1
|
Yadava RS, Mandal M, Giese JM, Rigo F, Bennett CF, Mahadevan MS. Modeling muscle regeneration in RNA toxicity mice. Hum Mol Genet 2021; 30:1111-1130. [PMID: 33864373 PMCID: PMC8188403 DOI: 10.1093/hmg/ddab108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
RNA toxicity underlies the pathogenesis of disorders such as myotonic dystrophy type 1 (DM1). Muscular dystrophy is a key element of the pathology of DM1. The means by which RNA toxicity causes muscular dystrophy in DM1 is unclear. Here, we have used the DM200 mouse model of RNA toxicity due to the expression of a mutant DMPK 3′UTR mRNA to model the effects of RNA toxicity on muscle regeneration. Using a BaCl2-induced damage model, we find that RNA toxicity leads to decreased expression of PAX7, and decreased numbers of satellite cells, the stem cells of adult skeletal muscle (also known as MuSCs). This is associated with a delay in regenerative response, a lack of muscle fiber maturation and an inability to maintain a normal number of satellite cells. Repeated muscle damage also elicited key aspects of muscular dystrophy, including fat droplet deposition and increased fibrosis, and the results represent one of the first times to model these classic markers of dystrophic changes in the skeletal muscles of a mouse model of RNA toxicity. Using a ligand-conjugated antisense (LICA) oligonucleotide ASO targeting DMPK sequences for the first time in a mouse model of RNA toxicity in DM1, we find that treatment with IONIS 877864, which targets the DMPK 3′UTR mRNA, is efficacious in correcting the defects in regenerative response and the reductions in satellite cell numbers caused by RNA toxicity. These results demonstrate the possibilities for therapeutic interventions to mitigate the muscular dystrophy associated with RNA toxicity in DM1.
Collapse
Affiliation(s)
- Ramesh S Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jack M Giese
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA 90210, USA
| | | | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
2
|
Zancolli G, Casewell NR. Venom Systems as Models for Studying the Origin and Regulation of Evolutionary Novelties. Mol Biol Evol 2020; 37:2777-2790. [DOI: 10.1093/molbev/msaa133] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
A central goal in biology is to determine the ways in which evolution repeats itself. One of the most remarkable examples in nature of convergent evolutionary novelty is animal venom. Across diverse animal phyla, various specialized organs and anatomical structures have evolved from disparate developmental tissues to perform the same function, that is, produce and deliver a cocktail of potent molecules to subdue prey or predators. Venomous organisms therefore offer unique opportunities to investigate the evolutionary processes of convergence of key adaptive traits, and the molecular mechanisms underlying the emergence of novel genes, cells, and tissues. Indeed, some venomous species have already proven to be highly amenable as models for developmental studies, and recent work with venom gland organoids provides manipulatable systems for directly testing important evolutionary questions. Here, we provide a synthesis of the current knowledge that could serve as a starting point for the establishment of venom systems as new models for evolutionary and molecular biology. In particular, we highlight the potential of various venomous species for the study of cell differentiation and cell identity, and the regulatory dynamics of rapidly evolving, highly expressed, tissue-specific, gene paralogs. We hope that this review will encourage researchers to look beyond traditional study organisms and consider venom systems as useful tools to explore evolutionary novelties.
Collapse
Affiliation(s)
- Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
3
|
Yadava RS, Kim YK, Mandal M, Mahadevan K, Gladman JT, Yu Q, Mahadevan MS. MBNL1 overexpression is not sufficient to rescue the phenotypes in a mouse model of RNA toxicity. Hum Mol Genet 2020; 28:2330-2338. [PMID: 30997488 DOI: 10.1093/hmg/ddz065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by an expanded (CTG)n tract in the 3'UTR of the DM protein kinase (DMPK) gene. The RNA transcripts produced from the expanded allele sequester or alter the function of RNA-binding proteins (MBNL1, CUGBP1, etc.). The sequestration of MBNL1 results in RNA-splicing defects that contribute to disease. Overexpression of MBNL1 in skeletal muscle has been shown to rescue some of the DM1 features in a mouse model and has been proposed as a therapeutic strategy for DM1. Here, we sought to confirm if overexpression of MBNL1 rescues the phenotypes in a different mouse model of RNA toxicity. Using an inducible mouse model of RNA toxicity in which expression of the mutant DMPK 3'UTR results in RNA foci formation, MBNL1 sequestration, splicing defects, myotonia and cardiac conduction defects, we find that MBNL1 overexpression did not rescue skeletal muscle function nor beneficially affect cardiac conduction. Surprisingly, MBNL1 overexpression also did not rescue myotonia, though variable rescue of Clcn1 splicing and other splicing defects was seen. Additionally, contrary to the previous study, we found evidence for increased muscle histopathology with MBNL1 overexpression. Overall, we did not find evidence for beneficial effects from overexpression of MBNL1 as a means to correct RNA toxicity mediated by mRNAs containing an expanded DMPK 3'UTR.
