1
|
Xiang Z, Ma B, Pei X, Wang W, Gong W. Mechanism of action of genistein on breast cancer and differential effects of different age stages. PHARMACEUTICAL BIOLOGY 2025; 63:141-155. [PMID: 39996512 PMCID: PMC11864014 DOI: 10.1080/13880209.2025.2469607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
CONTEXT Genistein, a soy-derived isoflavone, exhibits structural similarities with 17β-estradiol and demonstrates antioxidant, anti-inflammatory, and estrogenic properties. Despite its low bioavailability limiting its clinical application, it shows potential for breast cancer prevention and treatment. OBJECTIVE This review aims to summarize the pharmacological effects and molecular mechanisms of genistein in breast cancer, focusing on its therapeutic potential, strategies to overcome bioavailability limitations, and its role in personalized medicine. Differential impacts among population subgroups are also discussed. METHODS A systematic review was conducted using PubMed, ScienceDirect, and Google Scholar databases. Studies were selected based on their focus on genistein's mechanisms of action, strategies to enhance its bioavailability, and interactions with other therapies. RESULTS Genistein exerted anticancer effects by modulating estrogen receptor β (ERβ), inhibiting angiogenesis, arresting the cell cycle, and inducing apoptosis. Its antioxidant properties help mitigate tumor-associated oxidative stress. Bioavailability enhancement strategies, such as nanoparticle and lipid-based formulations, show promise. Age-dependent effects were evident, with distinct responses observed in prepubertal, menopausal, and postmenopausal populations, underscoring its potential for personalized therapies. Furthermore, genistein influences epigenetic modifications, including DNA methylation and miRNA expression, bolstering its anticancer efficacy. CONCLUSION Genistein is a promising candidate for breast cancer therapy, particularly for personalized treatment. Strategies to enhance bioavailability and further clinical research are essential to optimize its therapeutic potential and evaluate its efficacy in combination therapies.
Collapse
Affiliation(s)
- Zhebin Xiang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Ma
- Zhejiang Hospital, Hangzhou, China
| | - Xiujun Pei
- Shandong Provincial Hospital, Shandong, China
| | - Wenjie Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Weilun Gong
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Kon R, Ikarashi N, Yamaguchi A, Teshima Y, Yamaguchi T, Miyaoka K, Fukuda M, Noguchi H, Tomimoto R, Sakai H, Kamei J, Hosoe T. Green tea extract prevents CPT-11-induced diarrhea by regulating the gut microbiota. Sci Rep 2023; 13:6537. [PMID: 37085597 PMCID: PMC10121581 DOI: 10.1038/s41598-023-33731-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
Irinotecan (CPT-11) is an anticancer drug with indications for use in treating various cancers, but severe diarrhea develops as a side effect. We investigated the effects of green tea extract (GTE) on CPT-11-induced diarrhea, focusing on β-glucuronidase and intestinal UGT1A1. When CPT-11 was administered to rats alone, the fecal water content was approximately 3.5-fold higher in this group than in the control group, and diarrhea developed. The fecal water content in the GTE-treated group was significantly higher than that in the control group, but the difference was smaller than that between the group treated with CPT-11 alone and the control group, and diarrhea improved. When CPT-11 was administered alone, the abundances of Bacteroides fragilis and Escherichia coli, which are β-glucuronidase-producing bacteria, increased and interleukin-6 and interleukin-1β mRNA levels in the colon increased, but GTE suppressed these increases. CPT-11 decreased colon UGT1A1 and short-chain fatty acid levels; however, this decrease was suppressed in the GTE-treated group. The findings that GTE decreases the abundance of β-glucuronidase-producing bacteria and increases colon UGT1A1 levels, thereby decreasing the production of the active metabolite SN-38 in the intestinal tract, indicate that GTE ameliorates CPT-11-induced diarrhea.
Collapse
Affiliation(s)
- Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Arisa Yamaguchi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yuka Teshima
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tamami Yamaguchi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kanako Miyaoka
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Moeno Fukuda
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Hinata Noguchi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Rei Tomimoto
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Junzo Kamei
- Juntendo Advanced Research Institute for Health Science, Juntendo University, 2-4-4 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| |
Collapse
|
3
|
Tagawa K, Maruo Y, Mimura Y, Ikushiro S. Effects of common genetic variants of human uridine diphosphate glucuronosyltransferase subfamilies on irinotecan glucuronidation. Toxicol Mech Methods 2023; 33:197-205. [PMID: 35930428 DOI: 10.1080/15376516.2022.2109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The adverse effects (diarrhea and neutropenia) of irinotecan (7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin) are associated with genetic variants of uridine diphosphate glucuronosyltransferase 1A subfamilies (UGT1As). UGT1As are enzymes that metabolize the active form of irinotecan, 7-ethyl-10 hydroxycamptothecin (SN-38), by glucuronidation in the liver. They are widely known as predictive factors of severe adverse effects, such as neutropenia and diarrhea. Some studies have suggested that variants of UGT1As affect SN-38 glucuronidation activities, thus exerting severe adverse effects. We aimed to identify UGT1A isoforms that show SN-38 glucuronidation activity and determine the relationship between UGT1A variants and SN-38 glucuronidation in vitro. We found that UGT1A1 and UGT1A6-UGT1A10 displayed SN-38 glucuronidation activity. Among these, UGT1A1 was the most active. Furthermore, the variants of these isoforms showed decreased SN-38 glucuronidation activity. In our study, we compared the different variants of UGT1As, such as UGT1A1.6, UGT1A1.7, UGT1A1.27, UGT1A1.35, UGT1A7.3, UGT1A8.4, UGT1A10M59I, and UGT1A10T202I, to determine the differences in the reduction of glucuronidation. Our study elucidates the relationship between UGT1A variants and the level of glucuronidation associated with each variant. Therefore, testing can be done before the initiation of irinotecan treatment to predict potential toxicities and adverse effects.
Collapse
Affiliation(s)
- Kouji Tagawa
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Yu Mimura
- Department of Pediatrics, Toyosato Hospital, Shiga, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| |
Collapse
|
4
|
Yang X, Weber AA, Mennillo E, Paszek M, Wong S, Le S, Teo JYA, Chang M, Benner CW, Tukey RH, Chen S. Oral arsenic administration to humanizedUDP-glucuronosyltransferase1 neonatal mice induces UGT1A1 through a dependence on Nrf2 and PXR. J Biol Chem 2023; 299:102955. [PMID: 36720308 PMCID: PMC9996368 DOI: 10.1016/j.jbc.2023.102955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Inorganic arsenic (iAs) is an environmental toxicant that can lead to severe health consequences, which can be exacerbated if exposure occurs early in development. Here, we evaluated the impact of oral iAs treatment on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) mice. We found that oral administration of iAs to neonatal hUGT1 mice that display severe neonatal hyperbilirubinemia leads to induction of intestinal UGT1A1 and a reduction in total serum bilirubin values. Oral iAs administration accelerates neonatal intestinal maturation, an event that is directly associated with UGT1A1 induction. As a reactive oxygen species producer, oral iAs treatment activated the Keap-Nrf2 pathway in the intestinal tract and liver. When Nrf2-deficient hUGT1 mice (hUGT1/Nrf2-/-) were treated with iAs, it was shown that activated Nrf2 contributed significantly toward intestinal maturation and UGT1A1 induction. However, hepatic UGT1A1 was not induced upon iAs exposure. We previously demonstrated that the nuclear receptor PXR represses liver UGT1A1 in neonatal hUGT1 mice. When PXR was deleted in hUGT1 mice (hUGT1/Pxr-/-), derepression of UGT1A1 was evident in both liver and intestinal tissue in neonates. Furthermore, when neonatal hUGT1/Pxr-/- mice were treated with iAs, UGT1A1 was superinduced in both tissues, confirming PXR release derepressed key regulatory elements on the gene that could be activated by iAs exposure. With iAs capable of generating reactive oxygen species in both liver and intestinal tissue, we conclude that PXR deficiency in neonatal hUGT1/Pxr-/- mice allows greater access of activated transcriptional modifiers such as Nrf2 leading to superinduction of UGT1A1.
Collapse
Affiliation(s)
- Xiaojing Yang
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - André A Weber
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Elvira Mennillo
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Miles Paszek
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Samantha Wong
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sabrina Le
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Jia Ying Ashley Teo
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Max Chang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Christopher W Benner
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
5
|
Yeung CHT, Beers JL, Jackson KD, Edginton AN. Verifying in vitro-determined enzyme contributions to cannabidiol clearance for exposure predictions in human through physiologically-based pharmacokinetic modeling. CPT Pharmacometrics Syst Pharmacol 2023; 12:320-332. [PMID: 36540909 PMCID: PMC10014054 DOI: 10.1002/psp4.12908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Cannabidiol (CBD) is approved for treatment of seizures associated with two forms of epilepsy that become apparent in infancy or early childhood. To consider an adult physiologically-based pharmacokinetic (PBPK) model for pediatric scaling, we assessed in vitro-derived cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzyme contributions to CBD clearance in human. An i.v. PBPK model was constructed using CBD physicochemical properties and knowledge of disposition. The i.v. datasets were used for model building and evaluation. Oral PBPK models for CBD administered in fasted and fed states were developed using single dose oral datasets and parameters optimized from the i.v. model and evaluated with multiple dose datasets. Relative contributions of CBD metabolizing enzymes were partitioned according to in vitro studies. Clinical drug-drug interaction (DDI) studies were simulated using CBD fed state, itraconazole, fluconazole, and rifampicin PBPK models. Linear mixed effect modeling was used to estimate area under the concentration-time curve from zero to infinity (AUC0-∞ ) perpetrator + CBD versus CBD alone. The i.v. and oral datasets used in model evaluation produced acceptable average fold error (AFE) of 1.28 and absolute AFE of 1.65. Relative contributions of drug-metabolizing enzymes to CBD clearance were proposed from in vitro data: UGT1A7 4%, UGT1A9 16%, UGT2B7 10%, CYP3A4 38%, CYP2C19 21%, and CYP2C9 11%. The simulated DDI studies using the in vitro-derived values produced AUC0-∞ treatment ratios comparable to observed: itraconazole 1.24 versus 1.07, fluconazole 1.45 versus 1.22, and rifampicin 0.49 versus 0.69. The constructed CBD PBPK models can predict adult exposures and have potential for use in pediatrics where exposure estimates are limited.
Collapse
Affiliation(s)
| | - Jessica L. Beers
- Division of Pharmacotherapy and Experimental TherapeuticsUNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillCaliforniaUSA
| | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental TherapeuticsUNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillCaliforniaUSA
| | | |
Collapse
|
6
|
Nasimi Doost Azgomi R, Moini Jazani A, Karimi A, Pourreza S. Potential roles of genistein in polycystic ovary syndrome: A comprehensive systematic review. Eur J Pharmacol 2022; 933:175275. [PMID: 36108737 DOI: 10.1016/j.ejphar.2022.175275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/09/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most prevalent polygenic endocrine disorders in reproductive-age women. Genistein is a soy-isolated phytoestrogen and isoflavone with antioxidant, anti-inflammatory, estrogenic, and antineoplastic activity. This systematic review aimed to investigate the therapeutic effects and mechanisms of actions of genistein in PCOS. The present study was conducted according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. We searched PubMed, Scopus, Embase, and Google Scholar databases up to February 2022 using relative keywords. Studies published in English evaluated genistein's effects on PCOS, and its related symptoms were considered. Out of 298 records screened, only 13 articles met the inclusion criteria: Nine animal and 4 human studies. The results of the current study indicated that genistein supplementation may effectively improve PCOS-related symptoms by decreasing insulin resistance and anthropometric indices, improving ovarian morphology and regulating reproductive hormones, and reducing oxidative stress and inflammation by influencing biological pathways. According to the current literature, genistein may diminish the dues of PCOS. Therefore, this study shows that genistein can be considered an effective agent. in reducing the complications of PCOS. However, further studies are recommended for a broad conclusion on the exact mechanism of genistein in PCOS patients.
