1
|
Hua Z, Zhao Y, Zhang M, Wang Y, Feng H, Wei X, Wu X, Chen W, Xue Y. Research progress on intervertebral disc repair strategies and mechanisms based on hydrogel. J Biomater Appl 2025; 39:1121-1142. [PMID: 39929142 DOI: 10.1177/08853282251320227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Intervertebral disc degeneration (IDD) arises from a complex interplay of genetic, environmental, and age-related factors, culminating in a spectrum of low back pain (LBP) disorders that exert significant societal and economic impact. The present therapeutic landscape for IDD poses formidable clinical hurdles, necessitating the exploration of innovative treatment modalities. The hydrogel, as a biomaterial, exhibits superior biocompatibility compared to other biomaterials such as bioceramics and bio-metal materials. It also demonstrates mechanical properties closer to those of natural intervertebral discs (IVDs) and favorable biodegradability conducive to IVD regeneration. Therefore, it has emerged as a promising candidate material in the field of regenerative medicine and tissue engineering for treating IDD. Hydrogels have made significant strides in the field of IDD treatment. Particularly, injectable hydrogels not only provide mechanical support but also enable controlled release of bioactive molecules, playing a crucial role in mitigating inflammation and promoting extracellular matrix (ECM) regeneration. Furthermore, the ability of injectable hydrogels to achieve minimally invasive implantation helps minimize tissue damage. This article initially provides a concise exposition of the structure and function of IVD, the progression of IDD, and delineates extant clinical interventions for IDD. Subsequently, it categorizes hydrogels, encapsulates recent advancements in biomaterials and cellular therapies, and delves into the mechanisms through which hydrogels foster disc regeneration. Ultimately, the article deliberates on the prospects and challenges attendant to hydrogel therapy for IDD.
Collapse
Affiliation(s)
- Zekun Hua
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yinuo Zhao
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Meng Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanqin Wang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Haoyu Feng
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaogang Wu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Weiyi Chen
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanru Xue
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
de Paula MC, Carvalho SG, Silvestre ALP, Dos Santos AM, Meneguin AB, Chorilli M. The role of hyaluronic acid in the design and functionalization of nanoparticles for the treatment of colorectal cancer. Carbohydr Polym 2023; 320:121257. [PMID: 37659830 DOI: 10.1016/j.carbpol.2023.121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 09/04/2023]
Abstract
Despite advances in new approaches for colorectal cancer (CRC) therapy, intravenous chemotherapy remains one of the main treatment options; however, it has limitations associated with off-target toxicity, tumor cell resistance due to molecular complexity and CRC heterogeneity, which lead to tumor recurrence and metastasis. In oncology, nanoparticle-based strategies have been designed to avoid systemic toxicity and increase drug accumulation at tumor sites. Hyaluronic acid (HA) has obtained significant attention thanks to its ability to target nanoparticles (NPs) to CRC cells through binding to cluster-determinant-44 (CD44) and hyaluronan-mediated motility (RHAMM) receptors, along with its efficient biological properties of mucoadhesion. This review proposes to discuss the state of the art in HA-based nanoparticulate systems intended for localized treatment of CRC, highlighting the importance of the mucoadhesion and active targeting provided by this polymer. In addition, an overview of CRC will be provided, emphasizing the importance of CD44 and RHAMM receptors in this type of cancer and the current challenges related to this disease, and important concepts about the physicochemical and biological properties of HA will also be addressed. Finally, this review aims to contribute to the advancement of accuracy treatment of CRC by the design of new platforms based on by HA.
Collapse
Affiliation(s)
- Mariana Carlomagno de Paula
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Suzana Gonçalves Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Aline Martins Dos Santos
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| |
Collapse
|
3
|
Thrash HL, Pendergast AM. Multi-Functional Regulation by YAP/TAZ Signaling Networks in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:4701. [PMID: 37835395 PMCID: PMC10572014 DOI: 10.3390/cancers15194701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The Hippo pathway transcriptional co-activators, YES-associated protein (YAP) and Transcriptional Co-Activator with PDZ Binding Motif (TAZ), have both been linked to tumor progression and metastasis. These two proteins possess overlapping and distinct functions, and their activities lead to the expression of genes involved in multiple cellular processes, including cell proliferation, survival, and migration. The dysregulation of YAP/TAZ-dependent cellular processes can result in altered tumor growth and metastasis. In addition to their well-documented roles in the regulation of cancer cell growth, survival, migration, and invasion, the YAP/TAZ-dependent signaling pathways have been more recently implicated in cellular processes that promote metastasis and therapy resistance in several solid tumor types. This review highlights the role of YAP/TAZ signaling networks in the regulation of tumor cell plasticity mediated by hybrid and reversible epithelial-mesenchymal transition (EMT) states, and the promotion of cancer stem cell/progenitor phenotypes. Mechanistically, YAP and TAZ regulate these cellular processes by targeting transcriptional networks. In this review, we detail recently uncovered mechanisms whereby YAP and TAZ mediate tumor growth, metastasis, and therapy resistance, and discuss new therapeutic strategies to target YAP/TAZ function in various solid tumor types. Understanding the distinct and overlapping roles of YAP and TAZ in multiple cellular processes that promote tumor progression to metastasis is expected to enable the identification of effective therapies to treat solid tumors through the hyper-activation of YAP and TAZ.
Collapse
Affiliation(s)
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
4
|
Pibuel MA, Poodts D, Molinari Y, Díaz M, Amoia S, Byrne A, Hajos S, Lompardía S, Franco P. The importance of RHAMM in the normal brain and gliomas: physiological and pathological roles. Br J Cancer 2023; 128:12-20. [PMID: 36207608 PMCID: PMC9814267 DOI: 10.1038/s41416-022-01999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 01/27/2023] Open
Abstract
Although the literature about the functions of hyaluronan and the CD44 receptor in the brain and brain tumours is extensive, the role of the receptor for hyaluronan-mediated motility (RHAMM) in neural stem cells and gliomas remain poorly explored. RHAMM is considered a multifunctional receptor which performs various biological functions in several normal tissues and plays a significant role in cancer development and progression. RHAMM was first identified for its ability to bind to hyaluronate, the extracellular matrix component associated with cell motility control. Nevertheless, additional functions of this protein imply the interaction with different partners or cell structures to regulate other biological processes, such as mitotic-spindle assembly, gene expression regulation, cell-cycle control and proliferation. In this review, we summarise the role of RHAMM in normal brain development and the adult brain, focusing on the neural stem and progenitor cells, and discuss the current knowledge on RHAMM involvement in glioblastoma progression, the most aggressive glioma of the central nervous system. Understanding the implications of RHAMM in the brain could be useful to design new therapeutic approaches to improve the prognosis and quality of life of glioblastoma patients.
Collapse
Affiliation(s)
- Matías A Pibuel
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina.
| | - Daniela Poodts
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Yamila Molinari
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Química Biológica. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Capital Federal (1113), Buenos Aires, Argentina
| | - Sofía Amoia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Agustín Byrne
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Química Biológica. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Silvia Hajos
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Silvina Lompardía
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Paula Franco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Química Biológica. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| |
Collapse
|
5
|
Hinneh JA, Gillis JL, Moore NL, Butler LM, Centenera MM. The role of RHAMM in cancer: Exposing novel therapeutic vulnerabilities. Front Oncol 2022; 12:982231. [PMID: 36033439 PMCID: PMC9400171 DOI: 10.3389/fonc.2022.982231] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor for hyaluronic acid-mediated motility (RHAMM) is a cell surface receptor for hyaluronic acid that is critical for cell migration and a cell cycle protein involved in microtubule assembly and stability. These functions of RHAMM are required for cellular stress responses and cell cycle progression but are also exploited by tumor cells for malignant progression and metastasis. RHAMM is often overexpressed in tumors and is an independent adverse prognostic factor for a number of cancers such as breast and prostate. Interestingly, pharmacological or genetic inhibition of RHAMM in vitro and in vivo ablates tumor invasiveness and metastatic spread, implicating RHAMM as a potential therapeutic target to restrict tumor growth and improve patient survival. However, RHAMM’s pro-tumor activity is dependent on its subcellular distribution, which complicates the design of RHAMM-directed therapies. An alternative approach is to identify downstream signaling pathways that mediate RHAMM-promoted tumor aggressiveness. Herein, we discuss the pro-tumoral roles of RHAMM and elucidate the corresponding regulators and signaling pathways mediating RHAMM downstream events, with a specific focus on strategies to target the RHAMM signaling network in cancer cells.
Collapse
Affiliation(s)
- Josephine A. Hinneh
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Joanna L. Gillis
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Nicole L. Moore
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Lisa M. Butler, ; Margaret M. Centenera,
| | - Margaret M. Centenera
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Lisa M. Butler, ; Margaret M. Centenera,
| |
Collapse
|
6
|
Carvalho AM, Soares da Costa D, Reis RL, Pashkuleva I. RHAMM expression tunes the response of breast cancer cell lines to hyaluronan. Acta Biomater 2022; 146:187-196. [PMID: 35577044 DOI: 10.1016/j.actbio.2022.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/12/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023]
Abstract
Hyaluronan (HA) synthesis and degradation are altered during carcinogenesis leading to an increased HA content in the tumor microenvironment, which correlates with poor prognosis and treatment outcomes. The main HA receptors, CD44 and RHAMM, are also overexpressed in tumors where they activate anti-apoptotic, proliferative, invasive, and migration signaling pathways. Herein, we used a unidirectional HA gradient to investigate in a high-throughput fashion the bi-directional communication between HA and breast cancer cell lines with different surface expression of CD44 and RHAMM. We found that the expression of CD44 and RHAMM depends on the HA density: the expression of these receptors is promoted at higher HA density and RHAMM is more sensitive to these changes when compared to CD44. Blocking either CD44 or RHAMM revealed different functions on binding and recognizing HA and a compensatory expression between these two receptors that maintains protumorigenic effectors such as cortactin. STATEMENT OF SIGNIFICANCE: We show that the expression of main hyaluronan (HA) receptors CD44 and RHAMM is enhanced in a HA concentration-dependent manner. Blocking activity experiments with either RHAMM or CD44 reveal the redundancy of these two receptors towards HA recognition and activation/recruitment of protumorigenic molecular effector, cortactin. These experiments also demonstrate that cells with overexpressed RHAMM are more sensitive to HA density than CD44 positive cells. The reported results are important for the development of therapies that target the hyaluronan signaling in the tumor microenvironment.
