1
|
Alba G, Reyes-Quiróz ME, Sáenz J, Geniz I, Jiménez J, Martín-Nieto J, Pintado E, Sobrino F, Santa-María C. 7-Keto-cholesterol and 25-hydroxy-1 cholesterol rapidly enhance ROS production in human neutrophils. Eur J Nutr 2015; 55:2485-2492. [DOI: 10.1007/s00394-015-1142-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
2
|
Reyes-Quiroz ME, Alba G, Santa-María C, Saenz J, Geniz I, Jiménez J, Ramírez R, Martín-Nieto J, Pintado E, Sobrino F. Platelet-activating factor downregulates the expression of liver X receptor-α and its target genes in human neutrophils. FEBS J 2014; 281:970-82. [PMID: 24289152 DOI: 10.1111/febs.12662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/22/2013] [Accepted: 11/22/2013] [Indexed: 01/11/2023]
Abstract
Liver X receptors (LXRs) are ligand-activated members of the nuclear receptor superfamily that regulate the expression of genes involved in lipid metabolism and inflammation, although their role in inflammation and immunity is less well known. It has been reported that oxysterols/LXRs may act as anti-inflammatory molecules, although opposite actions have also been reported. In this study, we investigated the effect of platelet-activating factor (PAF), a proinflammatory molecule, on LXRα signalling in human neutrophils. We found that PAF exerted an inhibitory effect on mRNA expression of TO901317-induced LXRα, ATP-binding cassette transporter A1, ATP-binding cassette transporter G1, and sterol response element binding protein 1c. This negative action was mediated by the PAF receptor, and was dependent on the release of reactive oxygen species elicited by PAF, as it was enhanced by pro-oxidant treatment and reversed by antioxidants. Current data also support the idea that PAF induces phosphorylation of the LXRα molecule in an extracellular signal-regulated kinase 1/2-mediated fashion. These results suggest that a possible mechanism by which PAF exerts its proinflammatory effect is through the downregulation of LXRα and its related genes, which supports the notion that LXRα ligands exert a modulatory role in the neutrophil-mediated inflammatory response.
Collapse
Affiliation(s)
- María E Reyes-Quiroz
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Labarrios E, Jerezano A, Jiménez F, del Carmen Cruz M, Delgado F, Zepeda LG, Tamariz J. Efficient Synthetic Approach to Substituted Benzo[b]furans and Benzo[b]thiophenes by Iodine-Promoted Cyclization of Enaminones. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1686] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ehecatl Labarrios
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala; 11340 México D.F. Mexico
| | - Alberto Jerezano
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala; 11340 México D.F. Mexico
| | - Fabiola Jiménez
- Centro de Investigación en Biotecnología Aplicada; Instituto Politécnico Nacional; Km 15 Carretera Sta. Inés Tecuexcomac Tepetitla 90700 Tlaxcala Mexico
| | - María del Carmen Cruz
- Centro de Investigación en Biotecnología Aplicada; Instituto Politécnico Nacional; Km 15 Carretera Sta. Inés Tecuexcomac Tepetitla 90700 Tlaxcala Mexico
| | - Francisco Delgado
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala; 11340 México D.F. Mexico
| | - L. Gerardo Zepeda
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala; 11340 México D.F. Mexico
| | - Joaquín Tamariz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala; 11340 México D.F. Mexico
| |
Collapse
|
4
|
Viglianisi C, Becucci L, Faggi C, Piantini S, Procacci P, Menichetti S. Regioselective Electrophilic Access to Naphtho[1,2-b:8,7-b′]- and -[1,2-b:5,6-b′]dithiophenes. J Org Chem 2013; 78:3496-502. [DOI: 10.1021/jo400205j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Caterina Viglianisi
- Dipartimento di Chimica
‘Ugo Schiff’, Università di Firenze, Via della Lastruccia
3-13, I-50019 Sesto Fiorentino, Italy
| | - Lucia Becucci
- Dipartimento di Chimica
‘Ugo Schiff’, Università di Firenze, Via della Lastruccia
3-13, I-50019 Sesto Fiorentino, Italy
| | - Cristina Faggi
- Dipartimento di Chimica
‘Ugo Schiff’, Università di Firenze, Via della Lastruccia
3-13, I-50019 Sesto Fiorentino, Italy
| | - Sara Piantini
- Dipartimento di Chimica
‘Ugo Schiff’, Università di Firenze, Via della Lastruccia
3-13, I-50019 Sesto Fiorentino, Italy
| | - Piero Procacci
- Dipartimento di Chimica
‘Ugo Schiff’, Università di Firenze, Via della Lastruccia
3-13, I-50019 Sesto Fiorentino, Italy
| | - Stefano Menichetti
- Dipartimento di Chimica
‘Ugo Schiff’, Università di Firenze, Via della Lastruccia
3-13, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Alba G, Santa-María C, Reyes-Quiroz ME, El Bekay R, Geniz I, Martín-Nieto J, Pintado E, Sobrino F. Calcineurin expression and activity is regulated by the intracellular redox status and under hypertension in human neutrophils. J Endocrinol 2012; 214:399-408. [PMID: 22739212 DOI: 10.1530/joe-12-0106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Calcineurin (protein phosphatase 2B) (CN) comprises a family of serine/threonine phosphatases that play a pivotal role in signal transduction cascades in a variety of cells, including neutrophils. Angiotensin II (Ang II) increases both activity and de novo synthesis of CN in human neutrophils. This study focuses on the role that intracellular redox status plays in the induction of CN activity by Ang II. Both de novo synthesis of CN and activity increase promoted by Ang II were downregulated when cells were treated with L-buthionine-(S,R)-sulfoximine, an inhibitor of synthesis of the antioxidant glutathione. We have also investigated the effect of pyrrolidine dithiocarbamate and phenazine methosulfate, which are antioxidant and oxidant compounds, respectively, and concluded that the intracellular redox status of neutrophils is highly critical for Ang II-induced increase of CN expression and activity. Results obtained in neutrophils from hypertensive patients were very similar to those obtained in these cells on treatment with Ang II. We have also addressed the possible functional implication of CN activation in the development of hypertension. Present findings indicate that downregulation of hemoxygenase-1 expression in neutrophils from hypertensive subjects is likely mediated by CN, which acts by hindering translocation to the nucleus of the transcription factor NRF2. These data support and extend our previous results and those from other authors on modulation of CN expression and activity levels by the intracellular redox status.
