpe
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Andrew A Bridges
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Xiuliang Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Daniela R Coronado
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Olivia P Duddy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
15
|
Owen SV, Canals R, Wenner N, Hammarlöf DL, Kröger C, Hinton JCD. A window into lysogeny: revealing temperate phage biology with transcriptomics. Microb Genom 2020; 6:e000330. [PMID: 32022660 PMCID: PMC7067206 DOI: 10.1099/mgen.0.000330] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022] Open
Abstract
Prophages are integrated phage elements that are a pervasive feature of bacterial genomes. The fitness of bacteria is enhanced by prophages that confer beneficial functions such as virulence, stress tolerance or phage resistance, and these functions are encoded by 'accessory' or 'moron' loci. Whilst the majority of phage-encoded genes are repressed during lysogeny, accessory loci are often highly expressed. However, it is challenging to identify novel prophage accessory loci from DNA sequence data alone. Here, we use bacterial RNA-seq data to examine the transcriptional landscapes of five Salmonella prophages. We show that transcriptomic data can be used to heuristically enrich for prophage features that are highly expressed within bacterial cells and represent functionally important accessory loci. Using this approach, we identify a novel antisense RNA species in prophage BTP1, STnc6030, which mediates superinfection exclusion of phage BTP1. Bacterial transcriptomic datasets are a powerful tool to explore the molecular biology of temperate phages.
Collapse
Affiliation(s)
- Siân V. Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- Present address: GSK Vaccines Institute for Global Health, Siena, Italy
| | - Nicolas Wenner
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Disa L. Hammarlöf
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- Science for Life Laboratory, KTH, Stockholm, Sweden
| | - Carsten Kröger
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Jay C. D. Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
16
|
Wahl A, Battesti A, Ansaldi M. Prophages in Salmonella enterica: a driving force in reshaping the genome and physiology of their bacterial host? Mol Microbiol 2018; 111:303-316. [PMID: 30466179 PMCID: PMC7380047 DOI: 10.1111/mmi.14167] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2018] [Indexed: 12/11/2022]
Abstract
Thanks to the exponentially increasing number of publicly available bacterial genome sequences, one can now estimate the important contribution of integrated viral sequences to the diversity of bacterial genomes. Indeed, temperate bacteriophages are able to stably integrate the genome of their host through site‐specific recombination and transmit vertically to the host siblings. Lysogenic conversion has been long acknowledged to provide additional functions to the host, and particularly to bacterial pathogen genomes where prophages contribute important virulence factors. This review aims particularly at highlighting the current knowledge and questions about lysogeny in Salmonella genomes where functional prophages are abundant, and where genetic interactions between host and prophages are of particular importance for human health considerations.
Collapse
Affiliation(s)
- Astrid Wahl
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Aurélia Battesti
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Mireille Ansaldi
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| |
Collapse
|
17
|
A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision. Cell 2018; 176:268-280.e13. [PMID: 30554875 DOI: 10.1016/j.cell.2018.10.059] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/11/2018] [Accepted: 10/29/2018] [Indexed: 11/23/2022]
Abstract
Vibrio cholerae uses a quorum-sensing (QS) system composed of the autoinducer 3,5-dimethylpyrazin-2-ol (DPO) and receptor VqmA (VqmAVc), which together repress genes for virulence and biofilm formation. vqmA genes exist in Vibrio and in one vibriophage, VP882. Phage-encoded VqmA (VqmAPhage) binds to host-produced DPO, launching the phage lysis program via an antirepressor that inactivates the phage repressor by sequestration. The antirepressor interferes with repressors from related phages. Like phage VP882, these phages encode DNA-binding proteins and partner antirepressors, suggesting that they, too, integrate host-derived information into their lysis-lysogeny decisions. VqmAPhage activates the host VqmAVc regulon, whereas VqmAVc cannot induce phage-mediated lysis, suggesting an asymmetry whereby the phage influences host QS while enacting its own lytic-lysogeny program without interference. We reprogram phages to activate lysis in response to user-defined cues. Our work shows that a phage, causing bacterial infections, and V. cholerae, causing human infections, rely on the same signal molecule for pathogenesis.
Collapse
|
18
|
Das A, Biswas M. Cloning, overexpression and purification of a novel two-domain protein of Staphylococcus aureus phage Phi11. Protein Expr Purif 2018; 154:104-111. [PMID: 30326268 DOI: 10.1016/j.pep.2018.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
The genome of aureophage Phi11 reveals the presence of the gene gp07 which codes for the putative antirepressor protein (GenBank accession no. NC_004615.1). Antirepressor proteins are mainly involved in lytic cycle determination mechanisms of various bacteriophages. The Phi11 protein Gp07 consists of two domains-an amino terminal Bro domain and a carboxy terminal KilA domain. Despite the important role of antirepressor proteins in the developmental pathway of phages, there are no reports on the purification and characterization of aureophage antirepressor proteins. Here we describe a method to clone, overexpress and purify the full length Gp07 as carboxy terminal hexa histidine tag variant. The recombinant protein was expressed in Escherichia coli BL21(λDE3) cells and gradient of imidazole and NaCl were used for successful purification of the soluble recombinant protein to homogeneity. The protein exists as a dimer in solution as is evident from our gel filtration chromatography and glutaraldehyde cross-linking data. Further, we found that temperature has huge impact on the structural conformation of the protein. We expect that the purification of Gp07 will further our work in characterizing the role played by this protein during phage induction.
Collapse
Affiliation(s)
- Avijit Das
- Department of Biological Sciences, BITS Pilani, K. K. Birla, Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
| | - Malabika Biswas
- Department of Biological Sciences, BITS Pilani, K. K. Birla, Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
19
|
Manning KA, Quiles-Puchalt N, Penadés JR, Dokland T. A novel ejection protein from bacteriophage 80α that promotes lytic growth. Virology 2018; 525:237-247. [PMID: 30308422 DOI: 10.1016/j.virol.2018.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022]
Abstract
Many staphylococcal bacteriophages encode a minor capsid protein between the genes for the portal and scaffolding proteins. In Staphylococcus aureus bacteriophage 80α, this protein, called gp44, is essential for the production of viable phage, but dispensable for the phage-mediated mobilization of S. aureus pathogenicity islands. We show here that gp44 is not required for capsid assembly, DNA packaging or ejection of the DNA, nor for generalized transduction of plasmids. An 80α Δ44 mutant could be complemented in trans by gp44 expressed from a plasmid, indicating that gp44 plays a post-injection role in the host. Our results show that gp44 is an ejection (pilot) protein that is involved in deciding the fate of the phage DNA after injection. Our data are consistent with a model in which gp44 acts as a regulatory protein that promotes progression to the lytic cycle.
