1
|
Becker L, Hausmann J, Wellpott R, Hartmann AM. Highly conserved ion binding sites are not all functionally relevant in mouse KCC4. Front Mol Biosci 2025; 12:1556250. [PMID: 40230454 PMCID: PMC11994965 DOI: 10.3389/fmolb.2025.1556250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/03/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction The potassium chloride cotransporter 4 (KCC4) is expressed in various tissues and plays an important role in distal renal acidification and hearing development. Although KCCs transport K+ and Cl- in a 1:1 stoichiometry, two Cl- coordination sites were indicated via cryo-electron microscopy (CryoEM). Methods In a comprehensive analysis, we analyzed here the consequences of point mutation of residues coordinating potassium, and chloride in the first (Cl1) and second (Cl2) coordinating site in KCC4 using Tl+ based flux measurements. Results Surprisingly, not all highly conserved coordination sites in KCC4 are essential. Three out of five residues (N131, Y216, and T432) are functionally relevant for potassium coordination. For chloride coordination in Cl1, all three residues (G134, V135, and I136) are important, whereas three out of four residues (G433, M435, and Y589) are relevant for chloride binding in Cl2. As all ion coordination sites are important in KCC2, this indicates that there is a certain flexibility in the stringency of ion coordination in KCC4. One possible reason for the different relevance of ion coordination sites could be the large extracellular loop (LEL). The LEL is structured differently within KCCs and is directly linked to the transmembrane domain (TM) 6, where most of the coordination sites reside. Substitution of ion coordination sites in the KCC22-4-2 chimera, in which the LEL from mouse KCC4 is exchanged with the LEL of rat KCC2, have the same effect as substitutions in rat KCC2. An exception is the substitution of the potassium coordination site I111 in TM1, which shows enhanced activity in the KCC22-4-2 chimera compared to the impaired activity in rat KCC2 and not affected activity in mouse KCC4. Conclusion Thus, the different relevance of the ion coordination sites between KCC2 and KCC4 cannot be attributed solely to the different structured LEL; other structural elements must also be involved here.
Collapse
Affiliation(s)
- Lisa Becker
- Division of Neurogenetics, School of Medicine and Health Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Division of Anatomy, School of Medicine and Health Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Rieke Wellpott
- Division of Neurogenetics, School of Medicine and Health Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Laghmani K. Protein Quality Control of NKCC2 in Bartter Syndrome and Blood Pressure Regulation. Cells 2024; 13:818. [PMID: 38786040 PMCID: PMC11120568 DOI: 10.3390/cells13100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Mutations in NKCC2 generate antenatal Bartter syndrome type 1 (type 1 BS), a life-threatening salt-losing nephropathy characterized by arterial hypotension, as well as electrolyte abnormalities. In contrast to the genetic inactivation of NKCC2, inappropriate increased NKCC2 activity has been associated with salt-sensitive hypertension. Given the importance of NKCC2 in salt-sensitive hypertension and the pathophysiology of prenatal BS, studying the molecular regulation of this Na-K-2Cl cotransporter has attracted great interest. Therefore, several studies have addressed various aspects of NKCC2 regulation, such as phosphorylation and post-Golgi trafficking. However, the regulation of this cotransporter at the pre-Golgi level remained unknown for years. Similar to several transmembrane proteins, export from the ER appears to be the rate-limiting step in the cotransporter's maturation and trafficking to the plasma membrane. The most compelling evidence comes from patients with type 5 BS, the most severe form of prenatal BS, in whom NKCC2 is not detectable in the apical membrane of thick ascending limb (TAL) cells due to ER retention and ER-associated degradation (ERAD) mechanisms. In addition, type 1 BS is one of the diseases linked to ERAD pathways. In recent years, several molecular determinants of NKCC2 export from the ER and protein quality control have been identified. The aim of this review is therefore to summarize recent data regarding the protein quality control of NKCC2 and to discuss their potential implications in BS and blood pressure regulation.
Collapse
Affiliation(s)
- Kamel Laghmani
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| |
Collapse
|
3
|
Barany A, Shaughnessy CA, Pelis RM, Fuentes J, Mancera JM, McCormick SD. Tissue and salinity specific Na +/Cl - cotransporter (NCC) orthologues involved in the adaptive osmoregulation of sea lamprey (Petromyzon marinus). Sci Rep 2021; 11:22698. [PMID: 34811419 PMCID: PMC8608846 DOI: 10.1038/s41598-021-02125-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Two orthologues of the gene encoding the Na+-Cl− cotransporter (NCC), termed ncca and nccb, were found in the sea lamprey genome. No gene encoding the Na+-K+-2Cl− cotransporter 2 (nkcc2) was identified. In a phylogenetic comparison among other vertebrate NCC and NKCC sequences, the sea lamprey NCCs occupied basal positions within the NCC clades. In freshwater, ncca mRNA was found only in the gill and nccb only in the intestine, whereas both were found in the kidney. Intestinal nccb mRNA levels increased during late metamorphosis coincident with salinity tolerance. Acclimation to seawater increased nccb mRNA levels in the intestine and kidney. Electrophysiological analysis of intestinal tissue ex vivo showed this tissue was anion absorptive. After seawater acclimation, the proximal intestine became less anion absorptive, whereas the distal intestine remained unchanged. Luminal application of indapamide (an NCC inhibitor) resulted in 73% and 30% inhibition of short-circuit current (Isc) in the proximal and distal intestine, respectively. Luminal application of bumetanide (an NKCC inhibitor) did not affect intestinal Isc. Indapamide also inhibited intestinal water absorption. Our results indicate that NCCb is likely the key ion cotransport protein for ion uptake by the lamprey intestine that facilitates water absorption in seawater. As such, the preparatory increases in intestinal nccb mRNA levels during metamorphosis of sea lamprey are likely critical to development of whole animal salinity tolerance.
Collapse
Affiliation(s)
- A Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Puerto Real, 11519, Cádiz, Spain. .,Centre of Marine Sciences (CCMar), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Conte Anadromous Fish Research Laboratory, Eastern Ecological Science Center, U.S. Geological Survey, Turners Falls, MA, 01376, USA.
| | - C A Shaughnessy
- Conte Anadromous Fish Research Laboratory, Eastern Ecological Science Center, U.S. Geological Survey, Turners Falls, MA, 01376, USA.,Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - R M Pelis
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, Johnson City, NY, 13790, USA
| | - J Fuentes
- Centre of Marine Sciences (CCMar), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - J M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Puerto Real, 11519, Cádiz, Spain
| | - S D McCormick
- Conte Anadromous Fish Research Laboratory, Eastern Ecological Science Center, U.S. Geological Survey, Turners Falls, MA, 01376, USA.,Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
4
|
Shaukat I, Bakhos-Douaihy D, Zhu Y, Seaayfan E, Demaretz S, Frachon N, Weber S, Kömhoff M, Vargas-Poussou R, Laghmani K. New insights into the role of endoplasmic reticulum-associated degradation in Bartter Syndrome Type 1. Hum Mutat 2021; 42:947-968. [PMID: 33973684 DOI: 10.1002/humu.24217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Mutations in Na-K-2Cl co-transporter, NKCC2, lead to type I Bartter syndrome (BS1), a life-threatening kidney disease. Yet, our knowledge of the molecular regulation of NKCC2 mutants remains poor. Here, we aimed to identify the molecular pathogenic mechanisms of one novel and three previously reported missense NKCC2 mutations. Co-immunolocalization studies revealed that all NKCC2 variants are not functional because they are not expressed at the cell surface due to retention in the endoplasmic reticulum (ER). Cycloheximide chase assays together with treatment by protein degradation and mannose trimming inhibitors demonstrated that the defect in NKCC2 maturation arises from ER retention and associated degradation (ERAD). Small interfering RNA (siRNA) knock-down experiments revealed that the ER lectin OS9 is involved in the ERAD of NKCC2 mutants. 4-phenyl butyric acid (4-PBA) treatment mimicked OS9 knock-down effect on NKCC2 mutants by stabilizing their immature forms. Importantly, out of the four studied mutants, only one showed an increased protein maturation upon treatment with glycerol. In summary, our study reveals that BS1 is among diseases linked to the ERAD pathway. Moreover, our data open the possibility that maturation of some ER retained NKCC2 variants is correctable by chemical chaperones offering, therefore, promising avenues in elucidating the molecular pathways governing the ERAD of NKCC2 folding mutants.
Collapse
Affiliation(s)
- Irfan Shaukat
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Yingying Zhu
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Sylvie Demaretz
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Stefanie Weber
- Division of Pediatric Nephrology and Transplantation, University Children's Hospital, Philipps-University, Marburg, Germany
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children's Hospital, Philipps-University, Marburg, Germany
| | | | - Kamel Laghmani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| |
Collapse
|
5
|
Intricacies of GABA A Receptor Function: The Critical Role of the β3 Subunit in Norm and Pathology. Int J Mol Sci 2021; 22:ijms22031457. [PMID: 33535681 PMCID: PMC7867123 DOI: 10.3390/ijms22031457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Neuronal intracellular chloride ([Cl−]i) is a key determinant in γ-aminobutyric acid type A (GABA)ergic signaling. γ-Aminobutyric acid type A receptors (GABAARs) mediate both inhibitory and excitatory neurotransmission, as the passive fluxes of Cl− and HCO3− via pores can be reversed by changes in the transmembrane concentration gradient of Cl−. The cation–chloride co-transporters (CCCs) are the primary systems for maintaining [Cl−]i homeostasis. However, despite extensive electrophysiological data obtained in vitro that are supported by a wide range of molecular biological studies on the expression patterns and properties of CCCs, the presence of ontogenetic changes in [Cl−]i—along with the consequent shift in GABA reversal potential—remain a subject of debate. Recent studies showed that the β3 subunit possesses properties of the P-type ATPase that participates in the ATP-consuming movement of Cl− via the receptor. Moreover, row studies have demonstrated that the β3 subunit is a key player in GABAAR performance and in the appearance of serious neurological disorders. In this review, we discuss the properties and driving forces of CCCs and Cl−, HCO3−ATPase in the maintenance of [Cl−]i homeostasis after changes in upcoming GABAAR function. Moreover, we discuss the contribution of the β3 subunit in the manifestation of epilepsy, autism, and other syndromes.
Collapse
|
6
|
Garneau AP, Slimani S, Fiola MJ, Tremblay LE, Isenring P. Multiple Facets and Roles of Na+-K+-Cl−Cotransport: Mechanisms and Therapeutic Implications. Physiology (Bethesda) 2020; 35:415-429. [DOI: 10.1152/physiol.00012.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Na+-K+-Cl−cotransporters play key physiological and pathophysiological roles by regulating the membrane potential of many cell types and the movement of fluid across a variety of epithelial or endothelial structures. As such, they should soon become invaluable targets for the treatment of various disorders including pain, epilepsy, brain edema, and hypertension. This review highlights the nature of these roles, the mechanisms at play, and the unresolved issues in the field.
Collapse
Affiliation(s)
- A. P. Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
- Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, Montréal, Canada
| | - S. Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| | - M. J. Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| | - L. E. Tremblay
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| | - P. Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| |
Collapse
|
7
|
Tao D, Liu F, Sun X, Qu H, Zhao S, Zhou Z, Xiao T, Zhao C, Zhao M. Bumetanide: A review of its neuroplasticity and behavioral effects after stroke. Restor Neurol Neurosci 2020; 37:397-407. [PMID: 31306143 DOI: 10.3233/rnn-190926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stroke often leads to neuronal injury and neurological functional deficits. Whilst spontaneous neurogenesis and axon regeneration are induced by ischemic stroke, effective pharmacological treatments are also essential for the improvement of neuroplasticity and functional recovery after stroke. However, no pharmacological therapy has been demonstrated to be able to effectively improve the functional recovery after stroke. Bumetanide is a specific Na+-K+-Cl- co-transporter inhibitor which can maintain chloride homeostasis in neurons. Therefore, many studies have focused on this drug's effect in stroke recovery in recent years. Here, we first review the function of Na+-K+-Cl- co-transporter in neurons, then how bumetanide's role in reducing brain damage, promoting neuroplasticity, leading to functional recovery after stroke, is elucidated. Finally, we discuss current limitations of bumetanide's efficiency and their potential solutions. These results may provide new avenues for further exploring mechanisms of post-stroke functional recovery as well as promising therapeutic targets for functional disability rehabilitation after ischemic stroke.
