1
|
Abstract
The β common chain (βc) cytokine family includes granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5, all of which use βc as key signaling receptor subunit. GM-CSF, IL-3 and IL-5 have specific roles as hematopoietic growth factors. IL-3 binds with high affinity to the IL-3 receptor α (IL-3Rα/CD123) and then associates with the βc subunit. IL-3 is mainly synthesized by different subsets of T cells, but is also produced by several other immune [basophils, dendritic cells (DCs), mast cells, etc.] and non-immune cells (microglia and astrocytes). The IL-3Rα is also expressed by immune (basophils, eosinophils, mast cells, DCs, monocytes, and megacaryocytes) and non-immune cells (endothelial cells and neuronal cells). IL-3 is the most important growth and activating factor for human and mouse basophils, primary effector cells of allergic disorders. IL-3-activated basophils and mast cells are also involved in different chronic inflammatory disorders, infections, and several types of cancer. IL-3 induces the release of cytokines (i.e., IL-4, IL-13, CXCL8) from human basophils and preincubation of basophils with IL-3 potentiates the release of proinflammatory mediators and cytokines from IgE- and C5a-activated basophils. IL-3 synergistically potentiates IL-33-induced mediator release from human basophils. IL-3 plays a pathogenic role in several hematologic cancers and may contribute to autoimmune and cardiac disorders. Several IL-3Rα/CD123 targeting molecules have shown some efficacy in the treatment of hematologic malignancies.
Collapse
|
2
|
Dougan M, Dranoff G, Dougan SK. GM-CSF, IL-3, and IL-5 Family of Cytokines: Regulators of Inflammation. Immunity 2019; 50:796-811. [PMID: 30995500 DOI: 10.1016/j.immuni.2019.03.022] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 01/27/2023]
Abstract
The β common chain cytokines GM-CSF, IL-3, and IL-5 regulate varied inflammatory responses that promote the rapid clearance of pathogens but also contribute to pathology in chronic inflammation. Therapeutic interventions manipulating these cytokines are approved for use in some cancers as well as allergic and autoimmune disease, and others show promising early clinical activity. These approaches are based on our understanding of the inflammatory roles of these cytokines; however, GM-CSF also participates in the resolution of inflammation, and IL-3 and IL-5 may also have such properties. Here, we review the functions of the β common cytokines in health and disease. We discuss preclinical and clinical data, highlighting the potential inherent in targeting these cytokine pathways, the limitations, and the important gaps in understanding of the basic biology of this cytokine family.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Glenn Dranoff
- Novartis Institute for Biomedical Research, Cambridge, MA, USA.
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Dhagat U, Hercus TR, Broughton SE, Nero TL, Cheung Tung Shing KS, Barry EF, Thomson CA, Bryson S, Pai EF, McClure BJ, Schrader JW, Lopez AF, Parker MW. The mechanism of GM-CSF inhibition by human GM-CSF auto-antibodies suggests novel therapeutic opportunities. MAbs 2018; 10:1018-1029. [PMID: 29969365 DOI: 10.1080/19420862.2018.1494107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that can stimulate a variety of cells, but its overexpression leads to excessive production and activation of granulocytes and macrophages with many pathogenic effects. This cytokine is a therapeutic target in inflammatory diseases, and several anti-GM-CSF antibodies have advanced to Phase 2 clinical trials in patients with such diseases, e.g., rheumatoid arthritis. GM-CSF is also an essential factor in preventing pulmonary alveolar proteinosis (PAP), a disease associated with GM-CSF malfunction arising most typically through the presence of GM-CSF neutralizing auto-antibodies. Understanding the mechanism of action for neutralizing antibodies that target GM-CSF is important for improving their specificity and affinity as therapeutics and, conversely, in devising strategies to reduce the effects of GM-CSF auto-antibodies in PAP. We have solved the crystal structures of human GM-CSF bound to antigen-binding fragments of two neutralizing antibodies, the human auto-antibody F1 and the mouse monoclonal antibody 4D4. Coordinates and structure factors of the crystal structures of the GM-CSF:F1 Fab and the GM-CSF:4D4 Fab complexes have been deposited in the RCSB Protein Data Bank under the accession numbers 6BFQ and 6BFS, respectively. The structures show that these antibodies bind to mutually exclusive epitopes on GM-CSF; however, both prevent the cytokine from interacting with its alpha receptor subunit and hence prevent receptor activation. Importantly, identification of the F1 epitope together with functional analyses highlighted modifications to GM-CSF that would abolish auto-antibody recognition whilst retaining GM-CSF function. These results provide a framework for developing novel GM-CSF molecules for PAP treatment and for optimizing current anti-GM-CSF antibodies for use in treating inflammatory disorders.