Collapse
Affiliation(s)
- Gonzalo Alba
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina and Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Avenida Sánchez Pizjuán 4, E-41009 Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Karkhelikar MV, Racharlawar SS, Salian SM, Sridhar B, Likhar PR. Heck-type coupling of intramolecularly-generated thiopalladacycles with alkenes: One pot syntheses of 3-alkenylbenzo[b]thiophenes. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2012.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Shimizu T, Iizuka M, Matsukura H, Hashizume D, Sodeoka M. Synthesis of optically pure norcantharidin analogue NCA-01, a highly selective protein phosphatase 2B inhibitor, and its derivatives. Chem Asian J 2012; 7:1221-30. [PMID: 22488808 DOI: 10.1002/asia.201200077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 02/24/2012] [Indexed: 01/03/2023]
Abstract
An efficient synthetic route to optically pure norcantharidin analogue NCA-01, a highly selective inhibitor of protein phosphatase 2B (PP2B; calcineurin), has been developed. The absolute stereochemistry of the enantiomers was determined by X-ray crystallographic analysis. Optically pure NCA derivatives that had various substituents at the C1 position were synthesized in a similar manner. The PP2B-inhibitory activities of NCA-01 and its derivatives were independent of the enantiomeric form. NCA-01 dimethyl ester potently inhibited IL-2 production in Jurkat cells.
Collapse
Affiliation(s)
- Tadashi Shimizu
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
8
|
Erdmann F, Weiwad M, Kilka S, Karanik M, Pätzel M, Baumgrass R, Liebscher J, Fischer G. The novel calcineurin inhibitor CN585 has potent immunosuppressive properties in stimulated human T cells. J Biol Chem 2009; 285:1888-98. [PMID: 19923214 DOI: 10.1074/jbc.m109.024844] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Ca2+/calmodulin-dependent protein phosphatase calcineurin is a key mediator in antigen-specific T cell activation. Thus, inhibitors of calcineurin, such as cyclosporin A or FK506, can block T cell activation and are used as immunosuppressive drugs to prevent graft-versus-host reactions and autoimmune diseases. In this study we describe the identification of 2,6- diaryl-substituted pyrimidine derivatives as a new class of calcineurin inhibitors, obtained by screening of a substance library. By rational design of the parent compound we have attained the derivative 6-(3,4-dichloro-phenyl)-4-(N,N-dimethylaminoethylthio)-2-phenyl-pyrimidine (CN585) that noncompetitively and reversibly inhibits calcineurin activity with a K(i) value of 3.8 mum. This derivative specifically inhibits calcineurin without affecting other Ser/Thr protein phosphatases or peptidyl prolyl cis/trans isomerases. CN585 shows potent immunosuppressive effects by inhibiting NFAT nuclear translocation and transactivation, cytokine production, and T cell proliferation. Moreover, the calcineurin inhibitor exhibits no cytotoxicity in the effective concentration range. Therefore, calcineurin inhibition by CN585 may represent a novel promising strategy for immune intervention.
Collapse
Affiliation(s)
- Frank Erdmann
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle/Saale.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sieber M, Baumgrass R. Novel inhibitors of the calcineurin/NFATc hub - alternatives to CsA and FK506? Cell Commun Signal 2009; 7:25. [PMID: 19860902 PMCID: PMC2774854 DOI: 10.1186/1478-811x-7-25] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/27/2009] [Indexed: 01/16/2023] Open
Abstract
The drugs cyclosporine A (CsA) and tacrolimus (FK506) revolutionized organ transplantation. Both compounds are still widely used in the clinic as well as for basic research, even though they have dramatic side effects and modulate other pathways than calcineurin-NFATc, too. To answer the major open question - whether the adverse side effects are secondary to the actions of the drugs on the calcineurin-NFATc pathway - alternative inhibitors were developed. Ideal inhibitors should discriminate between the inhibition of (i) calcineurin and peptidyl-prolyl cis-trans isomerases (PPIases; the matchmaker proteins of CsA and FK506), (ii) calcineurin and the other Ser/Thr protein phosphatases, and (iii) NFATc and other transcription factors. In this review we summarize the current knowledge about novel inhibitors, synthesized or identified in the last decades, and focus on their mode of action, specificity, and biological effects.