Collapse
Affiliation(s)
- Ramesh S Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Yun K Kim
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | | | - Jordan T Gladman
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Qing Yu
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
5
|
Ravel-Chapuis A, Klein Gunnewiek A, Bélanger G, Crawford Parks TE, Côté J, Jasmin BJ. Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients. Mol Biol Cell 2016; 27:1728-39. [PMID: 27030674 PMCID: PMC4884064 DOI: 10.1091/mbc.e15-06-0356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 03/25/2016] [Indexed: 11/11/2022] Open
Abstract
Myotonic dystrophy (DM1) is caused by an expansion of CUG repeats (CUG(exp)) in the DMPK mRNA 3'UTR. CUG(exp)-containing mRNAs become toxic to cells by misregulating RNA-binding proteins. Here we investigated the consequence of this RNA toxicity on the cellular stress response. We report that cell stress efficiently triggers formation of stress granules (SGs) in proliferating, quiescent, and differentiated muscle cells, as shown by the appearance of distinct cytoplasmic TIA-1- and DDX3-containing foci. We show that Staufen1 is also dynamically recruited into these granules. Moreover, we discovered that DM1 myoblasts fail to properly form SGs in response to arsenite. This blockage was not observed in DM1 fibroblasts, demonstrating a cell type-specific defect. DM1 myoblasts display increased expression and sequestration of toxic CUG(exp) mRNAs compared with fibroblasts. Of importance, down-regulation of Staufen1 in DM1 myoblasts rescues SG formation. Together our data show that Staufen1 participates in the inhibition of SG formation in DM1 myoblasts. These results reveal that DM1 muscle cells fail to properly respond to stress, thereby likely contributing to the complex pathogenesis of DM1.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Amanda Klein Gunnewiek
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
6
|
Gudde AEEG, González-Barriga A, van den Broek WJAA, Wieringa B, Wansink DG. A low absolute number of expanded transcripts is involved in myotonic dystrophy type 1 manifestation in muscle. Hum Mol Genet 2016; 25:1648-62. [PMID: 26908607 PMCID: PMC4805313 DOI: 10.1093/hmg/ddw042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/09/2016] [Indexed: 12/15/2022] Open
Abstract
Muscular manifestation of myotonic dystrophy type 1 (DM1), a common inheritable degenerative multisystem disorder, is mainly caused by expression of RNA from a (CTG·CAG)n-expanded DM1 locus. Here, we report on comparative profiling of expression of normal and expanded endogenous or transgenic transcripts in skeletal muscle cells and biopsies from DM1 mouse models and patients in order to help us in understanding the role of this RNA-mediated toxicity. In tissue of HSALR mice, the most intensely used ‘muscle-only’ model in the DM1 field, RNA from the α-actin (CTG)250 transgene was at least 1000-fold more abundant than that from the Dmpk gene, or the DMPK gene in humans. Conversely, the DMPK transgene in another line, DM500/DMSXL mice, was expressed ∼10-fold lower than the endogenous gene. Temporal regulation of expanded RNA expression differed between models. Onset of expression occurred remarkably late in HSALR myoblasts during in vitro myogenesis whereas Dmpk or DMPK (trans)genes were expressed throughout proliferation and differentiation phases. Importantly, quantification of absolute transcript numbers revealed that normal and expanded Dmpk/DMPK transcripts in mouse models and DM1 patients are low-abundance RNA species. Northern blotting, reverse transcriptase–quantitative polymerase chain reaction, RNA-sequencing and fluorescent in situ hybridization analyses showed that they occur at an absolute number between one and a few dozen molecules per cell. Our findings refine the current RNA dominance theory for DM1 pathophysiology, as anomalous factor binding to expanded transcripts and formation of soluble or insoluble ribonucleoprotein aggregates must be nucleated by only few expanded DMPK transcripts and therefore be a small numbers game.