Collapse
Affiliation(s)
- Ana M Carvalho
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal.
| |
Collapse
|
7
|
Karalis T, Skandalis SS. Hyaluronan network: a driving force in cancer progression. Am J Physiol Cell Physiol 2022; 323:C145-C158. [PMID: 35649255 DOI: 10.1152/ajpcell.00139.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronan is one of the most abundant macromolecules of the extracellular matrix and regulates several physiological cell and tissue properties. However, hyaluronan has been shown to accumulate together with its receptors in various cancers. In tumors, accumulation of hyaluronan system components (hyaluronan synthesizing/degrading enzymes and interacting proteins) associates with poor outcomes of the patients. In this article, we review the main roles of hyaluronan in normal physiology and cancer, and further discuss the targeting of hyaluronan system as an applicable therapeutic strategy.
Collapse
Affiliation(s)
- Theodoros Karalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
8
|
Lierova A, Kasparova J, Filipova A, Cizkova J, Pekarova L, Korecka L, Mannova N, Bilkova Z, Sinkorova Z. Hyaluronic Acid: Known for Almost a Century, but Still in Vogue. Pharmaceutics 2022; 14:838. [PMID: 35456670 PMCID: PMC9029726 DOI: 10.3390/pharmaceutics14040838] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyaluronic acid (HA) has a special position among glycosaminoglycans. As a major component of the extracellular matrix (ECM). This simple, unbranched polysaccharide is involved in the regulation of various biological cell processes, whether under physiological conditions or in cases of cell damage. This review summarizes the history of this molecule's study, its distinctive metabolic pathway in the body, its unique properties, and current information regarding its interaction partners. Our main goal, however, is to intensively investigate whether this relatively simple polymer may find applications in protecting against ionizing radiation (IR) or for therapy in cases of radiation-induced damage. After exposure to IR, acute and belated damage develops in each tissue depending upon the dose received and the cellular composition of a given organ. A common feature of all organ damage is a distinct change in composition and structure of the ECM. In particular, the important role of HA was shown in lung tissue and the variability of this flexible molecule in the complex mechanism of radiation-induced lung injuries. Moreover, HA is also involved in intermediating cell behavior during morphogenesis and in tissue repair during inflammation, injury, and would healing. The possibility of using the HA polymer to affect or treat radiation tissue damage may point to the missing gaps in the responsible mechanisms in the onset of this disease. Therefore, in this article, we will also focus on obtaining answers from current knowledge and the results of studies as to whether hyaluronic acid can also find application in radiation science.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jitka Kasparova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Alzbeta Filipova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jana Cizkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lenka Pekarova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Nikola Mannova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| |
Collapse
|
9
|
Umugire A, Lee S, Lee CJ, Choi Y, Kim T, Cho HH. Hyaluronan synthase 1: A novel candidate gene associated with late-onset non-syndromic hereditary hearing loss. Clin Exp Otorhinolaryngol 2022; 15:220-229. [PMID: 35413171 PMCID: PMC9441500 DOI: 10.21053/ceo.2022.00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives Hyaluronan synthase 1 (HAS1) is a membrane-bound protein that is abundant in the epidermis and dermis, and it is important for skin function. However, its association with hearing loss has not yet been studied. Herein, we sought to evaluate the potential contribution of HAS1: c.1082G>A to genetic hearing loss. Methods We used whole-exome sequencing to analyze blood DNA samples of six patients of a family with autosomal dominant familial late-onset progressive hearing loss, which was revealed to be related to a variant of the HAS1 gene. Confirmatory Sanger sequencing was performed with samples from 10 members. A missense variant was detected in HAS1 (c.1082 G>A, p.Cys361Tyr). In silico analyses predicted this variant to result in the functional loss of HAS1. Immunostaining was conducted using wild-type mouse samples to verify HAS1 expression. Results Has1 was detected in an otocyst at E10.5. In the pup, Has1 expression was localized in the stria vascularis (SV), hair cells, supporting cells of the organ of Corti, and some spiral ganglion neurons. SV marginal cells markedly expressed Has1 in the adult stage. The hearing threshold in the Has1-depleted condition was investigated by accessing the International Mouse Phenotyping Consortium’s Auditory Brainstem Response (ABR) data. ABR of Has1 knock-out mice showed threshold elevations at 6, 12, and 18 kHz in young male adults. Conclusion HAS1 may have a close relationship with auditory function and genetic hearing loss. Further investigation is needed to reveal the precise role of HAS1 in the auditory system. HAS1 is a candidate gene for future hereditary hearing loss genetic testing.
Collapse
|
10
|
Soliman F, Ye L, Jiang W, Hargest R. Targeting Hyaluronic Acid and Peritoneal Dissemination in Colorectal Cancer. Clin Colorectal Cancer 2021; 21:e126-e134. [PMID: 34955378 DOI: 10.1016/j.clcc.2021.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 11/03/2022]
Abstract
Peritoneal metastasis (PM) from colorectal cancer (CRC) carries a significant mortality rate for patients and treatment is challenging. The development of PM is a multistep process involving detachment, adhesion, invasion and colonization of the peritoneal cavity. Cytoreductive surgery and HIPEC (hyperthermic intraperitoneal chemotherapy) for PM from CRC has some benefit but overall survival is poor and recurrence rates are high. Treatments to prevent the development of peritoneal metastasis could have the potential to improve CRC survival and disease-free outcomes. The ability of cancer cells to invade the peritoneum and become established as metastatic tumors is influenced by a multifactorial process. Hyaluronic acid (HA) has been shown to coat the mesothelial cells of the peritoneum and has been demonstrated to be utilized in various malignancies as part of the metastatic process in peritoneal dissemination. CD44, RHAMM (CD168) and ICAM-1 have all been shown to be binding partners for HA. Targeting HA-mediated binding may prevent adhesion to distant sites within the peritoneum through suppression of interaction of these molecules. Here we review the current literature and discuss key molecules involved with PM dissemination, with the potential to target these mechanisms in the delivery of future treatments.
Collapse
Affiliation(s)
- Faris Soliman
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, School of Medicine, Cardiff University; Cardiff and Vale University Health Board.
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, School of Medicine, Cardiff University
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, School of Medicine, Cardiff University
| | - Rachel Hargest
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, School of Medicine, Cardiff University; Cardiff and Vale University Health Board
| |
Collapse
|
11
|
RHAMM Is a Multifunctional Protein That Regulates Cancer Progression. Int J Mol Sci 2021; 22:ijms221910313. [PMID: 34638654 PMCID: PMC8508827 DOI: 10.3390/ijms221910313] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
The functional complexity of higher organisms is not easily accounted for by the size of their genomes. Rather, complexity appears to be generated by transcriptional, translational, and post-translational mechanisms and tissue organization that produces a context-dependent response of cells to specific stimuli. One property of gene products that likely increases the ability of cells to respond to stimuli with complexity is the multifunctionality of expressed proteins. Receptor for hyaluronan-mediated motility (RHAMM) is an example of a multifunctional protein that controls differential responses of cells in response-to-injury contexts. Here, we trace its evolution into a sensor-transducer of tissue injury signals in higher organisms through the detection of hyaluronan (HA) that accumulates in injured microenvironments. Our goal is to highlight the domain and isoform structures that generate RHAMM's function complexity and model approaches for targeting its key functions to control cancer progression.
Collapse
|
12
|
Expression of the Receptor for Hyaluronic Acid-Mediated Motility (RHAMM) in Endometrial Cancer is Associated With Adverse Histologic Parameters and Tumor Progression. Appl Immunohistochem Mol Morphol 2021; 28:453-459. [PMID: 30920393 DOI: 10.1097/pai.0000000000000763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Endometrial cancer is one of the most common gynecologic malignancies worldwide. Only 2 agents have been approved by Food and Drug Administration for endometrial cancer since 1971. There is a need to identify molecular targets to treat advanced endometrial cancer. The receptor for hyaluronic acid-mediated motility (RHAMM) is upregulated in various types of cancer. Here, we aimed to determine the clinical significance of RHAMM expression in endometrial cancer. Two hundred twenty-five cases of endometrial cancer, including serous and endometrioid types, and 8 cases of normal endometrium were used for studying RHAMM protein levels. The Cancer Genome Atlas database was also queried for RHAMM mRNA expression in endometrial cancer. Increased expression of RHAMM protein was seen in endometrial cancer compared with no or weak expression in normal endometrium. RHAMM expression positively correlated with tumor grade. RHAMM expression was significantly increased in endometrial serous carcinomas, which are high-grade, aggressive types of endometrial cancer, compared with the relatively less aggressive endometrioid carcinomas. RHAMM expression also correlated with the presence of lymphovascular invasion. RHAMM mRNA expression correlated with decreased survival in The Cancer Genome Atlas cohort. Therefore, increased RHAMM expression in endometrial cancer is associated with high-grade tumors and is indicative of more aggressive behavior. These findings suggest RHAMM as a prognostic factor in endometrial cancer and as a potential therapeutic target in advanced endometrial cancer for future studies.
Collapse
|
13
|
Cardiovascular Effects Mediated by HMMR and CD44. Mediators Inflamm 2021; 2021:4977209. [PMID: 34335086 PMCID: PMC8286199 DOI: 10.1155/2021/4977209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. The most dangerous life-threatening symptoms of CVD are myocardial infarction and stroke. The causes of CVD are not entirely clear, and new therapeutic targets are still being sought. One of the factors involved in CVD development among vascular damage and oxidative stress is chronic inflammation. It is known that hyaluronic acid plays an important role in inflammation and is regulated by numerous stimuli, including proinflammatory cytokines. The main receptors for hyaluronic acid are CD44 and RHAMM. These receptors are membrane proteins that differ in structure, but it seems that they can perform similar or synergistic functions in many diseases. Both RHAMM and CD44 are involved in cell migration and wound healing. However, their close association with CVD is not fully understood. In this review, we describe the role of both receptors in CVD.
Collapse
|
14
|
RHAMM in liver metastases of stage IV colorectal cancer with mismatch-repair proficient status correlates with tumor budding, cytotoxic T-cells and PD-1/PD-L1. Pathol Res Pract 2021; 223:153486. [PMID: 34051513 DOI: 10.1016/j.prp.2021.153486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND During the last decades, the management for metastatic colorectal cancer patients has improved due to novel therapeutic approaches. A mismatch-repair deficient status seems to favour a better response to checkpoint inhibitor therapy, but the question arises whether a specific subgroup of stage IV patients with mismatch-repair (MMR) proficient status should also be considered. RHAMM (Receptor for Hyaluronic Acid Mediated Motility/HAMMR/CD168) is characterized by tumor progression and immunogenicity. Therefore, the aim of this study is to determine whether RHAMM within the CRLM of MMR-proficient patients correlate with a more immunological microenvironment, represented by cytotoxic T-cells, PD-1 and PD-1. METHODS Two patient cohorts of liver metastases from MMR colorectal cancers were included into the study (n = 81 and 76) using ngTMA® technology and immunohistochemically analyzed for RHAMM, cytotoxic T-cells (CD8+), PD-1/PD-L1, intrametastatic budding (IMB) and perimetastatic budding (PMB). RESULTS RHAMM-positive IMB was linked to a higher PD-L1 expression (r = 0.32; p = 0.233 and r = 0.28; p = 0.044) in the center and periphery of the metastasis and RHAMM-positive PMB was associated with a higher expression of PD-1 (r = 0.33; p = 0.0297), and especially PD-L1 (r = 0.604; p < 0.0001 and r = 0.43; p = 0.003) in the center and periphery of the metastasis. IMB and PMB were additionally associated with a higher count of CD8+ T-cells (p < 0.0001; r = 0.58; p < 0.0001; r = 0.53). CONCLUSIONS The RHAMM status can be assessed in IMB/PMB either in biopsies or in resections of colorectal cancer liver metastases. A positive RHAMM status in IMB and/or PMB may be a potential indicator for a checkpoint inhibitor therapy for stage IV colorectal cancer patients with MMR proficient status.