Collapse
Affiliation(s)
- Matthias Sieber
- Deutsches Rheuma-Forschungszentrum Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | | |
Collapse
|
10
|
Miyasaka M, Hirano K, Satoh T, Miura M. Synthesis of 2,3-Diarylbenzo[b]thiophenesviaNickel-Catalyzed Suzuki-Miyaura Cross-Coupling and Palladium-Catalyzed Decarboxylative Arylation. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200900480] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Yin Y, Xie M, Wu H, Jiang M, Zheng J, Wei Q. Interaction of calcineurin with its activator, chlorogenic acid revealed by spectroscopic methods. Biochimie 2009; 91:820-5. [DOI: 10.1016/j.biochi.2009.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 03/17/2009] [Indexed: 11/25/2022]
|
12
|
Owens KN, Santos F, Roberts B, Linbo T, Coffin AB, Knisely AJ, Simon JA, Rubel EW, Raible DW. Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet 2008; 4:e1000020. [PMID: 18454195 PMCID: PMC2265478 DOI: 10.1371/journal.pgen.1000020] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Accepted: 01/10/2008] [Indexed: 11/18/2022] Open
Abstract
Inner ear sensory hair cell death is observed in the majority of hearing and balance disorders, affecting the health of more than 600 million people worldwide. While normal aging is the single greatest contributor, exposure to environmental toxins and therapeutic drugs such as aminoglycoside antibiotics and antineoplastic agents are significant contributors. Genetic variation contributes markedly to differences in normal disease progression during aging and in susceptibility to ototoxic agents. Using the lateral line system of larval zebrafish, we developed an in vivo drug toxicity interaction screen to uncover genetic modulators of antibiotic-induced hair cell death and to identify compounds that confer protection. We have identified 5 mutations that modulate aminoglycoside susceptibility. Further characterization and identification of one protective mutant, sentinel (snl), revealed a novel conserved vertebrate gene. A similar screen identified a new class of drug-like small molecules, benzothiophene carboxamides, that prevent aminoglycoside-induced hair cell death in zebrafish and in mammals. Testing for interaction with the sentinel mutation suggests that the gene and compounds may operate in different pathways. The combination of chemical screening with traditional genetic approaches is a new strategy for identifying drugs and drug targets to attenuate hearing and balance disorders. Loss of sensory hair cells in the inner ear is observed in the majority of hearing and balance disorders, affecting the health of more than 600 million people worldwide. Exposure to environmental toxins and certain pharmaceutical drugs such as aminoglycoside antibiotics and some cancer chemotherapy agents account for many of these hearing and balance problems. Variation in the genetic makeup between individuals plays a major role in establishing differences in susceptibility to environmental agents that damage the inner ear. Using zebrafish larvae, we developed a screen to uncover genes leading to differences in antibiotic-induced death of hair cells and to identify compounds that protect hair cells from damage. The combination of chemical screening with traditional genetic approaches offers a new strategy for identifying drugs and drug targets to attenuate hearing and balance disorders.
Collapse
MESH Headings
- Aminoglycosides/antagonists & inhibitors
- Aminoglycosides/toxicity
- Animals
- Base Sequence
- Cell Death/drug effects
- Cell Death/genetics
- Cisplatin/toxicity
- Codon, Terminator/genetics
- DNA Primers/genetics
- DNA, Complementary/genetics
- Drug Evaluation, Preclinical
- Epistasis, Genetic
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/physiology
- Hearing Loss/etiology
- Hearing Loss/genetics
- Hearing Loss/prevention & control
- Humans
- Mice
- Neomycin/antagonists & inhibitors
- Neomycin/toxicity
- Point Mutation
- Saccule and Utricle/drug effects
- Saccule and Utricle/pathology
- Thiophenes/chemistry
- Thiophenes/pharmacology
- Zebrafish/anatomy & histology
- Zebrafish/genetics
- Zebrafish/physiology
Collapse
Affiliation(s)
- Kelly N. Owens
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology—Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Felipe Santos
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology—Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Brock Roberts
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Tor Linbo
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Allison B. Coffin
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology—Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Anna J. Knisely
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology—Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Julian A. Simon
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Edwin W. Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology—Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - David W. Raible
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
13
|
Rivera A, Maxwell SA. The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem 2005; 280:29346-54. [PMID: 15914462 DOI: 10.1074/jbc.m504852200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Proline oxidase is a p53-induced redox gene that can generate reactive oxygen species (ROS) and mediate apoptosis in tumor cells. We report that proline oxidase is a downstream effector in p53-mediated activation of the calcium/calmodulin-dependent phosphatase calcineurin in lung, renal, colon, and ovarian carcinoma cells. The activation of calcineurin by p53 and proline oxidase was detected by activation of the nuclear factor of activated T cells (NFAT), an established indicator of activated calcineurin. Both proline oxidase- and p53-induced activation of NFAT were sensitive to the calcineurin inhibitors cyclosporin A and FK-506, to scavengers of ROS, and to inhibitors of calcium mobilization. A proline oxidase antisense vector suppressed the ability of p53 to up-regulate proline oxidase, activate calcineurin, and induce apoptosis. Moreover, two renal carcinoma-derived mutant p53 proteins were deficient in inducing proline oxidase expression and in activating calcineurin. Inhibitors of calcineurin and calcium mobilization abolished proline oxidase-mediated apoptosis and reduced p53-induced apoptosis. Treatment of colon and ovarian carcinoma cells with the anticancer genotoxic agent etoposide up-regulated both p53 and proline oxidase, activated calcineurin, and induced apoptosis. The etoposide-mediated activation of calcineurin and induction of apoptosis was markedly suppressed by FK-506 calcineurin inhibitor. We propose that proline oxidase mediates apoptosis through the generation of proline-dependent ROS, which then mobilize calcium and activate calcineurin. The activation of calcineurin-regulated transcription factor pathways by proline oxidase might affect gene expression events important to p53 regulation of cell growth and apoptosis.