Collapse
Affiliation(s)
- Dongxia Tao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Fangxi Liu
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoyu Sun
- Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Huiling Qu
- Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Shanshan Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Zhike Zhou
- Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Ting Xiao
- Dermatology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Mei Zhao
- Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Marcoux AA, Slimani S, Tremblay LE, Frenette-Cotton R, Garneau AP, Isenring P. Endocytic recycling of Na + -K + -Cl - cotransporter type 2: importance of exon 4. J Physiol 2019; 597:4263-4276. [PMID: 31216057 DOI: 10.1113/jp278024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023] Open
Abstract
KEY POINTS Na+ -K+ -Cl- cotransporter type 2 (NKCC2) is a 27-exon membrane protein that is expressed in the thick ascending limb (TAL) of Henle where it is involved in reabsorption of the ultrafiltered NaCl load. It comes as three splice variants that are identical to each other except for the residue composition of exon 4 and that differ in their transport characteristics, functional roles and distributions along the TAL. In this report, it is shown that the variants also differ in their trafficking properties and that two residues in exon 4 play a key role in this regard. One of these residues was also shown to sustain carrier internalization. Through these results, a novel function for the alternatively spliced exon of NKCC2 has been identified and a domain that is involved in carrier trafficking has been uncovered for the first time in a cation-Cl- cotransporter family member. ABSTRACT Na+ -K+ -Cl- cotransporter type 2 (NKCC2) is a 12-transmembrane (TM) domain cell surface glycoprotein that is expressed in the thick ascending limb (TAL) of Henle and stimulated during cell shrinkage. It comes as three splice variants (A, B and F) that are identical to each other except for TM2 and the following connecting segment (CS2). Yet, these variants do not share the same localization, transport characteristics and physiological roles along the TAL. We have recently found that while cell shrinkage could exert its activating effect by increasing NKCC2 expression at the cell surface, the variants also responded differentially to this stimulus. In the current work, a mutagenic approach was exploited to determine whether CS2 could play a role in carrier trafficking and identify the residues potentially involved. We found that when the residue of position 238 in NKCC2A (F) and NKCC2B (Y) was replaced by the corresponding residue in NKCC2F (V), carrier activity increased by over 3-fold and endocytosis decreased concomitantly. We also found that when the residue of position 230 in NKCC2F (M) was replaced by the one in NKCC2B (T), carrier activity and affinity for ions both increased substantially whereas expression at the membrane decreased. Taken together, these results suggest that CS2 is involved in carrier trafficking and that two of its residues, those of positions 238 and 230, are part of an internalization motif. They also indicate that the divergent residue of position 230 plays the dual role of specifying ion affinity and sustaining carrier internalization.
Collapse
Affiliation(s)
- Andrée-Anne Marcoux
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| | - Samira Slimani
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| | - Laurence E Tremblay
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| | - Rachelle Frenette-Cotton
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| | - Alexandre P Garneau
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6.,Cardiometabolic Research Group, Department of Kinesiology, Faculty of Medicine, University of Montréal, Montréal, QC, Canada, H3T 1J4
| | - Paul Isenring
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada, G1R 2J6
| |
Collapse
|
9
|
Rodan AR. Intracellular chloride: a regulator of transepithelial transport in the distal nephron. Curr Opin Nephrol Hypertens 2019; 28:360-367. [PMID: 30865168 PMCID: PMC6684285 DOI: 10.1097/mnh.0000000000000502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the role of intracellular chloride in regulating transepithelial ion transport in the distal convoluted tubule (DCT) in response to perturbations in plasma potassium homeostasis. RECENT FINDINGS Low dietary potassium increases the phosphorylation and activity of the sodium chloride cotransporter (NCC) in the DCT, and vice versa, affecting sodium-dependent potassium secretion in the downstream aldosterone-sensitive distal nephron. In cells, NCC phosphorylation is increased by lowering of intracellular chloride, via activation of the chloride-sensitive with no lysine (WNK)-SPAK/OSR1 (Ste20-related proline/alanine-rich kinase/oxidative stress response) kinase cascade. In-vivo studies have demonstrated pathway activation in the kidney in response to low dietary potassium. A possible mechanism is lowering of DCT intracellular chloride in response to low potassium because of parallel basolateral potassium and chloride channels. Recent studies support a role for these channels in the response of NCC to varying potassium. Studies examining chloride-insensitive WNK mutants, in the Drosophila renal tubule and in the mouse, lend further support to a role for chloride in regulating WNK activity and transepithelial ion transport. Caveats, alternatives, and future directions are also discussed. SUMMARY Chloride sensing by WNK kinase provides a mechanism to allow coupling of extracellular potassium with NCC phosphorylation and activity to maintain potassium homeostasis.
Collapse
Affiliation(s)
- Aylin R. Rodan
- Department of Internal Medicine, Division of Nephrology and Hypertension and Molecular Medicine Program, University of Utah, and Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT
| |
Collapse
|
10
|
Gregoriades JMC, Madaris A, Alvarez FJ, Alvarez-Leefmans FJ. Genetic and pharmacological inactivation of apical Na +-K +-2Cl - cotransporter 1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. Am J Physiol Cell Physiol 2019; 316:C525-C544. [PMID: 30576237 PMCID: PMC6482671 DOI: 10.1152/ajpcell.00026.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/08/2023]
Abstract
Choroid plexus epithelial cells (CPECs) secrete cerebrospinal fluid (CSF). They express Na+-K+-ATPase and Na+-K+-2Cl- cotransporter 1 (NKCC1) on their apical membrane, deviating from typical basolateral membrane location in secretory epithelia. Given this peculiarity, the direction of basal net ion fluxes mediated by NKCC1 in CPECs is controversial, and cotransporter function is unclear. Determining the direction of basal NKCC1-mediated fluxes is critical to understanding the function of apical NKCC1. If NKCC1 works in the net efflux mode, it may be directly involved in CSF secretion. Conversely, if NKCC1 works in the net influx mode, it would have an absorptive function, contributing to intracellular Cl- concentration ([Cl-]i) and cell water volume (CWV) maintenance needed for CSF secretion. We resolve this long-standing debate by electron microscopy (EM), live-cell-imaging microscopy (LCIM), and intracellular Na+ and Cl- measurements in single CPECs of NKCC1+/+ and NKCC1-/- mouse. NKCC1-mediated ion and associated water fluxes are tightly linked, thus their direction is inferred by measuring CWV changes. Genetic or pharmacological NKCC1 inactivation produces CPEC shrinkage. EM of NKCC1-/- CPECs in situ shows they are shrunken, forming large dilations of their basolateral extracellular spaces, yet remaining attached by tight junctions. Normarski LCIM shows in vitro CPECs from NKCC1-/- are ~17% smaller than NKCC1+/+. CWV measurements in calcein-loaded CPECs show that bumetanide (10 μM) produces ~16% decrease in CWV in NKCC1+/+ but not in NKCC1-/- CPECs. Our findings suggest that under basal conditions apical NKCC1 is continuously active and works in the net inward flux mode maintaining [Cl-]i and CWV needed for CSF secretion.
Collapse
Affiliation(s)
- Jeannine M C Gregoriades
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Aaron Madaris
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University , Dayton, Ohio
| | - Francisco J Alvarez
- Department of Neuroscience, Cell Biology and Physiology, Wright State University , Dayton, Ohio
| | | |
Collapse
|
11
|
Marcoux AA, Slimani S, Tremblay LE, Frenette-Cotton R, Garneau AP, Isenring P. Regulation of Na +-K +-Cl - cotransporter type 2 by the with no lysine kinase-dependent signaling pathway. Am J Physiol Cell Physiol 2019; 317:C20-C30. [PMID: 30917032 DOI: 10.1152/ajpcell.00041.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Na+-K+-Cl- cotransporter type 2 (NKCC2) is confined to the apical membrane of the thick ascending limb of Henle, where it reabsorbs a substantial fraction of the ultrafiltered NaCl load. It is expressed along this nephron segment as three main splice variants (called NKCC2A, NKCC2B, and NKCC2F) that differ in residue composition along their second transmembrane domain and first intracellular cytosolic connecting segment (CS2). NKCC2 is known to be activated by cell shrinkage and intracellular [Cl-] reduction. Although the with no lysine (WNK) kinases could play a role in this response, the mechanisms involved are ill defined, and the possibility of variant-specific responses has not been tested thus far. In this study, we have used the Xenopus laevis oocyte expression system to gain further insight in these regards. We have found for the first time that cell shrinkage could stimulate NKCC2A- and NKCC2B-mediated ion transport by increasing carrier abundance at the cell surface and that this response was achieved (at least in part) by the enzymatic function of a WNK kinase. Interestingly, we have also found that the activity and cell surface abundance of NKCC2F were less affected by cell shrinkage compared with the other variants and that ion transport by certain variants could be stimulated through WNK kinase expression in the absence of carrier redistribution. Taken together, these results suggest that the WNK kinase-dependent pathway can affect both the trafficking as well as intrinsic activity of NKCC2 and that CS2 plays an important role in carrier regulation.
Collapse
Affiliation(s)
- Andrée-Anne Marcoux
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University , Quebec City, Quebec , Canada
| | - Samira Slimani
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University , Quebec City, Quebec , Canada
| | - Laurence E Tremblay
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University , Quebec City, Quebec , Canada
| | - Rachelle Frenette-Cotton
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University , Quebec City, Quebec , Canada
| | - Alexandre P Garneau
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University , Quebec City, Quebec , Canada.,Cardiometabolic Research Group, Department of Kinesiology, Faculty of Medicine, University of Montreal , Montreal, Quebec , Canada
| | - Paul Isenring
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University , Quebec City, Quebec , Canada
| |
Collapse
|
12
|
Sifat AE, Vaidya B, Villalba H, Albekairi TH, Abbruscato TJ. Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. Am J Physiol Cell Physiol 2018; 316:C2-C15. [PMID: 30207783 DOI: 10.1152/ajpcell.00187.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transporters at the neurovascular unit (NVU) are vital for the regulation of normal brain physiology via ion, water, and nutrients movement. In ischemic stroke, the reduction of cerebral blood flow causes several complex pathophysiological changes in the brain, one of which includes alterations of the NVU transporters, which can exacerbate stroke outcome by increased brain edema (by altering ion, water, and glutamate transporters), altered energy metabolism (by altering glucose transporters), and enhanced drug toxicity (by altering efflux transporters). Smoking and diabetes are common risk factors as well as coexisting conditions in ischemic stroke that are also reported to change the expression and function of NVU transporters. Coexistence of these conditions could cause an additive effect in terms of the alterations of brain transporters that might lead to worsened ischemic stroke prognosis and recovery. In this review, we have discussed the effects of ischemic stroke, smoking, and diabetes on some essential NVU transporters and how the simultaneous presence of these conditions can affect the clinical outcome after an ischemic episode. Further scientific investigations are required to elucidate changes in NVU transport in cerebral ischemia, which can lead to better, personalized therapeutic interventions tailor-made for these comorbid conditions.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| |
Collapse
|
13
|
Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodium-potassium-chloride-cotransporter human variants hNKCC1A and hNKCC1B. Sci Rep 2018; 8:9877. [PMID: 29959396 PMCID: PMC6026185 DOI: 10.1038/s41598-018-27995-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/14/2018] [Indexed: 12/31/2022] Open
Abstract
The Na+–K+–2Cl− cotransporter NKCC1 plays a role in neuronal Cl− homeostasis secretion and represents a target for brain pathologies with altered NKCC1 function. Two main variants of NKCC1 have been identified: a full-length NKCC1 transcript (NKCC1A) and a shorter splice variant (NKCC1B) that is particularly enriched in the brain. The loop diuretic bumetanide is often used to inhibit NKCC1 in brain disorders, but only poorly crosses the blood-brain barrier. We determined the sensitivity of the two human NKCC1 splice variants to bumetanide and various other chemically diverse loop diuretics, using the Xenopus oocyte heterologous expression system. Azosemide was the most potent NKCC1 inhibitor (IC50s 0.246 µM for hNKCC1A and 0.197 µM for NKCC1B), being about 4-times more potent than bumetanide. Structurally, a carboxylic group as in bumetanide was not a prerequisite for potent NKCC1 inhibition, whereas loop diuretics without a sulfonamide group were less potent. None of the drugs tested were selective for hNKCC1B vs. hNKCC1A, indicating that loop diuretics are not a useful starting point to design NKCC1B-specific compounds. Azosemide was found to exert an unexpectedly potent inhibitory effect and as a non-acidic compound, it is more likely to cross the blood-brain barrier than bumetanide.