Collapse
Affiliation(s)
- Keith A Manning
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
20
|
Diard M, Bakkeren E, Cornuault JK, Moor K, Hausmann A, Sellin ME, Loverdo C, Aertsen A, Ackermann M, De Paepe M, Slack E, Hardt WD. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 2017; 355:1211-1215. [PMID: 28302859 DOI: 10.1126/science.aaf8451] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 12/19/2016] [Accepted: 02/22/2017] [Indexed: 12/12/2022]
Abstract
Bacteriophage transfer (lysogenic conversion) promotes bacterial virulence evolution. There is limited understanding of the factors that determine lysogenic conversion dynamics within infected hosts. A murine Salmonella Typhimurium (STm) diarrhea model was used to study the transfer of SopEΦ, a prophage from STm SL1344, to STm ATCC14028S. Gut inflammation and enteric disease triggered >55% lysogenic conversion of ATCC14028S within 3 days. Without inflammation, SopEΦ transfer was reduced by up to 105-fold. This was because inflammation (e.g., reactive oxygen species, reactive nitrogen species, hypochlorite) triggers the bacterial SOS response, boosts expression of the phage antirepressor Tum, and thereby promotes free phage production and subsequent transfer. Mucosal vaccination prevented a dense intestinal STm population from inducing inflammation and consequently abolished SopEΦ transfer. Vaccination may be a general strategy for blocking pathogen evolution that requires disease-driven transfer of temperate bacteriophages.
Collapse
Affiliation(s)
| | | | - Jeffrey K Cornuault
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy en Josas, France
| | - Kathrin Moor
- Institute of Microbiology, ETH Zurich, Switzerland
| | | | - Mikael E Sellin
- Institute of Microbiology, ETH Zurich, Switzerland.,Present address: Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Claude Loverdo
- Laboratoire Jean Perrin (UMR 8237), CNRS-UPMC, 75005 Paris, France
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, Belgium
| | - Martin Ackermann
- Department of Environmental Systems Science, ETH Zurich, and Department of Environmental Microbiology, Eawag, Switzerland
| | - Marianne De Paepe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy en Josas, France
| | - Emma Slack
- Institute of Microbiology, ETH Zurich, Switzerland
| | | |
Collapse
|
21
|
Owen SV, Wenner N, Canals R, Makumi A, Hammarlöf DL, Gordon MA, Aertsen A, Feasey NA, Hinton JCD. Characterization of the Prophage Repertoire of African Salmonella Typhimurium ST313 Reveals High Levels of Spontaneous Induction of Novel Phage BTP1. Front Microbiol 2017; 8:235. [PMID: 28280485 PMCID: PMC5322425 DOI: 10.3389/fmicb.2017.00235] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/02/2017] [Indexed: 01/30/2023] Open
Abstract
In the past 30 years, Salmonella bloodstream infections have become a significant health problem in sub-Saharan Africa and are responsible for the deaths of an estimated 390,000 people each year. The disease is predominantly caused by a recently described sequence type of Salmonella Typhimurium: ST313, which has a distinctive set of prophage sequences. We have thoroughly characterized the ST313-associated prophages both genetically and experimentally. ST313 representative strain D23580 contains five full-length prophages: BTP1, Gifsy-2D23580, ST64BD23580, Gifsy-1D23580, and BTP5. We show that common S. Typhimurium prophages Gifsy-2, Gifsy-1, and ST64B are inactivated in ST313 by mutations. Prophage BTP1 was found to be a functional novel phage, and the first isolate of the proposed new species "Salmonella virus BTP1", belonging to the P22virus genus. Surprisingly, ∼109 BTP1 virus particles per ml were detected in the supernatant of non-induced, stationary-phase cultures of strain D23580, representing the highest spontaneously induced phage titer so far reported for a bacterial prophage. High spontaneous induction is shown to be an intrinsic property of prophage BTP1, and indicates the phage-mediated lysis of around 0.2% of the lysogenic population. The fact that BTP1 is highly conserved in ST313 poses interesting questions about the potential fitness costs and benefits of novel prophages in epidemic S. Typhimurium ST313.
Collapse
Affiliation(s)
- Siân V Owen
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Nicolas Wenner
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Angela Makumi
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Disa L Hammarlöf
- Department of Cell and Molecular Biology, Uppsala University Uppsala, Sweden
| | - Melita A Gordon
- Institute of Infection and Global Health, University of LiverpoolLiverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research ProgrammeBlantyre, Malawi
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | | | - Jay C D Hinton
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| |
Collapse
|
22
|
Fornelos N, Browning DF, Butala M. The Use and Abuse of LexA by Mobile Genetic Elements. Trends Microbiol 2016; 24:391-401. [PMID: 26970840 DOI: 10.1016/j.tim.2016.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 11/15/2022]
Abstract
The SOS response is an essential process for responding to DNA damage in bacteria. The expression of SOS genes is under the control of LexA, a global transcription factor that undergoes self-cleavage during stress to allow the expression of DNA repair functions and delay cell division until the damage is rectified. LexA also regulates genes that are not part of this cell rescue program, and the induction of bacteriophages, the movement of pathogenicity islands, and the expression of virulence factors and bacteriocins are all controlled by this important transcription factor. Recently it has emerged that when regulating the expression of genes from mobile genetic elements (MGEs), LexA often does so in concert with a corepressor. This accessory regulator can either be a host-encoded global transcription factor, which responds to various metabolic changes, or a factor that is encoded for by the MGE itself. Thus, the coupling of LexA-mediated regulation to a secondary transcription factor not only detaches LexA from its primary SOS role, but also fine-tunes gene expression from the MGE, enabling it to respond to multiple stresses. Here we discuss the mechanisms of such coordinated regulation and its implications for cells carrying such MGEs.