Collapse
Affiliation(s)
- Armando Rivera
- Department of Pathology and Laboratory Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
14
|
Perfettini JL, Roumier T, Castedo M, Larochette N, Boya P, Raynal B, Lazar V, Ciccosanti F, Nardacci R, Penninger J, Piacentini M, Kroemer G. NF-kappaB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope. ACTA ACUST UNITED AC 2004; 199:629-40. [PMID: 14993250 PMCID: PMC2213296 DOI: 10.1084/jem.20031216] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-kappaB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor kappaB (NF-kappaB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p53 abolished apoptosis and AP1 activation. Signs of NF-kappaB and p53 activation were also detected in lymph node biopsies from HIV-1-infected individuals. Microarrays revealed that most (85%) of the transcriptional effects of HIV-1 Env were blocked by the p53 inhibitor pifithrin-alpha. Macroarrays led to the identification of several Env-elicited, p53-dependent proapoptotic transcripts, in particular Puma, a proapoptotic "BH3-only" protein from the Bcl-2 family known to activate Bax/Bak. Down modulation of Puma by antisense oligonucleotides, as well as RNA interference of Bax and Bak, prevented Env-induced apoptosis. HIV-1-infected primary lymphoblasts up-regulated Puma in vitro. Moreover, circulating CD4+ lymphocytes from untreated, HIV-1-infected donors contained enhanced amounts of Puma protein, and these elevated Puma levels dropped upon antiretroviral therapy. Altogether, these data indicate that NF-kappaB and p53 cooperate as the dominant proapoptotic transcription factors participating in HIV-1 infection.
Collapse
Affiliation(s)
- Jean-Luc Perfettini
- Centre National de la Recherche Scientifique, UMR 8125, Institut Gustave Roussy, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Patrick P McDonald
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke Sherbrooke, Québec JIH 5N4, Canada
| |
Collapse
|
16
|
Smith KJ, Hamza S, Skelton H. The imidazoquinolines and their place in the therapy of cutaneous disease. Expert Opin Pharmacother 2003; 4:1105-19. [PMID: 12831337 DOI: 10.1517/14656566.4.7.1105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The imidazoquinolines arose from efforts to develop a nucleoside analogue. Although molecularly similar to nucleosides, the imidazoquinolines did not have nucleoside-like activity. However, the imidazoquinolines induced immune modulatory cytokines, in part, because of their ability to activate toll receptors (TLR)s. Imiquimod, the first FDA-approved imidazoquinoline, has been marketed as a 5% cream, which is approved for the therapy of genital warts. The advantage of imiquimod therapy over other therapies for genital warts is the decrease in recurrence rate with the establishment of an adaptive immunological response or immunological memory/surveillance response. As tumours and viral infections are handled similarly by the immune system, there has been great interest in the use of topical imiquimod for the treatment of cutaneous neoplasms, particularly non-melanoma skin cancers. Future efforts in imidazoquinoline research is focused around the development of analogues with modifications in the immunological profiles, potency and penetration parameters that better focus these new analogues for the therapy of specific intracellular infections and neoplasms, as well as the development of imidazoquinolines for conditions related either directly or indirectly to patterns of immune dysregulation.
Collapse
Affiliation(s)
- Kathleen J Smith
- Dermatopathology, Anatomic Pathology, Quest Diagnostics, 1777 Montreal Circle, Tucker, GA 30084, USA
| | | | | |
Collapse
|
17
|
Uchiumi F, Hatano T, Ito H, Yoshida T, Tanuma SI. Transcriptional suppression of the HIV promoter by natural compounds. Antiviral Res 2003; 58:89-98. [PMID: 12719011 DOI: 10.1016/s0166-3542(02)00186-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tannins and lignins are natural compounds contained in plants such as tea leaves. Previously, we demonstrated that tannic acid represses 12-o-tetra-decanoyl phorbol-13-acetate (TPA)-induced human immunodeficiency virus (HIV) promoter activity. Furthermore, we demonstrated that a 30-bp element located just downstream of the NF-kappaB element in the HIV promoter responds negatively to tannic acid. However, the kinds of molecules responsible for this suppressive effect have remained unknown, because tannic acid is a mixture of various galloylglucoses. Here, we examined structure-defined natural compounds for HIV promoter-suppressive effects. We found that ellagitannins suppress TPA-induced HIV promoter activity to the same extent as tannic acid. 3-phenylcoumarins, isoflavone and chalcones have more suppressive effects than ellagitannins. On the other hand, other flavonoids and acetogenins have no suppressive effect. 3-phenylcoumarins and chalcones showed no suppressive effect on the cytomegalovirus (CMV) promoter, suggesting that they act specifically on the HIV promoter. These results suggest that 3-phenylcoumarin or chalcone compounds could be used to develop novel anti-HIV drugs with an action targeted at HIV promoter activity.