Collapse
|
14
|
Turner AL, Perry MS. Outside the box: Medications worth considering when traditional antiepileptic drugs have failed. Seizure 2017; 50:173-185. [PMID: 28704741 DOI: 10.1016/j.seizure.2017.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Review and discuss medications efficacious for seizure control, despite primary indications for other diseases, as treatment options in patients who have failed therapy with traditional antiepileptic drugs (AEDs). METHODS Literature searches were conducted utilizing PubMed and MEDLINE databases employing combinations of search terms including, but not limited to, "epilepsy", "refractory", "seizure", and the following medications: acetazolamide, amantadine, bumetanide, imipramine, lidocaine, verapamil, and various stimulants. RESULTS Data from relevant case studies, retrospective reviews, and available clinical trials were gathered, analyzed, and reported. Experience with acetazolamide, amantadine, bumetanide, imipramine, lidocaine, verapamil, and various stimulants show promise for cases of refractory epilepsy in both adults and children. Many medications lack large scale, randomized clinical trials, but the available data is informative when choosing treatment for patients that have failed traditional epilepsy therapies. CONCLUSIONS All neurologists have encountered a patient that failed nearly every AED, diet, and surgical option. For these patients, we often seek fortuitous discoveries within small series and case reports, hoping to find a treatment that might help the patient. In the present review, we describe medications for which antiepileptic effect has been ascribed after they were introduced for other indications.
Collapse
Affiliation(s)
- Adrian L Turner
- Department of Pharmacy, Cook Children's Medical Center, 1500 Cooper Street, 4th Floor, Fort Worth, TX, 76104, USA
| | - M Scott Perry
- Comprehensive Epilepsy Program, Jane and John Justin Neurosciences Center, Cook Children's Medical Center, Fort Worth, TX, USA.
| |
Collapse
|
15
|
Wang F, Wang X, Shapiro LA, Cotrina ML, Liu W, Wang EW, Gu S, Wang W, He X, Nedergaard M, Huang JH. NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility. Brain Struct Funct 2016; 222:1543-1556. [PMID: 27586142 PMCID: PMC5368191 DOI: 10.1007/s00429-016-1292-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 08/16/2016] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI) is not only a leading cause for morbidity and mortality in young adults (Bruns and Hauser, Epilepsia 44(Suppl 10):210, 2003), but also a leading cause of seizures. Understanding the seizure-inducing mechanisms of TBI is of the utmost importance, because these seizures are often resistant to traditional first- and second-line anti-seizure treatments. The early post-traumatic seizures, in turn, are a contributing factor to ongoing neuropathology, and it is critically important to control these seizures. Many of the available anti-seizure drugs target gamma-aminobutyric acid (GABAA) receptors. The inhibitory activity of GABAA receptor activation depends on low intracellular Cl−, which is achieved by the opposing regulation of Na+–K+–Cl− cotransporter 1 (NKCC1) and K+–Cl−–cotransporter 2 (KCC2). Up-regulation of NKCC1 in neurons has been shown to be involved in neonatal seizures and in ammonia toxicity-induced seizures. Here, we report that TBI-induced up-regulation of NKCC1 and increased intracellular Cl− concentration. Genetic deletion of NKCC1 or pharmacological inhibition of NKCC1 with bumetanide suppresses TBI-induced seizures. TGFβ expression was also increased after TBI and competitive antagonism of TGFβ reduced NKKC1 expression, ameliorated reactive astrocytosis, and inhibited seizures. Thus, TGFβ might be an important pathway involved in NKCC1 up-regulation after TBI. Our findings identify neuronal up-regulation of NKCC1 and its mediation by TGFβ, as a potential and important mechanism in the early post-traumatic seizures, and demonstrate the therapeutic potential of blocking this pathway.
Collapse
Affiliation(s)
- Fushun Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA.,Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, TX, 76504, USA.,Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Central Division, Temple, TX, 76508, USA
| | - Xiaowei Wang
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA.,Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14642, USA
| | - Lee A Shapiro
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, TX, 76504, USA.
| | - Maria L Cotrina
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA
| | - Weimin Liu
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA
| | - Ernest W Wang
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Central Division, Temple, TX, 76508, USA
| | - Simeng Gu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, 4th Military Medical University, Xi'an, China
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA
| | - Jason H Huang
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, TX, 76504, USA. .,Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Central Division, Temple, TX, 76508, USA.
| |
Collapse
|
16
|
Jaggi AS, Kaur A, Bali A, Singh N. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases. Curr Neuropharmacol 2016; 13:369-88. [PMID: 26411965 PMCID: PMC4812803 DOI: 10.2174/1570159x13666150205130359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na(+), K(+) and 2Cl(-) inside the cell. It acts in concert with K(+) Cl(-) co-transporter (KCC), which extrudes K(+) and Cl(-) ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases.
Collapse
Affiliation(s)
- Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala- 147002.
| | | | | | | |
Collapse
|
17
|
Vizvári E, Katona M, Orvos P, Berczeli O, Facskó A, Rárosi F, Venglovecz V, Rakonczay Z, Hegyi P, Ding C, Tóth-Molnár E. Characterization of Na+-K+-2Cl- Cotransporter Activity in Rabbit Lacrimal Gland Duct Cells. Invest Ophthalmol Vis Sci 2016; 57:3828-3835. [PMID: 27438543 PMCID: PMC4961001 DOI: 10.1167/iovs.15-18462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/09/2016] [Indexed: 11/26/2022] Open
Abstract
PURPOSE We recently reported that isolated duct segments from rabbit lacrimal gland (LG) were able to secrete fluid in response to secretagogues, which were blocked completely by bumetanide. This suggests the functional involvement of Na+-K+-2Cl- cotransporter (NKCC1) in ductal fluid secretion. Therefore, the aim of this study was to investigate the activity profile of NKCC1 in isolated rabbit LG duct segments. METHODS Interlobular ducts were isolated from fresh rabbit LG tissue. Microfluorometry with the ammonium (NH4+)-pulse technique was used to elicit pH changes in duct cells, and the rate of bumetanide-sensitive cytosolic acidification after addition of NH4+ was used to quantify the activity of NKCC1. RESULTS While basal activity of NKCC1 was undetectable, low cytosolic chloride (Cl-) level and hyperosmotic challenge (390 mOsm) were able to increase the activity of NKCC1. Carbachol (100 μM) had no significant effect on NKCC1 activity. Elevation of cytosolic calcium (Ca2+) level with Ca2+-ionophore (A 23187, 1 μM) did not cause any alteration in the activity of the cotransporter while direct activation of protein kinase C (phorbol myristate acetate, 100 nM) increased its activity slightly but in a significant manner. Addition of either forskolin (10 μM), cell-permeable cAMP analogue (8-bromo cAMP, 100 μM) or vasoactive intestinal peptide (200 nM) resulted in a significant increase in the activity of NKCC1. CONCLUSIONS These results highlight the functional involvement of NKCC1 in LG duct secretion. These findings may facilitate our understanding of LG function and may contribute to the development of targeted pharmacologic interventions in case of dry eye disease.
Collapse
Affiliation(s)
- Eszter Vizvári
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - Máté Katona
- 1st Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Péter Orvos
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Orsolya Berczeli
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - Andrea Facskó
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - Ferenc Rárosi
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- 1st Department of Internal Medicine, University of Szeged, Szeged, Hungary
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- 1st Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Chuanqing Ding
- Pharmacology & Pharmaceutical Sciences, Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Edit Tóth-Molnár
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
18
|
Lykke K, Töllner K, Feit PW, Erker T, MacAulay N, Löscher W. The search for NKCC1-selective drugs for the treatment of epilepsy: Structure-function relationship of bumetanide and various bumetanide derivatives in inhibiting the human cation-chloride cotransporter NKCC1A. Epilepsy Behav 2016; 59:42-9. [PMID: 27088517 DOI: 10.1016/j.yebeh.2016.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 11/30/2022]
Abstract
The Na(+)-K(+)-Cl(-) cotransporter NKCC1 plays a major role in the regulation of intraneuronal Cl(-) concentration. Abnormal functionality of NKCC1 has been implicated in several brain disorders, including epilepsy. Bumetanide is the only available selective NKCC1 inhibitor, but also inhibits NKCC2, which can cause severe adverse effects during treatment of brain disorders. A NKCC1-selective bumetanide derivative would therefore be a desirable option. In the present study, we used the Xenopus oocyte heterologous expression system to compare the effects of bumetanide and several derivatives on the two major human splice variants of NKCCs, hNKCC1A and hNKCC2A. The derivatives were selected from a series of ~5000 3-amino-5-sulfamoylbenzoic acid derivatives, covering a wide range of structural modifications and diuretic potencies. To our knowledge, such structure-function relationships have not been performed before for NKCC1. Half maximal inhibitory concentrations (IC50s) of bumetanide were 0.68 (hNKCC1A) and 4.0μM (hNKCC2A), respectively, indicating that this drug is 6-times more potent to inhibit hNKCC1A than hNKCC2A. Side chain substitutions in the bumetanide molecule variably affected the potency to inhibit hNKCC1A. This allowed defining the minimal structural requirements necessary for ligand interaction. Unexpectedly, only a few of the bumetanide derivatives examined were more potent than bumetanide to inhibit hNKCC1A, and most of them also inhibited hNKCC2A, with a highly significant correlation between IC50s for the two NKCC isoforms. These data indicate that the structural requirements for inhibition of NKCC1 and NKCC2 are similar, which complicates development of bumetanide-related compounds with high selectivity for NKCC1.
Collapse
Affiliation(s)
- Kasper Lykke
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Peter W Feit
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Thomas Erker
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
19
|
Bronckers ALJJ, Lyaruu D, Jalali R, Medina JF, Zandieh-Doulabi B, DenBesten PK. Ameloblast Modulation and Transport of Cl⁻, Na⁺, and K⁺ during Amelogenesis. J Dent Res 2015; 94:1740-7. [PMID: 26403673 DOI: 10.1177/0022034515606900] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ameloblasts express transmembrane proteins for transport of mineral ions and regulation of pH in the enamel space. Two major transporters recently identified in ameloblasts are the Na(+)K(+)-dependent calcium transporter NCKX4 and the Na(+)-dependent HPO4 (2-) (Pi) cotransporter NaPi-2b. To regulate pH, ameloblasts express anion exchanger 2 (Ae2a,b), chloride channel Cftr, and amelogenins that can bind protons. Exposure to fluoride or null mutation of Cftr, Ae2a,b, or Amelx each results in formation of hypomineralized enamel. We hypothesized that enamel hypomineralization associated with disturbed pH regulation results from reduced ion transport by NCKX4 and NaPi-2b. This was tested by correlation analyses among the levels of Ca, Pi, Cl, Na, and K in forming enamel of mice with null mutation of Cftr, Ae2a,b, and Amelx, according to quantitative x-ray electron probe microanalysis. Immunohistochemistry, polymerase chain reaction analysis, and Western blotting confirmed the presence of apical NaPi-2b and Nckx4 in maturation-stage ameloblasts. In wild-type mice, K levels in enamel were negatively correlated with Ca and Cl but less negatively or even positively in fluorotic enamel. Na did not correlate with P or Ca in enamel of wild-type mice but showed strong positive correlation in fluorotic and nonfluorotic Ae2a,b- and Cftr-null enamel. In hypomineralizing enamel of all models tested, 1) Cl(-) was strongly reduced; 2) K(+) and Na(+) accumulated (Na(+) not in Amelx-null enamel); and 3) modulation was delayed or blocked. These results suggest that a Na(+)K(+)-dependent calcium transporter (likely NCKX4) and a Na(+)-dependent Pi transporter (potentially NaPi-2b) located in ruffle-ended ameloblasts operate in a coordinated way with the pH-regulating machinery to transport Ca(2+), Pi, and bicarbonate into maturation-stage enamel. Acidification and/or associated physicochemical/electrochemical changes in ion levels in enamel fluid near the apical ameloblast membrane may reduce the transport activity of mineral transporters, which results in hypomineralization.