Collapse
Affiliation(s)
- Anke E E G Gudde
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Anchel González-Barriga
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Walther J A A van den Broek
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
7
|
Buckley L, Lacey M, Ehrlich M. Epigenetics of the myotonic dystrophy-associated DMPK gene neighborhood. Epigenomics 2016; 8:13-31. [PMID: 26756355 PMCID: PMC4863877 DOI: 10.2217/epi.15.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Identify epigenetic marks in the vicinity of DMPK (linked to myotonic dystrophy, DM1) that help explain tissue-specific differences in its expression. Materials & methods: At DMPK and its flanking genes (DMWD, SIX5, BHMG1 and RSPH6A), we analyzed many epigenetic and transcription profiles from myoblasts, myotubes, skeletal muscle, heart and 30 nonmuscle samples. Results: In the DMPK gene neighborhood, muscle-associated DNA hypermethylation and hypomethylation, enhancer chromatin, and CTCF binding were seen. Myogenic DMPK hypermethylation correlated with high expression and decreased alternative promoter usage. Testis/sperm hypomethylation of BHMG1 and RSPH6A was associated with testis-specific expression. G-quadruplex (G4) motifs and sperm-specific hypomethylation were found near the DM1-linked CTG repeats within DMPK. Conclusion: Tissue-specific epigenetic features in DMPK and neighboring genes help regulate its expression. G4 motifs in DMPK DNA and RNA might contribute to DM1 pathology.
Collapse
Affiliation(s)
- Lauren Buckley
- Human Genetics Program, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michelle Lacey
- Tulane Cancer Center & Department of Mathematics, Tulane University, New Orleans, LA 70112, USA
| | - Melanie Ehrlich
- Human Genetics Program, Center for Bioinformatics & Genomics, Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Seow Y, Sibley CR, Wood MJ. Artificial mirtron-mediated gene knockdown: functional DMPK silencing in mammalian cells. RNA (NEW YORK, N.Y.) 2012; 18:1328-1337. [PMID: 22647847 PMCID: PMC3383964 DOI: 10.1261/rna.030601.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 05/04/2012] [Indexed: 06/01/2023]
Abstract
Mirtrons are introns that form pre-miRNA hairpins after splicing to produce RNA interference (RNAi) effectors distinct from Drosha-dependent intronic miRNAs. Here we present a design algorithm for artificial mirtrons and demonstrate, for the first time, efficient gene knockdown of myotonic dystrophy protein kinase (DMPK) target sequences in Renilla luciferase 3' UTR and subsequently pathogenic DMPK mRNA, causative of Type I myotonic dystrophy, using artificial mirtrons cloned as eGFP introns. Deep sequencing of artificial mirtrons suggests that functional mature transcripts corresponding to the designed sequence were produced in high abundance. They were further shown to be splicing-dependent, Drosha-independent, and partially dependent on exportin-5, resulting in the precise generation of pre-miRNAs. In a murine myoblast line containing a pathogenic copy of human DMPK with more than 500 CUG repeats, the DMPK artificial mirtron corrected DM1-associated splicing abnormalities of the Serca-1 mRNA, demonstrating the therapeutic potential of mirtron-mediated RNAi. Thus, further development and exploitation of the unique properties of mirtrons will benefit future research and therapeutic RNAi applications as an alternative to conventional RNAi strategies.