Collapse
Affiliation(s)
- Fumiaki Uchiumi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Shinjuku-ku, Tokyo 162-0826, Japan
| | | | | | | | | |
Collapse
|
18
|
Cao X, Kambe F, Miyazaki T, Sarkar D, Ohmori S, Seo H. Novel human ZAKI-4 isoforms: hormonal and tissue-specific regulation and function as calcineurin inhibitors. Biochem J 2002; 367:459-66. [PMID: 12102656 PMCID: PMC1222895 DOI: 10.1042/bj20011797] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2001] [Revised: 07/05/2002] [Accepted: 07/09/2002] [Indexed: 11/17/2022]
Abstract
We identified a thyroid hormone [3,5,3'-tri-iodothyronine (T(3))]-responsive gene, ZAKI-4, in cultured human skin fibroblasts. It belongs to a family of genes that encode proteins containing a conserved motif. The motif binds to calcineurin and inhibits its phosphatase activity. In the present study, we have demonstrated three different ZAKI-4 transcripts, alpha, beta1 and beta2, in human brain by 5'- and 3'-RACE (rapid amplification of cDNA ends). The alpha transcript was identical with the one that we originally cloned from human fibroblasts and the other two are novel. The three transcripts are generated by alternative initiation and splicing from a single gene on the short arm of chromosome 6. It is predicted that beta1 and beta2 encode an identical protein product, beta, which differs from alpha in its N-terminus. Since alpha and beta contain an identical C-terminal region harbouring the conserved motif, both isoforms are suggested to inhibit calcineurin activity. Indeed, each isoform associates with calcineurin A and inhibits its activity in a similar manner, suggesting that the difference in N-terminus of each isoform does not affect the inhibitory function on calcineurin. An examination of the expression profile of the three transcripts in 12 human tissues revealed that the alpha transcript is expressed exclusively in the brain, whereas beta transcripts are expressed ubiquitously, most abundantly in brain, heart, skeletal muscle and kidney. It was also demonstrated that human skin fibroblasts express both alpha and beta transcripts, raising the question of which transcript is up-regulated by T(3). It was revealed that T(3) markedly induced the expression of alpha isoform but not of beta. This T(3)-mediated increase in the alpha isoform was associated with a significant decrease in endogenous calcineurin activity. These results suggest that the expression of ZAKI-4 isoforms is subjected to distinct hormonal as well as tissue-specific regulation, constituting a complex signalling network through inhibition of calcineurin.
Collapse
Affiliation(s)
- Xia Cao
- Department of Endocrinology and Metabolism, Division of Molecular and Cellular Adaptation, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Carballo M, Conde M, Tejedo J, Gualberto A, Jimenez J, Monteseirín J, Santa María C, Bedoya FJ, Hunt SW, Pintado E, Baldwin AS, Sobrino F. Macrophage inducible nitric oxide synthase gene expression is blocked by a benzothiophene derivative with anti-HIV properties. Mol Genet Metab 2002; 75:360-8. [PMID: 12051968 DOI: 10.1016/s1096-7192(02)00001-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO) has been shown to mediate multiple physiological and toxicological functions. The inducible nitric oxide synthase (iNOS) is responsible for the high output generation of NO by macrophages following their stimulation by cytokines or bacterial antigens. The inhibition of TNF alpha-stimulated HIV expression and the anti-inflammatory property of PD144795, a new benzothiophene derivative, have been recently described. We have now analyzed whether some of these properties could be mediated by an effect of PD144795 on NO-dependent inflammatory events. We show that PD144795 suppresses the lipopolysaccharide-elicited production of nitrite (NO(-)(2)) by primary peritoneal mouse macrophages and by a macrophage-derived cell line, RAW 264.7. This effect was dependent on the dose and timing of addition of PD144795 to the cells. Suppression of NO(-)(2) production was associated with a decrease in the amount of iNOS protein, iNOS enzyme activity and mRNA expression. The effect of PD144795 was partially abolished by coincubation of the cells with LPS and IFN gamma. However, the inhibitory effect of PD144795 was not abrogated by the simultaneous addition of LPS and TNF alpha, which indirectly suggests that the effect of PD144795 was not due to the inhibition of TNF alpha synthesis. Additionally, PD144795 did not block NF-kappa B nuclear translocation induced by LPS. Inhibition of iNOS gene expression represents a novel mechanism of PD144795 action that underlines the anti-inflammatory effects of this immunosuppressive drug.