Collapse
Affiliation(s)
- Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Arash Karimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sanaz Pourreza
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Mennillo E, Yang X, Weber AA, Maruo Y, Verreault M, Barbier O, Chen S, Tukey RH. Intestinal UDP-Glucuronosyltransferase 1A1 and Protection against Irinotecan-Induced Toxicity in a Novel UDP-Glucuronosyltransferase 1A1 Tissue-Specific Humanized Mouse Model. Drug Metab Dispos 2022; 50:33-42. [PMID: 34697081 PMCID: PMC8969198 DOI: 10.1124/dmd.121.000644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
The human UDP-glucuronosyltransferases (UGTs) represent an important family of drug-metabolizing enzymes, with UGT1A1 targeting the conjugation and detoxification of many exogenous substances, including pharmaceutical drugs. In this study we generated humanized UGT1A1 mice expressing the human UGT1A1 gene in either liver (hUGT1A1HEP ) or intestine (hUGT1A1GI ), enabling experiments to examine tissue-specific properties of UGT1A1-specific glucuronidation. Hepatic and intestinal tissue-specific expression and function of UGT1A1 were demonstrated. Although the liver is considered a major organ for detoxification, intestinal UGT1A1 is an important contributor for drug clearance. Mice were challenged with irinotecan (CPT-11), a prodrug hydrolyzed by carboxylesterases to form the active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38) and detoxified by UGT1A1. Humanized UGT1A1HEP mice that have no intestinal UGT1A1 displayed a greater lethality rate when exposed to CPT-11 than hUGT1A1GI mice. When exposed to a low dose of CPT-11 (10 mg/kg), hUGT1A1HEP mice displayed greater intestinal inflammatory (IL-1β and IL-6) insult in addition to p53-triggered apoptotic responses. In vitro studies with intestinal crypt organoids exposed to CPT-11 confirmed the results observed in vivo and indicated that CPT-11 impacts stemness, apoptosis, and endoplasmic reticulum (ER) stress in organoids deficient in UGT1A1. When we examined the induction of ER stress in organoids with thapsigargin, an inhibitor of sarco/endoplasmic reticulum Ca2+ ATPase, apoptosis and the caspase surge that occurred in hUGT1A1HEP mice were blocked in hUGT1A1GI organoids. This study reveals the importance of intestinal UGT1A1 in preventing inflammation, apoptosis, and loss of stemness capacity upon systemic challenge with an important chemotherapeutic agent. SIGNIFICANCE STATEMENT: Hepatic and intestinal UGT1A1 play a key role in the metabolism and detoxification of endogenous and exogenous compounds. The use of tissue-specific humanized models expressing UGT1A1 in liver or intestine has confirmed the relevance of the intestinal tract in the detoxification of irinotecan. Mechanistic studies using intestinal organoids highlighted the importance of UGT1A1 in reducing inflammation, apoptosis, and loss of stemness. These new models provide valuable tools for studying tissue-specific glucuronidation of substances that are metabolized by human UGT1A1.
Collapse
Affiliation(s)
- Elvira Mennillo
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (E.M., X.Y., A.A.W., S.C., R.H.T.); Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, Japan (Y.M.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| | - Xiaojing Yang
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (E.M., X.Y., A.A.W., S.C., R.H.T.); Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, Japan (Y.M.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| | - Andre A Weber
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (E.M., X.Y., A.A.W., S.C., R.H.T.); Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, Japan (Y.M.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| | - Yoshihiro Maruo
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (E.M., X.Y., A.A.W., S.C., R.H.T.); Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, Japan (Y.M.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| | - Melanie Verreault
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (E.M., X.Y., A.A.W., S.C., R.H.T.); Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, Japan (Y.M.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| | - Olivier Barbier
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (E.M., X.Y., A.A.W., S.C., R.H.T.); Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, Japan (Y.M.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (E.M., X.Y., A.A.W., S.C., R.H.T.); Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, Japan (Y.M.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (E.M., X.Y., A.A.W., S.C., R.H.T.); Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, Japan (Y.M.); and Laboratory of Moléculaire Pharmacology, Centre de Recherche du CHU de Québec, Faculté of Pharmacie, Université Laval Québec, Québec, Canada (M.V., O.B.)
| |
Collapse
|
8
|
Tu Y, Wang L, Rong Y, Tam V, Yin T, Gao S, Singh R, Hu M. Hepatoenteric recycling is a new disposition mechanism for orally administered phenolic drugs and phytochemicals in rats. eLife 2021; 10:e58820. [PMID: 34196607 PMCID: PMC8248983 DOI: 10.7554/elife.58820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Many orally administered phenolic drugs undergo enterohepatic recycling (EHR), presumably mediated by the hepatic phase II enzymes. However, the disposition of extrahepatically generated phase II metabolites is unclear. This paper aims to determine the new roles of liver and intestine in the disposition of oral phenolics. Sixteen representative phenolics were tested using direct portal vein infusion and/or intestinal perfusion. The results showed that certain glucuronides were efficiently recycled by liver. OATP1B1/1B3/2B1 were the responsible uptake transporters. Hepatic uptake is the rate-limiting step in hepatic recycling. Our findings showed that the disposition of many oral phenolics is mediated by intestinal glucuronidation and hepatic recycling. A new disposition mechanism 'Hepatoenteric Recycling (HER)", where intestine is the metabolic organ and liver is the recycling organ, was revealed. Further investigations focusing on HER should help interpret how intestinal aliments or co-administered drugs that alter gut enzymes (e.g. UGTs) expression/activities will impact the disposition of phenolics.
Collapse
Affiliation(s)
- Yifan Tu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Lu Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Yi Rong
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Vincent Tam
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Song Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas Southern UniversityHoustonUnited States
| | - Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| |
Collapse
|
9
|
Ivanov A, Semenova E. Gilbert's Syndrome, Bilirubin Level and UGT1A1∗28 Genotype in Men of North-West Region of Russia. J Clin Exp Hepatol 2021; 11:691-699. [PMID: 34866848 PMCID: PMC8617539 DOI: 10.1016/j.jceh.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/OBJECTIVES Gilbert's syndrome (GS) is a hereditary pathology that affects approximately 10% of the world's population. In most cases, GS is associated with the UGT1A1∗28 polymorphism of UGT1A1 gene coding the enzyme bilirubin uridine diphosphate glucuronosyltransferase (UGT-1A) which plays a key role in the bilirubin metabolism. The presence of an additional TA repeat in the TATA box of the UGT1A1 gene promoter (the allelic variant of 7TA, abbreviated as UGT1A1∗28) leads to a significant decrease in the enzymatic activity of UGT-1A in the liver and to decrease in glucuronidation process as a consequence. The aim of the study is to estimate the prevalence of the 6TA/6TA, 6TA/7TA, and 7TA/7TA genotypes of UGT1A1 promoter and to analyze the effect of these variants on bilirubin levels in healthy men in North-West Russia and patients with a clinical diagnosis of GS. METHODS Genotyping of the UGT1A1 ∗28 (rs8175347) polymorphism was carried out by real-time PCR. RESULTS The results obtained indicate an increased probability of GS developing in residents of the North-West region of Russia compared with other representatives of the Caucasians. CONCLUSIONS Despite the fact that the level of serum bilirubin increases with the rise in the number of additional TA dinucleotides in the UGT1A1 gene promoter tests of clinical manifestations only (jaundice, fatigue, sleep disturbances, nausea, belching, and so on) and increased bilirubin levels in patients with normal liver function do not allow unequivocally diagnose GS. UGT1A1∗28 genotyping should be used as a prognostic risk factor for such pathology development.
Collapse
Affiliation(s)
- Andrei Ivanov
- Human Genetics Department, Saint-Petersburg State University Hospital, 154, Fontanka River Embankment, St.Petersburg, 198103, Russia
- Address for correspondence. Ivanov Andrei V., Human Genetics Department, Saint-Petersburg State University Hospital, 154, Fontanka River Embankment, St.Petersburg, 198103, Russia.
| | - Elena Semenova
- Division of Molecular and Radiation Biophysics, National Research Center “Kurchatov Institute” B.P.Konstantinov St Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia
| |
Collapse
|
10
|
Methaneethorn J, Leelakanok N. Sources of lamotrigine pharmacokinetic variability: A systematic review of population pharmacokinetic analyses. Seizure 2020; 82:133-147. [PMID: 33060011 DOI: 10.1016/j.seizure.2020.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lamotrigine (LTG) is a new generation antiepileptic drug. However, relatively high interindividual pharmacokinetic variability of this drug has been documented. Therefore, several population pharmacokinetic studies of lamotrigine were conducted to identify factors influencing its pharmacokinetics. OBJECTIVE This systematic review aimed to summarize significant factors influencing LTG pharmacokinetics and their relationships with pharmacokinetic parameters as well as the magnitude of pharmacokinetic variability. METHODS Four databases i.e. PubMed, Scopus, CINAHL Complete, and Science Direct were systematically searched from their inception to March 2020. Population pharmacokinetic studies of LTG conducted in humans using a nonlinear-mixed effect approach were eligible for a systematic review. RESULTS Nineteen studies were included in this systematic review. Most studies characterized LTG pharmacokinetics as a one-compartment model structure. The three most frequently identified significant covariates influencing LTG clearance included concomitant antiepileptic drugs, body weight, and genetic polymorphisms. Approximately 58% of the studies did not externally validate the models. CONCLUSIONS For clinical application, LTG maintenance dose could be optimized using population pharmacokinetic models employing covariates such as concomitant antiepileptic drugs, body weight, and genetic polymorphisms. However, these models should be assessed for their predictability in the target population before utilizing such models in clinical settings.