Collapse
Affiliation(s)
- Yiqi Seow
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
- Molecular Engineering Laboratory, Science and Engineering Institutes, Singapore 138668
| | - Christopher R. Sibley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Matthew J.A. Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| |
Collapse
|
9
|
Nakamori M, Pearson CE, Thornton CA. Bidirectional transcription stimulates expansion and contraction of expanded (CTG)*(CAG) repeats. Hum Mol Genet 2010; 20:580-8. [PMID: 21088112 DOI: 10.1093/hmg/ddq501] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
More than 12 neurogenetic disorders are caused by unstable expansions of (CTG)•(CAG) repeats. The expanded repeats are unstable in germline and somatic cells, with potential consequences for disease severity. Previous studies have shown that contractions of (CAG)(95) are more frequent when the repeat tract is transcribed. Here we determined whether transcription can promote repeat expansion, using (CTG)•(CAG) repeat tracts in the size range that is typical for myotonic dystrophy type 1. We derived normal human fibroblasts having single-copy genomic integrations of 800 CTG repeats. The repeat tract showed modest instability when it was not transcribed, yielding an estimated mutation rate of 0.28% per generation. Instability was enhanced several-fold by transcription in the forward or reverse transcription, and 30-fold by bidirectional transcription, yielding many expansions and contractions of more than 200 repeats. These results suggest that convergent bidirectional transcription, which has been reported at several disease loci, could contribute to somatic instability of highly expanded (CTG)•(CAG) repeats.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | |
Collapse
|
10
|
Kaliman P, Llagostera E. Myotonic dystrophy protein kinase (DMPK) and its role in the pathogenesis of myotonic dystrophy 1. Cell Signal 2008; 20:1935-41. [PMID: 18583094 DOI: 10.1016/j.cellsig.2008.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
Abstract
Myotonic dystrophy 1 (DM1) is an autosomal, dominant inherited, neuromuscular disorder. The DM1 mutation consists in the expansion of an unstable CTG-repeat in the 3'-untranslated region of a gene encoding DMPK (myotonic dystrophy protein kinase). Clinical expression of DM1 is variable, presenting a progressive muscular dystrophy that affects distal muscles more than proximal and is associated with the inability to relax muscles appropriately (myotonia), cataracts, cardiac arrhythmia, testicular atrophy and insulin resistance. DMPK is a Ser/Thr protein kinase homologous to the p21-activated kinases MRCK and ROCK/rho-kinase/ROK. The most abundant isoform of DMPK is an 80 kDa protein mainly expressed in smooth, skeletal and cardiac muscles. Decreased DMPK protein levels may contribute to the pathology of DM1, as revealed by gene target studies. Here we review current understanding of the structural, functional and pathophysiological characteristics of DMPK.
Collapse
Affiliation(s)
- Perla Kaliman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Universitat de Barcelona, Spain.
| | | |
Collapse
|
11
|
Mahadevan MS, Yadava RS, Yu Q, Balijepalli S, Frenzel-McCardell CD, Bourne TD, Phillips LH. Reversible model of RNA toxicity and cardiac conduction defects in myotonic dystrophy. Nat Genet 2006; 38:1066-70. [PMID: 16878132 PMCID: PMC2909745 DOI: 10.1038/ng1857] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 06/30/2006] [Indexed: 12/24/2022]
Abstract
Myotonic dystrophy (DM1), the most common muscular dystrophy in adults, is caused by an expanded (CTG)n tract in the 3' UTR of the gene encoding myotonic dystrophy protein kinase (DMPK), which results in nuclear entrapment of the 'toxic' mutant RNA and interacting RNA-binding proteins (such as MBNL1) in ribonuclear inclusions. It is unclear if therapy aimed at eliminating the toxin would be beneficial. To address this, we generated transgenic mice expressing the DMPK 3' UTR as part of an inducible RNA transcript encoding green fluorescent protein (GFP). We were surprised to find that mice overexpressing a normal DMPK 3' UTR mRNA reproduced cardinal features of myotonic dystrophy, including myotonia, cardiac conduction abnormalities, histopathology and RNA splicing defects in the absence of detectable nuclear inclusions. However, we observed increased levels of CUG-binding protein (CUG-BP1) in skeletal muscle, as seen in individuals with DM1. Notably, these effects were reversible in both mature skeletal and cardiac muscles by silencing transgene expression. These results represent the first in vivo proof of principle for a therapeutic strategy for treatment of myotonic dystrophy by ablating or silencing expression of the toxic RNA molecules.