Collapse
|
15
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6:153. [PMID: 33888679 PMCID: PMC8062524 DOI: 10.1038/s41392-021-00544-0] [Citation(s) in RCA: 413] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is one of the major components of tumors that plays multiple crucial roles, including mechanical support, modulation of the microenvironment, and a source of signaling molecules. The quantity and cross-linking status of ECM components are major factors determining tissue stiffness. During tumorigenesis, the interplay between cancer cells and the tumor microenvironment (TME) often results in the stiffness of the ECM, leading to aberrant mechanotransduction and further malignant transformation. Therefore, a comprehensive understanding of ECM dysregulation in the TME would contribute to the discovery of promising therapeutic targets for cancer treatment. Herein, we summarized the knowledge concerning the following: (1) major ECM constituents and their functions in both normal and malignant conditions; (2) the interplay between cancer cells and the ECM in the TME; (3) key receptors for mechanotransduction and their alteration during carcinogenesis; and (4) the current therapeutic strategies targeting aberrant ECM for cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Dalong Wan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
16
|
Li HL, Li QY, Jin MJ, Lu CF, Mu ZY, Xu WY, Song J, Zhang Y, Zhang SY. A review: hippo signaling pathway promotes tumor invasion and metastasis by regulating target gene expression. J Cancer Res Clin Oncol 2021; 147:1569-1585. [PMID: 33864521 DOI: 10.1007/s00432-021-03604-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Hippo pathway is widely considered to inhibit cell growth and play an important role in regulating the size of organs. However, recent studies have shown that abnormal regulation of the Hippo pathway can also affect tumor invasion and metastasis. Therefore, finding out how the Hippo pathway promotes tumor development by regulating the expression of target genes provides new ideas for future research on targeted drugs that inhibit tumor progression. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were systematically searched. RESULTS The search strategy identified 1892 hits and 196 publications were finally included in this review. As the core molecule of the Hippo pathway, YAP/TAZ are usually highly expressed in tumors that undergo invasion and migration and are accompanied by abnormally strong nuclear metastasis. Through its interaction with nuclear transcription factors TEADs, it directly or indirectly regulates and the expressions of target genes related to tumor metastasis and invasion. These target genes can induce the formation of invasive pseudopodia in tumor cells, reduce intercellular adhesion, degrade extracellular matrix (ECM), and cause epithelial-mesenchymal transition (EMT), or indirectly promote through other signaling pathways, such as mitogen-activated protein kinases (MAPK), TGF/Smad, etc, which facilitate the invasion and metastasis of tumors. CONCLUSION This article mainly introduces the research progress of YAP/TAZ which are the core molecules of the Hippo pathway regulating related target genes to promote tumor invasion and metastasis. Focus on the target genes that affect tumor invasion and metastasis, providing the possibility for the selection of clinical drug treatment targets, to provide some help for a more in-depth study of tumor invasion and migration mechanism and the development of clinical drugs.
Collapse
Affiliation(s)
- Hong-Li Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian-Yu Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Min-Jie Jin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao-Fan Lu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Mu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Yi Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China.
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China. .,Zhengzhou University, Henan Institute of Advanced Technology, Zhengzhou, 450001, China.
| |
Collapse
|
17
|
Lu T, Zheng Y, Gong X, Lv Q, Chen J, Tu Z, Lin S, Pan J, Guo Q, Li J. High Expression of Hyaluronan-Mediated Motility Receptor Predicts Adverse Outcomes: A Potential Therapeutic Target for Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:608842. [PMID: 33763352 PMCID: PMC7982417 DOI: 10.3389/fonc.2021.608842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Several studies have shown that the hyaluronan-mediated motility receptor (HMMR) is overexpressed in various cancers and could be a potential prognostic factor. However, further research is still required to determine the prognostic value and potential function of HMMR in head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Transcriptomic expression data were collected from the Cancer Genome Atlas database (TCGA) and Gene Expression Omnibus and the differences in HMMR expression between normal and tumor tissues were analyzed. The correlation between the methylation level of HMMR and its mRNA expression was analyzed via cBioPortal. Additionally, the data obtained from TCGA was analyzed with MethSurv to determine the prognostic value of the HMMR methylation levels in HNSCC. Gene set enrichment analysis (GSEA) and single sample GSEA (ssGSEA) were used to explore the potential biological functions of HMMR. Results: HMMR was highly expressed in HNSCC tumor tissue compared to normal tissue (p < 0.001). Multivariate analysis (MAV) showed that high HMMR mRNA expression was an independent prognostic factor of overall survival (OS) in TCGA (HR = 1.628, 95% CI: 1.169–2.266, p = 0.004) and GSE41613 data (HR = 2.238, p = 0.013). The methylation level of HMMR negatively correlated with the HMMR expression (R = −0.12, p < 0.001), and patients with low HMMR methylation had worse OS than patients with high methylation (p < 0.001). GSEA found that HMMR expression was associated with the KARS, EMT, and G2M checkpoint pathways, as well as the interferon-gamma and interferon-alpha responses, whereas ssGSEA showed that HMMR expression positively correlated with the infiltration level of Th2 cells. MAV confirmed that high HMMR protein expression was an inferior independent factor for OS (HR = 2.288, p = 0.045) and progression-free survival (HR = 2.247, p = 0.038) in 70 HNSCC. Conclusions: This study demonstrated that the upregulation of HMMR mRNA and protein in HNSCC is a biomarker for poor prognosis. The biological functions of HMMR are potentially related to the KARS, EMT, and G2M checkpoint pathways, as well as the interferon-gamma and interferon-alpha responses. These findings help to elucidate the role of HMMR in carcinogenesis and lay a foundation for further study.
Collapse
Affiliation(s)
- Tianzhu Lu
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Yahan Zheng
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital, Fuzhou, China
| | - Xiaochang Gong
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Qiaoli Lv
- National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Junjun Chen
- National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Ziwei Tu
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Shaojun Lin
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital, Fuzhou, China
| | - Jianji Pan
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital, Fuzhou, China
| | - Qiaojuan Guo
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Cancer Hospital, Fuzhou, China
| | - Jingao Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| |
Collapse
|
18
|
Carvalho AM, Soares da Costa D, Paulo PMR, Reis RL, Pashkuleva I. Co-localization and crosstalk between CD44 and RHAMM depend on hyaluronan presentation. Acta Biomater 2021; 119:114-124. [PMID: 33091625 DOI: 10.1016/j.actbio.2020.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023]
Abstract
CD44 and the receptor for hyaluronic acid-mediated motility (RHAMM) are the main hyaluronan (HA) receptors. They are commonly overexpressed in different cancers activating signaling pathways related to tumor progression, metastasis and chemoresistance. Besides their involvement in signal transduction via interaction with HA, currently, there is a little information about the possible crosstalk between CD44 and RHAMM and the role of HA in this process. In the present work, we used immunocytochemistry combined with Förster resonance energy transfer (FRET) microscopy and co-immunoprecipitation to elucidate the involvement of HA in CD44 and RHAMM expression, co-localization and crosstalk. We studied breast cancer cells lines with different degrees of invasiveness and expression of these receptors in the absence of exogenous HA and compared the data with the results obtained for cultures supplemented with either soluble HA or seeded on substrates with end-on immobilized HA. Our results demonstrated that cells response depends on the HA presentation: CD44/RHAMM complexation was upregulated in all cell lines upon interaction with immobilized HA, but not with its soluble form. Moreover, the results showed that the expression of both CD44 and RHAMM is regulated via interactions with HA indicating cell-specific feedback loop(s) in the signaling cascade.
Collapse
Affiliation(s)
- Ana M Carvalho
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal.
| | - Diana Soares da Costa
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Pedro M R Paulo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Iva Pashkuleva
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal.
| |
Collapse
|
19
|
Pibuel MA, Poodts D, Díaz M, Hajos SE, Lompardía SL. The scrambled story between hyaluronan and glioblastoma. J Biol Chem 2021; 296:100549. [PMID: 33744285 PMCID: PMC8050860 DOI: 10.1016/j.jbc.2021.100549] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in cancer biology are revealing the importance of the cancer cell microenvironment on tumorigenesis and cancer progression. Hyaluronan (HA), the main glycosaminoglycan in the extracellular matrix, has been associated with the progression of glioblastoma (GBM), the most frequent and lethal primary tumor in the central nervous system, for several decades. However, the mechanisms by which HA impacts GBM properties and processes have been difficult to elucidate. In this review, we provide a comprehensive assessment of the current knowledge on HA's effects on GBM biology, introducing its primary receptors CD44 and RHAMM and the plethora of relevant downstream signaling pathways that can scramble efforts to directly link HA activity to biological outcomes. We consider the complexities of studying an extracellular polymer and the different strategies used to try to capture its function, including 2D and 3D in vitro studies, patient samples, and in vivo models. Given that HA affects not only migration and invasion, but also cell proliferation, adherence, and chemoresistance, we highlight the potential role of HA as a therapeutic target. Finally, we review the different existing approaches to diminish its protumor effects, such as the use of 4-methylumbelliferone, HA oligomers, and hyaluronidases and encourage further research along these lines in order to improve the survival and quality of life of GBM patients.