Collapse
Affiliation(s)
- M Carballo
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán 4, E-41009 Seville, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Baumgrass R, Weiwad M, Erdmann F, Liu JO, Wunderlich D, Grabley S, Fischer G. Reversible inhibition of calcineurin by the polyphenolic aldehyde gossypol. J Biol Chem 2001; 276:47914-21. [PMID: 11598106 DOI: 10.1074/jbc.m103273200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reversible inhibition of calcineurin (CaN), which is the only Ca(2+)/calmodulin-dependent protein Ser/Thr phosphatase, is thought to be a key functional event for most cyclosporin A (CsA)- and tacrolimus (FK506)-mediated biological effects. In addition to CaN inhibition, however, CsA and FK506 have multiple biochemical effects because of their action in a gain-of-function model that requires prior binding to immunophilic proteins. We screened a small molecule library for direct inhibitors of CaN using CaN-mediated dephosphorylation of (33)P-labeled 19-residue phosphopeptide substrate (RII phosphopeptide) as an assay and found the polyphenolic aldehyde gossypol to be a novel CaN inhibitor. Unlike CsA and FK506, gossypol does not require a matchmaker protein for reversible CaN inhibition with an IC(50) value of 15 microm. Gossypolone, a gossypol analog, showed improved inhibition of both RII phosphopeptide and p-nitrophenyl phosphate dephosphorylation with an IC(50) of 9 and 6 microm, respectively. In contrast, apogossypol hexaacetate was inactive. Gossypol acts noncompetitively, interfering with the binding site for the cyclophilin 18.CsA complex in CaN. In contrast to CsA and FK506, gossypol does not inactivate the peptidyl-prolyl-cis/trans-isomerase activity of immunophilins. Similar to CsA and FK506, T cell receptor signaling induced by phorbol 12-myristate 13-acetate/ionomycin is inhibited by gossypol in a dose-dependent manner, demonstrated by the inhibition of nuclear factor of activated T cell (NFAT) c1 translocation from the cytosol into the nucleus and suppression of NFAT-luciferase reporter gene activity.
Collapse
Affiliation(s)
- R Baumgrass
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, Halle/Saale D-06120, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Flynn BL, Verdier-Pinard P, Hamel E. A novel palladium-mediated coupling approach to 2,3-disubstituted benzo(b)thiophenes and its application to the synthesis of tubulin binding agents. Org Lett 2001; 3:651-4. [PMID: 11259028 DOI: 10.1021/ol0067179] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[structure: see text]. Flexible, convergent access to 2,3-disubstituted benzo[b]thiophenes has been developed. The most concise approach involves sequential coupling of o-bromoiodobenzenes with benzylmercaptan and zinc acetylides to give benzyl o-ethynylphenyl sulfides which react with iodine to give 3-iodobenzo[b]thiophenes in a 5-endo-dig iodocyclization. These iodides can be further elaborated using palladium-mediated coupling and/or metalation techniques. This method has been applied to the synthesis of some novel tubulin binding agents.
Collapse
Affiliation(s)
- B L Flynn
- Department of Chemistry, The Faculties, Australian National University, Canberra, ACT, 0200, Australia.
| | | | | |
Collapse
|
22
|
Abstract
Calcineurin is a eukaryotic Ca(2+)- and calmodulin-dependent serine/threonine protein phosphatase. It is a heterodimeric protein consisting of a catalytic subunit calcineurin A, which contains an active site dinuclear metal center, and a tightly associated, myristoylated, Ca(2+)-binding subunit, calcineurin B. The primary sequence of both subunits and heterodimeric quaternary structure is highly conserved from yeast to mammals. As a serine/threonine protein phosphatase, calcineurin participates in a number of cellular processes and Ca(2+)-dependent signal transduction pathways. Calcineurin is potently inhibited by immunosuppressant drugs, cyclosporin A and FK506, in the presence of their respective cytoplasmic immunophilin proteins, cyclophilin and FK506-binding protein. Many studies have used these immunosuppressant drugs and/or modern genetic techniques to disrupt calcineurin in model organisms such as yeast, filamentous fungi, plants, vertebrates, and mammals to explore its biological function. Recent advances regarding calcineurin structure include the determination of its three-dimensional structure. In addition, biochemical and spectroscopic studies are beginning to unravel aspects of the mechanism of phosphate ester hydrolysis including the importance of the dinuclear metal ion cofactor and metal ion redox chemistry, studies which may lead to new calcineurin inhibitors. This review provides a comprehensive examination of the biological roles of calcineurin and reviews aspects related to its structure and catalytic mechanism.