Collapse
Affiliation(s)
- Janthima Methaneethorn
- Pharmacokinetic Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand; Center of Excellence for Environmental Health and Toxicology, Naresuan University, Phitsanulok, Thailand.
| | - Nattawut Leelakanok
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
11
|
Landerer S, Kalthoff S, Paulusch S, Strassburg CP. UDP-glucuronosyltransferase polymorphisms affect diethylnitrosamine-induced carcinogenesis in humanized transgenic mice. Cancer Sci 2020; 111:4266-4275. [PMID: 32860300 PMCID: PMC7648041 DOI: 10.1111/cas.14635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022] Open
Abstract
UDP‐glucuronosyltransferase (UGT) 1A enzymes detoxify a broad array of exogenous compounds including environmental toxins and carcinogens. Case‐control studies identified genetic variations in UGT1A genes leading to reduced glucuronidation activity, which were associated with hepatocellular carcinoma (HCC) formation and progression. The aim of the study was therefore to examine the direct effect of common UGT1A polymorphisms (SNPs) on HCC development and outcome in a diethylnitrosamine (DEN)‐induced mouse model. Therefore, a single intraperitoneal DEN injection (20 mg/kg) was administered to 15‐day‐old htgUGT1A‐WT and htgUGT1A‐SNP mice (containing a human haplotype of 10 common UGT1A SNPs) either receiving water or coffee cotreatment for the following 39 weeks. After this time, tumor incidence, size (>1 mm), histology, liver‐body ratio, serum aminotransferase activities, and UGT1A regulation and activity levels were determined. In DEN‐treated htgUGT1A‐SNP mice, a markedly higher number of tumors with a bigger cumulative diameter were detected. The relative liver weight and aminotransferase activity levels were also significantly higher in mice carrying UGT1A SNPs. After coffee + DEN cotreatment, susceptibility for tumor development and growth considerably decreased in both mouse lines, but was still higher in htgUGT1A‐SNP mice. In conclusion, our study provides experimental evidence for the protective role of UGT1A enzymes in neoplastic transformation. These data confirm case‐control studies implicating impaired UGT1A‐mediated carcinogen detoxification as a risk factor for individual cancer disposition. Coffee treatment, which is able to activate UGT1A expression and activity, reduced HCC development and provides an explanation for the protective properties of coffee on liver diseases including liver cancer.
Collapse
Affiliation(s)
- Steffen Landerer
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Sandra Kalthoff
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Stefan Paulusch
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
12
|
Weismüller TJ, Zhou T, Kalthoff S, Lenzen H, Manns MP, Strassburg CP. Genetic variants of UDP-glucuronosyltransferase 1A genes are associated with disease presentation and outcome in primary sclerosing cholangitis. Liver Int 2020; 40:1645-1654. [PMID: 32378294 DOI: 10.1111/liv.14487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is a progressive cholestatic liver disease without a curative medical therapy. The human UDP-glucuronosyltransferases 1A play a major role in the detoxification and elimination of bilirubin, bile acids and xenobiotics. Whether genetic UGT1A variants determine course and outcome of PSC has not yet been described. METHODS A large cohort of German PSC patients with a long-term-follow-up was genotyped for UGT1A variants including UGT1A1*28, UGT1A3-66 T>C and UGT1A7 p.N129K/p.R131K using TaqMan 5'-nuclease assays. Results were correlated with clinical characteristics and transplant-free survival. RESULTS About 331 patients with PSC were included in the study (69.9% male, mean age at diagnosis 32.6 years). Median transplant-free survival was 14.9 years. Patients with wild-type alleles of all three UGT1A genes had a longer transplant-free survival (17.2 vs. 14.4 years, P = .048) than patients carrying a homozygous or heterozygous SNP variant in at least one of the UGT1A1, UGT1A3 or UGT1A7 genes. Additionally, we found that patients carrying wild-type alleles of all three UGT1A genes had lower serum bilirubin (25 vs. 38 µmol/L, P = .02) and serum cholesterol (195 vs. 223 mg/dL), P = .035) at first presentation. Furthermore, inflammatory bowel disease was found to be associated with wild-type UGT1A alleles (82.2% vs. 68.4%, P = .046). CONCLUSIONS This large cohort shows an association with single nucleotide polymorphisms of the UGT1A1, UGT1A3 and UGT1A7 genes and outcome in PSC. Thus, UGT1A variants may represent a tool for the prognostic stratification of PSC patients and establish a link between disease progression and the regulation of detoxification by glucuronidation in PSC.
Collapse
Affiliation(s)
| | - Taotao Zhou
- Department of Internal Medicine 1, University of Bonn, Bonn, Germany
| | - Sandra Kalthoff
- Department of Internal Medicine 1, University of Bonn, Bonn, Germany
| | - Henrike Lenzen
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
13
|
Guo W, Li Z, Yuan M, Chen G, Li Q, Xu H, Yang X. Molecular Insight into Stereoselective ADME Characteristics of C20-24 Epimeric Epoxides of Protopanaxadiol by Docking Analysis. Biomolecules 2020; 10:E112. [PMID: 31936432 PMCID: PMC7022797 DOI: 10.3390/biom10010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/28/2022] Open
Abstract
Chirality is a common phenomenon, and it is meaningful to explore interactions between stereoselective bio-macromolecules and chiral small molecules with preclinical and clinical significance. Protopanaxadiol-type ginsenosides are main effective ingredients in ginseng and are prone to biotransformation into a pair of ocotillol C20-24 epoxide epimers, namely, (20S,24S)-epoxy-dammarane-3,12,25-triol (24S-PDQ) and (20S,24R)-epoxy dammarane-3,12,25-triol (24R-PDQ) that display stereoselective fate in vivo. However, possible molecular mechanisms involved are still unclear. The present study aimed to investigate stereoselective ADME (absorption, distribution, metabolism and excretion) characteristics of PDQ epimers based on molecular docking analysis of their interaction with some vital proteins responsible for drug disposal. Homology modeling was performed to obtain 3D-structure of the human isoenzyme UGT1A8, while calculation of docking score and binding free energy and ligand-protein interaction pattern analysis were achieved by using the Schrödinger package. Stereoselective interaction was found for both UGT1A8 and CYP3A4, demonstrating that 24S-PDQ was more susceptible to glucuronidation, whereas 24R-PDQ was more prone to oxidation catalyzed by CYP3A4. However, both epimers displayed similarly strong interaction with P-gp, a protein with energy-dependent drug-pump function, suggesting an effect of the dammarane skeleton but not C-24 stereo-configuration. These findings provide an insight into stereo-selectivity of ginsenosides, as well as a support the rational development of ginseng products.
Collapse
Affiliation(s)
- Wenna Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264000, China; (W.G.); (Z.L.); (M.Y.); (Q.L.)
| | - Zhiyong Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264000, China; (W.G.); (Z.L.); (M.Y.); (Q.L.)
| | - Meng Yuan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264000, China; (W.G.); (Z.L.); (M.Y.); (Q.L.)
| | - Geng Chen
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264000, China;
| | - Qiao Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264000, China; (W.G.); (Z.L.); (M.Y.); (Q.L.)
| | - Hui Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264000, China; (W.G.); (Z.L.); (M.Y.); (Q.L.)
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264000, China;
| |
Collapse
|
14
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
15
|
Tang L, Zhang M, Li X, Zhang L. Glucuronidated bilirubin: Significantly increased in hepatic encephalopathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:363-376. [PMID: 30905463 DOI: 10.1016/bs.pmbts.2018.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Bilirubin is produced by the breakdown of hemoglobin in senescent erythrocytes by macrophages and carried by albumin from blood circulation to the liver for removal in normal physiology. Glucuronic acid modification of bilirubin by UDP-glucuronyltransferase in the liver is the key event for its subsequent elimination from human body. Conditions that accelerate the breakdown of erythrocytes may cause an elevated blood level of unconjugated bilirubin whereas the factors affect the glucuronidated bilirubin formation and subsequent elimination may cause decreased or increased blood level of glucuronidated bilirubin, the water soluble "direct bilirubin" measured by clinical blood test. Studies showed that increased total serum bilirubin has a protective effect on cardiovascular and other related diseases, but it is unknown how direct bilirubin levels were related to different diseases. By taking advantage of the data collected in the clinical laboratory of our hospital, the direct bilirubin data from 192,535 patients with 72 clinically defined diseases were compared to that of healthy controls (10,497). Based on the mean, median, and p values, we found that patients with hepatic encephalopathy had the highest serum direct bilirubin level, which resembled acute hepatic encephalopathy caused by increased serum direct bilirubin level in neonates. In contrast, patients with uremia, nephrotic syndrome, and preeclampsia had significantly lower levels of serum direct bilirubin. Taken together, our data revealed that serum direct bilirubin levels were either increased or decreased in a disease-dependent manner. The possible molecular mechanisms of increased direct bilirubin levels in patients suffering hepatic encephalopathy are discussed.
Collapse
Affiliation(s)
- Limin Tang
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiulian Li
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Chen S, Tukey RH. Humanized UGT1 Mice, Regulation of UGT1A1, and the Role of the Intestinal Tract in Neonatal Hyperbilirubinemia and Breast Milk-Induced Jaundice. Drug Metab Dispos 2018; 46:1745-1755. [PMID: 30093417 PMCID: PMC6199628 DOI: 10.1124/dmd.118.083212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022] Open
Abstract
Neonatal hyperbilirubinemia and the onset of bilirubin encephalopathy and kernicterus result in part from delayed expression of UDP-glucuronosyltransferase 1A1 (UGT1A1) and the ability to metabolize bilirubin. It is generally believed that acute neonatal forms of hyperbilirubinemia develop due to an inability of hepatic UGT1A1 to metabolize efficiently bilirubin for clearance through the hepatobiliary tract. Newly developed mouse models designed to study bilirubin metabolism have led to new insight into the role of the intestinal tract in controlling neonatal hyperbilirubinemia. Humanization of mice with the UGT1 locus (hUGT1 mice) and the UGT1A1 gene provide a unique tool to study the onset of hyperbilirubinemia since the human UGT1A1 gene is developmentally regulated during the neonatal period in hUGT1 mice. A new mechanism outlying developmental expression of intestinal UGT1A1 is presented and its implications in the control of neonatal hyperbilirubinemia discussed. New findings linking breast milk protection against necrotizing enterocolitis and intestinal control of UGT1A1 may help explain the contribution of breast milk toward the development of neonatal hyperbilirubinemia. Our findings outline a new model that includes an active intestinal ROS /IκB kinase/nuclear receptor corepressor 1 loop that can be applied to an understanding of breast milk-induced jaundice.
Collapse
Affiliation(s)
- Shujuan Chen
- Laboratory of Environmental Toxicology (R.H.T.) and Department of Pharmacology (S.C., R.H.T.), University of California, San Diego, La Jolla, California
| | - Robert H Tukey
- Laboratory of Environmental Toxicology (R.H.T.) and Department of Pharmacology (S.C., R.H.T.), University of California, San Diego, La Jolla, California
| |
Collapse
|
17
|
Fritz A, Busch D, Lapczuk J, Ostrowski M, Drozdzik M, Oswald S. Expression of clinically relevant drug-metabolizing enzymes along the human intestine and their correlation to drug transporters and nuclear receptors: An intra-subject analysis. Basic Clin Pharmacol Toxicol 2018; 124:245-255. [PMID: 30253071 DOI: 10.1111/bcpt.13137] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022]
Abstract
The oral bioavailability of many drugs is highly influenced not only by hepatic but also by intestinal biotransformation. To estimate the impact of intestinal phase I and II metabolism on oral drug absorption, knowledge on the expression levels of the respective enzymes is an essential prerequisite. In addition, the potential interplay of metabolism and transport contributes to drug disposition. Both mechanisms may be subjected to coordinative regulation by nuclear receptors, leading to unwanted drug-drug interactions due to induction of intestinal metabolism and transport. Thus, it was the aim of this study to comprehensively analyse the regional expression of clinically relevant phase I and II enzymes along the entire human intestine and to correlate these data to expression data of drug transporters and nuclear receptors of pharmacokinetic relevance. Gene expression of 11 drug-metabolizing enzymes (CYP2B6, 2C8, 2C9, 2C19, 2D6, 3A4, 3A5, SULT1A, UGT1A, UGT2B7, UGT2B15) was studied in duodenum, jejunum, ileum and colon from six organ donors by real-time RT-PCR. Enzyme expression was correlated with expression data of the nuclear receptors PXR, CAR and FXR as well as drug transporters observed in the same cohort. Intestinal expression of all studied metabolizing enzymes was significantly higher in the small intestine compared to colonic tissue. CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4/5, SULT1A, UGT1A and UGT2B7 expression increased from the duodenum to jejunum but was markedly lower in the ileum. In the small intestine, that is, the predominant site of drug absorption, the highest expression has been observed for CYP3A4, CYP2C9, SULT1A and UGT1A. In addition, significant correlations were found between several enzymes and PXR as well as ABC transporters in the small intestine. In conclusion, the observed substantial site-dependent intestinal expression of several enzymes may explain regional differences in intestinal drug absorption. The detected correlations between intestinal enzymes, transporters and nuclear receptors provide indirect evidence for their coordinative expression, regulation and function in the human small intestine.