Collapse
Affiliation(s)
- Matías Arturo Pibuel
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| | - Daniela Poodts
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvia Elvira Hajos
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvina Laura Lompardía
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| |
Collapse
|
20
|
Wu KY, Kim S, Liu VM, Sabino A, Minkhorst K, Yazdani A, Turley EA. Function-Blocking RHAMM Peptides Attenuate Fibrosis and Promote Antifibrotic Adipokines in a Bleomycin-Induced Murine Model of Systemic Sclerosis. J Invest Dermatol 2020; 141:1482-1492.e4. [PMID: 33242499 DOI: 10.1016/j.jid.2019.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
Systemic sclerosis a chronic, fibrotic disorder associated with high disease-specific mortality and morbidity. Cutaneous manifestations include dermal thickening and obliteration of dermal adipose tissue. Accumulation of low-molecular-weight hyaluronan, which signals through the receptor for hyaluronan-mediated motility, RHAMM, leads to progressive fibrosis and is correlated with increased severity of systemic sclerosis. The purpose of this study is to test the efficacy of two function-blocking RHAMM peptides, NPI-110 and NPI-106, in reducing skin fibrosis in a bleomycin-induced mouse model of systemic sclerosis. NPI-110 reduced visible measures of fibrosis (dermal thickness and collagen production, deposition, and organization) and profibrotic gene expression (Tgfb1, c-Myc, Col1a1, Col3a1). NPI-110 treatment also increased the expression of the antifibrotic adipokines perilipin and adiponectin. Both RHAMM peptides strongly reduced dermal RHAMM expression, predicting that dermal fibroblasts are peptide targets. Transcriptome and cell culture analyses using Rhamm-/- and Rhamm-rescued dermal fibroblasts reveal a TGFβ1/RHAMM/MYC signaling axis that promotes fibrogenic gene expression and myofibroblast differentiation. RHAMM function‒blocking peptides suppress this signaling and prevent TGFβ1-induced myofibroblast differentiation. These results suggest that inhibiting RHAMM signaling will offer a treatment method for cutaneous fibrosis in systemic sclerosis.
Collapse
Affiliation(s)
- Kitty Yuechuan Wu
- Division of Plastic and Reconstructive Surgery, Western University, London, Ontario, Canada
| | - Stephanie Kim
- Division of Plastic and Reconstructive Surgery, Western University, London, Ontario, Canada; Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Violet Muhan Liu
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Alexis Sabino
- Department of Life Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kathryn Minkhorst
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Arjang Yazdani
- Division of Plastic and Reconstructive Surgery, Western University, London, Ontario, Canada
| | - Eva A Turley
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
21
|
Ye S, Liu Y, Fuller AM, Katti R, Ciotti GE, Chor S, Alam MZ, Devalaraja S, Lorent K, Weber K, Haldar M, Pack MA, Eisinger-Mathason TSK. TGFβ and Hippo Pathways Cooperate to Enhance Sarcomagenesis and Metastasis through the Hyaluronan-Mediated Motility Receptor (HMMR). Mol Cancer Res 2020; 18:560-573. [PMID: 31988250 DOI: 10.1158/1541-7786.mcr-19-0877] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/13/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022]
Abstract
High-grade sarcomas are metastatic and pose a serious threat to patient survival. Undifferentiated pleomorphic sarcoma (UPS) is a particularly dangerous and relatively common sarcoma subtype diagnosed in adults. UPS contains large quantities of extracellular matrix (ECM) including hyaluronic acid (HA), which is linked to metastatic potential. Consistent with these observations, expression of the HA receptor, hyaluronan-mediated motility receptor (HMMR/RHAMM), is tightly controlled in normal tissues and upregulated in UPS. Moreover, HMMR expression correlates with poor clinical outcome in these patients. Deregulation of the tumor-suppressive Hippo pathway is also linked to poor outcome in these patients. YAP1, the transcriptional regulator and central effector of Hippo pathway, is aberrantly stabilized in UPS and was recently shown to control RHAMM expression in breast cancer cells. Interestingly, both YAP1 and RHAMM are linked to TGFβ signaling. Therefore, we investigated crosstalk between YAP1 and TGFβ resulting in enhanced RHAMM-mediated cell migration and invasion. We observed that HMMR expression is under the control of both YAP1 and TGFβ and can be effectively targeted with small-molecule approaches that inhibit these pathways. Furthermore, we found that RHAMM expression promotes tumor cell proliferation and migration/invasion. To test these observations in a robust and quantifiable in vivo system, we developed a zebrafish xenograft assay of metastasis, which is complimentary to our murine studies. Importantly, pharmacologic inhibition of the TGFβ-YAP1-RHAMM axis prevents vascular migration of tumor cells to distant sites. IMPLICATIONS: These studies reveal key metastatic signaling mechanisms and highlight potential approaches to prevent metastatic dissemination in UPS.YAP1 and TGFβ cooperatively enhance proliferation and migration/invasion of UPS and fibrosarcomas.
Collapse
Affiliation(s)
- Shuai Ye
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ying Liu
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ashley M Fuller
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rohan Katti
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Gabrielle E Ciotti
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Susan Chor
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Md Zahidul Alam
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Samir Devalaraja
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kristin Lorent
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania
| | - Kristy Weber
- Department of Orthopedic Surgery, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania
| | - Malay Haldar
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael A Pack
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania
| | - T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
22
|
Saeed-Zidane M, Tesfaye D, Mohammed Shaker Y, Tholen E, Neuhoff C, Rings F, Held E, Hoelker M, Schellander K, Salilew-Wondim D. Hyaluronic acid and epidermal growth factor improved the bovine embryo quality by regulating the DNA methylation and expression patterns of the focal adhesion pathway. PLoS One 2019; 14:e0223753. [PMID: 31661494 PMCID: PMC6818761 DOI: 10.1371/journal.pone.0223753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 09/27/2019] [Indexed: 11/19/2022] Open
Abstract
Focal adhesion pathway is one of the key molecular pathways affected by suboptimal culture conditions during embryonic development. The epidermal growth factor (EGF) and hyaluronic acid (HA) are believed to be involved in the focal adhesion pathway function by regulating the adherence of the molecules to the extracellular matrix. However, regulatory and molecular mechanisms through which the EGF and HA could influence the embryo development is not clear. Therefore, this study aimed to investigate the effect of continued or stage specific supplementation of EGF and/or HA on the developmental competence and quality of bovine preimplantation embryos and the subsequent consequences on the expression and DNA methylation patterns of genes involved in the focal adhesion pathway. The results revealed that, the supplementation of EGF or HA from zygote to the blastocysts stage reduced the level of reactive oxygen species and increased hatching rate after thawing. On the other hand, HA decreased the apoptotic nuclei and increased blastocyst compared to EGF supplemented group. Gene expression and DNA methylation analysis in the resulting blastocysts indicated that, combined supplementation of EGF and HA increased the expression of genes involved in focal adhesion pathway while supplementation of EGF, HA or a combination of EGF and HA during the entire preimplantation period changed the DNA methylation patterns of genes involved in focal adhesion pathway. On the other hand, blastocysts developed in culture media supplemented with EGF + HA until the 16-cell stage exhibited higher expression level of genes involved in focal adhesion pathway compared to those supplemented after the 16-cell stage. Conversely, the DNA methylation level of candidate genes was increased in the blastocysts obtained from embryos cultured in media supplemented with EGF + HA after 16-cell stage. In conclusion, supplementation of bovine embryos with EGF and/or HA during the entire preimplantation period or in a stage specific manner altered the DNA methylation and expression patterns of candidate genes involved in the focal adhesion pathway which was in turn associated with the observed embryonic developmental competence and quality.
Collapse
Affiliation(s)
- Mohammed Saeed-Zidane
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Animal and Poultry Physiology Department, Animal and Poultry Production Division, Desert Research Center, Mataria, Cairo, Egypt
| | - Dawit Tesfaye
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Yousri Mohammed Shaker
- Animal and Poultry Physiology Department, Animal and Poultry Production Division, Desert Research Center, Mataria, Cairo, Egypt
| | - Ernst Tholen
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Christiane Neuhoff
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Franca Rings
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Eva Held
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Michael Hoelker
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
23
|
Facchin F, Canaider S, Tassinari R, Zannini C, Bianconi E, Taglioli V, Olivi E, Cavallini C, Tausel M, Ventura C. Physical energies to the rescue of damaged tissues. World J Stem Cells 2019; 11:297-321. [PMID: 31293714 PMCID: PMC6600852 DOI: 10.4252/wjsc.v11.i6.297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Rhythmic oscillatory patterns sustain cellular dynamics, driving the concerted action of regulatory molecules, microtubules, and molecular motors. We describe cellular microtubules as oscillators capable of synchronization and swarming, generating mechanical and electric patterns that impact biomolecular recognition. We consider the biological relevance of seeing the inside of cells populated by a network of molecules that behave as bioelectronic circuits and chromophores. We discuss the novel perspectives disclosed by mechanobiology, bioelectromagnetism, and photobiomodulation, both in term of fundamental basic science and in light of the biomedical implication of using physical energies to govern (stem) cell fate. We focus on the feasibility of exploiting atomic force microscopy and hyperspectral imaging to detect signatures of nanomotions and electromagnetic radiation (light), respectively, generated by the stem cells across the specification of their multilineage repertoire. The chance is reported of using these signatures and the diffusive features of physical waves to direct specifically the differentiation program of stem cells in situ, where they already are resident in all the tissues of the human body. We discuss how this strategy may pave the way to a regenerative and precision medicine without the needs for (stem) cell or tissue transplantation. We describe a novel paradigm based upon boosting our inherent ability for self-healing.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | | | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy.
| |
Collapse
|
24
|
Myosin IIA suppresses glioblastoma development in a mechanically sensitive manner. Proc Natl Acad Sci U S A 2019; 116:15550-15559. [PMID: 31235578 DOI: 10.1073/pnas.1902847116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of glioblastoma to disperse through the brain contributes to its lethality, and blocking this behavior has been an appealing therapeutic approach. Although a number of proinvasive signaling pathways are active in glioblastoma, many are redundant, so targeting one can be overcome by activating another. However, these pathways converge on nonredundant components of the cytoskeleton, and we have shown that inhibiting one of these-the myosin II family of cytoskeletal motors-blocks glioblastoma invasion even with simultaneous activation of multiple upstream promigratory pathways. Myosin IIA and IIB are the most prevalent isoforms of myosin II in glioblastoma, and we now show that codeleting these myosins markedly impairs tumorigenesis and significantly prolongs survival in a rodent model of this disease. However, while targeting just myosin IIA also impairs tumor invasion, it surprisingly increases tumor proliferation in a manner that depends on environmental mechanics. On soft surfaces myosin IIA deletion enhances ERK1/2 activity, while on stiff surfaces it enhances the activity of NFκB, not only in glioblastoma but in triple-negative breast carcinoma and normal keratinocytes as well. We conclude myosin IIA suppresses tumorigenesis in at least two ways that are modulated by the mechanics of the tumor and its stroma. Our results also suggest that inhibiting tumor invasion can enhance tumor proliferation and that effective therapy requires targeting cellular components that drive both proliferation and invasion simultaneously.