Collapse
Affiliation(s)
- A L J J Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | - D Lyaruu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | - R Jalali
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | - J F Medina
- Division of Gene Therapy and Hepatology, School of Medicine/CIMA, University of Navarra, and CIBERehd, Pamplona, Spain
| | - B Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | - P K DenBesten
- Department of Oral Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
20
|
Nguyen T, Toussaint J, Xue Y, Raval C, Cancel L, Russell S, Shou Y, Sedes O, Sun Y, Yakobov R, Tarbell JM, Jan KM, Rumschitzki DS. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium. Am J Physiol Heart Circ Physiol 2015; 308:H1051-64. [PMID: 25659484 PMCID: PMC4551120 DOI: 10.1152/ajpheart.00499.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/23/2015] [Indexed: 01/23/2023]
Abstract
Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics.
Collapse
Affiliation(s)
- Tieuvi Nguyen
- Department of Biomedical Engineering, City College of the City University of New York, New York, New York
| | - Jimmy Toussaint
- Department of Chemical Engineering, City College of the City University of New York, New York, New York
| | - Yan Xue
- Department of Chemical Engineering, City College of the City University of New York, New York, New York; Biology Department, City College and GSUC of The City College of New York, New York, New York; and
| | - Chirag Raval
- Department of Biomedical Engineering, City College of the City University of New York, New York, New York
| | - Limary Cancel
- Department of Biomedical Engineering, City College of the City University of New York, New York, New York
| | - Stewart Russell
- Department of Biomedical Engineering, City College of the City University of New York, New York, New York
| | - Yixin Shou
- Department of Chemical Engineering, City College of the City University of New York, New York, New York
| | - Omer Sedes
- Department of Chemical Engineering, City College of the City University of New York, New York, New York
| | - Yu Sun
- Department of Chemical Engineering, City College of the City University of New York, New York, New York
| | - Roman Yakobov
- Department of Chemical Engineering, City College of the City University of New York, New York, New York
| | - John M Tarbell
- Department of Biomedical Engineering, City College of the City University of New York, New York, New York
| | - Kung-ming Jan
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - David S Rumschitzki
- Department of Chemical Engineering, City College of the City University of New York, New York, New York; Biology Department, City College and GSUC of The City College of New York, New York, New York; and Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| |
Collapse
|
21
|
Hartmann AM, Nothwang HG. Molecular and evolutionary insights into the structural organization of cation chloride cotransporters. Front Cell Neurosci 2015; 8:470. [PMID: 25653592 PMCID: PMC4301019 DOI: 10.3389/fncel.2014.00470] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/30/2014] [Indexed: 01/26/2023] Open
Abstract
Cation chloride cotransporters (CCC) play an essential role for neuronal chloride homeostasis. K(+)-Cl(-) cotransporter (KCC2), is the principal Cl(-)-extruder, whereas Na(+)-K(+)-Cl(-) cotransporter (NKCC1), is the major Cl(-)-uptake mechanism in many neurons. As a consequence, the action of the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine strongly depend on the activity of these two transporters. Knowledge of the mechanisms involved in ion transport and regulation is thus of great importance to better understand normal and disturbed brain function. Although no overall 3-dimensional crystal structures are yet available, recent molecular and phylogenetic studies and modeling have provided new and exciting insights into structure-function relationships of CCC. Here, we will summarize our current knowledge of the gross structural organization of the proteins, their functional domains, ion binding and translocation sites, and the established role of individual amino acids (aa). A major focus will be laid on the delineation of shared and distinct organizational principles between KCC2 and NKCC1. Exploiting the richness of recently generated genome data across the tree of life, we will also explore the molecular evolution of these features.
Collapse
Affiliation(s)
- Anna-Maria Hartmann
- Systematics and Evolutionary Biology Group, Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg Oldenburg, Germany
| | - Hans Gerd Nothwang
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg Oldenburg, Germany ; Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg Oldenburg, Germany
| |
Collapse
|
22
|
Madsen SS, Bujak J, Tipsmark CK. Aquaporin expression in the Japanese medaka (Oryzias latipes) in freshwater and seawater: challenging the paradigm of intestinal water transport? ACTA ACUST UNITED AC 2014; 217:3108-21. [PMID: 24948644 DOI: 10.1242/jeb.105098] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated the salinity-dependent expression dynamics of seven aquaporin paralogs (aqp1a, aqp3a, aqp7, aqp8ab, aqp10a, aqp10b and aqp11a) in several tissues of euryhaline Japanese medaka (Oryzias latipes). All paralogs except aqp7 and aqp10a had a broad tissue distribution, and several were affected by salinity in both osmoregulatory and non-osmoregulatory tissues. In the intestine, aqp1a, aqp7, aqp8ab and aqp10a decreased upon seawater (SW) acclimation in both long-term acclimated fish and during 1-3 days of the transition period. In the gill, aqp3a was lower and aqp10a higher in SW than in freshwater (FW). In the kidney no aqps were affected by salinity. In the skin, aqp1a and aqp3a were lower in SW than in FW. In the liver, aqp8ab and aqp10a were lower in SW than in FW. Furthermore, six Na(+),K(+)-ATPase α-subunit isoform transcripts were analysed in the intestine but none showed a consistent response to salinity, suggesting that water transport is not regulated at this level. In contrast, mRNA of the Na(+),K(+),2Cl(-)-cotransporter type-2 strongly increased in the intestine in SW compared with FW fish. Using custom-made antibodies, Aqp1a, Aqp8ab and Aqp10a were localized in the apical region of enterocytes of FW fish. Apical staining intensity strongly decreased, vanished or moved to subapical regions, when fish were acclimated to SW, supporting the lower mRNA expression in SW. Western blots confirmed the decrease in Aqp1a and Aqp10a in SW. The strong decrease in aquaporin expression in the intestine of SW fish is surprising, and challenges the paradigm for transepithelial intestinal water absorption in SW fishes.
Collapse
Affiliation(s)
- Steffen S Madsen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark Department of Biological Sciences, University of Arkansas, SCEN601, Fayetteville, AR 72701, USA
| | - Joanna Bujak
- Department of Biological Sciences, University of Arkansas, SCEN601, Fayetteville, AR 72701, USA
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, SCEN601, Fayetteville, AR 72701, USA
| |
Collapse
|
23
|
Xue H, Zhang ZJ, Li XS, Sun HM, Kang Q, Wu B, Wang YX, Zou WJ, Zhou DS. Localization and vasopressin regulation of the Na +-K +-2Cl - cotransporter in the distal colonic epithelium. World J Gastroenterol 2014; 20:4692-4701. [PMID: 24782621 PMCID: PMC4000505 DOI: 10.3748/wjg.v20.i16.4692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/09/2014] [Accepted: 03/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether Na+-K+-2Cl- cotransporter (NKCC2) is expressed in the mouse distal colonic epithelia and whether it is regulated by vasopressin in the colon.
METHODS: The mRNA expression of NKCC2 in the mouse colonic mucosa was examined by reverse transcription-polymerase chain reaction. NKCC trafficking in the colon stimulated by 1-D-amino(8-D-arginine)-vasopressin (dDAVP) infusion (10 ng/mouse, intraperitoneal injection ) within 15 min, 30 min and 1h was investigated by laser confocal scanning microscopy. Total and membrane NKCC2 expression in the colonic mucosa from control and dDAVP-treated mice was detected by Western blotting. Short circuit current method was performed to determine regulation of NKCC2 by vasopressin in the colon.
RESULTS: NKCC2 was predominantly located in the apical region of the surface of the distal colonic epithelia; by comparison, a large amount of NKCC1 was distributed in the basolateral membrane of the lower crypt epithelia of the mouse distal colon. Short-term treatment with dDAVP, a V2-type receptor-specific vasopressin analog, induced NKCC2 re-distribution, i.e., NKCC2 traffics to the apical membrane after dDAVP stimulation. In contrast, no obvious NKCC1 membrane translocation was observed. Western blotting results confirmed that membrane NKCC2 had significantly higher abundance in the dDAVP-treated mouse colonic mucosa relative to that in the untreated control, which is consistent with our immunostaining data. Moreover, the short-circuit current method combined with a NKCC2 inhibitor demonstrated that NKCC2 was also activated by serosal vasopressin in isolated distal colonic mucosa.
CONCLUSION: Our results provide direct evidence that vasopressin also plays an important role in the colonic epithelia by stimulating NKCC2 trafficking to the apical membrane and inducing NKCC2-mediated ion transport.
Collapse
|
24
|
Development of a functional cell-based HTS assay for identification of NKCC1-negative modulators. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-013-0083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Lu L, Fraser JA. Functional consequences of NKCC2 splice isoforms: insights from a Xenopus oocyte model. Am J Physiol Renal Physiol 2014; 306:F710-20. [PMID: 24477685 DOI: 10.1152/ajprenal.00369.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Na(+)-K(+)-2Cl(-) cotransporter NKCC2 is exclusively expressed in the renal thick ascending limb (TAL), where it exists as three main splice isoforms, NKCC2B, NKCC2A, and NKCC2F, with the latter two predominating. NKCC2A is expressed in both medullary and cortical TAL, but NKCC2F localizes to the medullary TAL. The biochemical characteristics of the isoforms have been extensively studied by ion uptake studies in Xenopus oocytes, but the functional consequences of alternative splicing remain unclear. We developed a charge-difference model of an NKCC2-transfected oocyte. The model closely recapitulated existing data from ion-uptake experiments. This allowed the reconciliation of different apparent Km values reported by various groups, which have hitherto either been attributed to species differences or remained unexplained. Instead, simulations showed that apparent Na(+) and Cl(-) dependencies are influenced by the ambient K(+) or Rb(+) bath concentrations, which differed between experimental protocols. At steady state, under bath conditions similar to the outer medulla, NKCC2F mediated greater Na(+) reabsorption than NKCC2A. Furthermore, Na(+) reabsorption by the NKCC2F-transfected oocyte was more energy efficient, as quantified by J NKCC/J Pump. Both the increased Na(+) reabsorption and the increased efficiency were eroded as osmolarity decreased toward levels observed in the cortical TAL. This supports the hypothesis that the NKCC2F is a medullary specialization of NKCC2 and demonstrates the utility of modeling in analyzing the functional implications of ion uptake data at physiologically relevant steady states.