Collapse
Affiliation(s)
- Anja Fritz
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Diana Busch
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Joanna Lapczuk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Marek Ostrowski
- Department of General and Transplantation Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
18
|
Identification and characterization of in vitro inhibitors against UDP-glucuronosyltransferase 1A1 in uva-ursi extracts and evaluation of in vivo uva-ursi-drug interactions. Food Chem Toxicol 2018; 120:651-661. [DOI: 10.1016/j.fct.2018.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/27/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
|
19
|
Metabolic Profiles of Propofol and Fospropofol: Clinical and Forensic Interpretative Aspects. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6852857. [PMID: 29992157 PMCID: PMC5994321 DOI: 10.1155/2018/6852857] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/27/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023]
Abstract
Propofol is an intravenous short-acting anesthetic widely used to induce and maintain general anesthesia and to provide procedural sedation. The potential for propofol dependency and abuse has been recognized, and several cases of accidental overdose and suicide have emerged, mostly among the health professionals. Different studies have demonstrated an unpredictable interindividual variability of propofol pharmacokinetics and pharmacodynamics with forensic and clinical adverse relevant outcomes (e.g., pronounced respiratory and cardiac depression), namely, due to polymorphisms in the UDP-glucuronosyltransferase and cytochrome P450 isoforms and drugs administered concurrently. In this work the pharmacokinetics of propofol and fospropofol with particular focus on metabolic pathways is fully reviewed. It is concluded that knowing the metabolism of propofol may lead to the development of new clues to help further toxicological and clinical interpretations and to reduce serious adverse reactions such as respiratory failure, metabolic acidosis, rhabdomyolysis, cardiac bradyarrhythmias, hypotension and myocardial failure, anaphylaxis, hypertriglyceridemia, renal failure, hepatomegaly, hepatic steatosis, acute pancreatitis, abuse, and death. Particularly, further studies aiming to characterize polymorphic enzymes involved in the metabolic pathway, the development of additional routine forensic toxicological analysis, and the relatively new field of ‘‘omics” technology, namely, metabolomics, can offer more in explaining the unpredictable interindividual variability.
Collapse
|
20
|
Mubarokah N, Hulin JA, Mackenzie PI, McKinnon RA, Haines AZ, Hu DG, Meech R. Cooperative Regulation of Intestinal UDP-Glucuronosyltransferases 1A8, -1A9, and 1A10 by CDX2 and HNF4 α Is Mediated by a Novel Composite Regulatory Element. Mol Pharmacol 2018; 93:541-552. [PMID: 29519853 DOI: 10.1124/mol.117.110619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/21/2018] [Indexed: 11/22/2022] Open
Abstract
The gastrointestinal tract expresses several UDP-glucuronosyltransferases (UGTs) that act as a first line of defense against dietary toxins and contribute to the metabolism of orally administered drugs. The expression of UGT1A8, UGT1A9, and UGT1A10 in gastrointestinal tissues is known to be at least partly directed by the caudal homeodomain transcription factor, CDX2. We sought to further define the factors involved in regulation of the UGT1A8-1A10 genes and identified a novel composite element located within the proximal promoters of these three genes that binds to both CDX2 and the hepatocyte nuclear factor (HNF) 4α, and mediates synergistic activation by these factors. We also show that HNF4α and CDX2 are required for the expression of these UGT genes in colon cancer cell lines, and show robust correlation of UGT expression with CDX2 and HNF4α levels in normal human colon. Finally, we show that these factors are involved in the differential expression pattern of UGT1A8 and UGT1A10, which are intestinal specific, and that of UGT1A9, which is expressed in both intestine and liver. These studies lead to a model for the developmental patterning of UGT1A8, UGT1A9, and UGT1A10 in hepatic and/or extrahepatic tissues involving discrete regulatory modules that may function (independently and cooperatively) in a context-dependent manner.
Collapse
Affiliation(s)
- Nurul Mubarokah
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z Haines
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
21
|
Kim SY, Jones DR, Kang JY, Yun CH, Miller GP. Regioselectivity significantly impacts microsomal glucuronidation efficiency of R/S-6, 7-, and 8-hydroxywarfarin. Xenobiotica 2018. [PMID: 29543105 DOI: 10.1080/00498254.2018.1451668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Coumadin (R/S-warfarin) metabolism plays a critical role in patient response to anticoagulant therapy. Several cytochrome P450s oxidize warfarin into R/S-6-, 7-, 8-, 10, and 4'-hydroxywarfarin that can undergo subsequent glucuronidation by UDP-glucuronosyltransferases (UGTs); however, current studies on recombinant UGTs cannot be adequately extrapolated to microsomal glucuronidation capacities for the liver. Herein, we estimated the capacity of the average human liver to glucuronidate hydroxywarfarin and identified UGTs responsible for those metabolic reactions through inhibitor phenotyping. There was no observable activity toward R/S-warfarin, R/S-10-hydroxywarfarin or R/S-4'-hydroxywarfarin. The observed metabolic efficiencies (Vmax/Km) toward R/S-6-, 7-, and especially 8-hydroxywarfarin indicated a high glucuronidation capacity to metabolize these compounds. UGTs demonstrated strong regioselectivity toward the hydroxywarfarins. UGT1A6 and UGT1A1 played a major role in R/S-6- and 7-hydroxywarfarin glucuronidation, respectively, whereas UGT1A9 accounted for almost all of the generation of the R/S-8-hydroxywarfarin glucuronide. In summary, these studies expanded insights to glucuronidation of hydroxywarfarins by pooled human liver microsomes, novel roles for UGT1A6 and 1A9, and the overall degree of regioselectivity for the UGT reactions.
Collapse
Affiliation(s)
- So-Young Kim
- a School of Biological Sciences and Technology , Chonnam National University , Gwangju , Republic of Korea
| | - Drew R Jones
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Ji-Yeon Kang
- a School of Biological Sciences and Technology , Chonnam National University , Gwangju , Republic of Korea
| | - Chul-Ho Yun
- a School of Biological Sciences and Technology , Chonnam National University , Gwangju , Republic of Korea
| | - Grover P Miller
- a School of Biological Sciences and Technology , Chonnam National University , Gwangju , Republic of Korea
| |
Collapse
|
22
|
Kim JH, Hwang DK, Moon JY, Lee Y, Yoo JS, Shin DH, Lee HS. Multiple UDP-Glucuronosyltransferase and Sulfotransferase Enzymes are Responsible for the Metabolism of Verproside in Human Liver Preparations. Molecules 2017; 22:molecules22040670. [PMID: 28441724 PMCID: PMC6154560 DOI: 10.3390/molecules22040670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 02/05/2023] Open
Abstract
Verproside, an active iridoid glycoside component of Veronica species, such as Pseudolysimachion rotundum var. subintegrum and Veronica anagallis-aquatica, possesses anti-asthma, anti-inflammatory, anti-nociceptive, antioxidant, and cytostatic activities. Verproside is metabolized into nine metabolites in human hepatocytes: verproside glucuronides (M1, M2) via glucuronidation, verproside sulfate (M3) via sulfation, picroside II (M4) and isovanilloylcatalpol (M5) via O-methylation, M4 glucuronide (M6) and M4 sulfate (M8) via further glucuronidation and sulfation of M4, and M5 glucuronide (M7) and M5 sulfate (M9) via further glucuronidation and sulfation of M5. Drug-metabolizing enzymes responsible for verproside metabolism, including sulfotransferase (SULT) and UDP-glucuronosyltransferase (UGT), were characterized. The formation of verproside glucuronides (M1, M2), isovanilloylcatalpol glucuronide (M7), and picroside II glucuronide (M6) was catalyzed by commonly expressed UGT1A1 and UGT1A9 and gastrointestinal-specific UGT1A7, UGT1A8, and UGT1A10, consistent with the higher intrinsic clearance values for the formation of M1, M2, M6, and M7 in human intestinal microsomes compared with those in liver microsomes. The formation of verproside sulfate (M3) and M5 sulfate (M9) from verproside and isovanilloylcatalpol (M5), respectively, was catalyzed by SULT1A1. Metabolism of picroside II (M4) into M4 sulfate (M8) was catalyzed by SULT1A1, SULT1E1, SULT1A2, SULT1A3, and SULT1C4. Based on these results, the pharmacokinetics of verproside may be affected by the co-administration of relevant UGT and SULT inhibitors or inducers.
Collapse
Affiliation(s)
- Ju-Hyun Kim
- Drug Metabolism & Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon 14462, Korea.
| | - Deok-Kyu Hwang
- Drug Metabolism & Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon 14462, Korea.
| | - Ju-Yeon Moon
- Drug Metabolism & Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon 14462, Korea.
| | - Yongnam Lee
- Central R&D Institute, YUNGJIN PHARM. CO., LTD., Suwon 16229, Korea.
| | - Ji Seok Yoo
- Central R&D Institute, YUNGJIN PHARM. CO., LTD., Suwon 16229, Korea.
| | - Dae Hee Shin
- Central R&D Institute, YUNGJIN PHARM. CO., LTD., Suwon 16229, Korea.
| | - Hye Suk Lee
- Drug Metabolism & Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon 14462, Korea.
| |
Collapse
|
23
|
Isothiocyanates induce UGT1A1 in humanized UGT1 mice in a CAR dependent fashion that is highly dependent upon oxidative stress. Sci Rep 2017; 7:46489. [PMID: 28422158 PMCID: PMC5395973 DOI: 10.1038/srep46489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/21/2017] [Indexed: 12/21/2022] Open
Abstract
Isothiocyanates, such as phenethyl isothiocyanate (PEITC), are formed following the consumption of cruciferous vegetables and generate reactive oxygen species (ROS) that lead to the induction of cytoprotective genes such as the UDP-glucuronosyltransferases (UGTs). The induction of ROS activates the Nrf2-Keap 1 pathway leading to the induction of genes through antioxidant response elements (AREs). UGT1A1, the sole enzyme responsible for the metabolism of bilirubin, can be induced following activation of Nrf2. When neonatal humanized UGT1 (hUGT1) mice, which exhibit severe levels of total serum bilirubin (TSB) because of a developmental delay in expression of the UGT1A1 gene, were treated with PEITC, TSB levels were reduced. Liver and intestinal UGT1A1 were induced, along with murine CYP2B10, a consensus CAR target gene. In both neonatal and adult hUGT1/Car−/− mice, PEITC was unable to induce CYP2B10. A similar result was observed following analysis of UGT1A1 expression in liver. However, TSB levels were still reduced in hUGT1/Car−/− neonatal mice because of ROS induction of intestinal UGT1A1. When oxidative stress was blocked by exposing mice to N-acetylcysteine, induction of liver UGT1A1 and CYP2B10 by PEITC was prevented. Thus, new findings in this report link an important role in CAR activation that is dependent upon oxidative stress.