Collapse
Affiliation(s)
- Urmi Dhagat
- a St. Vincent's Institute of Medical Research , Australian Cancer Research Foundation Rational Drug Discovery Centre , Fitzroy , Victoria , Australia.,c Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , Parkville , Victoria , Australia
| | - Timothy R Hercus
- b The Centre for Cancer Biology , SA Pathology and the University of South Australia , Adelaide , South Australia , Australia
| | - Sophie E Broughton
- a St. Vincent's Institute of Medical Research , Australian Cancer Research Foundation Rational Drug Discovery Centre , Fitzroy , Victoria , Australia.,c Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , Parkville , Victoria , Australia
| | - Tracy L Nero
- a St. Vincent's Institute of Medical Research , Australian Cancer Research Foundation Rational Drug Discovery Centre , Fitzroy , Victoria , Australia.,c Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , Parkville , Victoria , Australia
| | - Karen S Cheung Tung Shing
- a St. Vincent's Institute of Medical Research , Australian Cancer Research Foundation Rational Drug Discovery Centre , Fitzroy , Victoria , Australia.,c Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , Parkville , Victoria , Australia
| | - Emma F Barry
- b The Centre for Cancer Biology , SA Pathology and the University of South Australia , Adelaide , South Australia , Australia
| | - Christy A Thomson
- d The Biomedical Research Centre , University of British Columbia , Vancouver , British Columbia , Canada
| | - Steve Bryson
- e Princess Margaret Cancer Centre, University Health Network, University of Toronto , Toronto , Ontario , Canada.,f Department of Biochemistry , University of Toronto , Toronto , Ontario , Canada
| | - Emil F Pai
- e Princess Margaret Cancer Centre, University Health Network, University of Toronto , Toronto , Ontario , Canada.,f Department of Biochemistry , University of Toronto , Toronto , Ontario , Canada.,g Department of Medical Biophysics , University of Toronto , Toronto , Ontario , Canada.,h Department of Molecular Genetics , University of Toronto , Toronto , Ontario , Canada
| | - Barbara J McClure
- b The Centre for Cancer Biology , SA Pathology and the University of South Australia , Adelaide , South Australia , Australia
| | - John W Schrader
- d The Biomedical Research Centre , University of British Columbia , Vancouver , British Columbia , Canada.,g Department of Medical Biophysics , University of Toronto , Toronto , Ontario , Canada
| | - Angel F Lopez
- b The Centre for Cancer Biology , SA Pathology and the University of South Australia , Adelaide , South Australia , Australia.,i Department of Medicine , University of Adelaide , Adelaide , South Australia , Australia
| | - Michael W Parker
- a St. Vincent's Institute of Medical Research , Australian Cancer Research Foundation Rational Drug Discovery Centre , Fitzroy , Victoria , Australia.,c Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , Parkville , Victoria , Australia
| |
Collapse
|
4
|
|
5
|
Hughes MM, McGettrick AF, O'Neill LAJ. Glutathione and Glutathione Transferase Omega 1 as Key Posttranslational Regulators in Macrophages. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mchd-0044-2016. [PMID: 28102119 PMCID: PMC11687437 DOI: 10.1128/microbiolspec.mchd-0044-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
Macrophage activation during phagocytosis or by pattern recognition receptors, such as Toll-like receptor 4, leads to the accumulation of reactive oxygen species (ROS). ROS act as a microbicidal defense mechanism, promoting clearance of infection, allowing for resolution of inflammation. Overproduction of ROS, however, overwhelms our cellular antioxidant defense system, promoting oxidation of protein machinery, leading to macrophage dysregulation and pathophysiology of chronic inflammatory conditions, such as atherosclerosis. Here we will describe the role of the antioxidant tripeptide glutathione (GSH). Until recently, the binding of GSH, termed glutathionylation, was only considered to maintain the integrity of cellular components, limiting the damaging effects of an aberrant oxidative environment. GSH can, however, have positive and negative regulatory effects on protein function in macrophages. GSH regulates protein secretion, driving tumor necrosis factor α release, hypoxia-inducible factor-1α stability, STAT3 phosphorylation, and caspase-1 activation in macrophages. GSH also plays a role in host defense against Listeria monocytogenes, modifying the key virulence protein PrfA in infected macrophages. We will also discuss glutathione transferase omega 1, a deglutathionylating enzyme recently shown to play a role in many aspects of macrophage activity, including metabolism, NF-κB activation, and cell survival pathways. Glutathionylation is emerging as a key regulatory event in macrophage biology that might be susceptible to therapeutic targeting.