Collapse
|
25
|
Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol 2019; 78-79:1-10. [PMID: 30802498 DOI: 10.1016/j.matbio.2019.02.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Cell-matrix interactions are fundamental to many developmental, homeostatic, immune and pathologic processes. Hyaluronan (HA), a critical component of the extracellular matrix (ECM) that regulates normal structural integrity and development, also regulates tissue responses during injury, repair, and regeneration. Though simple in its primary structure, HA regulates biological responses in a highly complex manner with balanced contributions from its molecular size and concentration, synthesis versus enzymatic and/or oxidative-nitrative fragmentation, interactions with key HA binding proteins and cell associated receptors, and its cell context-specific signaling. This review highlights the different, but inter-related factors that dictate the biological activity of HA and introduces the overarching themes that weave throughout this special issue of Matrix Biology on hyaluronan.
Collapse
|
26
|
Asparuhova MB, Kiryak D, Eliezer M, Mihov D, Sculean A. Activity of two hyaluronan preparations on primary human oral fibroblasts. J Periodontal Res 2018; 54:33-45. [PMID: 30264516 PMCID: PMC6586051 DOI: 10.1111/jre.12602] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023]
Abstract
Background and Objective The potential benefit of using hyaluronan (HA) in reconstructive periodontal surgery is still a matter of debate. The aim of the present study was to evaluate the effects of two HA formulations on human oral fibroblasts involved in soft tissue wound healing/regeneration. Material and Methods Metabolic, proliferative and migratory abilities of primary human palatal and gingival fibroblasts were examined upon HA treatment. To uncover the mechanisms whereby HA influences cellular behavior, wound healing‐related gene expression and activation of signaling kinases were analyzed by qRT‐PCR and immunoblotting, respectively. Results The investigated HA formulations maintained the viability of oral fibroblasts and increased their proliferative and migratory abilities. They enhanced expression of genes encoding type III collagen and transforming growth factor‐β3, characteristic of scarless wound healing. The HAs upregulated the expression of genes encoding pro‐proliferative, pro‐migratory, and pro‐inflammatory factors, with only a moderate effect on the latter in gingival fibroblasts. In palatal but not gingival fibroblasts, an indirect effect of HA on the expression of matrix metalloproteinases 2 and 3 was detected, potentially exerted through induction of pro‐inflammatory cytokines. Finally, our data pointed on Akt, Erk1/2 and p38 as the signaling molecules whereby the HAs exert their effects on oral fibroblasts. Conclusion Both investigated HA formulations are biocompatible and enhance the proliferative, migratory and wound healing properties of cell types involved in soft tissue wound healing following regenerative periodontal surgery. Our data further suggest that in gingival tissues, the HAs are not likely to impair the healing process by prolonging inflammation or causing excessive MMP expression at the repair site.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Deniz Kiryak
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Meizi Eliezer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Deyan Mihov
- Biozentrum, University of Basel, Basel, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Hauser-Kawaguchi A, Tolg C, Peart T, Milne M, Turley EA, Luyt LG. A truncated RHAMM protein for discovering novel therapeutic peptides. Bioorg Med Chem 2018; 26:5194-5203. [PMID: 30249497 DOI: 10.1016/j.bmc.2018.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
The receptor for hyaluronan mediated motility (RHAMM, gene name HMMR) belongs to a group of proteins that bind to hyaluronan (HA), a high-molecular weight anionic polysaccharide that has pro-angiogenic and inflammatory properties when fragmented. We propose to use a chemically synthesized, truncated version of the protein (706-767), 7 kDa RHAMM, as a target receptor in the screening of novel peptide-based therapeutic agents. Chemical synthesis by Fmoc-based solid-phase peptide synthesis, and optimization using pseudoprolines, results in RHAMM protein of higher purity and yield than synthesis by recombinant protein production. 7 kDa RHAMM was evaluated for its secondary structure, ability to bind the native ligand, HA, and its bioactivity. This 62-amino acid polypeptide replicates the HA binding properties of both native and recombinant RHAMM protein. Furthermore, tubulin-derived HA peptide analogues that bind to recombinant RHAMM and were previously reported to compete with HA for interactions with RHAMM, bind with a similar affinity and specificity to the 7 kDa RHAMM. Therefore, in terms of its key binding properties, the 7 kDa RHAMM mini-protein is a suitable replacement for the full-length recombinant protein.
Collapse
Affiliation(s)
| | - Cornelia Tolg
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | - Teresa Peart
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | - Mark Milne
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | - Eva A Turley
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada; Department of Biochemistry, Western University, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada
| | - Leonard G Luyt
- Department of Chemistry, Western University, London, Ontario, Canada; Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada.
| |
Collapse
|
28
|
Leng Y, Abdullah A, Wendt MK, Calve S. Hyaluronic acid, CD44 and RHAMM regulate myoblast behavior during embryogenesis. Matrix Biol 2018; 78-79:236-254. [PMID: 30130585 DOI: 10.1016/j.matbio.2018.08.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/24/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 h, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle.
Collapse
Affiliation(s)
- Yue Leng
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States of America
| | - Ammara Abdullah
- Medicinal Chemistry and Molecular Pharmacology, Hansen Life Sciences Research Building, Purdue University, 201 S University St, West Lafayette, IN 47907, United States of America
| | - Michael K Wendt
- Medicinal Chemistry and Molecular Pharmacology, Hansen Life Sciences Research Building, Purdue University, 201 S University St, West Lafayette, IN 47907, United States of America
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States of America.
| |
Collapse
|
29
|
Extracellular Matrix Components HAPLN1, Lumican, and Collagen I Cause Hyaluronic Acid-Dependent Folding of the Developing Human Neocortex. Neuron 2018; 99:702-719.e6. [DOI: 10.1016/j.neuron.2018.07.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/30/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022]
|
30
|
Montanari E, Di Meo C, Oates A, Coviello T, Matricardi P. Pursuing Intracellular Pathogens with Hyaluronan. From a 'Pro-Infection' Polymer to a Biomaterial for 'Trojan Horse' Systems. Molecules 2018; 23:E939. [PMID: 29670009 PMCID: PMC6017551 DOI: 10.3390/molecules23040939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Hyaluronan (HA) is among the most important bioactive polymers in mammals, playing a key role in a number of biological functions. In the last decades, it has been increasingly studied as a biomaterial for drug delivery systems, thanks to its physico-chemical features and ability to target and enter certain cells. The most important receptor of HA is ‘Cluster of Differentiation 44’ (CD44), a cell surface glycoprotein over-expressed by a number of cancers and heavily involved in HA endocytosis. Moreover, CD44 is highly expressed by keratinocytes, activated macrophages and fibroblasts, all of which can act as ‘reservoirs’ for intracellular pathogens. Interestingly, both CD44 and HA appear to play a key role for the invasion and persistence of such microorganisms within the cells. As such, HA is increasingly recognised as a potential target for nano-carriers development, to pursuit and target intracellular pathogens, acting as a ‘Trojan Horse’. This review describes the biological relationship between HA, CD44 and the entry and survival of a number of pathogens within the cells and the subsequent development of HA-based nano-carriers for enhancing the intracellular activity of antimicrobials.
Collapse
Affiliation(s)
- Elita Montanari
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Angela Oates
- School of Healthcare, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK.
| | - Tommasina Coviello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
31
|
Nagy N, Kuipers HF, Marshall PL, Wang E, Kaber G, Bollyky PL. Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol 2018; 78-79:292-313. [PMID: 29625181 DOI: 10.1016/j.matbio.2018.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/10/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
The tissue microenvironment contributes to local immunity and to the pathogenesis of autoimmune diseases - a diverse set of conditions characterized by sterile inflammation, immunity against self-antigens, and destruction of tissues. However, the specific factors within the tissue microenvironment that contribute to local immune dysregulation in autoimmunity are poorly understood. One particular tissue component implicated in multiple autoimmune diseases is hyaluronan (HA), an extracellular matrix (ECM) polymer. HA is abundant in settings of chronic inflammation and contributes to lymphocyte activation, polarization, and migration. Here, we first describe what is known about the size, amount, and distribution of HA at sites of autoimmunity and in associated lymphoid structures in type 1 diabetes, multiple sclerosis, and rheumatoid arthritis. Next, we examine the recent literature on HA and its impact on adaptive immunity, particularly in regards to the biology of lymphocytes and Foxp3+ regulatory T-cells (Treg), a T-cell subset that maintains immune tolerance in healthy individuals. We propose that HA accumulation at sites of chronic inflammation creates a permissive environment for autoimmunity, characterized by CD44-mediated inhibition of Treg expansion. Finally, we address potential tools and strategies for targeting HA and its receptor CD44 in chronic inflammation and autoimmunity.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Payton L Marshall
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther Wang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
32
|
Wang D, Narula N, Azzopardi S, Smith RS, Nasar A, Altorki NK, Mittal V, Somwar R, Stiles BM, Du YCN. Expression of the receptor for hyaluronic acid mediated motility (RHAMM) is associated with poor prognosis and metastasis in non-small cell lung carcinoma. Oncotarget 2018; 7:39957-39969. [PMID: 27220886 PMCID: PMC5129984 DOI: 10.18632/oncotarget.9554] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/09/2016] [Indexed: 01/08/2023] Open
Abstract
The receptor for hyaluronic acid-mediated motility (RHAMM) is upregulated in various cancers, but its role in primary and metastatic non-small cell lung carcinoma (NSCLC) remains to be determined. Here, we investigate the clinical relevance of RHAMM expression in NSCLC. RHAMM protein expression correlates with histological differentiation stages and extent of the primary tumor (T stages) in 156 patients with primary NSCLC. Importantly, while focal RHAMM staining pattern is present in 57% of primary NSCLC, intense RHAMM protein expression is present in 96% of metastatic NSCLC cases. In a publicly available database, The Cancer Genome Atlas (TCGA), RHAMM mRNA expression is 12- and 10-fold higher in lung adenocarcinoma and squamous lung carcinoma than in matched normal lung tissues, respectively. RHAMM mRNA expression correlates with stages of differentiation and inferior survival in more than 400 cases of lung adenocarcinoma in the Director's Challenge cohort. Of 4 RHAMM splice variants, RHAMMv3 (also known as RHAMMB) is the dominant variant in NSCLC. Moreover, shRNA-mediated knockdown of RHAMM reduced the migratory ability of two lung adenocarcinoma cell lines, H1975 and H3255. Taken together, RHAMM, most likely RHAMMv3 (RHAMMB), can serve as a prognostic factor for lung adenocarcinomas and a potential therapeutic target in NSCLC to inhibit tumor migration.