Collapse
|
24
|
Salleh NM, Ismail S, Ibrahim MNM. The Inhibition of Hepatic and Renal Glucuronidation of p-Nitrophenol and 4-Methylumbelliferone by Oil Palm Empty Fruit Bunch Lignin and Its Main Oxidation Compounds. Pharmacogn Mag 2017; 13:S102-S114. [PMID: 28479734 PMCID: PMC5407101 DOI: 10.4103/0973-1296.203990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/08/2016] [Indexed: 12/11/2022] Open
Abstract
Background: In order to develop oil palm empty fruit bunch (EFB) lignin as a nutraceutical and health supplement, the investigation of its potential in interacting with other drugs via inhibition of drug-metabolizing enzymes (DMEs) would ensure product safety. Objective: The study was aimed to investigate the in vitro effect of oil palm EFB lignin and its main oxidation compounds on phase II DME UDP-glucuronosyltransferases (UGTs) in rat liver and kidney microsomes. Materials and Methods: The p-nitrophenol (p-NP) and 4-methylumbelliferone (4-MU) were employed as probe substrates in glucuronidation assays. The effect of soda oil palm EFB lignin on Vmax, Km, CLint, Ki, and mode of inhibition of 4-MU glucuronidation in RLM was also determined. Results: The inhibitory potency of oil palm EFB lignin for both p-NP and 4-MU glucuronidation in rat liver microsome (RLM) and rat kidneys microsomes (RKM) was found to be in the rank order of soda > kraft > organosolv. However, the inhibitory potency of its main oxidation compounds were in the rank order of vanillin > syringaldehyde > p-hydroxybenzaldehyde. Soda oil palm EFB lignin exhibited mixed-type inhibition against 4-MU glucuronidation in RLM, showing the change in apparent Vmax and with only a minor effect on Km compared with control. Conclusions: The findings showed that effect of oil palm EFB lignin on both p-NP and 4-MU glucuronidation in RLM and RKM was enhanced by the presence of vanillin as well as flavonoids. Kinetic study showed that soda oil palm EFB lignin exhibited strong inhibition on UGT activity in RLM with mixed-type inhibition mode. SUMMARY The inhibitory potential of oil palm EFB lignin extracts for p-NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: soda > kraft > organosolv The inhibitory potential of oil palm EFB lignin main oxidation compounds for p-NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: vanillin > syringaldehyde > p-hydroxybenzaldehyde Results suggested that the effect of oil palm EFB lignin on p-NP and 4-MU glucuronidation activity in both RLM and RKM was enhanced by the presence of vanillin as well as total flavonoid content Results also suggested that oil palm EFB lignin may inhibit glucuronidation of substrate by UGT enzymes, especially UGT1A6, particularly in rat liver
Abbreviations used:p-NP: p-Nitrophenol, 4-MU: 4-Methylumbelliferone, EFB: Empty fruit bunch, DME: Drug-metabolizing enzymes, UGT: UDPglucuronosyltransferase, Vmax: Maximal reaction velocity, Km: Michaelis-Menten constant, CLint: Intrinsic clearance, Ki: Dissociation constant of an inhibitor enzyme complex, 4-MUG: 4-Methylumbelliferone glucuronide, DMSO: Dimethyl sulfoxide, IC50: Half maximal inhibitory concentration, p-NPG: p-Nitrophenol glucuronide, RKM: Rat kidneys microsomes, RLM: Rat liver microsome, UDPGA: UDPglucuronic acid, TCA: trichloroacetic acid, MPA: mycophenolic acid
Collapse
Affiliation(s)
- Norliyana Mohamad Salleh
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Centre for Herbal Standardization, Sains@USM, Bayan Lepas, Penang, Malaysia
| | - Sabariah Ismail
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Centre for Herbal Standardization, Sains@USM, Bayan Lepas, Penang, Malaysia
| | | |
Collapse
|
25
|
Alkharfy KM, Jan BL, Afzal S, Al-Jenoobi FI, Al-Mohizea AM, Al-Muhsen S, Halwani R, Parvez MK, Al-Dosari MS. Prevalence of UDP-glucuronosyltransferase polymorphisms (UGT1A6∗2, 1A7∗12, 1A8∗3, 1A9∗3, 2B7∗2, and 2B15∗2) in a Saudi population. Saudi Pharm J 2017; 25:224-230. [PMID: 28344472 PMCID: PMC5355556 DOI: 10.1016/j.jsps.2016.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/29/2016] [Indexed: 11/25/2022] Open
Abstract
Glucuronidation is an important phase II pathway responsible for many endogenous substances and drug metabolism. The present work evaluated allele frequencies of certain UDP-glucuronosyl-transferases (UGT 1A6∗2, A7∗12, A8∗3, A9∗3, 2B7∗2, and 2B15∗2) in Saudi Arabians that could provide essential ethnic information. Blood samples from 192 healthy unrelated Saudi males of various geographic regions were collected. Genomic DNA was isolated and genotyping of various UGTs was carried out using polymerase chain reaction (PCR) followed by direct sequencing. For UGT1A6∗2 A/G genotype, the most common variant was the homozygous repeat (AA) and the most common allele was (A) with a frequency of 46.5% and 67.3%, respectively. Similarly, the most common variant for UGT1A7∗12 T/C genotype was the heterozygous repeat (TC) with a frequency of 78.7% while the mutant allele (C) was present in 60.6% of the study population. Both UGT1A8∗3 (G/A) and UGT1A9∗3 (T/C) showed only a wild homozygous pattern in all screened subjects. For UGT2B7∗2, the heterozygous repeat (TC) was found with a frequency of 57.3% and the alleles (A) showed a frequency of 50.8%. In contrast, for UGT2B15∗2 (G253T), the heterozygous repeat (TG) presented 62.3% of the subjects where the most common allele (G) was with a frequency of 66.2%. In conclusion, our data indicate that Saudis harbor some important UGT mutations known to affect enzyme activity. Additional studies are therefore, warranted to assess the clinical implications of these gene polymorphisms in this ethnic group.
Collapse
Affiliation(s)
- Khalid M. Alkharfy
- Department of Clinical Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Basit L. Jan
- Department of Clinical Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sibtain Afzal
- Department of Pediatrics, Asthma Research Chair and Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Saleh Al-Muhsen
- Department of Pediatrics, Asthma Research Chair and Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rabih Halwani
- Department of Pediatrics, Asthma Research Chair and Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Meng F, Li Y, He G, Ge G, Liu S. Identification of human UDP-glucuronosyltransferase isoforms involved in the isofraxidin glucuronidation and assessment of the species differences of the reaction. Fitoterapia 2016; 117:118-125. [PMID: 27915055 DOI: 10.1016/j.fitote.2016.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
Isofraxidin, 7-Hydroxy-6.8-dimethoxy-2H-1-benzopyran-2-one, is a major active component of Acanthopanax senticosus, which has been used as Acanthopanax (Ciwujia) injection to treat cardiovascular and cerebrovascular diseases in China for more than thirty years. The purpose of this study was to identify the roles of human UDP-glucuronosyltransferases (UGTs) in isofraxidin glucuronidation in the liver and intestinal microsomes and to reveal the potential species differences by comparing the liver microsomal glucuronidation from different experimental animals. One metabolite was biosynthesized and characterized as isofraxidin-7-O-glucuronide by liquid chromatography tandem mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR). The intrinsic clearances in human liver and intestinal microsomes were 63.8 and 16.4μL/min/mg, respectively. Human liver microsomes displays higher potential for isofraxidin elimination than human intestinal microsomes. The reaction phenotyping analysis was conducted using cDNA-expressed human UGTs and chemical inhibitors. The results indicated that UGT1A1 and UGT1A9 were the main isoforms involved in the formation of isofraxidin-7-O-glucuronide. The isofraxidin glucuronidation in liver microsomes from human (HLM), rat (RLM), mouse (MLM), dog (DLM), monkey (CyLM), minipig (PLM), and guinea pig (GpLM) followed the Michealis-Menten model. The isofraxidin glucuronidation displays species differences in terms of catalytic activities. GpLM had the highest clearance with the CLint value of 152μL/min/mg. CyLM, RLM and MLM exhibit similar catalytic activities in isofraxidin glucuronidation with the intrinsic clearance values of 54.6, 58.0 and 50.2μL/min/mg, respectively, which are higher than those of PLM and DLM (23.9 and 37.7μL/min/mg, respectively). Rat exhibits the most similar intrinsic metabolic clearance (CLint) to human.
Collapse
Affiliation(s)
- Fanxing Meng
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yan Li
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guiyuan He
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guangbo Ge
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shumin Liu
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
27
|
In vitro stereoselective inhibition of ginsenosides toward UDP-glucuronosyltransferase (UGT) isoforms. Toxicol Lett 2016; 259:1-10. [DOI: 10.1016/j.toxlet.2016.07.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
|
28
|
|
29
|
Yilmaz L, Borazan E, Aytekin T, Baskonus I, Aytekin A, Oztuzcu S, Bozdag Z, Balik A. Increased UGT1A3 and UGT1A7 expression is associated with pancreatic cancer. Asian Pac J Cancer Prev 2015; 16:1651-5. [PMID: 25743847 DOI: 10.7314/apjcp.2015.16.4.1651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
UGT1A play important roles in the glucuronidation of a variety of endogenous and exogenous compounds. UGT1A isoforms are expressed tissue specifically. The aim of this study was to examine the relationship between UGT1A3 and UGT1A7 mRNA expression and pancreatic cancer. Paired healthy and tumor tissue samples of 43 patients with pancreatic cancer were included in this study. UGT1A3 and UGT1A7 mRNA expressions were analyzed by real time-PCR. In the result of study, UGT1A3 and UGT1A7 mRNA expressions were significantly higher in tumor tissue than normal tissue of pancreatic cancer patients (p<0.05). In addition, high mRNA expression of UGT1A3 and UGT1A7 was significantly associated with larger tumor size (p<0.05). The data suggested that UGT1A3 and UGT1A7 may play roles in the progression of pancreatic cancer. Consequently, UGT1A3 and UGT1A7 are potential prognostic indicators.
Collapse
Affiliation(s)
- Latif Yilmaz
- Department of General Surgery, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Drug-Drug Interaction Potentials of Tyrosine Kinase Inhibitors via Inhibition of UDP-Glucuronosyltransferases. Sci Rep 2015; 5:17778. [PMID: 26642944 PMCID: PMC4672351 DOI: 10.1038/srep17778] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/04/2015] [Indexed: 11/08/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are anticancer drugs that may be co-administered with other drugs. The aims of this study are to investigate the inhibitory effects of TKIs on UDP-glucuronosyltransferase (UGT) activities, and to quantitatively evaluate their potential to cause drug-drug interactions (DDIs). Inhibition kinetic profiles of a panel of UGT enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17) by four TKIs (axitinib, imatinib, lapatinib and vandetanib) were characterized by using hepatic microsomes and recombinant proteins. Lapatinib exhibited potent competitive inhibition against UGT1A1 activity with a Ki of 0.5 μM. Imatinib was found to exhibit broad inhibition on several UGTs, particularly potent competitive inhibition against UGT2B17 with a Ki of 0.4 μM. The TKIs also exerted intermediate inhibition against several UGTs (i.e., UGT1A7 by lapatinib; UGT1A1 by imatinib; UGT1A4, 1A7 and 1A9 by axitinib; and UGT1A9 by vandetanib). Results from modeling for the quantitative prediction of DDI risk indicated that the coadministration of lapatinib or imatinib at clinical doses could result in a significant increase in AUC of drugs primarily cleared by UGT1A1 or 2B17. Lapatinib and imatinib may cause clinically significant DDIs when co-administered UGT1A1 or 2B17 substrates.