Collapse
Affiliation(s)
- Nadine Fornelos
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, PO Box 35, F-40014 Jyvaskyla, Finland.
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
23
|
Christie GE, Calendar R. Bacteriophage P2. BACTERIOPHAGE 2016; 6:e1145782. [PMID: 27144088 DOI: 10.1080/21597081.2016.1145782] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
P2 is the original member of a highly successful family of temperate phages that are frequently found in the genomes of gram-negative bacteria. This article focuses on the organization of the P2 genome and reviews current knowledge about the function of each open reading frame.
Collapse
Affiliation(s)
- Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine , Richmond, VA, USA
| | - Richard Calendar
- Department of Molecular and Cell Biology, University of California , Berkeley, CA, USA
| |
Collapse
|
24
|
Evidence-Based Structural Model of the Staphylococcal Repressor Protein: Separation of Functions into Different Domains. PLoS One 2015; 10:e0139086. [PMID: 26414067 PMCID: PMC4634304 DOI: 10.1371/journal.pone.0139086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/09/2015] [Indexed: 12/05/2022] Open
Abstract
Horizontal transfer of mobile genetic elements within Staphylococci is of high biomedical significance as such elements are frequently responsible for virulence and toxic effects. Staphylococcus-encoded repressor proteins regulate the replication of these mobile genetic elements that are located within the so-called pathogenicity islands. Here, we report structural and functional characterization of one such repressor protein, namely the Stl protein encoded by the pathogenicity island SaPIbov1. We create a 3D structural model and based on this prediction, we investigate the different functionalities of truncated and point mutant constructs. Results suggest that a helix-turn-helix motif governs the interaction of the Stl protein with its cognate DNA site: point mutations within this motif drastically decrease DNA-binding ability, whereas the interaction with the Stl-binding partner protein dUTPase is unperturbed by these point mutations. The 3D model also suggested the potential independent folding of a carboxy-terminal domain. This suggestion was fully verified by independent experiments revealing that the carboxy-terminal domain does not bind to DNA but is still capable of binding to and inhibiting dUTPase. A general model is proposed, which suggests that among the several structurally different repressor superfamilies Stl-like Staphylococcal repressor proteins belong to the helix-turn-helix transcription factor group and the HTH motif is suggested to reside within N-terminal segment.
Collapse
|
25
|
Koberg S, Mohamed MDA, Faulhaber K, Neve H, Heller KJ. Identification and characterization of cis- and trans-acting elements involved in prophage induction in Streptococcus thermophilus J34. Mol Microbiol 2015; 98:535-52. [PMID: 26193959 DOI: 10.1111/mmi.13140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2015] [Indexed: 11/29/2022]
Abstract
The genetic switch region of temperate Streptococcus thermophilus phage TP-J34 contains two divergently oriented promoters and several predicted operator sites. It separates lytic cycle-promoting genes from those promoting lysogeny. A polycistronic transcript comprises the genes coding for repressor Crh, metalloproteinase-motif protein Rir and superinfection exclusion lipoprotein Ltp. Weak promoters effecting monocistronic transcripts were localized for ltp and int (encoding integrase) by Northern blot and 5'-RACE-PCR. These transcripts appeared in lysogenic as well as lytic state. A polycistronic transcript comprising genes coh (encoding Cro homolog), ant (encoding putative antirepressor), orf7, orf8 and orf9 was only detected in the lytic state. Four operator sites, of which three were located in the intergenic regions between crh and coh, and one between coh and ant, were identified by competition electromobility shift assays. Cooperative binding of Crh to two operator sites immediately upstream of coh could be demonstrated. Coh was shown to bind to the operator closest to crh only. Oligomerization was proven by cross-linking Crh by glutaraldehyde. Knock-out of rir revealed a key role in prophage induction. Rir and Crh were shown to form a complex in solution and Rir prevented binding of Crh to its operator sites.
Collapse
Affiliation(s)
- Sabrina Koberg
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Mazhar Desouki Ali Mohamed
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Katharina Faulhaber
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Knut J Heller
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| |
Collapse
|
26
|
Fornelos N, Butala M, Hodnik V, Anderluh G, Bamford JK, Salas M. Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage. Nucleic Acids Res 2015; 43:7315-29. [PMID: 26138485 PMCID: PMC4551915 DOI: 10.1093/nar/gkv634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/05/2015] [Indexed: 01/22/2023] Open
Abstract
The SOS response in Eubacteria is a global response to DNA damage and its activation is increasingly associated with the movement of mobile genetic elements. The temperate phage GIL01 is induced into lytic growth using the host's SOS response to genomic stress. LexA, the SOS transcription factor, represses bacteriophage transcription by binding to a set of SOS boxes in the lysogenic promoter P1. However, LexA is unable to efficiently repress GIL01 transcription unless the small phage-encoded protein gp7 is also present. We found that gp7 forms a stable complex with LexA that enhances LexA binding to phage and cellular SOS sites and interferes with RecA-mediated auto-cleavage of LexA, the key step in the initiation of the SOS response. Gp7 did not bind DNA, alone or when complexed with LexA. Our findings suggest that gp7 induces a LexA conformation that favors DNA binding but disfavors LexA auto-cleavage, thereby altering the dynamics of the cellular SOS response. This is the first account of an accessory factor interacting with LexA to regulate transcription.
Collapse
Affiliation(s)
- Nadine Fornelos
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Centre of Excellence in Biological Interactions, PO Box 35, F-40014 Jyvaskyla, Finland Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Jaana K Bamford
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Centre of Excellence in Biological Interactions, PO Box 35, F-40014 Jyvaskyla, Finland
| | - Margarita Salas
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
27
|
Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol 2014; 197:410-9. [PMID: 25404701 DOI: 10.1128/jb.02230-14] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacteriophages and genetic elements, such as prophage-like elements, pathogenicity islands, and phage morons, make up a considerable amount of bacterial genomes. Their transfer and subsequent activity within the host's genetic circuitry have had a significant impact on bacterial evolution. In this review, we consider what underlying mechanisms might cause the spontaneous activity of lysogenic phages in single bacterial cells and how the spontaneous induction of prophages can lead to competitive advantages for and influence the lifestyle of bacterial populations or the virulence of pathogenic strains.