Collapse
Affiliation(s)
- Dunrui Wang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Navneet Narula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Stephanie Azzopardi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Roger S Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Abu Nasar
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Romel Somwar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Brendon M Stiles
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
33
|
Abstract
Cancer stem cells (CSC) are a prominent component of the tumor bulk and extensive research has now identified them as the subpopulation responsible for tumor relapse and resistance to anti-cancer treatments. Surrounding the bulk formed of tumor cells, an extracellular matrix contributes to cancer growth; the main component of the tumor micro-environment is hyaluronan, a large disaccharide forming a molecular network surrounding the cells. The hyaluronan-dependent coat can regulate cell division and motility in cancer progression and metastasis. One of the receptors of hyaluronan is CD44, a surface protein frequently used as a CSC marker. Indeed, tumor cells with high levels of CD44 appear to exhibit CSC properties and are characterized by elevated relapse rate. The CD44-hyaluronan-dependent interactions are Janus-faced: on one side, they have been shown to be crucial in both malignancy and resistance to therapy; on the other, they represent a potential value for future therapies, as disturbing the CD44-hyaluronan axis would not only impair the pericellular matrix but also the subpopulation of self-renewing oncogenic cells. Here, we will review the key roles of HA and CD44 in CSC maintenance and propagation and will show that CSC-like spheroids from a rabdhomyosarcoma cell line, namely RD, have a prominent pericellular coat necessary for sphere formation and for elevated migration. Thus, a better understanding of the hyaluronan-CD44 interactions holds the potential for ameliorating current cancer therapies and eradicating CSC.
Collapse
|
34
|
Krishnamurthy VK, Stout AJ, Sapp MC, Matuska B, Lauer ME, Grande-Allen KJ. Dysregulation of hyaluronan homeostasis during aortic valve disease. Matrix Biol 2017; 62:40-57. [PMID: 27856308 PMCID: PMC10615645 DOI: 10.1016/j.matbio.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 01/03/2023]
Abstract
Aortic valve disease (AVD) is one of the leading causes of cardiovascular mortality. Abnormal expression of hyaluronan (HA) and its synthesizing/degrading enzymes have been observed during latent AVD however, the mechanism of impaired HA homeostasis prior to and after the onset of AVD remains unexplored. Transforming growth factor beta (TGFβ) pathway defects and biomechanical dysfunction are hallmarks of AVD, however their association with altered HA regulation is understudied. Expression of HA homeostatic markers was evaluated in diseased human aortic valves and TGFβ1-cultured porcine aortic valve tissues using histology, immunohistochemistry and Western blotting. Further, porcine valve interstitial cell cultures were stretched (using Flexcell) and simultaneously treated with exogenous TGFβ1±inhibitors for activated Smad2/3 (SB431542) and ERK1/2 (U0126) pathways, and differential HA regulation was assessed using qRT-PCR. Pathological heavy chain HA together with abnormal regional expression of the enzymes HAS2, HYAL1, KIAA1199, TSG6 and IαI was demonstrated in calcified valve tissues identifying the collapse of HA homeostatic machinery during human AVD. Heightened TSG6 activity likely preceded the end-stage of disease, with the existence of a transitional, pre-calcific phase characterized by HA dysregulation. TGFβ1 elicited a fibrotic remodeling response in porcine aortic valves similar to human disease pathology, with increased collagen and HYAL to HAS ratio, and site-specific abnormalities in the expression of CD44 and RHAMM receptors. Further in these porcine valves, expression of HAS2 and HYAL1 was found to be differentially regulated by the Smad2/3 and ERK1/2 pathways, and CD44 expression was highly responsive to biomechanical strain. Leveraging the regulatory pathways that control both HA maintenance in normal valves and early postnatal dysregulation of HA homeostasis during disease may identify new mechanistic insight into AVD pathogenesis.
Collapse
Affiliation(s)
| | - Andrew J Stout
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
| | - Matthew C Sapp
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Brittany Matuska
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark E Lauer
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
35
|
Buttermore ST, Hoffman MS, Kumar A, Champeaux A, Nicosia SV, Kruk PA. Increased RHAMM expression relates to ovarian cancer progression. J Ovarian Res 2017; 10:66. [PMID: 28954627 PMCID: PMC5618727 DOI: 10.1186/s13048-017-0360-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elevated hyaluronan-mediated motility receptor (RHAMM) has been reported to contribute to disease progression, aggressive phenotype and poor prognosis in multiple cancer types, however, RHAMM's role in ovarian cancer (OC) has not been elucidated. Therefore, we sought to evaluate the role for RHAMM in epithelial OC. RESULTS Despite little to no expression in normal ovarian surface epithelium, western immunoblotting, immunohistochemical staining and enzyme linked immunosorbent assay showed elevated RHAMM levels in clinical tissue sections, omental metastasis and urine specimens of serous OC patients, as well as in cell lysates. We also found that RHAMM levels increase with increasing grade and stage in serous OC tissues and that RHAMM localizes to the apical cell surface and inclusion cysts. Apical localization of RHAMM suggested protein secretion which was validated by detection of significantly elevated urinary RHAMM levels (p < 0.0001) in OC patients (116.66 pg/mL) compared with normal controls (8.16 pg/mL). Likewise, urinary RHAMM levels decreased following cytoreductive surgery in OC patients suggesting the source of urinary RHAMM from tumor tissue. Lastly, we validated RHAMM levels in OC cell lysate and found at least 12× greater levels compared to normal ovarian surface epithelial cells. CONCLUSION This pilot study shows, for the first time, that RHAMM may contribute to OC disease and could potentially be used as a prognostic marker.
Collapse
Affiliation(s)
- Stephanie T Buttermore
- Department of Pathology & Cell Biology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 11, Tampa, FL, 33612, USA
| | | | - Ambuj Kumar
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Anne Champeaux
- Department of Pathology & Cell Biology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 11, Tampa, FL, 33612, USA
| | - Santo V Nicosia
- Department of Pathology & Cell Biology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 11, Tampa, FL, 33612, USA
| | - Patricia A Kruk
- Department of Pathology & Cell Biology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 11, Tampa, FL, 33612, USA. .,Department of Obstetrics & Gynecology, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
36
|
Shigeeda W, Shibazaki M, Yasuhira S, Masuda T, Tanita T, Kaneko Y, Sato T, Sekido Y, Maesawa C. Hyaluronic acid enhances cell migration and invasion via the YAP1/TAZ-RHAMM axis in malignant pleural mesothelioma. Oncotarget 2017; 8:93729-93740. [PMID: 29212185 PMCID: PMC5706831 DOI: 10.18632/oncotarget.20750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/29/2017] [Indexed: 12/03/2022] Open
Abstract
Most malignant mesotheliomas (MPMs) frequently show activated forms of Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ), which transcriptionally regulates the receptor for hyaluronic acid-mediated motility (RHAMM). As RHAMM is involved in cell migration and invasion in various tumors, we speculated that hyaluronic acid (HA) in pleural fluid might affect the progression of mesothelioma by stimulating cell migration and invasion through RHAMM. The level of RHAMM expression was decreased by YAP1/TAZ knockdown, and conversely increased by forced expression of the active form of YAP1, suggesting that RHAMM was regulated by YAP1/TAZ in MPM cells. Cell migration and invasion were also decreased by YAP1/TAZ or RHAMM knockdown. Notably, HA treatment increased cell motility and invasion, and this was abolished by RHAMM knockdown, suggesting that HA may augment local progression of MPM cells via RHAMM. Furthermore, treatment with fluvastatin, which regulates RHAMM transcription by modulating YAP1/TAZ activity, decreased the motility and invasion of MPM cells. Collectively, these data suggest that HA is an “unfavorable” factor because it promotes malignancy in mesothelioma and that the YAP1/TAZ-RHAMM axis may have potential value as a therapeutic target for inhibition of disease progression in MPM.
Collapse
Affiliation(s)
- Wataru Shigeeda
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan.,Department of Thoracic Surgery, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Masahiko Shibazaki
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan
| | - Shinji Yasuhira
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan
| | - Tomoyuki Masuda
- Department of Pathology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Tatsuo Tanita
- Department of Thoracic Surgery, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yuka Kaneko
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan
| | - Tatsuhiro Sato
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Chihaya Maesawa
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan
| |
Collapse
|
37
|
The hyaluronan-mediated motility receptor RHAMM promotes growth, invasiveness and dissemination of colorectal cancer. Oncotarget 2017; 8:70617-70629. [PMID: 29050306 PMCID: PMC5642581 DOI: 10.18632/oncotarget.19904] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/06/2017] [Indexed: 12/29/2022] Open
Abstract
In colorectal cancer (CRC), RHAMM is an independent adverse prognostic factor. The aim of the study was therefore to investigate on the role of RHAMM as a potential direct driver of cell proliferation and migration in CRC cell lines and to identify pathways dependent on RHAMM in human CRC. Proliferation, cell cycle alterations and invasive capacity were tested in two RHAMM- and control- knockdown CRC cell lines by flow cytometry and in vitro assays. Tumorigenicity and metastasis formation was assessed in immunodeficient mice. RNA-Seq and immunohistochemistry was performed on six RHAMM+/- primary CRC tumors. In vitro, silencing of RHAMM inhibited CRC cell migration and invasion by 50% (p<0.01). In vivo, RHAMM knockdown resulted in slower growth, lower tumor size (p<0.001) and inhibition of metastasis (p<0.001). Patients with RHAMM-high CRC had a worse prognosis (p=0.040) and upregulated pathways for cell cycle progression and adhesion turnover. RHAMM overexpression is correlated with increased migration and invasion of CRC cells, leads to larger, fast growing tumors, and its downregulation essentially abolishes metastasis in mouse models. RHAMM is therefore a promising therapeutic target in all CRC stages as its inhibition affects growth and dissemination of the primary CRC as well as the metastases.
Collapse
|
38
|
Clinical, biomechanical and morphological assessment of anterior cruciate ligament Kevlar®-based artificial prosthesis in rabbit model. J Appl Biomater Funct Mater 2017; 15:e251-e261. [PMID: 28478617 DOI: 10.5301/jabfm.5000353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate the clinical, biomechanical and morphological characteristics of a Kevlar®-based prosthetic ligament as a synthetic graft of the anterior cruciate ligament (ACL) in an experimental animal model in rabbits. METHODS A total of 27 knees of rabbits randomly divided into 3 groups (control, ACL excision and ACL replacement with a Kevlar® prosthesis) were analyzed using clinical, biomechanical and morphological tests at 6, 12 and 18 weeks postprocedure. RESULTS The mean displacement in mechanical testing was 0.73 ± 0.06 mm, 1.58 ± 0.19 mm and 0.94 ± 0.20 mm for the control, ACL excision and ACL replacement with synthetic prosthesis groups, respectively. The results showed an improvement in the stability of the knee with the use of the Kevlar® synthetic prosthesis in the biomechanical testing (p<0.05) compared with rabbits that underwent ACL excision, in addition to displacements that were larger but comparable to that in the control group (p>0.05), between the replacement group and the control group. The histological study revealed a good morphological adaptation of the synthetic material to the knee. CONCLUSIONS This study proposes a new animal model for the placement and evaluation of Kevlar®-based synthetic ACL implants. The studied prosthesis showed promising behavior in the clinical and biomechanical tests and in the histological analysis. This study lays the foundation for further basic and clinical studies of artificial ACL prostheses using this material.