Collapse
|
31
|
Role of extrahepatic UDP-glucuronosyltransferase 1A1: Advances in understanding breast milk-induced neonatal hyperbilirubinemia. Toxicol Appl Pharmacol 2015; 289:124-32. [PMID: 26342858 DOI: 10.1016/j.taap.2015.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 01/29/2023]
Abstract
Newborns commonly develop physiological hyperbilirubinemia (also known as jaundice). With increased bilirubin levels being observed in breast-fed infants, breast-feeding has been recognized as a contributing factor for the development of neonatal hyperbilirubinemia. Bilirubin undergoes selective metabolism by UDP-glucuronosyltransferase (UGT) 1A1 and becomes a water soluble glucuronide. Although several factors such as gestational age, dehydration and weight loss, and increased enterohepatic circulation have been associated with breast milk-induced jaundice (BMJ), deficiency in UGT1A1 expression is a known cause of BMJ. It is currently believed that unconjugated bilirubin is metabolized mainly in the liver. However, recent findings support the concept that extrahepatic tissues, such as small intestine and skin, contribute to bilirubin glucuronidation during the neonatal period. We will review the recent advances made towards understanding biological and molecular events impacting BMJ, especially regarding the role of extrahepatic UGT1A1 expression.
Collapse
|
32
|
Ruan W, Wei Y, Popovich DG. Distinct Responses of Cytotoxic Ganoderma lucidum Triterpenoids in Human Carcinoma Cells. Phytother Res 2015; 29:1744-52. [PMID: 26292672 DOI: 10.1002/ptr.5426] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 07/02/2015] [Accepted: 07/12/2015] [Indexed: 01/11/2023]
Abstract
The medicinal mushroom Ganoderma lucidum is well recognized for its effective cancer-preventative and therapeutic properties, while specific components responsible for these anticancer effects are not well studied. Six triterpenoids that are ganolucidic acid E, lucidumol A, ganodermanontriol, 7-oxo-ganoderic acid Z, 15-hydroxy-ganoderic acid S, and ganoderic acid DM were isolated and identified from an extract of the mushroom. All compounds reduced cell growth in three human carcinoma cells (Caco-2, HepG2, and HeLa cells) dose dependently with LC50s from 20.87 to 84.36 μM. Moreover, the six compounds induced apoptosis in HeLa cells with a maximum increase (22%) of sub-G1 accumulations and 43.03% apoptotic cells in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay (15-hydroxy-ganoderic acid S treatment). Apoptosis was further confirmed by annexin-V staining. Four of the compounds also caused apoptosis in Caco-2 cells with maximum 9.5% increase of sub-G1 accumulations (7-oxo-ganoderic acid Z treatment) and maximum 29.84% apoptotic cells in TUNEL assay (ganoderic acid DM treatment). Contrarily, none of the compounds induced apoptosis in HepG2 cells. The different responses of the three cell lines following these treatments indicated that the bioactive properties of these compounds may vary from cells of different sites of origin and are likely acting under diverse regulatory mechanisms.
Collapse
Affiliation(s)
- Weimei Ruan
- Department of Chemistry, National University of Singapore, Singapore
| | - Ying Wei
- Department of Chemistry, National University of Singapore, Singapore
| | - David G Popovich
- School of Food and Nutrition, Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
33
|
Tripathi SP, Prajapati R, Verma N, Sangamwar AT. Predicting substrate selectivity between UGT1A9 and UGT1A10 using molecular modelling and molecular dynamics approach. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1044451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Liu DM, Thakor AS, Baerlocher M, Alshammari MT, Lim H, Kos S, Kennedy AS, Wasan H. A review of conventional and drug-eluting chemoembolization in the treatment of colorectal liver metastases: principles and proof. Future Oncol 2015; 11:1421-8. [PMID: 25602287 DOI: 10.2217/fon.15.3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
35
|
Differential expression of the UGT1A family of genes in stomach cancer tissues. Tumour Biol 2015; 36:5831-7. [DOI: 10.1007/s13277-015-3253-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/10/2015] [Indexed: 12/07/2022] Open
|
36
|
Zientek MA, Youdim K. Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab Dispos 2015; 43:163-81. [PMID: 25297949 DOI: 10.1124/dmd.114.058750] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During the process of drug discovery, the pharmaceutical industry is faced with numerous challenges. One challenge is the successful prediction of the major routes of human clearance of new medications. For compounds cleared by metabolism, accurate predictions help provide an early risk assessment of their potential to exhibit significant interpatient differences in pharmacokinetics via routes of metabolism catalyzed by functionally polymorphic enzymes and/or clinically significant metabolic drug-drug interactions. This review details the most recent and emerging in vitro strategies used by drug metabolism and pharmacokinetic scientists to better determine rates and routes of metabolic clearance and how to translate these parameters to estimate the amount these routes contribute to overall clearance, commonly referred to as fraction metabolized. The enzymes covered in this review include cytochrome P450s together with other enzymatic pathways whose involvement in metabolic clearance has become increasingly important as efforts to mitigate cytochrome P450 clearance are successful. Advances in the prediction of the fraction metabolized include newly developed methods to differentiate CYP3A4 from the polymorphic enzyme CYP3A5, scaling tools for UDP-glucuronosyltranferase, and estimation of fraction metabolized for substrates of aldehyde oxidase.
Collapse
Affiliation(s)
- Michael A Zientek
- Worldwide Research and Development, Pharmacokinetics, Pharmacodynamics, and Metabolism, Pfizer Inc., San Diego, California (M.A.Z.); and Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel, Switzerland (K.Y.)
| | - Kuresh Youdim
- Worldwide Research and Development, Pharmacokinetics, Pharmacodynamics, and Metabolism, Pfizer Inc., San Diego, California (M.A.Z.); and Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel, Switzerland (K.Y.)
| |
Collapse
|
37
|
Chen Z, Su D, Ai L, Jiang X, Wu C, Xu Q, Wang X, Fan Z. UGT1A1 sequence variants associated with risk of adult hyperbilirubinemia: a quantitative analysis. Gene 2014; 552:32-38. [PMID: 25200497 DOI: 10.1016/j.gene.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/31/2014] [Accepted: 09/03/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS AND AIMS UDP-glucuronosyltransferase 1 A1 (UGT1A1) is an enzyme that transforms small lipophilic molecules into water-soluble and excretable metabolites. UGT1A1 polymorphisms contribute to hyperbilirubinemia. This study quantitatively associated UGT1A1 variants in patients with hyperbilirubinemia and healthy subjects. METHODS A total of 104 individuals with hyperbilirubinemia and 105 healthy controls were enrolled for genotyping and DNA sequencing UGT1A1 sequence variants, including the Phenobarbital Response enhancer module (PBREM) region, the promoter region (TATA box), and the 5 exons for quantitative association with hyperbilirubinemia. RESULTS Eleven UGT1A1 variants were revealed in the case and control subjects, four of which were novel coding variants. A variant of PBREM (UGT1A1*60) was found in 47.6% of the patients, a TA repeat motif in the 5-primer promoter region [A(TA)7TAA,UGT1A1*28] was found in 27.9% of the patients, and p.G71R (UGT1A1*6) was in 33.2% of the patients. For the healthy controls, the frequency of UGT1A1*60, UGT1A1*28 and UGT1A1*6 was 26.7%, 9.0% and 15.7%, respectively. Homozygous UGT1A1*28 and homozygous UGT1A1*6 were significantly associated with the risk of adult hyperbilirubinemia, with an odds ratio (OR) of 17.79 (95% CIs, 2.11-133.61) and 14.93 (95% CIs, 1.83-121.88), respectively. Quantitative analysis showed that sense mutation (including UGT1A1*6) and UGT1A1*28/*28, but not UGT1A1*60/*60 or UGT1A1*1/*28, was associated with increased serum total bilirubin (TB) levels. High linkage disequilibrium occurred between UGT1A1*60 and UGT1A1*28 (D'=0.964, r(2)=0.345). CONCLUSIONS This study identified four novel UGT1A1 coding variants, some of which were associated with increased serum TB levels. A quantitative approach to evaluate adult hyperbilirubinemia provides a more vigorous framework for better understanding of adult hyperbilirubinemia genetics.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Dazhi Su
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Luoyan Ai
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiaoke Jiang
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Changwei Wu
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qingqing Xu
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiaohan Wang
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhuping Fan
- Department of Health Care Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
38
|
Landmann H, Proia DA, He S, Ogawa LS, Kramer F, Beißbarth T, Grade M, Gaedcke J, Ghadimi M, Moll U, Dobbelstein M. UDP glucuronosyltransferase 1A expression levels determine the response of colorectal cancer cells to the heat shock protein 90 inhibitor ganetespib. Cell Death Dis 2014; 5:e1411. [PMID: 25210794 PMCID: PMC4540199 DOI: 10.1038/cddis.2014.378] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/30/2014] [Accepted: 07/21/2014] [Indexed: 12/28/2022]
Abstract
HSP90 inhibition represents a promising route to cancer therapy, taking advantage of cancer cell-inherent proteotoxic stress. The HSP90-inhibitor ganetespib showed benefit in advanced clinical trials. This raises the need to identify the molecular determinants of treatment response. We tested the efficacy of ganetespib on a series of colorectal cancer (CRC)-derived cell lines and correlated their sensitivities with comprehensive gene expression analysis. Notably, the drug concentration required for 50% growth inhibition (IC50) varied up to 70-fold (from 36 to 2500 nM) between different cell lines. Correlating cell line-specific IC50s with the corresponding gene expression patterns revealed a strong association between ganetespib resistance (IC50>500 nM) and high expression of the UDP glucuronosyltransferase 1A (UGT1A) gene cluster. Moreover, CRC tumor samples showed a comparable distribution of UGT1A expression levels. The members of the UGT1A gene family are known as drug-conjugating liver enzymes involved in drug excretion, but their function in tumor cells is hardly understood. Chemically unrelated HSP90 inhibitors, for example, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), did not show correlation of drug sensitivities with UGT1A levels, whereas the ganetespib-related compound NVP-AUY922 did. When the most ganetespib-resistant cell line, HT29, was treated with ganetespib, the levels of HSP90 clients were unaffected. However, HT29 cells became sensitized to the drug, and HSP90 client proteins were destabilized by ganetespib upon siRNA-mediated UGT1A knockdown. Conversely, the most ganetespib-sensitive cell lines HCT116 and SW480 became more tolerant toward ganetespib upon UGT1A overexpression. Mechanistically, ganetespib was rapidly glucuronidated and excreted in resistant but not in sensitive CRC lines. We conclude that CRC cell-expressed UGT1A inactivates ganetespib and other resorcinolic Hsp90 inhibitors by glucuronidation, which renders the drugs unable to inhibit Hsp90 and thereby abrogates their biological activity. UGT1A levels in tumor tissues may be a suitable predictive biomarker to stratify CRC patients for ganetespib treatment.