Collapse
|
28
|
Frandsen KH, Rasmussen KK, Jensen MR, Hammer K, Pedersen M, Poulsen JCN, Arleth L, Lo Leggio L. Binding of the N-Terminal Domain of the Lactococcal Bacteriophage TP901-1 CI Repressor to Its Target DNA: A Crystallography, Small Angle Scattering, and Nuclear Magnetic Resonance Study. Biochemistry 2013; 52:6892-904. [DOI: 10.1021/bi400439y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kristian H. Frandsen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Kim K. Rasmussen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | | | - Karin Hammer
- Center
for Systems Microbiology, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Margit Pedersen
- Department
of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
| | - Jens-Christian N. Poulsen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Lise Arleth
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
| | - Leila Lo Leggio
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
29
|
Antirepression system associated with the life cycle switch in the temperate podoviridae phage SPC32H. J Virol 2013; 87:11775-86. [PMID: 23986584 DOI: 10.1128/jvi.02173-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prophages switch from lysogenic to lytic mode in response to the host SOS response. The primary factor that governs this switch is a phage repressor, which is typically a host RecA-dependent autocleavable protein. Here, in an effort to reveal the mechanism underlying the phenotypic differences between the Salmonella temperate phages SPC32H and SPC32N, whose genome sequences differ by only two nucleotides, we identified a new class of Podoviridae phage lytic switch antirepressor that is structurally distinct from the previously reported Sipho- and Myoviridae phage antirepressors. The SPC32H repressor (Rep) is not cleaved by the SOS response but instead is inactivated by a small antirepressor (Ant), the expression of which is negatively controlled by host LexA. A single nucleotide mutation in the consensus sequence of the LexA-binding site, which overlaps with the ant promoter, results in constitutive Ant synthesis and consequently induces SPC32N to enter the lytic cycle. Numerous potential Ant homologues were identified in a variety of putative prophages and temperate Podoviridae phages, indicating that antirepressors may be widespread among temperate phages in the order Caudovirales to mediate a prudent prophage induction.
Collapse
|
30
|
Abstract
The Bacillus thuringiensis temperate phage GIL01 does not integrate into the host chromosome but exists stably as an independent linear replicon within the cell. Similar to that of the lambdoid prophages, the lytic cycle of GIL01 is induced as part of the cellular SOS response to DNA damage. However, no CI-like maintenance repressor has been detected in the phage genome, suggesting that GIL01 uses a novel mechanism to maintain lysogeny. To gain insights into the GIL01 regulatory circuit, we isolated and characterized a set of 17 clear plaque (cp) mutants that are unable to lysogenize. Two phage-encoded proteins, gp1 and gp7, are required for stable lysogen formation. Analysis of cp mutants also identified a 14-bp palindromic dinBox1 sequence within the P1-P2 promoter region that resembles the known LexA-binding site of Gram-positive bacteria. Mutations at conserved positions in dinBox1 result in a cp phenotype. Genomic analysis identified a total of three dinBox sites within GIL01 promoter regions. To investigate the possibility that the host LexA regulates GIL01, phage induction was measured in a host carrying a noncleavable lexA (Ind(-)) mutation. GIL01 formed stable lysogens in this host, but lytic growth could not be induced by treatment with mitomycin C. Also, mitomycin C induced β-galactosidase expression from GIL01-lacZ promoter fusions, and induction was similarly blocked in the lexA (Ind(-)) mutant host. These data support a model in which host LexA binds to dinBox sequences in GIL01, repressing phage gene expression during lysogeny and providing the switch necessary to enter lytic development.
Collapse
|
31
|
Lemire S, Figueroa-Bossi N, Bossi L. Bacteriophage crosstalk: coordination of prophage induction by trans-acting antirepressors. PLoS Genet 2011; 7:e1002149. [PMID: 21731505 PMCID: PMC3121763 DOI: 10.1371/journal.pgen.1002149] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/05/2011] [Indexed: 02/01/2023] Open
Abstract
Many species of bacteria harbor multiple prophages in their genomes. Prophages often carry genes that confer a selective advantage to the bacterium, typically during host colonization. Prophages can convert to infectious viruses through a process known as induction, which is relevant to the spread of bacterial virulence genes. The paradigm of prophage induction, as set by the phage Lambda model, sees the process initiated by the RecA-stimulated self-proteolysis of the phage repressor. Here we show that a large family of lambdoid prophages found in Salmonella genomes employs an alternative induction strategy. The repressors of these phages are not cleaved upon induction; rather, they are inactivated by the binding of small antirepressor proteins. Formation of the complex causes the repressor to dissociate from DNA. The antirepressor genes lie outside the immunity region and are under direct control of the LexA repressor, thus plugging prophage induction directly into the SOS response. GfoA and GfhA, the antirepressors of Salmonella prophages Gifsy-1 and Gifsy-3, each target both of these phages' repressors, GfoR and GfhR, even though the latter proteins recognize different operator sites and the two phages are heteroimmune. In contrast, the Gifsy-2 phage repressor, GtgR, is insensitive to GfoA and GfhA, but is inactivated by an antirepressor from the unrelated Fels-1 prophage (FsoA). This response is all the more surprising as FsoA is under the control of the Fels-1 repressor, not LexA, and plays no apparent role in Fels-1 induction, which occurs via a Lambda CI-like repressor cleavage mechanism. The ability of antirepressors to recognize non-cognate repressors allows coordination of induction of multiple prophages in polylysogenic strains. Identification of non-cleavable gfoR/gtgR homologues in a large variety of bacterial genomes (including most Escherichia coli genomes in the DNA database) suggests that antirepression-mediated induction is far more common than previously recognized.