Collapse
Affiliation(s)
- Mark M Hughes
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Anne F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
6
|
Broughton SE, Hercus TR, Nero TL, Dottore M, McClure BJ, Dhagat U, Taing H, Gorman MA, King-Scott J, Lopez AF, Parker MW. Conformational Changes in the GM-CSF Receptor Suggest a Molecular Mechanism for Affinity Conversion and Receptor Signaling. Structure 2016; 24:1271-1281. [PMID: 27396825 DOI: 10.1016/j.str.2016.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
The GM-CSF, IL-3, and IL-5 receptors constitute the βc family, playing important roles in inflammation, autoimmunity, and cancer. Typical of heterodimeric type I cytokine receptors, signaling requires recruitment of the shared subunit to the initial cytokine:α subunit binary complex through an affinity conversion mechanism. This critical process is poorly understood due to the paucity of crystal structures of both binary and ternary receptor complexes for the same cytokine. We have now solved the structure of the binary GM-CSF:GMRα complex at 2.8-Å resolution and compared it with the structure of the ternary complex, revealing distinct conformational changes. Guided by these differences we performed mutational and functional studies that, importantly, show GMRα interactions playing a major role in receptor signaling while βc interactions control high-affinity binding. These results support the notion that conformational changes underlie the mechanism of GM-CSF receptor activation and also suggest how related type I cytokine receptors signal.
Collapse
Affiliation(s)
- Sophie E Broughton
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Timothy R Hercus
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Tracy L Nero
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Mara Dottore
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Barbara J McClure
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Urmi Dhagat
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Houng Taing
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Michael A Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jack King-Scott
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Angel F Lopez
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia.
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
7
|
Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci U S A 2014; 111:12157-62. [PMID: 25097261 DOI: 10.1073/pnas.1401712111] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mechanism by which oxidative stress induces inflammation and vice versa is unclear but is of great importance, being apparently linked to many chronic inflammatory diseases. We show here that inflammatory stimuli induce release of oxidized peroxiredoxin-2 (PRDX2), a ubiquitous redox-active intracellular enzyme. Once released, the extracellular PRDX2 acts as a redox-dependent inflammatory mediator, triggering macrophages to produce and release TNF-α. The oxidative coupling of glutathione (GSH) to PRDX2 cysteine residues (i.e., protein glutathionylation) occurs before or during PRDX2 release, a process central to the regulation of immunity. We identified PRDX2 among the glutathionylated proteins released in vitro by LPS-stimulated macrophages using mass spectrometry proteomic methods. Consistent with being part of an inflammatory cascade, we find that PRDX2 then induces TNF-α release. Unlike classical inflammatory cytokines, PRDX2 release does not reflect LPS-mediated induction of mRNA or protein synthesis; instead, PRDX2 is constitutively present in macrophages, mainly in the reduced form, and is released in the oxidized form on LPS stimulation. Release of PRDX2 is also observed in human embryonic kidney cells treated with TNF-α. Importantly, the PRDX2 substrate thioredoxin (TRX) is also released along with PRDX2, enabling an oxidative cascade that can alter the -SH status of surface proteins and thereby facilitate activation via cytokine and Toll-like receptors. Thus, our findings suggest a model in which the release of PRDX2 and TRX from macrophages can modify the redox status of cell surface receptors and enable induction of inflammatory responses. This pathway warrants further exploration as a potential novel therapeutic target for chronic inflammatory diseases.