Collapse
Affiliation(s)
- Mani S Mahadevan
- Department of Pathology, University of Virginia, PO Box 800904, Charlottesville, Virginia 22908-0904, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhao W, Wu Y, Zhao J, Guo S, Bauman WA, Cardozo CP. Structure and function of the upstream promotor of the humanMafbx gene: The proximal upstream promotor modulates tissue-specificity. J Cell Biochem 2005; 96:209-19. [PMID: 16052482 DOI: 10.1002/jcb.20468] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Muscle loss has been linked to increased expression of an ubiquitin ligase termed muscle atrophy F-box (MAFbx), a nuclear protein involved in degradation of MyoD. To gain insights into mechanisms by which the human MAFbx gene is controlled, the structure of its upstream promotor were studied, and its expression in cultured cells was characterized. Expression of MAFbx was found only in cells of muscle lineage. A reporter gene controlled by 948 bases of human MAFbx upstream promotor displayed similar cell-type selectivity. MAFbx levels were greatly enhanced upon myogenic differentiation of C2C12 myoblasts, and differentiation markedly increased activity of a reporter gene constructed with 400 bp of upstream promotor from the MAFbx gene. The core promotor spanned approximately 160 bases beginning at -241 bp upstream of the first codon, included potential binding sites for MyoD and myogenin, and was highly conserved among mouse, rat, and humanMAFbx genes. The major transcription start site for the human MAFbx gene was 340 bases upstream of the ATG and was localized the highly conserved region of 140 bp. The findings indicate an important role for the immediate upstream promotor of the human MAFbx gene in mediating its developmental expression and tissue specificity.
Collapse
Affiliation(s)
- Weidong Zhao
- VA Rehabilitation Research and Development Service Center of Excellence, Bronx VA Medical Center, Bronx, New York, USA
| | | | | | | | | | | |
Collapse
|
13
|
Pimenta AF, Levitt P. Characterization of the genomic structure of the mouse limbic system-associated membrane protein (Lsamp) gene. Genomics 2004; 83:790-801. [PMID: 15081109 DOI: 10.1016/j.ygeno.2003.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 10/15/2003] [Accepted: 11/17/2003] [Indexed: 12/12/2022]
Abstract
The Lsamp gene encodes the limbic system-associated membrane protein (LAMP) an immunoglobulin (Ig) superfamily member with three Ig domains and a glycosylphosphatidylinositol anchor. LAMP is expressed by neurons composing the limbic system, is highly conserved between rodents and human, and has structural and functional properties that substantiate its role in the formation of limbic circuits. We report here the genomic organization of the Lsamp gene. The Lsamp gene is composed of 11 exons distributed over 2.2 megabases (Mb). Two exons 1 are separated by approximately 1.6 Mb and contribute to the unusual large size of the gene. Alternative spliced Lsamp mRNAs are generated from distinct promoter regions associated with the two exons 1 that encode distinct signal peptides and thus generate identical native mature polypetides. Additional diversity is created by the use of two small exons to include an insertion of 23 amino acids within the polypeptide C-terminal region of the mature protein. The genomic features of the Lsamp gene described here indicate an intricate mechanism of gene expression regulation that may be relevant in the context of human neuropsychiatric and neurological disorders, where LAMP expression may be altered.
Collapse
Affiliation(s)
- Aurea F Pimenta
- John F. Kennedy Center for Research on Human Development and Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
14
|
O'Cochlain DF, Perez-Terzic C, Reyes S, Kane GC, Behfar A, Hodgson DM, Strommen JA, Liu XK, van den Broek W, Wansink DG, Wieringa B, Terzic A. Transgenic overexpression of human DMPK accumulates into hypertrophic cardiomyopathy, myotonic myopathy and hypotension traits of myotonic dystrophy. Hum Mol Genet 2004; 13:2505-18. [PMID: 15317754 DOI: 10.1093/hmg/ddh266] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abnormal expression of human myotonic dystrophy protein kinase (hDMPK) gene products has been implicated in myotonic dystrophy type 1 (DM1), yet the impact of distress accumulation produced by persistent overexpression of this poorly understood member of the Rho kinase-related protein kinase gene-family remains unknown. Here, in the aged transgenic murine line carrying approximately 25 extra copies of a complete hDMPK gene with all exons and an intact promoter region (Tg26-hDMPK), overexpression of mRNA and protein transgene products in cardiac, skeletal and smooth muscles resulted in deficient exercise endurance, an integrative index of muscle systems underperformance. In contrast to age-matched (11-15 months) wild-type controls, hearts from Tg26-hDMPK developed cardiomyopathic remodeling with myocardial hypertrophy, myocyte disarray and interstitial fibrosis. Hypertrophic cardiomyopathy was associated with a propensity for dysrhythmia and characterized by overt intracellular calcium overload promoting nuclear translocation of transcription factors responsible for maladaptive gene reprogramming. Skeletal muscles in distal limbs of Tg26-hDMPK showed myopathy with myotonic discharges coupled with deficit in sarcolemmal chloride channels, required regulators of hyperexcitability. Fiber degeneration in Tg26-hDMPK resulted in sarcomeric disorganization, centralization of nuclei and tubular aggregation. Moreover, the reduced blood pressure in Tg26-hDMPK indicated deficient arterial smooth muscle tone. Thus, the cumulative stress induced by permanent overexpression of hDMPK gene products translates into an increased risk for workload intolerance, hypertrophic cardiomyopathy with dysrhythmia, myotonic myopathy and hypotension, all distinctive muscle traits of DM1. Proper expression of hDMPK is, therefore, mandatory in supporting the integral balance among cytoarchitectural infrastructure, ion-homeostasis and viability control in various muscle cell types.