Collapse
Affiliation(s)
- Sébastien Lemire
- Centre de Génétique Moléculaire, CNRS, UPR3404, Université Paris-Sud, Gif-sur-Yvette, France
| | - Nara Figueroa-Bossi
- Centre de Génétique Moléculaire, CNRS, UPR3404, Université Paris-Sud, Gif-sur-Yvette, France
| | - Lionello Bossi
- Centre de Génétique Moléculaire, CNRS, UPR3404, Université Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
32
|
An antirepressor, SrpR, is involved in transcriptional regulation of the SrpABC solvent tolerance efflux pump of Pseudomonas putida S12. J Bacteriol 2011; 193:2717-25. [PMID: 21441510 DOI: 10.1128/jb.00149-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Organic compounds exhibit various levels of toxicity toward living organisms based upon their ability to insert into biological membranes and disrupt normal membrane function. The primary mechanism responsible for organic solvent tolerance in many bacteria is energy-dependent extrusion via efflux pumps. One such bacterial strain, Pseudomonas putida S12, is known for its high tolerance to organic solvents as provided through the SrpABC resistance-nodulation-cell division (RND) family efflux pump. To determine how two putative regulatory proteins (SrpR and SrpS, encoded directly upstream of the SrpABC structural genes) influence SrpABC efflux pump expression, we conducted transcriptional analysis, β-galactosidase fusion experiments, electrophoretic mobility shift assays, and pulldown analysis. Together, the results of these experiments suggest that expression of the srpABC operon can be derepressed by two distinct but complementary mechanisms: direct inhibition of the SrpS repressor by organic solvents and binding of SrpS by its antirepressor SrpR.
Collapse
|
33
|
Alsing A, Pedersen M, Sneppen K, Hammer K. Key players in the genetic switch of bacteriophage TP901-1. Biophys J 2011; 100:313-21. [PMID: 21244827 DOI: 10.1016/j.bpj.2010.12.3681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022] Open
Abstract
After infection of a sensitive host temperate phages may enter either a lytic or a lysogenic pathway leading to new phage assembly or silencing as a prophage, respectively. The decision about which pathway to enter is centered in the genetic switch of the phage. In this work, we explore the bistable genetic switch of bacteriophage TP901-1 through experiments and statistical mechanical modeling. We examine the activity of the lysogenic promoter P(R) at different concentrations of the phage repressor, CI, and compare the effect of CI on P(R) in the presence or absence of the phage-encoded MOR protein expressed from the lytic promoter P(L). We find that the presence of large amounts of MOR prevents repression of the P(R) promoter, verifying that MOR works as an antirepressor. We compare our experimental data with simulations based on previous mathematical formulations of this switch. Good agreement between data and simulations verify the model of CI repression of P(R). By including MOR in the simulations, we are able to discard a model that assumes that CI and MOR do not interact before binding together at the DNA to repress P(R). The second model of Pr repression assumes the formation of a CI:MOR complex in the cytoplasm. We suggest that a CI:MOR complex may exist in different forms that either prevent or invoke P(R) repression, introducing a new twist on mixed feedback systems.
Collapse
Affiliation(s)
- Anne Alsing
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
34
|
Christie GE, Matthews AM, King DG, Lane KD, Olivarez NP, Tallent SM, Gill SR, Novick RP. The complete genomes of Staphylococcus aureus bacteriophages 80 and 80α--implications for the specificity of SaPI mobilization. Virology 2010; 407:381-90. [PMID: 20869739 PMCID: PMC2952651 DOI: 10.1016/j.virol.2010.08.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/22/2010] [Accepted: 08/31/2010] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs) are mobile elements that are induced by a helper bacteriophage to excise and replicate and to be encapsidated in phage-like particles smaller than those of the helper, leading to high-frequency transfer. SaPI mobilization is helper phage specific; only certain SaPIs can be mobilized by a particular helper phage. Staphylococcal phage 80α can mobilize every SaPI tested thus far, including SaPI1, SaPI2 and SaPIbov1. Phage 80, on the other hand, cannot mobilize SaPI1, and ϕ11 mobilizes only SaPIbov1. In order to better understand the relationship between SaPIs and their helper phages, the genomes of phages 80 and 80α were sequenced, compared with other staphylococcal phage genomes, and analyzed for unique features that may be involved in SaPI mobilization.
Collapse
Affiliation(s)
- G E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall Street; PO Box 980678, Richmond, VA 23298-0678, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Overexpression of the recA gene decreases oral but not intraperitoneal fitness of Salmonella enterica. Infect Immun 2010; 78:3217-25. [PMID: 20457791 DOI: 10.1128/iai.01321-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Salmonella enterica recA gene is negatively controlled by the LexA protein, the repressor of the SOS response. The introduction of a mutation (recAo6869) in the LexA binding site, in the promoter region of the S. enterica ATCC 14028 recA gene, allowed the analysis of the effect that RecA protein overproduction has on the fitness of this virulent strain. The fitness of orally but not intraperitoneally inoculated recAo6869 cells decreased dramatically. However, the SOS response of this mutant was induced normally, and there was no increase in the sensitivity of the strain toward DNA-damaging agents, bile salts, or alterations in pH. Nevertheless, S. enterica recAo6869 cells were unable to swarm and their capacity to cross the intestinal epithelium was significantly reduced. The swarming deficiency in recAo6869 cells is independent of the flagellar phase. Moreover, swimming activity of the recAo6869 strain was not diminished with respect to the wild type, indicating that the flagellar synthesis is not affected by RecA protein overproduction. In contrast, swarming was recovered in a recAo6869 derivative that overproduced CheW, a protein known to be essential for this function. These data demonstrate that an equilibrium between the intracellular concentrations of RecA and CheW is necessary for swarming in S. enterica. Our results are the first to point out that the SOS response plays a critical role in the prevention of DNA damage by abolishing bacterial swarming in the presence of a genotoxic compound.
Collapse
|
36
|
Abstract
The mobile genetic element ICEBs1 is an integrative and conjugative element (a conjugative transposon) found in the Bacillus subtilis chromosome. The SOS response and the RapI-PhrI sensory system activate ICEBs1 gene expression, excision and transfer by inactivating the ICEBs1 repressor protein ImmR. Although ImmR is similar to many characterized phage repressors, we found that, unlike these repressors, inactivation of ImmR requires an ICEBs1-encoded anti-repressor ImmA (YdcM). ImmA was needed for the degradation of ImmR in B. subtilis. Coexpression of ImmA and ImmR in Escherichia coli or co-incubation of purified ImmA and ImmR resulted in site-specific cleavage of ImmR. Homologues of immR and immA are found in many mobile genetic elements. We found that the ImmA homologue encoded by B. subtilis phage phi105 is required for inactivation of the phi105 repressor (an ImmR homologue). ImmA-dependent proteolysis of ImmR repressors may be a conserved mechanism for regulating horizontal gene transfer.