Collapse
|
8
|
Hercus TR, Barry EF, Dottore M, McClure BJ, Webb AI, Lopez AF, Young IG, Murphy JM. High yield production of a soluble human interleukin-3 variant from E. coli with wild-type bioactivity and improved radiolabeling properties. PLoS One 2013; 8:e74376. [PMID: 23991218 PMCID: PMC3753260 DOI: 10.1371/journal.pone.0074376] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/31/2013] [Indexed: 11/27/2022] Open
Abstract
Human interleukin-3 (hIL-3) is a polypeptide growth factor that regulates the proliferation, differentiation, survival and function of hematopoietic progenitors and many mature blood cell lineages. Although recombinant hIL-3 is a widely used laboratory reagent in hematology, standard methods for its preparation, including those employed by commercial suppliers, remain arduous owing to a reliance on refolding insoluble protein expressed in E. coli. In addition, wild-type hIL-3 is a poor substrate for radio-iodination, which has been a long-standing hindrance to its use in receptor binding assays. To overcome these problems, we developed a method for expression of hIL-3 in E. coli as a soluble protein, with typical yields of >3mg of purified hIL-3 per litre of shaking microbial culture. Additionally, we introduced a non-native tyrosine residue into our hIL-3 analog, which allowed radio-iodination to high specific activities for receptor binding studies whilst not compromising bioactivity. The method presented herein provides a cost-effective and convenient route to milligram quantities of a hIL-3 analog with wild-type bioactivity that, unlike wild-type hIL‑3, can be efficiently radio-iodinated for receptor binding studies.
Collapse
Affiliation(s)
- Timothy R. Hercus
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
- * E-mail: ; (JMM)
| | - Emma F. Barry
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Mara Dottore
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Barbara J. McClure
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Andrew I. Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Angel F. Lopez
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Ian G. Young
- Department of Molecular Bioscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - James M. Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: ; (JMM)
| |
Collapse
|
9
|
Signalling by the βc family of cytokines. Cytokine Growth Factor Rev 2013; 24:189-201. [DOI: 10.1016/j.cytogfr.2013.03.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/05/2013] [Indexed: 02/07/2023]
|
10
|
Erythropoietin attenuates acute kidney dysfunction in murine experimental sepsis by activation of the β-common receptor. Kidney Int 2013; 84:482-90. [PMID: 23594675 DOI: 10.1038/ki.2013.118] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 12/24/2012] [Accepted: 01/31/2013] [Indexed: 12/31/2022]
Abstract
The β-common receptor (βcR) plays a pivotal role in the nonhematopoietic tissue-protective effects of erythropoietin (EPO). Here we determined whether EPO reduces the acute kidney injury (AKI) caused by sepsis and whether this effect is mediated by the βcR. In young (2 months old) C57BL/6 wild-type and βcR knockout mice, lipopolysaccharide caused a significant increase in serum urea and creatinine, hence AKI. This AKI was not associated with any overt morphological alterations in the kidney and was attenuated by EPO given 1 h after lipopolysaccharide in wild-type but not in βcR knockout mice. In the kidneys of endotoxemic wild-type mice, EPO enhanced the phosphorylation of Akt, glycogen synthase kinase-3β, and endothelial nitric oxide synthase, and inhibited the activation of nuclear factor-κB. All these effects of EPO were lost in βcR knockout mice. Since sepsis is more severe in older animals or patients, we tested whether EPO was renoprotective in 8-month-old wild-type and βcR knockout mice that underwent cecal ligation and puncture. These older mice developed AKI at 24 h, which was attenuated by EPO treatment 1 h post cecal ligation and puncture in wild-type mice but not in βcR knockout mice. Thus, activation of the βcR by EPO is essential for the observed reduction in AKI in either endotoxemic young mice or older mice with polymicrobial sepsis, and for the activation of well-known signaling pathways by EPO.