Collapse
Affiliation(s)
- Liangjian Lu
- Physiological Laboratory, Cambridge CB2 3EG, UK.
| | | |
Collapse
|
26
|
Carmosino M, Rizzo F, Torretta S, Procino G, Svelto M. High-throughput fluorescent-based NKCC functional assay in adherent epithelial cells. BMC Cell Biol 2013; 14:16. [PMID: 23506056 PMCID: PMC3618206 DOI: 10.1186/1471-2121-14-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The kidney-specific NKCC cotransporter isoform NKCC2 is involved in the Na(+) reabsorption in the Thich Ascending Limb (TAL) cells and in the regulation of body fluid volume. In contrast, the isoform NKCC1 represents the major pathway for Cl- entry in endothelial cells, playing a crucial role in cell volume regulation and vascular tone. Importantly, both NKCC isoforms are involved in the regulation of blood pressure and represent important potential drug targets for the treatment of hypertension. RESULTS Taking advantage of an existing Thallium (Tl(+))-based kit, we set up a Tl(+) influx-based fluorescent assay, that can accurately and rapidly measure NKCC transporter activity in adherent epithelial cells using the high-throughput Flex station device. We assessed the feasibility of this assay in the renal epithelial LLC-PK1 cells stably transfected with a previously characterized chimeric NKCC2 construct (c-NKCC2). We demonstrated that the assay is highly reproducible, offers high temporal resolution of NKCC-mediated ion flux profiles and, importantly, being a continuous assay, it offers improved sensitivity over previous endpoint NKCC functional assays. CONCLUSIONS So far the screening of NKCC transporters activity has been done by (86)Rb(+) influx assays. Indeed, a fluorescence-based high-throughput screening method for testing NKCC inhibitors would be extremely useful in the development and characterization of new anti-hypertensive drugs.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Amendola 165/A, Bari, 70126, Italy
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano, Potenza, 85100, Italy
| | - Federica Rizzo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Amendola 165/A, Bari, 70126, Italy
| | - Silvia Torretta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Amendola 165/A, Bari, 70126, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Amendola 165/A, Bari, 70126, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Amendola 165/A, Bari, 70126, Italy
| |
Collapse
|
27
|
Zaarour N, Demaretz S, Defontaine N, Zhu Y, Laghmani K. Multiple evolutionarily conserved Di-leucine like motifs in the carboxyl terminus control the anterograde trafficking of NKCC2. J Biol Chem 2012; 287:42642-42653. [PMID: 23105100 PMCID: PMC3522265 DOI: 10.1074/jbc.m112.399162] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/19/2012] [Indexed: 01/19/2023] Open
Abstract
Mutations in the apical Na-K-2Cl co-transporter, NKCC2, cause type I Bartter syndrome, a life-threatening kidney disease. Yet the mechanisms underlying the regulation of NKCC2 trafficking in renal cells are scarcely known. We previously showed that naturally occurring mutations depriving NKCC2 of its distal COOH-terminal tail and interfering with the (1081)LLV(1083) motif result in defects in the ER exit of the co-transporter. Here we show that this motif is necessary but not sufficient for anterograde trafficking of NKCC2. Indeed, we have identified two additional hydrophobic motifs, (1038)LL(1039) and (1048)LI(1049), that are required for ER exit and surface expression of the co-transporter. Double mutations of (1038)LL(1039) or (1048)LI(1049) to di-alanines disrupted glycosylation and cell surface expression of NKCC2, independently of the expression system. Pulse-chase analysis demonstrated that the absence of the terminally glycosylated form of NKCC2 was not due to reduced synthesis or increased rates of degradation of mutant co-transporters, but was instead caused by defects in maturation. Co-immunolocalization experiments revealed that (1038)AA(1039) and (1048)AA(1049) were trapped mainly in the ER as indicated by extensive co-localization with the ER marker calnexin. Remarkably, among several analyzed motifs present in the NKCC2 COOH terminus, only those required for ER exit and surface expression of NKCC2 are evolutionarily conserved in all members of the SLC12A family, a group of cation-chloride co-transporters that are targets of therapeutic drugs and mutated in several human diseases. Based upon these data, we propose abnormal anterograde trafficking as a common mechanism associated with mutations depriving NKCC2, and also all other members of the SLC12A family, of their COOH terminus.
Collapse
Affiliation(s)
- Nancy Zaarour
- From the INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France. CNRS, ERL7226, 75006 Paris, France
- the Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75006 Paris, France
| | - Sylvie Demaretz
- From the INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France. CNRS, ERL7226, 75006 Paris, France
- the Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75006 Paris, France
| | - Nadia Defontaine
- From the INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France. CNRS, ERL7226, 75006 Paris, France
- the Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75006 Paris, France
| | - Yingying Zhu
- From the INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France. CNRS, ERL7226, 75006 Paris, France
- the Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75006 Paris, France
| | - Kamel Laghmani
- From the INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France. CNRS, ERL7226, 75006 Paris, France
- the Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75006 Paris, France
| |
Collapse
|
28
|
Zaarour N, Demaretz S, Defontaine N, Zhu Y, Laghmani K. Multiple evolutionarily conserved Di-leucine like motifs in the carboxyl terminus control the anterograde trafficking of NKCC2. J Biol Chem 2012. [PMID: 23105100 DOI: 10.1074/jbc.m112.399162.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in the apical Na-K-2Cl co-transporter, NKCC2, cause type I Bartter syndrome, a life-threatening kidney disease. Yet the mechanisms underlying the regulation of NKCC2 trafficking in renal cells are scarcely known. We previously showed that naturally occurring mutations depriving NKCC2 of its distal COOH-terminal tail and interfering with the (1081)LLV(1083) motif result in defects in the ER exit of the co-transporter. Here we show that this motif is necessary but not sufficient for anterograde trafficking of NKCC2. Indeed, we have identified two additional hydrophobic motifs, (1038)LL(1039) and (1048)LI(1049), that are required for ER exit and surface expression of the co-transporter. Double mutations of (1038)LL(1039) or (1048)LI(1049) to di-alanines disrupted glycosylation and cell surface expression of NKCC2, independently of the expression system. Pulse-chase analysis demonstrated that the absence of the terminally glycosylated form of NKCC2 was not due to reduced synthesis or increased rates of degradation of mutant co-transporters, but was instead caused by defects in maturation. Co-immunolocalization experiments revealed that (1038)AA(1039) and (1048)AA(1049) were trapped mainly in the ER as indicated by extensive co-localization with the ER marker calnexin. Remarkably, among several analyzed motifs present in the NKCC2 COOH terminus, only those required for ER exit and surface expression of NKCC2 are evolutionarily conserved in all members of the SLC12A family, a group of cation-chloride co-transporters that are targets of therapeutic drugs and mutated in several human diseases. Based upon these data, we propose abnormal anterograde trafficking as a common mechanism associated with mutations depriving NKCC2, and also all other members of the SLC12A family, of their COOH terminus.
Collapse
Affiliation(s)
- Nancy Zaarour
- INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France
| | | | | | | | | |
Collapse
|
29
|
Jourdain P, Boss D, Rappaz B, Moratal C, Hernandez MC, Depeursinge C, Magistretti PJ, Marquet P. Simultaneous optical recording in multiple cells by digital holographic microscopy of chloride current associated to activation of the ligand-gated chloride channel GABA(A) receptor. PLoS One 2012; 7:e51041. [PMID: 23236427 PMCID: PMC3517575 DOI: 10.1371/journal.pone.0051041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/31/2012] [Indexed: 11/17/2022] Open
Abstract
Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.
Collapse
Affiliation(s)
- Pascal Jourdain
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel Boss
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Benjamin Rappaz
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Corinne Moratal
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Christian Depeursinge
- Institute of Applied Optics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pierre Julius Magistretti
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for Psychiatric Neuroscience Department, Lausanne University Hospital, Prilly, Switzerland
| | - Pierre Marquet
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for Psychiatric Neuroscience Department, Lausanne University Hospital, Prilly, Switzerland
| |
Collapse
|
30
|
Alshahrani S, Di Fulvio M. Enhanced insulin secretion and improved glucose tolerance in mice with homozygous inactivation of the Na(+)K(+)2Cl(-) co-transporter 1. J Endocrinol 2012; 215:59-70. [PMID: 22872759 DOI: 10.1530/joe-12-0244] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The intracellular chloride concentration ([Cl(-)](i)) in β-cells plays an important role in glucose-stimulated plasma membrane depolarisation and insulin secretion. [Cl(-)](i) is maintained above equilibrium in β-cells by the action of Cl(-) co-transporters of the solute carrier family 12 group A (Slc12a). β-Cells express Slc12a1 and Slc12a2, which are known as the bumetanide (BTD)-sensitive Na(+)-dependent K(+)2Cl(-) co-transporters 2 and 1 respectively. We show that mice lacking functional alleles of the Slc12a2 gene exhibit better fasting glycaemia, increased insulin secretion in response to glucose, and improved glucose tolerance when compared with wild-type (WT). This phenomenon correlated with increased sensitivity of β-cells to glucose in vitro and with increased β-cell mass. Further, administration of low doses of BTD to mice deficient in Slc12a2 worsened their glucose tolerance, and low concentrations of BTD directly inhibited glucose-stimulated insulin secretion from β-cells deficient in Slc12a2 but expressing intact Slc12a1 genes. Together, our results suggest for the first time that the Slc12a2 gene is not necessary for insulin secretion and that its absence increases β-cell secretory capacity. Further, impairment of insulin secretion with BTD in vivo and in vitro in islets lacking Slc12a2 genes unmasks a potential new role for Slc12a1 in β-cell physiology.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, 216 HSB, Dayton, Ohio 45435, USA
| | | |
Collapse
|
31
|
Cruz-Rangel S, Gamba G, Ramos-Mandujano G, Pasantes-Morales H. Influence of WNK3 on intracellular chloride concentration and volume regulation in HEK293 cells. Pflugers Arch 2012; 464:317-30. [PMID: 22864523 DOI: 10.1007/s00424-012-1137-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/06/2012] [Accepted: 07/07/2012] [Indexed: 01/17/2023]
Abstract
The involvement of WNK3 (with no lysine [K] kinase) in cell volume regulation evoked by anisotonic conditions was investigated in two modified stable lines of HEK293 cells: WNK3+, overexpressing WNK3 and WNK3-KD expressing a kinase inactive by a punctual mutation (D294A) at the catalytic site. This different WNK3 functional expression modified intracellular Cl(-) concentration with the following profile: WNK3+ > control > WNK3-KD cells. Stimulated with 15% hypotonic solutions, WNK3+ cells showed less efficient RVD (13.1%), lower Cl(-) efflux and decreased (94.5%) KCC activity. WNK3-KD cells showed 30.1% more efficient RVD, larger Cl(-) efflux and 5-fold higher KCC activity, increased since the isotonic condition. Volume-sensitive Cl(-) currents were similar in controls, WNK3+ cells, and WNK3-KD cells. Taurine efflux was not evoked at H15%. These results show a WNK3 influence on RVD in HEK293 cells via increasing KCC activity. Hypertonic medium induced cell shrinkage and RVI. In both WNK3+ and WNK3-KD cells, RVI and NKCC activity were increased, in WNK3+ cells presumably by enhanced NKCC phosphorylation, and in WNK3-KD cells via the [Cl(-)](i) reduction induced by the higher KCC activity in characteristic of these cells. These results support the role of WNK3 in modulation of intracellular Cl(-) concentration, in RVD, and indirectly on RVI, via its effects on KCC and NKCC activity. WNK3 in HEK293 cells is expressed as puncta at the intercellular junctions and diffusely at the cytosol, while the inactive kinase was found concentrated at the Golgi area. Cells with inactive WNK3 exhibited a marked change of cell phenotype.
Collapse
Affiliation(s)
- Silvia Cruz-Rangel
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510, Mexico, DF, Mexico
| | | | | | | |
Collapse
|
32
|
Traumatic alterations in GABA signaling disrupt hippocampal network activity in the developing brain. J Neurosci 2012; 32:4017-31. [PMID: 22442068 DOI: 10.1523/jneurosci.5139-11.2012] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Severe head trauma causes widespread neuronal shear injuries and acute seizures. Shearing of neural processes might contribute to seizures by disrupting the transmembrane ion gradients that subserve normal synaptic signaling. To test this possibility, we investigated changes in intracellular chloride concentration ([Cl(-)](i)) associated with the widespread neural shear injury induced during preparation of acute brain slices. In hippocampal slices and intact hippocampal preparations from immature CLM-1 mice, increases in [Cl(-)](i) correlated with disruption of neural processes and biomarkers of cell injury. Traumatized neurons with higher [Cl(-)](i) demonstrated excitatory GABA signaling, remained synaptically active, and facilitated network activity as assayed by the frequency of extracellular action potentials and spontaneous network-driven oscillations. These data support a more inhibitory role for GABA in the unperturbed immature brain, demonstrate the utility of the acute brain slice preparation for the study of the consequences of trauma, and provide potential mechanisms for both GABA-mediated excitatory network events in the slice preparation and early post-traumatic seizures.