Collapse
Affiliation(s)
| | | | - Catherine A. Lee
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alan D. Grossman
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
37
|
Pedersen M, Hammer K. The role of MOR and the CI operator sites on the genetic switch of the temperate bacteriophage TP901-1. J Mol Biol 2008; 384:577-89. [PMID: 18930065 DOI: 10.1016/j.jmb.2008.09.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
A genetic switch controls whether the temperate bacteriophage TP901-1 will enter a lytic or a lysogenic life cycle after infection of its host, Lactococcus lactis. We studied this bistable switch encoded in a small DNA fragment of 979 bp by fusing it to a reporter gene on a low-copy-number plasmid. The cloned DNA fragment contained the two divergently oriented promoters, P(R) and P(L), transcribing the lysogenic and lytic gene clusters; the two promoter-proximal genes, cI and mor; and the three CI operator sites, O(R), O(L) and O(D). We show that mor encodes a protein and that this protein in concert with CI is required for the bistability. Furthermore, interaction of CI at O(R) represses transcription from the lysogenic promoter, P(R). Thus, CI regulates its own transcription. Interaction of CI at O(L) represses transcription from the lytic promoter, P(L). The presence of only O(L) (absence of O(R) and O(D)) is enough to maintain a bistable system. The distantly located operator site, O(D), functions as a helper site by increasing binding of CI at O(R) and O(L). In the immune state, O(D) increases repression of the lytic promoter, P(L). Our results strongly support the model that a hexameric form of CI binds cooperatively to the three operator sites in the immune state forming a CI-DNA loop structure. Finally, we show that in the anti-immune state, repression of the lysogenic promoter is independent of the known CI operator sites but requires the presence of both CI and MOR.
Collapse
Affiliation(s)
- Margit Pedersen
- Center for Systems Microbiology, DTU BIOSYS, Technical University of Denmark, DK-2800 Lyngby,
| | | |
Collapse
|
38
|
Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies. J Bacteriol 2007; 190:1762-72. [PMID: 18065537 DOI: 10.1128/jb.01534-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria and their phages are significant microbial components of the freshwater and marine environments. We identified a lytic phage, Ma-LMM01, infecting Microcystis aeruginosa, a cyanobacterium that forms toxic blooms on the surfaces of freshwater lakes. Here, we describe the first sequenced freshwater cyanomyovirus genome of Ma-LMM01. The linear, circularly permuted, and terminally redundant genome has 162,109 bp and contains 184 predicted protein-coding genes and two tRNA genes. The genome exhibits no colinearity with previously sequenced genomes of cyanomyoviruses or other Myoviridae. The majority of the predicted genes have no detectable homologues in the databases. These findings indicate that Ma-LMM01 is a member of a new lineage of the Myoviridae family. The genome lacks homologues for the photosynthetic genes that are prevalent in marine cyanophages. However, it has a homologue of nblA, which is essential for the degradation of the major cyanobacteria light-harvesting complex, the phycobilisomes. The genome codes for a site-specific recombinase and two prophage antirepressors, suggesting that it has the capacity to integrate into the host genome. Ma-LMM01 possesses six genes, including three coding for transposases, that are highly similar to homologues found in cyanobacteria, suggesting that recent gene transfers have occurred between Ma-LMM01 and its host. We propose that the Ma-LMM01 NblA homologue possibly reduces the absorption of excess light energy and confers benefits to the phage living in surface waters. This phage genome study suggests that light is central in the phage-cyanobacterium relationships where the viruses use diverse genetic strategies to control their host's photosynthesis.
Collapse
|
39
|
Garcia E, Chain P, Elliott JM, Bobrov AG, Motin VL, Kirillina O, Lao V, Calendar R, Filippov AA. Molecular characterization of L-413C, a P2-related plague diagnostic bacteriophage. Virology 2007; 372:85-96. [PMID: 18045639 DOI: 10.1016/j.virol.2007.10.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 08/28/2007] [Accepted: 10/26/2007] [Indexed: 11/19/2022]
Abstract
Our analysis of the plague diagnostic phage L-413C genome sequence and structure reveals that L-413C is highly similar and collinear with enterobacteriophage P2, though important differences were found. Of special interest was the mosaic nature of the tail fiber protein H in L-413C, given the differentiating specificity of this phage for Yersinia pestis vs. Yersinia pseudotuberculosis. While the N-terminal 207 and C-terminal 137 amino acids of L-413C display significant homology with the P2 H protein, a large (465 amino acid) middle section appears to be derived from a T4-related H protein, with highest similarity to the T6 and RB32 distal tail fibers. This finding along with appropriate preadsorption experiments suggest that the unique H protein of L-413C may be responsible for the specificity of this phage for Y. pestis, and that the Y. pestis receptors that are recognized and bound by L-413C either do not exist in Y. pseudotuberculosis or have a different structure.
Collapse
Affiliation(s)
- Emilio Garcia
- Chemistry, Materials and Life Sciences Directorates Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Erill I, Campoy S, Barbé J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007; 31:637-56. [PMID: 17883408 DOI: 10.1111/j.1574-6976.2007.00082.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The SOS response of bacteria is a global regulatory network targeted at addressing DNA damage. Governed by the products of the lexA and recA genes, it co-ordinates a comprehensive response against DNA lesions and its description in Escherichia coli has stood for years as a textbook paradigm of stress-response systems in bacteria. In this paper we review the current state of research on the SOS response outside E. coli. By retracing research on the identification of multiple diverging LexA-binding motifs across the Bacteria Domain, we show how this work has led to the description of a minimum regulon core, but also of a heterogeneous collection of SOS regulatory networks that challenges many tenets of the E. coli model. We also review recent attempts at reconstructing the evolutionary history of the SOS network that have cast new light on the SOS response. Exploiting the newly gained knowledge on LexA-binding motifs and the tight association of LexA with a recently described mutagenesis cassette, these works put forward likely evolutionary scenarios for the SOS response, and we discuss their relevance on the ultimate nature of this stress-response system and the evolutionary pressures driving its evolution.