Collapse
Affiliation(s)
- H Landmann
- Göttingen Centre of Molecular Biosciences (GZMB), Institute of Molecular Oncology, Faculty of Medicine, University of Göttingen, 37077 Göttingen, Germany
| | - D A Proia
- Synta Pharmaceuticals Corp, 45 Hartwell Avenue, Lexington, MA 02421, USA
| | - S He
- Synta Pharmaceuticals Corp, 45 Hartwell Avenue, Lexington, MA 02421, USA
| | - L S Ogawa
- Synta Pharmaceuticals Corp, 45 Hartwell Avenue, Lexington, MA 02421, USA
| | - F Kramer
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - T Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - M Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - J Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - M Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - U Moll
- 1] Göttingen Centre of Molecular Biosciences (GZMB), Institute of Molecular Oncology, Faculty of Medicine, University of Göttingen, 37077 Göttingen, Germany [2] Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - M Dobbelstein
- Göttingen Centre of Molecular Biosciences (GZMB), Institute of Molecular Oncology, Faculty of Medicine, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
39
|
Jones NR, Lazarus P. UGT2B gene expression analysis in multiple tobacco carcinogen-targeted tissues. Drug Metab Dispos 2014; 42:529-36. [PMID: 24459179 PMCID: PMC3965906 DOI: 10.1124/dmd.113.054718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/23/2014] [Indexed: 11/22/2022] Open
Abstract
The UDP-glucuronosyltransferase (UGT) 2B subfamily of enzymes plays an important role in the metabolism of numerous endogenous and exogenous compounds, including various carcinogens present in tobacco smoke. The goal of the present study was to examine the levels of expression of individual UGT2B genes in various tissues that are targets for tobacco carcinogenesis. Using MT-ATP6 as the experimentally validated housekeeping gene, the highest extrahepatic expression of UGT2B genes was observed in human tonsil, with UGT2B expression levels similar to that observed in human liver. UGT2B17 exhibited high relative expression in most tissues examined, including lung, most tissues of the aerodigestive tract, and pancreas. UGT2B7 expression was highest in pancreas but low or undetectable in most other tissues examined. UGT2B10 expression was high in both tonsil and tongue. There was wide variability between individuals in the magnitude of expression in each tissue site, and there were strong correlations between UGT2B expression levels in different individuals within many of the tissue sites, suggesting coordinated regulation of UGT2B gene expression in extrahepatic tissues. In the liver, UGTs 2B4, 2B7, 2B10, and 2B15 were significantly correlated with each other (all r(2) > 0.70, P < 0.0001). In all examined tissues of the aerodigestive tract, UGTs 2B10, 2B11, and 2B17 exhibited a strong correlation with each other (all r(2) > 0.75, P < 0.05). UGTs 2B7 and 2B10 exhibited a strong inverse correlation in the pancreas (r(2) = -0.95, P < 0.01). These data suggest that specific UGT2B enzymes important in tobacco carcinogen metabolism are expressed and coordinately regulated in various target sites for tobacco-related cancers.
Collapse
Affiliation(s)
- Nathan R Jones
- Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, Pennsylvania (N.R.J.); and Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington (P.L.)
| | | |
Collapse
|
40
|
Baptissart M, Vega A, Martinot E, Baron S, Lobaccaro JMA, Volle DH. Farnesoid X receptor alpha: a molecular link between bile acids and steroid signaling? Cell Mol Life Sci 2013; 70:4511-26. [PMID: 23784309 PMCID: PMC11113643 DOI: 10.1007/s00018-013-1387-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 12/29/2022]
Abstract
Bile acids are cholesterol metabolites that have been extensively studied in recent decades. In addition to having ancestral roles in digestion and fat solubilization, bile acids have recently been described as signaling molecules involved in many physiological functions, such as glucose and energy metabolisms. These signaling pathways involve the activation of the nuclear receptor farnesoid X receptor (FXRα) or of the G protein-coupled receptor TGR5. In this review, we will focus on the emerging role of FXRα, suggesting important functions for the receptor in steroid metabolism. It has been described that FXRα is expressed in the adrenal glands and testes, where it seems to control steroid production. FXRα also participates in steroid catabolism in the liver and interferes with the steroid signaling pathways in target tissues via crosstalk with steroid receptors. In this review, we discuss the potential impacts of bile acid (BA), through its interactions with steroid metabolism, on glucose metabolism, sexual function, and prostate and breast cancers. Although several of the published reports rely on in vitro studies, they highlight the need to understand the interactions that may affect health. This effect is important because BA levels are increased in several pathophysiological conditions related to liver injuries. Additionally, BA receptors are targeted clinically using therapeutics to treat liver diseases, diabetes, and cancers.
Collapse
Affiliation(s)
- Marine Baptissart
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Aurelie Vega
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Emmanuelle Martinot
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Silvère Baron
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - David H. Volle
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
41
|
Intestinal glucuronidation protects against chemotherapy-induced toxicity by irinotecan (CPT-11). Proc Natl Acad Sci U S A 2013; 110:19143-8. [PMID: 24191041 DOI: 10.1073/pnas.1319123110] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Camptothecin (CPT)-11 (irinotecan) has been used widely for cancer treatment, particularly metastatic colorectal cancer. However, up to 40% of treated patients suffer from severe late diarrhea, which prevents CPT-11 dose intensification and efficacy. CPT-11 is a prodrug that is hydrolyzed by hepatic and intestinal carboxylesterase to form SN-38, which in turn is detoxified primarily through UDP-glucuronosyltransferase 1A1 (UGT1A1)-catalyzed glucuronidation. To better understand the mechanism associated with toxicity, we generated tissue-specific Ugt1 locus conditional knockout mouse models and examined the role of glucuronidation in protecting against irinotecan-induced toxicity. We targeted the deletion of the Ugt1 locus and the Ugt1a1 gene specifically in the liver (Ugt1(ΔHep)) and the intestine (Ugt1(ΔGI)). Control (Ugt1(F/F)), Ugt1(ΔHep), and Ugt1(ΔGI) adult male mice were treated with different concentrations of CPT-11 daily for four consecutive days. Toxicities were evaluated with regard to tissue glucuronidation potential. CPT-11-treated Ugt1(ΔHep) mice showed a similar lethality rate to the CPT-11-treated Ugt1(F/F) mice. However, Ugt1(ΔGI) mice were highly susceptible to CPT-11-induced diarrhea, developing severe and lethal mucositis at much lower CPT-11 doses, a result of the proliferative cell loss and inflammation in the intestinal tract. Comparative expression levels of UGT1A1 in intestinal tumors and normal surrounding tissue are dramatically different, providing for the opportunity to improve therapy by differential gene regulation. Intestinal expression of the UGT1A proteins is critical toward the detoxification of SN-38, whereas induction of the UGT1A1 gene may serve to limit toxicity and improve the efficacy associated with CPT-11 treatment.
Collapse
|
42
|
Steroid and steroid glucuronide profiles in urine during pregnancy determined by liquid chromatography–electrospray ionization-tandem mass spectrometry. Anal Chim Acta 2013; 802:56-66. [DOI: 10.1016/j.aca.2013.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/06/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022]
|
43
|
Mölzer C, Huber H, Steyrer A, Ziesel GV, Wallner M, Hong HT, Blanchfield J, Bulmer AC, Wagner KH. Bilirubin and related tetrapyrroles inhibit food-borne mutagenesis: a mechanism for antigenotoxic action against a model epoxide. JOURNAL OF NATURAL PRODUCTS 2013; 76:1958-65. [PMID: 24156291 PMCID: PMC3812704 DOI: 10.1021/np4005807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Indexed: 05/16/2023]
Abstract
Bilirubin exhibits antioxidant and antimutagenic effects in vitro. Additional tetrapyrroles that are naturally abundant were tested for antigenotoxicity in Salmonella. Un-/conjugated bilirubin (1 and 2), biliverdin (4), bilirubin and biliverdin dimethyl esters (3 and 5), stercobilin (6), urobilin (7), and protoporphyrin (8) were evaluated at physiological concentrations (0.01-2 μmol/plate; 3.5-714 μM) against the metabolically activated food-borne mutagens aflatoxin B1 (9) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (10). Compound 8 most effectively inhibited the mutagenic effects of 9 in strain TA102 and 10 in TA98. Compound 7 inhibited 9-induced mutagenesis in strain TA98 most effectively, while 1 and 4 were promutagenic in this strain. This is likely due to their competition with mutagens for phase-II detoxification. Mechanistic investigations into antimutagenesis demonstrate that tetrapyrroles react efficiently with a model epoxide of 9, styrene epoxide (11), to form covalent adducts. This reaction is significantly faster than that of 11 with guanine. Hence, the evaluated tetrapyrroles inhibited genotoxicity induced by poly-/heterocyclic amines found in foods, and novel evidence obtained in the present investigation suggests this may occur via chemical scavenging of genotoxic metabolites of the mutagens investigated. This may have important ramifications for maintaining health, especially with regard to cancer prevention.
Collapse
Affiliation(s)
- Christine Mölzer
- Department
of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability,
Faculty of Life Sciences, University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
| | - Hedwig Huber
- Department
of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability,
Faculty of Life Sciences, University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
| | - Andrea Steyrer
- Department
of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability,
Faculty of Life Sciences, University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
| | - Gesa V. Ziesel
- Department
of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability,
Faculty of Life Sciences, University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
| | - Marlies Wallner
- Department
of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability,
Faculty of Life Sciences, University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
| | - Hung T. Hong
- School
of Chemistry and Molecular Biosciences, University of Queensland, St.
Lucia, Queensland 4072, Australia
| | - Joanne
T. Blanchfield
- School
of Chemistry and Molecular Biosciences, University of Queensland, St.
Lucia, Queensland 4072, Australia
| | - Andrew C. Bulmer
- Heart
Foundation Research Centre, Griffith Health
Institute, Griffith University (Gold Coast Campus), Queensland 4222, Australia
| | - Karl-Heinz Wagner
- Department
of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability,
Faculty of Life Sciences, University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
- Heart
Foundation Research Centre, Griffith Health
Institute, Griffith University (Gold Coast Campus), Queensland 4222, Australia
| |
Collapse
|
44
|
Oda S, Fukami T, Yokoi T, Nakajima M. Epigenetic regulation is a crucial factor in the repression of UGT1A1 expression in the human kidney. Drug Metab Dispos 2013; 41:1738-43. [PMID: 23401472 DOI: 10.1124/dmd.113.051201] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Human uridine 5'-diphospho-glucuronosyltransferase (UGT) 1A1 catalyzes the metabolism of numerous clinically and pharmacologically important compounds, such as bilirubin and SN-38. UGT1A1 is predominantly expressed in the liver and intestine but not in the kidney. The purpose of this study was to uncover the mechanism of the tissue-specific expression of UGT1A1, focusing on its epigenetic regulation. Bisulfite sequence analysis revealed that the CpG-rich region near the UGT1A1 promoter (-85 to +40) was hypermethylated (83%) in the kidney, whereas it was hypomethylated (37%) in the liver. A chromatin immunoprecipitation assay demonstrated that histone H3 near the promoter was hypoacetylated in the kidney but hyperacetylated in the liver; this hyperacetylation was accompanied by the recruitment of hepatocyte nuclear factor (HNF) 1α to the promoter. The UGT1A1 promoter in human kidney-derived HK-2 cells that do not express UGT1A1 was fully methylated, but this promoter was relatively unmethylated in human liver-derived HuH-7 cells that express UGT1A1. Treatment with 5-aza-2'-deoxycytidine (5-aza-dC), an inhibitor of DNA methylation, resulted in an increase of UGT1A1 mRNA expression in both cell types, but the increase was much larger in HK-2 cells than in HuH-7 cells. The transfection of an HNF1α expression plasmid into the HK-2 cells resulted in an increase of UGT1A1 mRNA only in the presence of 5-aza-dC. In summary, we found that DNA hypermethylation, along with histone hypoacetylation, interferes with the binding of HNF1α, resulting in the defective expression of UGT1A1 in the human kidney. Thus, epigenetic regulation is a crucial determinant of tissue-specific expression of UGT1A1.