Collapse
|
33
|
Carmosino M, Procino G, Svelto M. Na+-K+-2Cl- cotransporter type 2 trafficking and activity: the role of interacting proteins. Biol Cell 2012; 104:201-12. [PMID: 22211456 DOI: 10.1111/boc.201100049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 12/28/2011] [Indexed: 11/30/2022]
Abstract
The central role of Na+-K+-2Cl- cotransporter type 2 (NKCC2) in vectorial transepithelial salt reabsorption in thick ascending limb cells from Henle's loop in the kidney is evidenced by the effects of loop diuretics, the pharmacological inhibitors of NKCC2, that are amongst the most powerful antihypertensive drugs available to date. Moreover, genetic mutations of the NKCC2 encoding gene resulting in impaired apical targeting and function of NKCC2 transporter give rise to a pathological phenotype known as type I Bartter syndrome, characterised by a severe volume depletion, hypokalaemia and metabolic alkalosis with high prenatal mortality. On the contrary, excessive NKCC2 activity has been linked with inherited hypertension in humans and in rodent models. Interestingly, in animal models of hypertension, NKCC2 upregulation is achieved by post-translational mechanisms underlining the need to analyse the molecular mechanisms involved in the regulation of NKCC2 trafficking and activity to gain insights in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Bari, Italy.
| | | | | |
Collapse
|
34
|
Zeuthen T, Macaulay N. Cotransport of water by Na⁺-K⁺-2Cl⁻ cotransporters expressed in Xenopus oocytes: NKCC1 versus NKCC2. J Physiol 2012; 590:1139-54. [PMID: 22250214 DOI: 10.1113/jphysiol.2011.226316] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The NKCC1 and NKCC2 isoforms of the mammalian Na⁺–K⁺–2Cl⁻ cotransporter were expressed in Xenopus oocytes and the relation between external ion concentration and water fluxes determined.Water fluxes were determined from changes in the oocytes volume and ion fluxes from 86Rb+ uptake. Isotonic increases in external K⁺ concentration elicited abrupt inward water fluxes in NKCC1; the K⁺ dependence obeyed one-site kinetics with a K₀.₅ of 7.5 mM. The water fluxes were blocked by bumetanide, had steep temperature dependence and could proceed uphill against an osmotic gradient of 20 mosmol l⁻¹. A comparison between ion and water fluxes indicates that 460 water molecules are cotransported for each turnover of the protein. In contrast, NKCC2 did not support water fluxes.Water transport in NKCC1 induced by increases in the external osmolarity had high activation energy and was blocked by bumetanide. The osmotic effects of NaCl were smaller than those of urea and mannitol. This supports the notion of interaction between ions and water in NKCC1 and allows for an estimate of around 600 water molecules transported per turnover of the protein. Osmotic gradients did not induce water transport in NKCC2. We conclude that NKCC1 plays a direct role for water balance in most cell types, while NKCC2 fulfils its role in the kidney of transporting ions but not water. The different behaviour of NKCC1 and NKCC2 is discussed on the basis of recent molecular models based on studies of structural and molecular dynamics.
Collapse
Affiliation(s)
- Thomas Zeuthen
- The Panum Institute, Institute of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3C, DK-2200N Denmark.
| | | |
Collapse
|
35
|
Chang MH, Plata C, Kurita Y, Kato A, Hirose S, Romero MF. Euryhaline pufferfish NBCe1 differs from nonmarine species NBCe1 physiology. Am J Physiol Cell Physiol 2011; 302:C1083-95. [PMID: 22159080 DOI: 10.1152/ajpcell.00233.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Marine fish drink seawater and eliminate excess salt by active salt transport across gill and gut epithelia. Euryhaline pufferfish (Takifugu obscurus, mefugu) forms a CaCO(3) precipitate on the luminal gut surface after transitioning to seawater. NBCe1 (Slc4a4) at the basolateral membrane of intestinal epithelial cell plays a major role in transepithelial intestinal HCO(3)(-) secretion and is critical for mefugu acclimation to seawater. We assayed fugu-NBCe1 (fNBCe1) activity in the Xenopus oocyte expression system. Similar to NBCe1 found in other species, fNBCe1 is an electrogenic Na(+)/HCO(3)(-) cotransporter and sensitive to the stilbene inhibitor DIDS. However, our experiments revealed several unique and distinguishable fNBCe1 transport characteristics not found in mammalian or other teleost NBCe1-orthologs: electrogenic Li(+)/nHCO(3)(-) cotransport; HCO(3)(-) independent, DIDS-insensitive transport; and increased basal intracellular Na(+) accumulation. fNBCe1 is a voltage-dependent Na(+)/nHCO(3)(-) cotransporter that rectifies, independently from the extracellular Na(+) or HCO(3)(-) concentration, around -60 mV. Na(+) removal (0Na(+) prepulse) is necessary to produce the true HCO(3)(-)-elicited current. HCO(3)(-) addition results in huge outward currents with quick current decay. Kinetic analysis of HCO(3)(-) currents reveals that fNBCe1 has a much higher transport capacity (higher maximum current) and lower affinity (higher K(m)) than human kidney NBCe1 (hkNBCe1) does in the physiological range (membrane potential = -80 mV; [HCO(3)(-)] = 10 mM). In this state, fNBCe1 is in favor of operating as transepithelial HCO(3)(-) secretion, opposite of hkNBCe1, from blood to the luminal side. Thus, fugu-NBCe1 represents the first ortholog-based tool to study amino acid substitutions in NBCe1 and how those change ion and voltage dependence.
Collapse
Affiliation(s)
- Min-Hwang Chang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Monette MY, Forbush B. Regulatory activation is accompanied by movement in the C terminus of the Na-K-Cl cotransporter (NKCC1). J Biol Chem 2011; 287:2210-20. [PMID: 22121194 DOI: 10.1074/jbc.m111.309211] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na-K-Cl cotransporter (NKCC1) is expressed in most vertebrate cells and is crucial in the regulation of cell volume and intracellular chloride concentration. To study the structure and function of NKCC1, we tagged the transporter with cyan (CFP) and yellow (YFP) fluorescent proteins at two sites within the C terminus and measured fluorescence resonance energy transfer (FRET) in stably expressing human embryonic kidney cell lines. Both singly and doubly tagged NKCC1s were appropriately produced, trafficked to the plasma membrane, and exhibited (86)Rb transport activity. When both fluorescent probes were placed within the same C terminus of an NKCC1 transporter, we recorded an 11% FRET decrease upon activation of the transporter. This result clearly demonstrates movement of the C terminus during the regulatory response to phosphorylation of the N terminus. When we introduced CFP and YFP separately in different NKCC1 constructs and cotransfected these in HEK cells, we observed FRET between dimer pairs, and the fractional FRET decrease upon transporter activation was 46%. Quantitatively, this indicates that the largest FRET-signaled movement is between dimer pairs, an observation supported by further experiments in which the doubly tagged construct was cotransfectionally diluted with untagged NKCC1. Our results demonstrate that regulation of NKCC1 is accompanied by a large movement between two positions in the C termini of a dimeric cotransporter. We suggest that the NKCC1 C terminus is involved in transport regulation and that dimerization may play a key structural role in the regulatory process. It is anticipated that when combined with structural information, our findings will provide a model for understanding the conformational changes that bring about NKCC1 regulation.
Collapse
Affiliation(s)
- Michelle Y Monette
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
37
|
Liu W, Schreck C, Coleman RA, Wade JB, Hernandez Y, Zavilowitz B, Warth R, Kleyman TR, Satlin LM. Role of NKCC in BK channel-mediated net K⁺ secretion in the CCD. Am J Physiol Renal Physiol 2011; 301:F1088-97. [PMID: 21816753 DOI: 10.1152/ajprenal.00347.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Apical SK/ROMK and BK channels mediate baseline and flow-induced K secretion (FIKS), respectively, in the cortical collecting duct (CCD). BK channels are detected in acid-base transporting intercalated (IC) and Na-absorbing principal (PC) cells. Although the density of BK channels is greater in IC than PC, Na-K-ATPase activity in IC is considered inadequate to sustain high rates of urinary K secretion. To test the hypothesis that basolateral NKCC in the CCD contributes to BK channel-mediated FIKS, we measured net K secretion (J(K)) and Na absorption (J(Na)) at slow (∼1) and fast (∼5 nl·min(-1)·mm(-1)) flow rates in rabbit CCDs microperfused in vitro in the absence and presence of bumetanide, an inhibitor of NKCC, added to the bath. Bumetanide inhibited FIKS but not basal J(K), J(Na), or the flow-induced [Ca(2+)](i) transient necessary for BK channel activation. Addition of luminal iberiotoxin, a BK channel inhibitor, to bumetanide-treated CCDs did not further reduce J(K). Basolateral Cl removal reversibly inhibited FIKS but not basal J(K) or J(Na). Quantitative PCR performed on single CCD samples using NKCC1- and 18S-specific primers and probes and the TaqMan assay confirmed the presence of the transcript in this nephron segment. To identify the specific cell type to which basolateral NKCC is localized, we exploited the ability of NKCC to accept NH(4)(+) at its K-binding site to monitor the rate of bumetanide-sensitive cytosolic acidification after NH(4)(+) addition to the bath in CCDs loaded with the pH indicator dye BCECF. Both IC and PC were found to have a basolateral bumetanide-sensitive NH(4)(+) entry step and NKCC1-specific antibodies labeled the basolateral surfaces of both cell types in CCDs. These results suggest that BK channel-mediated FIKS is dependent on a basolateral bumetanide-sensitive, Cl-dependent transport pathway, proposed to be NKCC1, in both IC and PC in the CCD.
Collapse
Affiliation(s)
- Wen Liu
- Division of Pediatric Nephrology, Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hao S, Zhao H, Darzynkiewicz Z, Battula S, Ferreri NR. Differential regulation of NFAT5 by NKCC2 isoforms in medullary thick ascending limb (mTAL) cells. Am J Physiol Renal Physiol 2011; 300:F966-75. [PMID: 21228109 PMCID: PMC3075003 DOI: 10.1152/ajprenal.00408.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 01/07/2011] [Indexed: 01/17/2023] Open
Abstract
The effects of Na(+)-K(+)-2Cl(-) cotransporter type 2 (NKCC2) isoforms on the regulation of nuclear factor of activated T cells isoform 5 (NFAT5) were determined in mouse medullary thick ascending limb (mTAL) cells exposed to high NaCl concentration. Primary cultures of mTAL cells and freshly isolated mTAL tubules, both derived from the outer medulla (outer stripe>inner stripe), express NKCC2 isoforms A and F. The relative expression of NKCC2A mRNA was approximately twofold greater than NKCC2F in these preparations. The abundance of NKCC2A mRNA, but not NKCC2F mRNA, increased approximately twofold when mTAL cells were exposed for 2 h to a change in osmolality from 300 to 500 mosmol/kgH₂O, produced with NaCl. Total NKCC2 protein expression also increased. Moreover, a 2.5-fold increase in NFAT5 mRNA accumulation was observed after cells were exposed to 500 mosmol/kgH₂O for 4 h. Laser-scanning cytometry detected a twofold increase in endogenous NFAT5 protein expression in response to high NaCl concentration. Pretreatment with the loop diuretic bumetanide dramatically reduced transcriptional activity of the NFAT5-specific reporter construct TonE-Luc in mTAL cells exposed to high NaCl. Transient transfection of mTAL cells with shRNA vectors targeting NKCC2A prevented increases in NFAT5 mRNA abundance and protein expression and inhibited NFAT5 transcriptional activity in response to hypertonic stress. Silencing of NKCC2F mRNA did not affect NFAT5 mRNA accumulation but partially inhibited NFAT5 transcriptional activity. These findings suggest that NKCC2A and NKCC2F exhibit differential effects on NFAT5 expression and transcriptional activity in response to hypertonicity produced by high NaCl concentration.