Collapse
Affiliation(s)
- Ivan Erill
- Biomedical Applications Group, Centro Nacional de Microelectrónica, Barcelona, Spain
| | | | | |
Collapse
|
41
|
Abstract
In contrast to the vast majority of the members of the domain Bacteria, several Pseudomonas and Xanthomonas species have two lexA genes, whose products have been shown to recognize different LexA binding motifs, making them an interesting target for studying the interplay between cohabiting LexA regulons in a single species. Here we report an analysis of the genetic composition of the two LexA regulons of Pseudomonas putida KT2440 performed with a genomic microarray. The data obtained indicate that one of the two LexA proteins (LexA1) seems to be in control of the conventional Escherichia coli-like SOS response, while the other LexA protein (LexA2) regulates only its own transcriptional unit, which includes the imuA, imuB, and dnaE2 genes, and a gene (PP_3901) from a resident P. putida prophage. Furthermore, PP_3901 is also regulated by LexA1 and is required for DNA damage-mediated induction of several P. putida resident prophage genes. In silico searches suggested that this marked asymmetry in regulon contents also occurs in other Pseudomonas species with two lexA genes, and the implications of this asymmetry in the evolution of the SOS network are discussed.
Collapse
|
42
|
Mardanov AV, Ravin NV. The antirepressor needed for induction of linear plasmid-prophage N15 belongs to the SOS regulon. J Bacteriol 2007; 189:6333-8. [PMID: 17586637 PMCID: PMC1951935 DOI: 10.1128/jb.00599-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physiological conditions and molecular interactions that control phage production have been studied in only a few families of temperate phages. We investigated the mechanisms that regulate activation of lytic development in lysogens of coliphage N15, a prophage that is not integrated into the host chromosome but exists as a linear plasmid with covalently closed ends. We identified the N15 antirepressor gene, antC, and showed that its product binds to and acts against the main phage repressor, CB. LexA binds to and represses the promoter of antC. Mitomycin C-stimulated N15 induction required RecA-dependent autocleavage of LexA and expression of AntC protein. Thus, a cellular repressor whose activity is regulated by DNA damage controls N15 prophage induction.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Centre Bioengineering, Russian Academy of Sciences, Prosp. 60-let Oktiabria, Bldg.7-1, Moscow 117312, Russia
| | | |
Collapse
|
43
|
Dodd IB, Shearwin KE, Sneppen K. Modelling transcriptional interference and DNA looping in gene regulation. J Mol Biol 2007; 369:1200-13. [PMID: 17498740 DOI: 10.1016/j.jmb.2007.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 11/25/2022]
Abstract
We describe a hybrid statistical mechanical and dynamical approach for modelling the formation of closed, open and elongating complexes of RNA polymerase, the interactions of these polymerases to produce transcriptional interference, and the regulation of these processes by a DNA-binding and DNA-looping regulatory protein. As a model system, we have used bacteriophage 186, for which genetic, biochemical and structural studies have suggested that the CI repressor binds as a 14-mer to form alternative DNA-looped complexes, and activates lysogenic transcription indirectly by relieving transcriptional interference caused by the convergent lytic promoter. The modelling showed that the original mechanisms proposed to explain this relief of transcriptional interference are not consistent with the available in vivo reporter data. However, a good fit to the reporter data was given by a revised model that incorporates a novel predicted regulatory mechanism: that RNA polymerase bound at the lysogenic promoter protects itself from transcriptional interference by recruiting CI to the lytic promoter. This mechanism and various estimates of in vivo biochemical parameters for the 186 CI system should be testable. Our results demonstrate the power of mathematical modelling for the extraction of detailed biochemical information from in vivo data.
Collapse
Affiliation(s)
- Ian B Dodd
- Centre for Models of Life, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
44
|
Navarro-Avilés G, Jiménez MA, Pérez-Marín MC, González C, Rico M, Murillo FJ, Elías-Arnanz M, Padmanabhan S. Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor. Mol Microbiol 2007; 63:980-94. [PMID: 17233828 DOI: 10.1111/j.1365-2958.2006.05567.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blue light induces carotenogenesis in Myxococcus xanthus. The carB operon encodes all but one of the structural genes involved, and its expression is regulated by the CarA-CarS repressor-antirepressor pair. In the dark, CarA-operator binding represses carB. CarS, produced on illumination, interacts physically with CarA to dismantle the CarA-operator complex and activate carB. Both operator and CarS bind to the autonomously folded N-terminal domain of CarA, CarA(Nter), which in excess represses carB. Here, we report the NMR structure of CarA(Nter), and map residues that interact with operator and CarS by NMR chemical shift perturbations, and in vivo and in vitro analyses of site-directed mutants. We show CarA(Nter) adopts the winged-helix topology of MerR-family DNA-binding domains, and conserves the majority of the helix-turn-helix and wing contacts with DNA. Tellingly, helix alpha2 in CarA, a key element in operator DNA recognition, is also critical for interaction with CarS, implying that the CarA-CarS protein-protein and the CarA-operator protein-DNA interfaces overlap. Thus, binding of CarA to operator and to antirepressor are mutually exclusive, and CarA may discern structural features in the acidic CarS protein that resemble operator DNA. Repressor inactivation by occluding the DNA-binding region may be a recurrent mechanism of action for acidic antirepressors.
Collapse
Affiliation(s)
- Gloria Navarro-Avilés
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Nilsson AS, Haggård-Ljungquist E. Evolution of P2-like phages and their impact on bacterial evolution. Res Microbiol 2007; 158:311-7. [PMID: 17490863 DOI: 10.1016/j.resmic.2007.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022]
Abstract
The structural genes of P2-like phages are almost identical between different isolates of Escherichia coli, whereas the regulatory genes and host integration sites are more variable. The variation in P2-like phages infecting other gamma-proteobacteria is broader, but their structural genes seem to follow the evolution of their host bacteria. Taken together, this suggests that P2-like phages and their hosts are coevolving.