Collapse
Affiliation(s)
- Shingo Oda
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | | | | | | |
Collapse
|
45
|
Yang Z, Kulkarni K, Zhu W, Hu M. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anticancer Agents Med Chem 2013; 12:1264-80. [PMID: 22583407 DOI: 10.2174/187152012803833107] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/11/2022]
Abstract
Genistein, one of the most active natural flavonoids, exerts various biological effects including chemoprevention, antioxidation, antiproliferation and anticancer. More than 30 clinical trials of genistein with various disease indications have been conducted to evaluate its clinical efficacy. Based on many animals and human pharmacokinetic studies, it is well known that the most challenge issue for developing genistein as a chemoprevention agent is the low oral bioavailability, which may be the major reason relating to its ambiguous therapeutic effects and large interindividual variations in clinical trials. In order to better correlate pharmacokinetic to pharmacodynamics results in animals and clinical studies, an in-depth understanding of pharmacokinetic behavior of genistein and its ADME properties are needed. Numerous in vitro/in vivo ADME studies had been conducted to reveal the main factors contributing to the low oral bioavailability of genistein. Therefore, this review focuses on summarizing the most recent progress on mechanistic studies of genistein ADME and provides a systemic view of these processes to explain genistein pharmacokinetic behaviors in vivo. The better understanding of genistein ADME property may lead to development of proper strategy to improve genistein oral bioavailability via mechanism-based approaches.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
46
|
Tripathi SP, Bhadauriya A, Patil A, Sangamwar AT. Substrate selectivity of human intestinal UDP-glucuronosyltransferases (UGTs): in silico and in vitro insights. Drug Metab Rev 2013; 45:231-52. [PMID: 23461702 DOI: 10.3109/03602532.2013.767345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The current drug development process aims to produce safe, effective drugs within a reasonable time and at a reasonable cost. Phase II metabolism (glucuronidation) can affect drug action and pharmacokinetics to a considerable extent and so its studies and prediction at initial stages of drug development are very imperative. Extensive glucuronidation is an obstacle to oral bioavailability because the first-pass glucuronidation [or premature clearance by UDP-glucuronosyltransferases (UGTs)] of orally administered agents frequently results in poor oral bioavailability and lack of efficacy. Modeling of new chemical entities/drugs for UGTs and their kinetic data can be useful in understanding the binding patterns to be used in the design of better molecules. This review concentrates on first-pass glucuronidation by intestinal UGTs, including their topology, expression profile, and pharmacogenomics. In addition, recent advances are discussed with respect to substrate selectivity at the binding pocket, structural requirements, and mechanism of enzyme actions.
Collapse
Affiliation(s)
- Satya Prakash Tripathi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | | | | | | |
Collapse
|
47
|
Wang M, Sun DF, Wang S, Qing Y, Chen S, Wu D, Lin YM, Luo JZ, Li YQ. Polymorphic expression of UDP-glucuronosyltransferase UGTlA gene in human colorectal cancer. PLoS One 2013; 8:e57045. [PMID: 23468910 PMCID: PMC3584141 DOI: 10.1371/journal.pone.0057045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 01/16/2013] [Indexed: 12/12/2022] Open
Abstract
Background Polymorphism of genes encoding drug-metabolizing enzymes is known to play an important role in increased susceptibility of colorectal cancer. UGT1A gene locus has been suggested to define tissue-specific glucuronidation activity. Reduced capacity of glucuronidation is correlated with the development of colorectal cancer. Therefore, we sought to explore polymorphism of UGTlA gene in human colorectal cancer. Methods Cancerous and healthy tissues were obtained from selectedpatients. Blood samples were collected and UGTlA mRNA transcriptions were analyzed. Genomic DNA was prepared and UGTlA8 exon-1 sequences were amplified, visualized and purified. The extracted DNA was subcloned and sequenced. Two-tailed Fisher's exact test, Odds ratios (ORs), confidence interval (CIs) and Logistics Regression Analysis were used for statistical analysis. Results UGTlA mRNA expression was reduced in cancerous tissues compared with healthy tissues from the same patient . The UGTlA mRNA expression of healthy tissue in study patients was lower than control . The mRNA expression of cancerous tissue was down-regulated in UGTlAl, 1A3, 1A4, lA6, 1A9 and up-regulated in UGTlA8 and UGTlAl0 UGT1A5 and UGT1A7 were not expressed in colonic tissue of either group. The allele frequency of WT UGTlA8*1 was higher (p = 0.000), frequency of UGTlA8*3 was lowered in control group (p = 0.000). The expression of homozygous UGTlA8*1 was higher in control group (p = 0.000). Higher frequency of both heterozygous UGTlA8*1/*3 and UGTlA8*2/*3 were found in study group (p = 0.000; p = 0.000). The occurrence of colorectal cancer was mainly related to the presence of polymorphic UGTlA8*3 alleles (p = 0.000). Conclusion Regulation of human UGT1A genes is tissue-specific. Individual variation in polymorphic expressions of UGTlA gene locus was noted in all types of colonic tissue tested, whereas hepatic tissue expression was uniform. The high incidence of UGTlA8 polymorphism exists in colorectal cancer patients. UGTlA8*1 allele is a protective factor and UGTlA8*3 allele is a risk factor.
Collapse
Affiliation(s)
- Min Wang
- Department of Geriatrics and Gastroenterology, Qi-Lu Hospital of Shandong University, Key Laboratory of Proteomics of Shandong Province, Jinan, Shandong Province, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang LZ, Ramírez J, Yeo W, Chan MYM, Thuya WL, Lau JYA, Wan SC, Wong ALA, Zee YK, Lim R, Lee SC, Ho PC, Lee HS, Chan A, Ansher S, Ratain MJ, Goh BC. Glucuronidation by UGT1A1 is the dominant pathway of the metabolic disposition of belinostat in liver cancer patients. PLoS One 2013; 8:e54522. [PMID: 23382909 PMCID: PMC3559838 DOI: 10.1371/journal.pone.0054522] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/12/2012] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Belinostat is a hydroxamate class HDAC inhibitor that has demonstrated activity in peripheral T-cell lymphoma and is undergoing clinical trials for non-hematologic malignancies. We studied the pharmacokinetics of belinostat in hepatocellular carcinoma patients to determine the main pathway of metabolism of belinostat. The pharmacokinetics of belinostat in liver cancer patients were characterized by rapid plasma clearance of belinostat with extensive metabolism with more than 4-fold greater relative systemic exposure of major metabolite, belinostat glucuronide than that of belinostat. There was significant interindividual variability of belinostat glucuronidation. The major pathway of metabolism involves UGT1A1-mediated glucuronidation and a good correlation has been identified between belinostat glucuronide formation and glucuronidation of known UGT1A1 substrates. In addition, liver microsomes harboring UGT1A1*28 alleles have lower glucuronidation activity for belinostat compared to those with wildtype UGT1A1. The main metabolic pathway of belinostat is through glucuronidation mediated primarily by UGT1A1, a highly polymorphic enzyme. The clinical significance of this finding remains to be determined. TRIAL REGISTRATION ClinicalTrials.gov NCT00321594.
Collapse
Affiliation(s)
- Ling-Zhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Jacqueline Ramírez
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Winnie Yeo
- Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China
| | | | - Win-Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jie-Ying Amelia Lau
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Seow-Ching Wan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Andrea Li-Ann Wong
- Department of Hematology & Oncology, National University Health System, Singapore, Singapore
| | - Ying-Kiat Zee
- Department of Hematology & Oncology, National University Health System, Singapore, Singapore
| | - Robert Lim
- Department of Hematology & Oncology, National University Health System, Singapore, Singapore
| | - Soo-Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Hematology & Oncology, National University Health System, Singapore, Singapore
| | - Paul C. Ho
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - How-Sung Lee
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Anthony Chan
- Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China
| | - Sherry Ansher
- Cancer Therapy Evaluation Program, Bethesda, Maryland, United States of America
| | - Mark J. Ratain
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, Illinois, United States of America
- Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- Department of Hematology & Oncology, National University Health System, Singapore, Singapore
| |
Collapse
|
49
|
Cong M, Hu CM, Cao YF, Fang ZZ, Tang SH, Wang JR, Luo JS. Cryptotanshinone and dihydrotanshinone I exhibit strong inhibition towards human liver microsome (HLM)-catalyzed propofol glucuronidation. Fitoterapia 2013; 85:109-13. [PMID: 23333907 DOI: 10.1016/j.fitote.2013.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/31/2012] [Accepted: 01/06/2013] [Indexed: 10/27/2022]
Abstract
Danshen is one of the most famous herbs in the world, and more and more danshen-prescribed drugs interactions have been reported in recent years. Evaluation of inhibition potential of danshen's major ingredients towards UDP-glucuronosyltransferases (UGTs) will be helpful for understanding detailed mechanisms for danshen-drugs interaction. Therefore, the aim of the present study is to investigate the inhibitory situation of cryptotanshinone and dihydrotanshinone I towards UGT enzyme-catalyzed propofol glucuronidation. In vitro the human liver microsome (HLM) incubation system was used, and the results showed that cryptotanshinone and dihydrotanshinone I exhibited dose-dependent inhibition towards HLM-catalyzed propofol glucuronidation. Dixon plot and Lineweaver-Burk plot showed that the inhibition type was best fit to competitive inhibition type for both cryptotanshinone and dihydrotanshinone I. The second plot using the slopes from the Lineweaver-Burk plot versus the concentrations of cryptotanshinone or dihydrotanshinone I was employed to calculate the inhibition parameters (Ki) to be 0.4 and 1.7μM, respectively. Using the reported maximum plasma concentration (Cmax), the altered in vivo exposure of propofol increased by 10% and 8.2% for the co-administration of dihydrotanshinone I and cryptotanshinone, respectively. All these results indicated the possible danshen-propofol interaction due to the inhibition of dihydrotanshinone I and cryptotanshinone towards the glucuronidation reaction of propofol.
Collapse
Affiliation(s)
- Ming Cong
- First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Zakerska O, Skrzypczak-Zielinska M, Mikstacki A, Tamowicz B, Malengowska B, Szalata M, Slomski R. Genotype and allele frequencies of polymorphic UGT1A9 in the Polish population. Eur J Drug Metab Pharmacokinet 2012. [DOI: 10.1007/s13318-012-0110-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|