Collapse
Affiliation(s)
- Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | |
Collapse
|
39
|
Monette MY, Rinehart J, Lifton RP, Forbush B. Rare mutations in the human Na-K-Cl cotransporter (NKCC2) associated with lower blood pressure exhibit impaired processing and transport function. Am J Physiol Renal Physiol 2011; 300:F840-7. [PMID: 21209010 PMCID: PMC3074999 DOI: 10.1152/ajprenal.00552.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/29/2010] [Indexed: 01/12/2023] Open
Abstract
The Na-K-Cl cotransporter (NKCC2) is the major salt transport pathway in the thick ascending limb of Henle's loop and is part of the molecular mechanism for blood pressure regulation. Recent screening of ∼3,000 members of the Framingham Heart Study identified nine rare independent mutations in the gene encoding NKCC2 (SLC12A1) associated with clinically reduced blood pressure and protection from hypertension (Ji WZ, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State M, Levy D, Lifton RP. Nat Genet 40: 592-599, 2008). To investigate their functional consequences, we introduced the nine mutations in human NKCC2A and examined protein function, expression, localization, regulation, and ion transport kinetics using heterologous expression in Xenopus laevis oocytes and HEK-293 cells. When expressed in oocytes, four of the mutants (T235M, R302W, L505V, and P569H) exhibited reduced transport function compared with wild-type. In HEK-293 cells, the same four mutants exhibited reduced function, and in addition N399S and P1083A had significantly lower activity than wild-type. The two most functionally impaired mutants (R302W and L505V) exhibited dramatically diminished production of complex-glycosylated protein and a decrease in or absence of plasma membrane localization, indicative of a processing defect. All of the functional human (h) NKCC2A variants were regulated by changes in oocyte volume and intracellular chloride in HEK cells, but P254A and N399S exhibited a lower constitutive activity in HEK cells. The P569H mutant exhibited a 50% reduction in sodium affinity compared with wild-type, predicting lower transport activity at lower intratubular salt concentrations, while the P254A mutant exhibited a 35% increase in rubidium affinity. We conclude that defects in NKCC2 processing, transport turnover rate, regulation, and ion affinity contribute to impaired transport function in six of the nine identified mutants, providing support for the predictive approach of Ji et al. to identify functionally important residues by sequence conservation. Such mutations in hNKCC2A are likely to reduce renal salt reabsorption, providing a mechanism for lower blood pressure.
Collapse
Affiliation(s)
- Michelle Y Monette
- Dept. of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Yale Univ. School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
40
|
Hannemann A, Flatman PW. Phosphorylation and transport in the Na-K-2Cl cotransporters, NKCC1 and NKCC2A, compared in HEK-293 cells. PLoS One 2011; 6:e17992. [PMID: 21464992 PMCID: PMC3064583 DOI: 10.1371/journal.pone.0017992] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 02/17/2011] [Indexed: 11/25/2022] Open
Abstract
Na-K-2Cl cotransporters help determine cell composition and volume. NKCC1 is widely distributed whilst NKCC2 is only found in the kidney where it plays a vital role reabsorbing 20% of filtered NaCl. NKCC2 regulation is poorly understood because of its restricted distribution and difficulties with its expression in mammalian cell cultures. Here we compare phosphorylation of the N-termini of the cotransporters, measured with phospho-specific antibodies, with bumetanide-sensitive transport of K+ (86Rb+) (activity) in HEK-293 cells stably expressing fNKCC1 or fNKCC2A which were cloned from ferret kidney. Activities of transfected transporters were distinguished from those of endogenous ones by working at 37°C. fNKCC1 and fNKCC2A activities were highest after pre-incubation of cells in hypotonic low-[Cl−] media to reduce cell [Cl−] and volume during flux measurement. Phosphorylation of both transporters more than doubled. Pre-incubation with ouabain also strongly stimulated fNKCC1 and fNKCC2A and substantially increased phosphorylation, whereas pre-incubation in Na+-free media maximally stimulated fNKCC1 and doubled its phosphorylation, but inhibited fNKCC2A, with a small increase in its phosphorylation. Kinase inhibitors halved phosphorylation and activity of both transporters whereas inhibition of phosphatases with calyculin A strongly increased phosphorylation of both transporters but only slightly stimulated fNKCC1 and inhibited fNCCC2A. Thus kinase inhibition reduced phosphorylation and transport, and transport stimulation was only seen when phosphorylation increased, but transport did not always increase with phosphorylation. This suggests phosphorylation of the N-termini determines the transporters' potential capacity to move ions, but final activity also depends on other factors. Transport cannot be reliably inferred solely using phospho-specific antibodies on whole-cell lysates.
Collapse
Affiliation(s)
- Anke Hannemann
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Peter W. Flatman
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Hamann S, Herrera-Perez JJ, Zeuthen T, Alvarez-Leefmans FJ. Cotransport of water by the Na+-K+-2Cl(-) cotransporter NKCC1 in mammalian epithelial cells. J Physiol 2011; 588:4089-101. [PMID: 20819947 DOI: 10.1113/jphysiol.2010.194738] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Water transport by the Na+-K+-2Cl(-) cotransporter (NKCC1) was studied in confluent cultures of pigmented epithelial (PE) cells from the ciliary body of the fetal human eye. Interdependence among water, Na+ and Cl(-) fluxes mediated by NKCC1 was inferred from changes in cell water volume, monitored by intracellular self-quenching of the fluorescent dye calcein. Isosmotic removal of external Cl(-) or Na+ caused a rapid efflux of water from the cells, which was inhibited by bumetanide (10 μm). When returned to the control solution there was a rapid water influx that required the simultaneous presence of external Na+ and Cl(-). The water influx could proceed uphill, against a transmembrane osmotic gradient, suggesting that energy contained in the ion fluxes can be transferred to the water flux. The influx of water induced by changes in external [Cl(-)] saturated in a sigmoidal fashion with a Km of 60 mm, while that induced by changes in external [Na+] followed first order kinetics with a Km of about 40 mm. These parameters are consistent with ion transport mediated by NKCC1. Our findings support a previous investigation, in which we showed water transport by NKCC1 to be a result of a balance between ionic and osmotic gradients. The coupling between salt and water transport in NKCC1 represents a novel aspect of cellular water homeostasis where cells can change their volume independently of the direction of an osmotic gradient across the membrane. This has relevance for both epithelial and symmetrical cells.
Collapse
Affiliation(s)
- Steffen Hamann
- Nordic Centre for Water Imbalance Related Disorders, Institute of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
42
|
Leiserson WM, Forbush B, Keshishian H. Drosophila glia use a conserved cotransporter mechanism to regulate extracellular volume. Glia 2011; 59:320-32. [PMID: 21125654 PMCID: PMC3005002 DOI: 10.1002/glia.21103] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The nervous system is protected by blood barriers that use multiple systems to control extracellular solute composition, osmotic pressure, and fluid volume. In the human nervous system, misregulation of the extracellular volume poses serious health threats. Here, we show that the glial cells that form the Drosophila blood-nerve barrier have a conserved molecular mechanism that regulates extracellular volume: the Serine/Threonine kinase Fray, which we previously showed is an ortholog of mammalian PASK/SPAK; and the Na-K-Cl cotransporter Ncc69, which we show is an ortholog of human NKCC1. In mammals, PASK/SPAK binds to NKCC1 and regulates its activity. In Drosophila, larvae mutant for Ncc69 develop a peripheral neuropathy, where fluid accumulates between glia and axons. The accumulation of fluid has no detectable impact on action potential conduction, suggesting that the role of Ncc69 is to maintain volume or osmotic homeostasis. Drosophila Ncc69 has kinetics similar to human NKCC1, and NKCC1 can rescue Ncc69, suggesting that they function in a conserved physiological mechanism. We show that fray and Ncc69 are coexpressed in nerve glia, interact in a yeast-two-hybrid assay, and have an essentially identical bulging nerve phenotype. We propose that normally functioning nerves generate extracellular solutes that are removed by Ncc69 under the control of Fray. This mechanism may perform a similar role in humans, given that NKCC1 is expressed at the blood-brain barrier.
Collapse
Affiliation(s)
- William M Leiserson
- Molecular, Cellular, and Developmental Biology Department, Yale University, New Haven, Connecticut 06520-8103, USA.
| | | | | |
Collapse
|
43
|
Carmosino M, Rizzo F, Procino G, Basco D, Valenti G, Forbush B, Schaeren-Wiemers N, Caplan MJ, Svelto M. MAL/VIP17, a new player in the regulation of NKCC2 in the kidney. Mol Biol Cell 2010; 21:3985-97. [PMID: 20861303 PMCID: PMC2982131 DOI: 10.1091/mbc.e10-05-0456] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The renal-specific Na+-K+-2Cl- cotransporter (NKCC2) is the major salt transport pathway of the apical membrane of the mammalian thick ascending limb of Henle's loop. Here, we analyze the role of the tetraspan protein myelin and lymphocytes-associated protein (MAL)/VIP17 in the regulation of NKCC2. We demonstrated that 1) NKCC2 and MAL/VIP17 colocalize and coimmunoprecipitate in Lilly Laboratories cell porcine kidney cells (LLC-PK1) as well as in rat kidney medullae, 2) a 150-amino acid stretch of NKCC2 C-terminal tail is involved in the interaction with MAL/VIP17, 3) MAL/VIP17 increases the cell surface retention of NKCC2 by attenuating its internalization, and 4) this coincides with an increase in cotransporter phosphorylation. Interestingly, overexpression of MAL/VIP17 in the kidney of transgenic mice results in cysts formation in distal nephron structures consistent with the hypothesis that MAL/VIP17 plays an important role in apical sorting or in maintaining the stability of the apical membrane. The NKCC2 expressed in these mice was highly glycosylated and phosphorylated, suggesting that MAL/VIP17 also is involved in the stabilization of NKCC2 at the apical membrane in vivo. Thus, the involvement of MAL/VIP17 in the activation and surface expression of NKCC2 could play an important role in the regulated absorption of Na+ and Cl- in the kidney.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dzhala VI, Kuchibhotla KV, Glykys JC, Kahle KT, Swiercz WB, Feng G, Kuner T, Augustine GJ, Bacskai BJ, Staley KJ. Progressive NKCC1-dependent neuronal chloride accumulation during neonatal seizures. J Neurosci 2010; 30:11745-61. [PMID: 20810895 PMCID: PMC3070296 DOI: 10.1523/jneurosci.1769-10.2010] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 11/21/2022] Open
Abstract
Seizures induce excitatory shifts in the reversal potential for GABA(A)-receptor-mediated responses, which may contribute to the intractability of electro-encephalographic seizures and preclude the efficacy of widely used GABAergic anticonvulsants such as phenobarbital. We now report that, in intact hippocampi prepared from neonatal rats and transgenic mice expressing Clomeleon, recurrent seizures progressively increase the intracellular chloride concentration ([Cl(-)](i)) assayed by Clomeleon imaging and invert the net effect of GABA(A) receptor activation from inhibition to excitation assayed by the frequency of action potentials and intracellular Ca(2+) transients. These changes correlate with increasing frequency of seizure-like events and reduction in phenobarbital efficacy. The Na(+)-K(+)-2Cl(-) (NKCC1) cotransporter blocker bumetanide inhibited seizure-induced neuronal Cl(-) accumulation and the consequent facilitation of recurrent seizures. Our results demonstrate a novel mechanism by which seizure activity leads to [Cl(-)](i) accumulation, thereby increasing the probability of subsequent seizures. This provides a potential mechanism for the early crescendo phase of neonatal seizures.