Collapse
|
39
|
Choi JU, Lee SW, Pangeni R, Byun Y, Yoon IS, Park JW. Preparation and in vivo evaluation of cationic elastic liposomes comprising highly skin-permeable growth factors combined with hyaluronic acid for enhanced diabetic wound-healing therapy. Acta Biomater 2017; 57:197-215. [PMID: 28476587 DOI: 10.1016/j.actbio.2017.04.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022]
Abstract
To enhance the therapeutic effects of exogenous administration of growth factors (GFs) in the treatment of chronic wounds, we constructed GF combinations of highly skin-permeable epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), and platelet-derived growth factor-A (PDGF-A). We genetically conjugated a low-molecular-weight protamine (LMWP) to the N-termini of these GFs to form LMWP-EGF, LMWP-IGF-I, and LMWP-PDGF-A. Subsequently, these molecules were complexed with hyaluronic acid (HA). Combinations of native or LMWP-fused GFs significantly promoted fibroblast proliferation and the synthesis of procollagen, with a magnification of these results observed after the GFs were complexed with HA. The optimal proportions of LMWP-EGF, LMWP-IGF-I, LMWP-PDGF-A, and HA were 1, 1, 0.02, and 200, respectively. After confirming the presence of a synergistic effect, we incorporated the LMWP-fused GFs-HA complex into cationic elastic liposomes (ELs) of 107±0.757nm in diameter and a zeta potential of 56.5±1.13mV. The LMWP-fused GFs had significantly improved skin permeation compared with native GFs. The in vitro wound recovery rate of the LMWP-fused GFs-HA complex was 23% higher than that of cationic ELs composed of LMWP-fused GFs alone. Moreover, the cationic ELs containing the LMWP-fused GFs-HA complex significantly accelerated the wound closure rate in a diabetic mouse model and the wound size was maximally decreased by 65% and 58% compared to cationic ELs loaded with vehicle or native GFs-HA complex, respectively. Thus, topical treatment with cationic ELs loaded with the LMWP-fused GFs-HA complex synergistically enhanced the healing of chronic wounds, exerting both rapid and prolonged effects. STATEMENT OF SIGNIFICANCE We believe that our study makes a significant contribution to the literature, because it demonstrated the potential application of cationic elastic liposomes as topical delivery systems for growth factors (GFs) that have certain limitations in their therapeutic effects (e.g., low percutaneous absorption of GFs at the lesion site and the requirement for various GFs at different healing stages). Topical treatment with cationic elastic liposomes loaded with highly skin-permeable low-molecular-weight protamine (LMWP)-fused GFs-hyaluronic acid (HA) complex synergistically enhanced the healing of diabetic wounds, exerting both rapid and prolonged effects.
Collapse
Affiliation(s)
- Jeong Uk Choi
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seong Wook Lee
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Rudra Pangeni
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea.
| |
Collapse
|
40
|
Yang C, Li C, Zhang P, Wu W, Jiang X. Redox Responsive Hyaluronic Acid Nanogels for Treating RHAMM (CD168) Over-expressive Cancer, both Primary and Metastatic Tumors. Theranostics 2017; 7:1719-1734. [PMID: 28529647 PMCID: PMC5436523 DOI: 10.7150/thno.18340] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/02/2017] [Indexed: 12/19/2022] Open
Abstract
It remains a substantial challenge to targetedly deliver drug to both primary tumors and metastatic lesions employing a single nanoparticle delivery system. Here aiming at the receptor for hyaluronic acid mediated motility (RHAMM or CD168), a specific receptor for hyaluronic acid (HA), the bioreductive responsive HA nanogels loaded doxorubicin were prepared. The targeting effects of HA nanogels in high RHAMM-expressed cancer cells, primary and metastatic tumors were investigated. It was found that HA nanogels show a strong in vitro and in vivo RHAMM-mediated cellular uptake and drug delivery. The cellular uptake of HA nanogels in high RHAMM-expressed LNCaP and H22 cells was far more than the uptake in low RHAMM-expressed NIH3T3 cells. The IC50 value of drug-loaded HA nanogels against H22 cells was lower than that of free drug. In vivo antitumor activity examinations showed that the HA nanogels not only had significantly superior antitumor efficacy in murine H22 and human LNCaP tumor-bearing mice but also exhibited much deep tumor penetration. The drug delivery of lymph node metastasis by systemically administering HA nanogels demonstrated that the HA nanogels could sufficiently increase drug concentration in metastatic lymph node by RHAMM-HA interaction and inhibit the growth of metastatic lymph node, even completely heal malignant lymph node metastasis. Thus, RHAMM-directed drug delivery is a promising therapy route for treating both primary and metastatic tumors.
Collapse
Affiliation(s)
| | | | | | | | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
41
|
Low molecular weight hyaluronan induces migration of human choriocarcinoma JEG-3 cells mediated by RHAMM as well as by PI3K and MAPK pathways. Histochem Cell Biol 2017; 148:173-187. [PMID: 28365860 DOI: 10.1007/s00418-017-1559-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2017] [Indexed: 12/21/2022]
Abstract
Hyaluronan (HA) is the major glycosaminoglycan present in the extracellular matrix. It is produced by some tumours and promotes proliferation, differentiation and migration among others cellular processes. Gestational trophoblastic disease (GTD) is composed by non-tumour entities, such as hydatidiform mole (HM), which is the most common type of GTD and also malignant entities such as choriocarcinoma (CC) and placental site trophoblastic tumour (PSTT), being CC the most aggressive tumour. Although there is a growing understanding of GTD biology, the role of HA in the pathogenesis of this group of diseases remains largely unknown. The aim of this work was to study the role of HA in the pathogenesis of GTD by defining the expression pattern of HA and its receptors CD44 and RHAMM, as well as to determine if HA can modulate proliferation, differentiation and migration of CC cells. Receptors and signalling pathways involved were also analyzed. We demonstrated that HA and RHAMM are differently expressed among GTD entities and even among trophoblast subtypes. We also showed that HA is able to enhance the expression of extravillous trophoblast markers and also to induce migration of JEG-3 cells, the latter mediated by RHAMM as well as PI3K and MAPK pathways. These findings indicate a novel regulatory mechanism for CC cell biology and also contribute to the understanding of GTD pathophysiology.
Collapse
|
42
|
Bahrami SB, Tolg C, Peart T, Symonette C, Veiseh M, Umoh JU, Holdsworth DW, McCarthy JB, Luyt LG, Bissell MJ, Yazdani A, Turley EA. Receptor for hyaluronan mediated motility (RHAMM/HMMR) is a novel target for promoting subcutaneous adipogenesis. Integr Biol (Camb) 2017; 9:223-237. [PMID: 28217782 DOI: 10.1039/c7ib00002b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hyaluronan, CD44 and the Receptor for Hyaluronan-Mediated Motility (RHAMM, gene name HMMR) regulate stem cell differentiation including mesenchymal progenitor differentiation. Here, we show that CD44 expression is required for subcutaneous adipogenesis, whereas RHAMM expression suppresses this process. We designed RHAMM function blocking peptides to promote subcutaneous adipogenesis as a clinical and tissue engineering tool. Adipogenic RHAMM peptides were identified by screening for their ability to promote adipogenesis in culture assays using rat bone marrow mesenchymal stem cells, mouse pre-adipocyte cell lines and primary human subcutaneous pre-adipocytes. Oil red O uptake into fat droplets and adiponectin production were used as biomarkers of adipogenesis. Positive peptides were formulated in either collagen I or hyaluronan (Orthovisc) gels then assessed for their adipogenic potential in vivo following injection into dorsal rat skin and mammary fat pads. Fat content was quantified and characterized using micro CT imaging, morphometry, histology, RT-PCR and ELISA analyses of adipogenic gene expression. Injection of screened peptides increased dorsal back subcutaneous fat pad area (208.3 ± 10.4 mm2versus control 84.11 ± 4.2 mm2; p < 0.05) and mammary fat pad size (45 ± 11 mg above control background, p = 0.002) in female rats. This effect lasted >5 weeks as detected by micro CT imaging and perilipin 1 mRNA expression. RHAMM expression suppresses while blocking peptides promote expression of PPARγ, C/EBP and their target genes. Blocking RHAMM function by peptide injection or topical application is a novel and minimally invasive method for potentially promoting subcutaneous adipogenesis in lipodystrophic diseases and a complementary tool to subcutaneous fat augmentation techniques.
Collapse
Affiliation(s)
- S B Bahrami
- Biological Systems and Engineering Division, BioSciences Area, Lawrence Berkeley National Laboratories, 977R225A, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Duan N, Lv W, Zhu L, Zheng W, Hua Z. Expression and purification of RHC–EGFP fusion protein and its application in hyaluronic acid assay. Prep Biochem Biotechnol 2016; 47:261-267. [DOI: 10.1080/10826068.2016.1224243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ningjun Duan
- State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Wansheng Lv
- State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Lingli Zhu
- State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Weijuan Zheng
- State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Zichun Hua
- State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
44
|
Baggenstoss BA, Harris EN, Washburn JL, Medina AP, Nguyen L, Weigel PH. Hyaluronan synthase control of synthesis rate and hyaluronan product size are independent functions differentially affected by mutations in a conserved tandem B-X7-B motif. Glycobiology 2016; 27:154-164. [PMID: 27558839 DOI: 10.1093/glycob/cww089] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 01/27/2023] Open
Abstract
Hyaluronan synthases (HAS) normally make large (>MDa) hyaluronan (HA) products. Smaller HA fragments (e.g. 100-400 kDa) produced in vivo are associated with inflammation and cell signaling by HA receptors that bind small, but not large, HA. Although HA fragments can arise from breakdown by hyaluronidases, HAS might also be regulated directly to synthesize small HA. Here we examined the Streptococcus equisimilis HAS (SeHAS) C-terminus, which contains a tandem B-X7-B motif (K398-X7-R406-X7-K414), by testing the effects of 27 site-specific scanning mutations and 7 C-terminal truncations on HA synthesis activity and weight-average mass. Although HAS enzymes cannot be HA-binding proteins, these motifs are highly conserved within the Class I HAS family. Fifteen Arg406 mutants made large MDa HA (86-110% wildtype size), with specific activities from 70% to 177% of wildtype. In contrast, 10 of 12 Lys398 mutants made HA that was 8-14% of wildtype size (≤250-480 kDa), with specific activities from 14% to 64% of wildtype. Four nearly inactive (2% wildtype activity) C-terminal truncation mutants made MDa HA (56-71% wildtype). The results confirm earlier findings with Cys-mutants [Weigel PH, Baggenstoss BA. 2012. Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines. Glycobiology 22:1302-1310] that HAS uses two independent activities to control HA size and HA synthesis rate; these are two separate functions. We conclude that HAS regulatory modifications that alter tandem B-X7-B motif conformation could mimic these mutagenesis-induced effects, allowing HAS in vivo to make small HA directly. The results also support a model in which the tandem-motif region is part of the intra-HAS pore and interacts directly with HA.