Collapse
Affiliation(s)
- D Fearghas O'Cochlain
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhu QS, Xing W, Qian B, von Dippe P, Shneider BL, Fox VL, Levy D. Inhibition of human m-epoxide hydrolase gene expression in a case of hypercholanemia. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1638:208-16. [PMID: 12878321 DOI: 10.1016/s0925-4439(03)00085-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in carcinogen metabolism and is also able to mediate the sodium-dependent uptake of bile acids into hepatocytes. Studies have identified a subject (S-1) with extremely elevated serum bile salt levels in the absence of observable hepatocellular injury, suggesting a defect in bile acid uptake. In this individual, mEH protein and mEH mRNA levels were reduced by approximately 95% and 85%, respectively, whereas the expression and amino acid sequence of another bile acid transport protein (NTCP) was unaffected. Sequence analysis of the mEH gene (EPHX1) revealed a point mutation at an upstream HNF-3 site (allele I) and in intron 1 (allele II), which resulted in a significant decrease in EPHX1 promoter activity in transient transfection assays. Gel shift assays using a radiolabeled oligonucleotide from each region resulted in specific transcription factor binding patterns, which were altered in the presence of the mutation. These studies demonstrate that the expression of mEH is greatly reduced in a patient with hypercholanemia, suggesting that mEH participates in sodium-dependent bile acid uptake in human liver where its absence may contribute to the etiology of this disease.
Collapse
Affiliation(s)
- Qin-shi Zhu
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Furling D, Lam LT, Agbulut O, Butler-Browne GS, Morris GE. Changes in myotonic dystrophy protein kinase levels and muscle development in congenital myotonic dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1001-9. [PMID: 12598332 PMCID: PMC1868110 DOI: 10.1016/s0002-9440(10)63894-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Myotonic dystrophy (DM1) is caused by the expansion of a CTG repeat in the noncoding region of a protein kinase, DMPK, expressed in skeletal and cardiac muscles. The aim of the present study was to determine the effects of very large CTG expansions on DMPK expression and skeletal muscle development. In fetuses suffering from the severe congenital form of DM1 with large CTG expansions (1800 to 3700 repeats), the skeletal muscle level of DMPK was reduced to 57% of control levels and a similar reduction was observed in cultured DM1 muscle cells relative to control cultures. These results are consistent with greatly reduced DMPK expression from the mutant allele and normal expression from the unaffected allele in this autosomal dominant disorder. In normal fetuses, DMPK protein levels increased dramatically between 9 and 16 weeks and remained high throughout the remaining gestation period. DM1 fetuses showed impaired skeletal muscle development, characterized by a persistence of embryonic and fetal myosin heavy chains and almost total absence of slow myosin heavy chains at the end of gestation. DMPK expression, however, was similar in both fast and slow fibers from normal adult muscle. The reduced DMPK and the delayed slow fiber maturation in congenital DM1 may be two separate consequences of nuclear retention of DMPK RNA transcripts with expanded CUG repeats.