Collapse
Affiliation(s)
- F Rusnak
- Section of Hematology Research and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
23
|
Swoap SJ, Hunter RB, Stevenson EJ, Felton HM, Kansagra NV, Lang JM, Esser KA, Kandarian SC. The calcineurin-NFAT pathway and muscle fiber-type gene expression. Am J Physiol Cell Physiol 2000; 279:C915-24. [PMID: 11003571 DOI: 10.1152/ajpcell.2000.279.4.c915] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test for a role of the calcineurin-NFAT (nuclear factor of activated T cells) pathway in the regulation of fiber type-specific gene expression, slow and fast muscle-specific promoters were examined in C2C12 myotubes and in slow and fast muscle in the presence of calcineurin or NFAT2 expression plasmids. Overexpression of active calcineurin in myotubes induced both fast and slow muscle-specific promoters but not non-muscle-specific reporters. Overexpression of NFAT2 in myotubes did not activate muscle-specific promoters, although it strongly activated an NFAT reporter. Thus overexpression of active calcineurin activates transcription of muscle-specific promoters in vitro but likely not via the NFAT2 transcription factor. Slow myosin light chain 2 (MLC2) and fast sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1) reporter genes injected into rat soleus (slow) and extensor digitorum longus (EDL) (fast) muscles were not activated by coinjection of activated calcineurin or NFAT2 expression plasmids. However, an NFAT reporter was strongly activated by overexpression of NFAT2 in both muscle types. Calcineurin and NFAT protein expression and binding activity to NFAT oligonucleotides were different in slow vs. fast muscle. Taken together, these results indicate that neither calcineurin nor NFAT appear to have dominant roles in the induction and/or maintenance of slow or fast fiber type in adult skeletal muscle. Furthermore, different pathways may be involved in muscle-specific gene expression in vitro vs. in vivo.
Collapse
Affiliation(s)
- S J Swoap
- Department of Biology, Williams College, Williamstown, Massachusetts 01267, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Eto Y, Yonekura K, Sonoda M, Arai N, Sata M, Sugiura S, Takenaka K, Gualberto A, Hixon ML, Wagner MW, Aoyagi T. Calcineurin is activated in rat hearts with physiological left ventricular hypertrophy induced by voluntary exercise training. Circulation 2000; 101:2134-7. [PMID: 10801751 DOI: 10.1161/01.cir.101.18.2134] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Calcineurin may play a pivotal role in the signaling of cardiac hypertrophy; since this hypothesis was first put forward, controversial reports have been published using various experimental models. This study was designed to compare the physiological left ventricular hypertrophy (LVH) induced by voluntary exercise with LVH induced by aortic constriction and to determine whether calcineurin participates in the signaling of exercise-induced LVH. METHODS AND RESULTS Wistar rats were assigned to 1 of the following 5 groups: 10 weeks of voluntary exercise (EX), a sedentary regimen, a 1-week (AC1) or 4-week (AC4) ascending aortic constriction period, or a sham operation. EX rats ran 2.4+/-0.7 km/day voluntarily in specially manufactured cages; this was associated with an increase of LV diastolic dimension and stroke volume. Myocardial calcineurin activity markedly increased in EX rats (46.4+/-8.3 versus 18.4+/-0.5 pmol. min(-1). mg(-1) in sedentary rats; P<0.001) and in AC1 rats (44.9+/-6.7 versus 22.1+/-3.7 pmol. min(-1). mg(-1) in sham-operated rats; P<0.001), but not in AC4 rats (29.0+/-3.4 pmol. min(-1). mg(-1)). Treatment with cyclosporin A completely inhibited the development of LVH in EX rats, but it only partially attenuated the development of LVH in AC4 rats. CONCLUSIONS Calcineurin was activated in exercise-induced physiological LVH and in the developing phase of LVH (AC1), but not in decompensated pressure-overload hypertrophy (AC4). Cyclosporin therapy for the prevention of LVH may be harmful because it does not block the development of pathological hypertrophy but rather that of favorable adaptive hypertrophy.
Collapse
Affiliation(s)
- Y Eto
- Department of Cardiovascular Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mouzaki A, Doucet A, Mavroidis E, Muster L, Rungger D. A Repression-derepression Mechanism Regulating the Transcription of Human Immunodeficiency Virus Type 1 In Primary T Cells. Mol Med 2000. [DOI: 10.1007/bf03401782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
26
|
Zhang TY, O'toole J, Proctor CS. Recent Advances in the Synthesis and Applications of Benzo[b]thiophenes. ACTA ACUST UNITED AC 1999. [DOI: 10.1080/01961779908047953] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Makino M, Azuma M, Wakamatsu SI, Suruga Y, Izumo S, Yokoyama MM, Baba M. Marked suppression of T cells by a benzothiophene derivative in patients with human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:316-22. [PMID: 10225829 PMCID: PMC103716 DOI: 10.1128/cdli.6.3.316-322.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In a search for new anti-autoimmune agents that selectively suppress activation of autoreactive T cells, one such agent, 5-methyl-3-(1-methylethoxy)benzo[b]thiophene-2-carboxamide (CI-959-A), was found to be effective. This compound, which is known to suppress tumor necrosis factor alpha (TNF-alpha)-induced CD54 expression, inhibited the primary proliferative response of the T cell to antigen (Ag)-presenting cells (APCs) including allogenic dendritic cells (DCs), autologous Epstein-Barr virus-infected B cells, and human T lymphotropic virus type I (HTLV-I)-infected T cells. Autoreactive T cells from patients with HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) spontaneously proliferate in vitro, and their activation is reported to be associated with CD54 expression. The spontaneous proliferation of T cells from patients with HAM/TSP was entirely blocked by CI-959-A. However, in this study, the T-cell proliferation in 15 patients with HAM/TSP was found to depend more extensively on major histocompatibility complex (MHC) class II and CD86 than on CD54 Ags. Since most important APCs for the development of HAM/TSP are DCs and HTLV-I-infected T cells, the effect of CI-959-A on DC generation and on the expression of surface molecules on activated T cells is examined. CI-959-A suppressed recombinant granulocyte-macrophage colony stimulating factor (GM-CSF)- and recombinant interleukin-4-dependent differentiation of DCs from monocytes and inhibited the expression of CD54 and, more extensively, MHC class II and CD86 Ags. CI-959-A showed little toxicity toward lymphoma or HTLV-I-infected T-cell lines or toward monocytes and cultured DCs. These results suggest that CI-959-A might be a potent anti-HAM/TSP agent.