Collapse
Affiliation(s)
- Bruce A Baggenstoss
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Edward N Harris
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer L Washburn
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andria P Medina
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Long Nguyen
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Paul H Weigel
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
45
|
Tsepilov RN, Beloded AV. Hyaluronic Acid--an "Old" Molecule with "New" Functions: Biosynthesis and Depolymerization of Hyaluronic Acid in Bacteria and Vertebrate Tissues Including during Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2016; 80:1093-108. [PMID: 26555463 DOI: 10.1134/s0006297915090011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyaluronic acid is an evolutionarily ancient molecule commonly found in vertebrate tissues and capsules of some bacteria. Here we review modern data regarding structure, properties, and biological functions of hyaluronic acid in mammals and Streptococcus spp. bacteria. Various aspects of biogenesis and degradation of hyaluronic acid are discussed, biosynthesis and degradation metabolic pathways for glycosaminoglycan together with involved enzymes are described, and vertebrate and bacterial hyaluronan synthase genes are characterized. Special attention is given to the mechanisms underlying the biological action of hyaluronic acid as well as the interaction between polysaccharide and various proteins. In addition, all known signaling pathways involving hyaluronic acid are outlined. Impaired hyaluronic acid metabolism, changes in biopolymer molecular weight, hyaluronidase activity, and enzyme isoforms often accompany carcinogenesis. The interaction between cells and hyaluronic acid from extracellular matrix that may be important during malignant change is discussed. An expected role for high molecular weight hyaluronic acid in resistance of naked mole rat to oncologic diseases and the protective role of hyaluronic acid in bacteria are discussed.
Collapse
Affiliation(s)
- R N Tsepilov
- Gamaleya Research Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow, 123098, Russia.
| | | |
Collapse
|
46
|
Wang K, Zhang T. Prognostic significance of CD168 overexpression in colorectal cancer. Oncol Lett 2016; 12:2555-2559. [PMID: 27698827 PMCID: PMC5038220 DOI: 10.3892/ol.2016.4974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/26/2016] [Indexed: 01/24/2023] Open
Abstract
The expression of cluster of differentiation 168 (CD168), a cell surface receptor for hyaluronan, is associated with cancer progression and metastases. The aim of the present study was to analyze the expression of CD168 by immunohistochemistry in colorectal cancer (CRC) and to examine the association between CD168 expression and clinicopathological features, including survival. A total of 78 tissue specimens obtained from consecutive CRC patients exhibiting various tumor node metastasis (TNM) stages were immunostained for the analysis of CD168 expression. The prognostic value of CD168 was subsequently evaluated. Kaplan-Meier survival analysis revealed that CD168 overexpression was significantly associated with overall survival (P<0.05); however, no significant association was identified between CD168 expression and tumor location, tumor differentiation or TNM stage. Overexpression of CD168 was closely associated with poorer patient survival, which indicates that it may present a useful indicator for clinical prognosis.
Collapse
Affiliation(s)
- Ke Wang
- Department of Oncology, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Tao Zhang
- Department of Preventive and Health Care, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
47
|
Maioli M, Rinaldi S, Pigliaru G, Santaniello S, Basoli V, Castagna A, Fontani V, Ventura C. REAC technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence. Sci Rep 2016; 6:28682. [PMID: 27339908 PMCID: PMC4919615 DOI: 10.1038/srep28682] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/31/2016] [Indexed: 01/11/2023] Open
Abstract
Hyaluronic acid (HA) plays a fundamental role in cell polarity and hydrodynamic processes, affording significant modulation of proliferation, migration, morphogenesis and senescence, with deep implication in the ability of stem cells to execute their differentiating plans. The Radio Electric Asymmetric Conveyer (REAC) technology is aimed to optimize the ions fluxes at the molecular level in order to optimize the molecular mechanisms driving cellular asymmetry and polarization. Here, we show that treatment with 4-methylumbelliferone (4-MU), a potent repressor of type 2 HA synthase and endogenous HA synthesis, dramatically antagonized the ability of REAC to recover the gene and protein expression of Bmi1, Oct4, Sox2, and Nanog in ADhMSCs that had been made senescent by prolonged culture up to the 30(th) passage. In senescent ADhMSCs, 4-MU also counteracted the REAC ability to rescue the gene expression of TERT, and the associated resumption of telomerase activity. Hence, the anti-senescence action of REAC is largely dependent upon the availability of endogenous HA synthesis. Endogenous HA and HA-binding proteins with REAC technology create an interesting network that acts on the modulation of cell polarity and intracellular environment. This suggests that REAC technology is effective on an intracellular niche level of stem cell regulation.
Collapse
Affiliation(s)
- Margherita Maioli
- Center for developmental biology and reprogramming - CEDEBIOR, Department of Biomedical Sciences, University of Sassari Viale San Pietro 43/B, 07100 Sassari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola - Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Salvatore Rinaldi
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Department of Anti Aging Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, Viale Belfiore 43, 50144 Florence, Italy
| | - Gianfranco Pigliaru
- Center for developmental biology and reprogramming - CEDEBIOR, Department of Biomedical Sciences, University of Sassari Viale San Pietro 43/B, 07100 Sassari, Italy
- National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola - Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Sara Santaniello
- Center for developmental biology and reprogramming - CEDEBIOR, Department of Biomedical Sciences, University of Sassari Viale San Pietro 43/B, 07100 Sassari, Italy
- National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola - Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Valentina Basoli
- Center for developmental biology and reprogramming - CEDEBIOR, Department of Biomedical Sciences, University of Sassari Viale San Pietro 43/B, 07100 Sassari, Italy
- Research Department, Rinaldi Fontani Foundation, Viale Belfiore 43, 50144 Florence, Italy
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Alessandro Castagna
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Department of Anti Aging Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, Viale Belfiore 43, 50144 Florence, Italy
| | - Vania Fontani
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Department of Anti Aging Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
| | - Carlo Ventura
- National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola - Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Stem Wave Institute for Tissue Healing (SWITH), Ettore Sansavini Health Science Foundation- NPO, via Provinciale per Cotignola 9, 48022 Lugo (Ravenna), Italy
| |
Collapse
|
48
|
Naor D. Editorial: Interaction Between Hyaluronic Acid and Its Receptors (CD44, RHAMM) Regulates the Activity of Inflammation and Cancer. Front Immunol 2016; 7:39. [PMID: 26904028 PMCID: PMC4745048 DOI: 10.3389/fimmu.2016.00039] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 01/25/2016] [Indexed: 11/29/2022] Open
Affiliation(s)
- David Naor
- Lautenberg Center of Immunology, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem , Jerusalem , Israel
| |
Collapse
|
49
|
Katona É, Juhász T, Somogyi CS, Hajdú T, Szász C, Rácz K, Kókai E, Gergely P, Zákány R. PP2B and ERK1/2 regulate hyaluronan synthesis of HT168 and WM35 human melanoma cell lines. Int J Oncol 2015; 48:983-97. [PMID: 26717964 PMCID: PMC4750541 DOI: 10.3892/ijo.2015.3313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/05/2015] [Indexed: 12/26/2022] Open
Abstract
Hyaluronan (HA) is the major glycosaminoglycan component of the extracellular matrix in either normal or malignant tissues and it may affect proliferation, motility and differentiation of various cell types. Three isoforms of plasma membrane-bound hyaluronan synthases (HAS 1, 2 and 3) secrete and simultaneously bind pericellular HA. HAS enzymes are subjects of post-translational protein phosphorylation which is believed to regulate their enzymatic activity. In this study, we investigated the HA homeostasis of normal human epidermal melanocytes, HT168 and WM35 human melanoma cell lines and melanoma metastases. HAS2 and HAS3 were detected in all the samples, while the expression of HAS1 was not detectable in any case. Malignant tissue samples and melanoma cell lines contained extra- and intracellular HA abundantly but not normal melanocytes. Applying HA as a chemoattractant facilitated the migration of melanoma cells in Boyden chamber. The amount of HA was reduced upon the inhibition of calcineurin with cyclosporine A (CsA), while the inhibition of ERK1/2 with PD098059 elevated it in both cell lines. The signals of Ser/Thr phosphoproteins at 57 kD were stronger after CsA treatment, while a markedly weaker signal was detected upon inhibition of the MAPK pathway. Our results suggest opposing effects of the two investigated enzymes on the HA homeostasis of melanoma cells. We propose that the dephosphorylation of HAS enzymes targeted by PP2B augments HA production, while their phosphorylation by the activity of MAPK pathway reduces HA synthesis. As the expression of the HA receptor RHAMM was also significantly enhanced by PD098059, the MAPK pathway exerted a complex attenuating effect on HA signalling in the investigated melanoma cells. This observation suggests that the application of MAPK-ERK pathway inhibitors requires a careful therapeutic design in melanoma treatment.
Collapse
Affiliation(s)
- Éva Katona
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csilla Szűcs Somogyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csaba Szász
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Kálmán Rácz
- Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Endre Kókai
- Department of Cell Biology and Signalling Research Group of the Hungarian Academy of Sciences, Department of Medical Chemistry, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Pál Gergely
- Department of Cell Biology and Signalling Research Group of the Hungarian Academy of Sciences, Department of Medical Chemistry, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
50
|
Veiseh M, Leith SJ, Tolg C, Elhayek SS, Bahrami SB, Collis L, Hamilton S, McCarthy JB, Bissell MJ, Turley E. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells. Front Cell Dev Biol 2015; 3:63. [PMID: 26528478 PMCID: PMC4606125 DOI: 10.3389/fcell.2015.00063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022] Open
Abstract
The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies.
Collapse
Affiliation(s)
- Mandana Veiseh
- Life Sciences Division, Lawrence Berkeley National LaboratoriesBerkeley, CA, USA
- Palo Alto Research Center (a Xerox Company)Palo Alto, CA, USA
| | - Sean J. Leith
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - Cornelia Tolg
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - Sallie S. Elhayek
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - S. Bahram Bahrami
- Life Sciences Division, Lawrence Berkeley National LaboratoriesBerkeley, CA, USA
| | - Lisa Collis
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - Sara Hamilton
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - James B. McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, University of MinnesotaMinneapolis, MN, USA
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National LaboratoriesBerkeley, CA, USA
| | - Eva Turley
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| |
Collapse
|