Collapse
Affiliation(s)
- Denis Furling
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7000, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
17
|
Frisch R, Singleton KR, Moses PA, Gonzalez IL, Carango P, Marks HG, Funanage VL. Effect of triplet repeat expansion on chromatin structure and expression of DMPK and neighboring genes, SIX5 and DMWD, in myotonic dystrophy. Mol Genet Metab 2001; 74:281-91. [PMID: 11592825 DOI: 10.1006/mgme.2001.3229] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Myotonic dystrophy (DM), an autosomal dominant neuromuscular disease, is associated with expansion of a polymorphic (CTG)n repeat in the 3'-untranslated region of the DM protein kinase (DMPK) gene. The repeat expansion results in decreased levels of DMPK mRNA and protein, but the mechanism for this decreased expression is unknown. Loss of a nuclease-hypersensitive site in the region of the repeat expansion has been observed in muscle and skin fibroblasts from DM patients, indicating a change in local chromatin structure. This change in chromatin structure has been proposed as a mechanism whereby the expression of DMPK and neighboring genes, sine oculis homeobox (Drosophila) homolog 5 (SIX5) and dystrophia myotonica-containing WD repeat motif (DMWD), might be affected. We have developed a polymerase chain reaction (PCR)-based method to assay the chromatin sensitivity of the region adjacent to the repeat expansion in somatic cell hybrids carrying either normal or affected DMPK alleles and show that hybrids carrying expanded alleles exhibit decreased sensitivity to PvuII digestion in this region. Semiquantitative multiplex reverse transcriptase PCR (RT/PCR) assays of gene expression from the chromosomes carrying the expanded alleles showed marked reduction of DMPK mRNA, partial inhibition of SIX5 expression from a congenital DM chromosome, and no reduction of DMWD mRNA. Nested RT/PCR analysis of DMPK mRNA from somatic cell hybrids carrying the repeat expansions revealed that most of the DMPK transcripts expressed from the expanded alleles lacked exons 13 and 14, whereas full-length transcripts were expressed predominantly from the normal alleles. These results suggest that the CTG repeat expansion leads to a decrease in DMPK mRNA levels by affecting splicing at the 3' end of the DMPK pre-mRNA transcript.
Collapse
Affiliation(s)
- R Frisch
- Department of Medical Research, Nemours Children's Clinic, Wilmington, Delaware 19803, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Conne B, Stutz A, Vassalli JD. The 3' untranslated region of messenger RNA: A molecular 'hotspot' for pathology? Nat Med 2000; 6:637-41. [PMID: 10835679 DOI: 10.1038/76211] [Citation(s) in RCA: 411] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The role of the 3' untranslated region in posttranscriptional regulation of mRNA expression is being elucidated. Here we describe diseases arising from anomalies in this region, that affect the expression of one or more genes.
Collapse
Affiliation(s)
- B Conne
- Department of MorphologyFaculty of Medicine University of Geneva CMU, 1211 Geneva 4, Switzerland.
| | | | | |
Collapse
|
19
|
Holcomb T, Taylor L, Trohkimoinen J, Curthoys NP. Isolation, characterization and expression of a human brain mitochondrial glutaminase cDNA. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:56-63. [PMID: 10719215 DOI: 10.1016/s0169-328x(99)00331-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Various cDNAs that encode overlapping portions of the full-length human brain glutaminase (GA) cDNA were cloned and sequenced. The overall nucleotide sequence of hGA has a very high degree of identity with that of the rat kidney-type GA cDNA (77.4%) and the known portion of the cDNA that encodes the 5.0-kb porcine GA mRNA (81.1%). The identity is even more remarkable at the amino acid level, particularly in the C-terminal half where the three proteins share a 99.7% sequence identity. The hGA cDNA encodes a 73,427-Da protein that contains an N-terminal mitochondrial targeting signal and retains the primary proteolytic cleavage site characterized for the cytosolic precursor of the rat renal mitochondrial glutaminase. The entire coding region was assembled through the use of unique restriction sites and cloned into a baculovirus. Sf9 cells infected with the recombinant virus express high levels of properly processed and active glutaminase. Thus, expression of the isolated hGA cDNA should provide a means to purify large amounts of the mitochondrial glutaminase, a protein that catalyzes a key reaction in the metabolism of glutamine and the synthesis of important excitatory and inhibitory neurotransmitters.
Collapse
Affiliation(s)
- T Holcomb
- Department of Biochemistry and Molecular Biology, Colorado State University, 316 MRB Bldg., Ft. Collins, CO 80523-1870, USA
| | | | | | | |
Collapse
|
20
|
Polakowska RR, Graf B, Falciano V, LaCelle P. Transcription regulatory elements of the first intron control human transglutaminase type I gene expression in epidermal keratinocytes. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990601)73:3<355::aid-jcb7>3.0.co;2-d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|