Collapse
Affiliation(s)
- Anders S Nilsson
- Department of Genetics, Microbiology, and Toxicology, University of Stockholm, SE-10691 Stockholm, Sweden.
| | | |
Collapse
|
46
|
Dryden DTF. DNA mimicry by proteins and the control of enzymatic activity on DNA. Trends Biotechnol 2006; 24:378-82. [PMID: 16815576 DOI: 10.1016/j.tibtech.2006.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/03/2006] [Accepted: 06/14/2006] [Indexed: 11/18/2022]
Abstract
Cells are unable to perform any function on their DNA in the absence of proteins, and it is of vital importance that these proteins only perform their function at appropriate times during the cell cycle. Thus, DNA-binding proteins are always controlled by a wide range of other factors, primarily other proteins. These controlling factors usually block access of the protein to the DNA, often operating by simple competitive inhibition. However, it has recently been demonstrated that DNA-binding proteins can be controlled by the direct binding of the control protein to the DNA-binding site on the first protein. The structures of these control proteins have revealed that they mimic the structure and electrostatics of DNA. This review highlights the roles of DNA mimics in the control of DNA-binding proteins, suggests other possible candidate proteins using DNA mimicry, and puts forward a range of potential uses of DNA mimics.
Collapse
Affiliation(s)
- David T F Dryden
- School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK.
| |
Collapse
|
47
|
Pinkett HW, Shearwin KE, Stayrook S, Dodd IB, Burr T, Hochschild A, Egan JB, Lewis M. The structural basis of cooperative regulation at an alternate genetic switch. Mol Cell 2006; 21:605-15. [PMID: 16507359 DOI: 10.1016/j.molcel.2006.01.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/12/2005] [Accepted: 01/12/2006] [Indexed: 01/04/2023]
Abstract
Bacteriophage lambda is a paradigm for understanding the role of cooperativity in gene regulation. Comparison of the regulatory regions of lambda and the unrelated temperate bacteriophage 186 provides insight into alternate ways to assemble functional genetic switches. The structure of the C-terminal domain of the 186 repressor, determined at 2.7 A resolution, reveals an unusual heptamer of dimers, consistent with presented genetic studies. In addition, the structure of a cooperativity mutant of the full-length 186 repressor, identified by genetic screens, was solved to 1.95 A resolution. These structures provide a molecular basis for understanding lysogenic regulation in 186. Whereas the overall fold of the 186 and lambda repressor monomers is remarkably similar, the way the two repressors cooperatively assemble is quite different and explains in part the differences in their regulatory activity.
Collapse
Affiliation(s)
- Heather W Pinkett
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 37th and Hamilton Walk, Philadelphia, 19102, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Trusina A, Sneppen K, Dodd IB, Shearwin KE, Egan JB. Functional alignment of regulatory networks: a study of temperate phages. PLoS Comput Biol 2005; 1:e74. [PMID: 16477325 PMCID: PMC1317652 DOI: 10.1371/journal.pcbi.0010074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 11/11/2005] [Indexed: 11/23/2022] Open
Abstract
The relationship between the design and functionality of molecular networks is now a key issue in biology. Comparison of regulatory networks performing similar tasks can provide insights into how network architecture is constrained by the functions it directs. Here, we discuss methods of network comparison based on network architecture and signaling logic. Introducing local and global signaling scores for the difference between two networks, we quantify similarities between evolutionarily closely and distantly related bacteriophages. Despite the large evolutionary separation between phage lambda and 186, their networks are found to be similar when difference is measured in terms of global signaling. We finally discuss how network alignment can be used to pinpoint protein similarities viewed from the network perspective.
Collapse
Affiliation(s)
- Ala Trusina
- Department of Theoretical Physics, Umeå University, Umeå, Sweden.
| | | | | | | | | |
Collapse
|
49
|
Abstract
The number of E. coli genes/operons regulated from sites distant from the gene, though limited, steadily increases. The regulation of the ula genes, in charge of L-ascorbate utilization, as well as the negative autoregulation of the non-related lambdaCI and 186CI repressors, for efficient switching of the corresponding phages from lysogeny to lysis, are recent examples. The interaction between the two GalR dimers, separated by 114 bp, undetectable in vitro, has been genetically mapped. lac repressor-operator loops might insulate a gene and its expression from the genomic environment. The genes in charge of nitrogen assimilation sequentially react to ammonia deprivation, via an increasing intracellular NRI concentration. Other sigma54-dependent genes are activated in response to various stimuli.
Collapse
Affiliation(s)
- Michèle Amouyal
- Interactions à distance, CNRS, 121, av. Philippe-Auguste, 75011 Paris, France.
| |
Collapse
|
50
|
Quinones M, Kimsey HH, Waldor MK. LexA Cleavage Is Required for CTX Prophage Induction. Mol Cell 2005; 17:291-300. [PMID: 15664197 DOI: 10.1016/j.molcel.2004.11.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 10/12/2004] [Accepted: 11/19/2004] [Indexed: 10/25/2022]
Abstract
The physiologic conditions and molecular interactions that control phage production have been studied in few temperate phages. We investigated the mechanisms that regulate production of CTXphi, a temperate filamentous phage that infects Vibrio cholerae and encodes cholera toxin. In CTXphi lysogens, the activity of P(rstA), the only CTXphi promoter required for CTX prophage development, is repressed by RstR, the CTXvphi repressor. We found that the V. cholerae SOS response regulates CTXvphi production. The molecular mechanism by which this cellular response to DNA damage controls CTXphi production differs from that by which the E. coli SOS response controls induction of many prophages. UV-stimulated CTXphi production required RecA-dependent autocleavage of LexA, a repressor that controls expression of numerous host DNA repair genes. LexA and RstR both bind to and repress P(rstA). Thus, CTXphi production is controlled by a cellular repressor whose activity is regulated by the cell's response to DNA damage.
Collapse
Affiliation(s)
- Mariam Quinones
- Department of Molecular Microbiology, Tufts University School of Medicine and The Howard Hughes Medical Institute, Boston, MA 02111, USA
| | | | | |
Collapse
|