Collapse
Affiliation(s)
- M Makino
- Division of Human Retroviruses, Center for Chronic Viral Diseases, Faculty of Medicine, Kagoshima University, Kagoshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Carballo M, Márquez G, Conde M, Martín-Nieto J, Monteseirín J, Conde J, Pintado E, Sobrino F. Characterization of calcineurin in human neutrophils. Inhibitory effect of hydrogen peroxide on its enzyme activity and on NF-kappaB DNA binding. J Biol Chem 1999; 274:93-100. [PMID: 9867815 DOI: 10.1074/jbc.274.1.93] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe here a specific calcineurin activity in neutrophil lysates, which is dependent on Ca2+, inhibited by trifluoroperazine, and insensitive to okadaic acid. Immunoblotting experiments using a specific antiserum recognized both the A and B chains of calcineurin. Neutrophils treated with cyclosporin A or FK 506 showed a dose-dependent inhibition of calcineurin activity. The effect of oxidant compounds on calcineurin activity was also investigated. Neutrophils treated with hydrogen peroxide (H2O2), where catalase was inhibited with aminotriazole, exhibited a specific inhibition of calcineurin activity. However, the addition of reducing agents to neutrophil extracts partially reversed the inhibition caused by H2O2. A similar inhibitory effect of H2O2 on calcineurin activity was observed to occur in isolated lymphocytes. This is the first demonstration that redox agents modulate calcineurin activity in a cellular system. In addition, electrophoretic mobility shift assays revealed that lipopolysaccharide-induced activation of NF-kappaB in human neutrophils is inhibited by cell pretreatment with H2O2 in a dose-dependent manner. These data indicate that calcineurin activity regulates the functional activity of lipopolysaccharide-induced NF-kappaB/Rel proteins in human neutrophils. These data indicate a role of peroxides in the modulation of calcineurin activity and that the H2O2-dependent NF-kappaB inactivation in neutrophils occurs in concert with inhibition of calcineurin.
Collapse
Affiliation(s)
- M Carballo
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hixon ML, Flores AI, Wagner MW, Gualberto A. Ectopic expression of cdc2/cdc28 kinase subunit Homo sapiens 1 uncouples cyclin B metabolism from the mitotic spindle cell cycle checkpoint. Mol Cell Biol 1998; 18:6224-6237. [PMID: 9774639 PMCID: PMC109209 DOI: 10.1128/mcb.18.11.6224] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/1998] [Accepted: 08/04/1998] [Indexed: 02/08/2023] Open
Abstract
Primary human fibroblasts arrest growth in response to the inhibition of mitosis by mitotic spindle-depolymerizing drugs. We show that the mechanism of mitotic arrest is transient and implicates a decrease in the expression of cdc2/cdc28 kinase subunit Homo sapiens 1 (CKsHs1) and a delay in the metabolism of cyclin B. Primary human fibroblasts infected with a retroviral vector that drives the expression of a mutant p53 protein failed to downregulate CKsHs1 expression, degraded cyclin B despite the absence of chromosomal segregation, and underwent DNA endoreduplication. In addition, ectopic expression of CKsHs1 interfered with the control of cyclin B metabolism by the mitotic spindle cell cycle checkpoint and resulted in a higher tendency to undergo DNA endoreduplication. These results demonstrate that an altered regulation of CKsHs1 and cyclin B in cells that carry mutant p53 undermines the mitotic spindle cell cycle checkpoint and facilitates the development of aneuploidy. These data may contribute to the understanding of the origin of heteroploidy in mutant p53 cells.
Collapse
Affiliation(s)
- M L Hixon
- Department of Physiology & Biophysics and Ireland Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
30
|
Sussman MA, Lim HW, Gude N, Taigen T, Olson EN, Robbins J, Colbert MC, Gualberto A, Wieczorek DF, Molkentin JD. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 1998; 281:1690-3. [PMID: 9733519 DOI: 10.1126/science.281.5383.1690] [Citation(s) in RCA: 372] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited form of heart disease that affects 1 in 500 individuals. Here it is shown that calcineurin, a calcium-regulated phosphatase, plays a critical role in the pathogenesis of HCM. Administration of the calcineurin inhibitors cyclosporin and FK506 prevented disease in mice that were genetically predisposed to develop HCM as a result of aberrant expression of tropomodulin, myosin light chain-2, or fetal beta-tropomyosin in the heart. Cyclosporin had a similar effect in a rat model of pressure-overload hypertrophy. These results suggest that calcineurin inhibitors merit investigation as potential therapeutics for certain forms of human heart disease.
Collapse
Affiliation(s)
- M A Sussman
- Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|