Collapse
Affiliation(s)
| | - Kishore V. Kuchibhotla
- Departments of Neurology and
- Program in Biophysics, Harvard University, Cambridge, Massachusetts 02138, and
| | | | - Kristopher T. Kahle
- Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | | | - Guoping Feng
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Thomas Kuner
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - George J. Augustine
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
45
|
Staley KJ. Wrong-way chloride transport: is it a treatable cause of some intractable seizures? Epilepsy Curr 2010; 6:124-7. [PMID: 17260033 PMCID: PMC1783434 DOI: 10.1111/j.1535-7511.2006.00119.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite decades of research and a half dozen new anticonvulsant agents, some types of seizures are as untreatable now as they were in the days of bromides. These treatment-resistant seizures suggest that some of the assumptions about anticonvulsant mechanisms may need revision. This review will focus on one of the bedrock assumptions of epileptology that the neurotransmitter GABA inhibits neuronal activity, and therefore, agents that increase GABA activity should increase inhibition and consequently decrease the abnormal neuronal activity that occurs during a seizure.
Collapse
Affiliation(s)
- Kevin J Staley
- Pediatrics and Neurology, The Children's Hospital, University of Colorado, USA
| |
Collapse
|
46
|
Zhang D, Gopalakrishnan SM, Freiberg G, Surowy CS. A thallium transport FLIPR-based assay for the identification of KCC2-positive modulators. JOURNAL OF BIOMOLECULAR SCREENING 2010; 15:177-84. [PMID: 20086212 DOI: 10.1177/1087057109355708] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
KCC2, potassium chloride cotransporter 2, is expressed exclusively in the CNS (on inhibitory neurons) and plays a major role in maintaining appropriately low intracellular chloride levels that ensure inhibitory actions of GABA(A) and glycine receptors. As such, it plays a pivotal role in inhibitory mechanisms that control neuronal excitation in the CNS. KCC2 downregulation has been implicated in various excitatory disorders, such as epilepsy and neuropathic pain. Positive modulators of KCC2 expression or activity may thus provide effective therapy for these disorders. However, the identification of such agents is hindered by the lack of a high-throughput screening method. Here the authors report the development of a fluorescence-based thallium (Tl(+)) transport assay using a Fluorometric Imaging Plate Reader (FLIPR), in which KCC2 activity is assessed by measuring the initial rate of KCC2-mediated Tl(+) transport/influx. The authors demonstrate Tl(+)/Cl(-) cotransport by KCC2, which exhibits a high apparent affinity for Tl(+) and dependency on the presence of the Cl(-) ion. Pharmacological studies revealed anticipated effects and potencies of known KCC-positive (NEM, staurosporine) and KCC-negative (DIOA, furosemide) modulators. The authors demonstrate that the assay is robust and reproducible and can be employed in high-throughput screening for positive modulators of KCC2 as potential therapeutic agents.
Collapse
Affiliation(s)
- Di Zhang
- Neuroscience Research and Advanced Technology, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA.
| | | | | | | |
Collapse
|
47
|
Hannemann A, Christie JK, Flatman PW. Functional expression of the Na-K-2Cl cotransporter NKCC2 in mammalian cells fails to confirm the dominant-negative effect of the AF splice variant. J Biol Chem 2009; 284:35348-58. [PMID: 19854835 PMCID: PMC2790964 DOI: 10.1074/jbc.m109.060004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/06/2009] [Indexed: 11/25/2022] Open
Abstract
The renal bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) is the major salt transport pathway in the apical membrane of the mammalian thick ascending limb. It is differentially spliced and the three major variants (A, B, and F) differ in their localization and transport characteristics. Most knowledge about its regulation comes from experiments in Xenopus oocytes as NKCC2 proved difficult to functionally express in a mammalian system. Here we report the cloning and functional expression of untagged and unmodified versions of the major splice variants from ferret kidney (fNKCC2A, -B, and -F) in human embryonic kidney (HEK) 293 cells. Many NKCC2 antibodies used in this study detected high molecular weight forms of the transfected proteins, probably NKCC2 dimers, but not the monomers. Interestingly, monomers were strongly detected by phosphospecific antibodies directed against phosphopeptides in the regulatory N terminus. Bumetanide-sensitive (86)Rb uptake was significantly higher in transfected HEK-293 cells and could be stimulated by incubating cells in a medium containing a low chloride concentration prior the uptake measurements. fNKCC2 was less sensitive to the reduction in chloride concentration than NKCC1. Using HEK-293 cells stably expressing fNKCC2A we also show that co-expression of variant NKCC2AF does not have the dominant-negative effect on NKCC2A activity that was seen in Xenopus oocytes, nor is it trafficked to the cell surface. In addition, fNKCC2AF is neither complex glycosylated nor phosphorylated in its N terminus regulatory region like other variants.
Collapse
Affiliation(s)
- Anke Hannemann
- From the Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Jenny K. Christie
- From the Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Peter W. Flatman
- From the Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, United Kingdom
| |
Collapse
|
48
|
Sun Q, Tian E, Turner RJ, Ten Hagen KG. Developmental and functional studies of the SLC12 gene family members from Drosophila melanogaster. Am J Physiol Cell Physiol 2009; 298:C26-37. [PMID: 19828839 DOI: 10.1152/ajpcell.00376.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The electroneutral cation-chloride cotransporter gene family, SLC12, contains nine members in vertebrates. These include seven sodium and/or potassium-coupled chloride transporters and two membrane proteins of unknown function. Although SLC12 family members have been identified in a number of lower species, the functional properties of these proteins are unknown. There are five SLC12 homologues in Drosophila melanogaster, including at least one member on each of the four main branches of the vertebrate phylogenetic tree. We have employed in situ hybridization to study the expression patterns of the Drosophila SLC12 proteins during embryonic development. Our studies indicate that all five members of this family are expressed during early embryogenesis (stages 1-6), but that spatial and temporal expression patterns become more refined as development proceeds. Expression during late embryogenesis was seen predominantly in the ventral nerve cord, salivary gland, gut, and anal pad. In parallel studies, we have carried out transport assays on each of the five Drosophila homologues, expressed as recombinant proteins in the cultured insect cell line High Five. Under our experimental conditions, we found that only one of these proteins, CG4357, transported the potassium congener (86)Rb. Additional experiments established that rubidium transport via CG4357 was saturable (K(m) = 0.29 +/- 0.05 mM), sodium-dependent (half-saturation constant = 53 +/- 11 mM), chloride-dependent (half-saturation constant = 48 +/- 5 mM), and potently inhibited by bumetanide (inhibitor constant = 1.17 +/- 0.08 muM), a specific inhibitor of Na(+)-K(+)-2Cl(-) cotransporters. Taken together, our results provide strong evidence that CG4357 is an insect ortholog of the vertebrate Na(+)-K(+)-2Cl(-) cotransporters.
Collapse
Affiliation(s)
- Qifei Sun
- Bldg. 30, Rm. 426, 30 Convent Dr. MSC 4370, National Institutes of Health, Bethesda, MD 20892-4370, USA
| | | | | | | |
Collapse
|
49
|
Hartmann AM, Blaesse P, Kranz T, Wenz M, Schindler J, Kaila K, Friauf E, Nothwang HG. Opposite effect of membrane raft perturbation on transport activity of KCC2 and NKCC1. J Neurochem 2009; 111:321-31. [PMID: 19686239 DOI: 10.1111/j.1471-4159.2009.06343.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the majority of neurons, the intracellular Cl(-) concentration is set by the activity of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) and the K(+)-Cl(-) cotransporter (KCC2). Here, we investigated the cotransporters' functional dependence on membrane rafts. In the mature rat brain, NKCC1 was mainly insoluble in Brij 58 and co-distributed with the membrane raft marker flotillin-1 in sucrose density flotation experiments. In contrast, KCC2 was found in the insoluble fraction as well as in the soluble fraction, where it co-distributed with the non-raft marker transferrin receptor. Both KCC2 populations displayed a mature glycosylation pattern. Disrupting membrane rafts with methyl-beta-cyclodextrin (MbetaCD) increased the solubility of KCC2, yet had no effect on NKCC1. In human embryonic kidney-293 cells, KCC2 was strongly activated by a combined treatment with MbetaCD and sphingomyelinase, while NKCC1 was inhibited. These data indicate that membrane rafts render KCC2 inactive and NKCC1 active. In agreement with this, inactive KCC2 of the perinatal rat brainstem largely partitioned into membrane rafts. In addition, the exposure of the transporters to MbetaCD and sphingomyelinase showed that the two transporters differentially interact with the membrane rafts. Taken together, membrane raft association appears to represent a mechanism for co-ordinated regulation of chloride transporter function.
Collapse
Affiliation(s)
- Anna-Maria Hartmann
- Department of Neurogenetics, Institute for Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zaarour N, Demaretz S, Defontaine N, Mordasini D, Laghmani K. A highly conserved motif at the COOH terminus dictates endoplasmic reticulum exit and cell surface expression of NKCC2. J Biol Chem 2009; 284:21752-21764. [PMID: 19535327 PMCID: PMC2755897 DOI: 10.1074/jbc.m109.000679] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/14/2009] [Indexed: 02/01/2023] Open
Abstract
Mutations in the apically located Na(+)-K(+)-2Cl(-) co-transporter, NKCC2, lead to type I Bartter syndrome, a life-threatening kidney disorder, yet the mechanisms underlying the regulation of mutated NKCC2 proteins in renal cells have not been investigated. Here, we identified a trihydrophobic motif in the distal COOH terminus of NKCC2 that was required for endoplasmic reticulum (ER) exit and surface expression of the co-transporter. Indeed, microscopic confocal imaging showed that a naturally occurring mutation depriving NKCC2 of its distal COOH-terminal region results in the absence of cell surface expression. Biotinylation assays revealed that lack of cell surface expression was associated with abolition of mature complex-glycosylated NKCC2. Pulse-chase analysis demonstrated that the absence of mature protein was not caused by reduced synthesis or increased rates of degradation of mutant co-transporters. Co-immunolocalization experiments revealed that these mutants co-localized with the ER marker protein-disulfide isomerase, demonstrating that they are retained in the ER. Cell treatment with proteasome or lysosome inhibitors failed to restore the loss of complex-glycosylated NKCC2, further eliminating the possibility that mutant co-transporters were processed by the Golgi apparatus. Serial truncation of the NKCC2 COOH terminus, followed by site-directed mutagenesis, identified hydrophobic residues (1081)LLV(1083) as an ER exit signal necessary for maturation of NKCC2. Mutation of (1081)LLV(1083) to AAA within the context of the full-length protein prevented NKCC2 ER exit independently of the expression system. This trihydrophobic motif is highly conserved in the COOH-terminal tails of all members of the cation-chloride co-transporter family, and thus may function as a common motif mediating their transport from the ER to the cell surface. Taken together, these data are consistent with a model whereby naturally occurring premature terminations that interfere with the LLV motif compromise co-transporter surface delivery through defective trafficking.
Collapse
Affiliation(s)
- Nancy Zaarour
- From INSERM, UMRS 872-Equipe 3-ERL7226, 75006 Paris
- IFR58, Institut des Cordeliers, 75006 Paris
- Universite Paris-Descartes, 75005 Paris, and
- Universite Pierre et Marie Curie, 75006 Paris, France
| | - Sylvie Demaretz
- From INSERM, UMRS 872-Equipe 3-ERL7226, 75006 Paris
- IFR58, Institut des Cordeliers, 75006 Paris
- Universite Paris-Descartes, 75005 Paris, and
- Universite Pierre et Marie Curie, 75006 Paris, France
| | - Nadia Defontaine
- From INSERM, UMRS 872-Equipe 3-ERL7226, 75006 Paris
- IFR58, Institut des Cordeliers, 75006 Paris
- Universite Paris-Descartes, 75005 Paris, and
- Universite Pierre et Marie Curie, 75006 Paris, France
| | - David Mordasini
- From INSERM, UMRS 872-Equipe 3-ERL7226, 75006 Paris
- IFR58, Institut des Cordeliers, 75006 Paris
- Universite Paris-Descartes, 75005 Paris, and
- Universite Pierre et Marie Curie, 75006 Paris, France
| | - Kamel Laghmani
- From INSERM, UMRS 872-Equipe 3-ERL7226, 75006 Paris
- IFR58, Institut des Cordeliers, 75006 Paris
- Universite Paris-Descartes, 75005 Paris, and
- Universite Pierre et Marie Curie, 75006 Paris, France
| |
Collapse
|