Collapse
|
11
|
Broughton SE, Dhagat U, Hercus TR, Nero TL, Grimbaldeston MA, Bonder CS, Lopez AF, Parker MW. The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling. Immunol Rev 2013; 250:277-302. [PMID: 23046136 DOI: 10.1111/j.1600-065x.2012.01164.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 are members of a discrete family of cytokines that regulates the growth, differentiation, migration and effector function activities of many hematopoietic cells and immunocytes. These cytokines are involved in normal responses to infectious agents, bridging innate and adaptive immunity. However, in certain cases, the overexpression of these cytokines or their receptors can lead to excessive or aberrant initiation of signaling resulting in pathological conditions, with chronic inflammatory diseases and myeloid leukemias the most notable examples. Recent crystal structures of the GM-CSF receptor ternary complex and the IL-5 binary complex have revealed new paradigms of cytokine receptor activation. Together with a wealth of associated structure-function studies, they have significantly enhanced our understanding of how these receptors recognize cytokines and initiate signals across cell membranes. Importantly, these structures provide opportunities for structure-based approaches for the discovery of novel and disease-specific therapeutics. In addition, recent biochemical evidence has suggested that the GM-CSF/IL-3/IL-5 receptor family is capable of interacting productively with other membrane proteins at the cell surface. Such interactions may afford additional or unique biological activities and might be harnessed for selective modulation of the function of these receptors in disease.
Collapse
|
12
|
Abstract
Basophils have recently been recognized as critical effector cells in allergic reactions and protective immunity against helminths. Precise characterization of basophil biology could help to develop specific therapies that interfere with differentiation, tissue recruitment, or induction of effector functions and thereby ameliorate allergic disorders. The development, homeostasis, and effector functions of basophils are tightly regulated by extrinsic signals and in particular by cytokines. IL-3, GM-CSF, and thymic stromal lymphopoietin activate the STAT5 pathway that promotes proliferation, activation, and cytokine secretion but also induces a negative feedback loop via Pim-1 and SOCS proteins. Basophils further express receptors for IL-18 and IL-33, which are associated with the signaling adaptor MyD88 and activate the NF-κB and MAP kinase pathways. This review focuses on positive and negative regulation of basophils by these cytokines.
Collapse
Affiliation(s)
- David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
13
|
Patel NSA, Nandra KK, Thiemermann C. Bench-to-bedside review: Erythropoietin and its derivatives as therapies in critical care. Crit Care 2012; 16:229. [PMID: 22839413 PMCID: PMC3580677 DOI: 10.1186/cc11315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Erythropoietin (EPO) is known to have numerous biological functions. Its primary function in the body is to increase red blood cell numbers by way of preventing the apoptosis of erythroid progenitor cells via the homodimeric EPO receptor. The discovery that the local production of EPO within the brain in response to hypoxia or ischemia protects neurons against injury via an anti-apoptotic effect formed the basis of the hypothesis that the local generation of EPO limits the extent of injury. Although the hypothesis proved to be true in pre-clinical models of ischemia/reperfusion injury and inflammation, the randomized, controlled clinical trials that followed demonstrated serious adverse events of EPO due to activation of the hematopoietic system. Consequently, derivatives of EPO that lacked erythropoietic activity were discovered to reduce injury in many pre-clinical models associated with ischemia and inflammation. Unfortunately, there are no published clinical trials to determine the efficacy of non-erythropoietic derivatives of EPO in humans.
Collapse
Affiliation(s)
- Nimesh SA Patel
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, The William Harvey Research Institute, Charterhouse Square, London EC1M 6BQ, UK
| | - Kiran K Nandra
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, The William Harvey Research Institute, Charterhouse Square, London EC1M 6BQ, UK
| | - Christoph Thiemermann
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, The William Harvey Research Institute, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
14
|
Brines M, Cerami A. The receptor that tames the innate immune response. Mol Med 2012; 18:486-96. [PMID: 22183892 DOI: 10.2119/molmed.2011.00414] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/14/2011] [Indexed: 11/06/2022] Open
Abstract
Tissue injury, hypoxia and significant metabolic stress activate innate immune responses driven by tumor necrosis factor (TNF)-α and other proinflammatory cytokines that typically increase damage surrounding a lesion. In a compensatory protective response, erythropoietin (EPO) is synthesized in surrounding tissues, which subsequently triggers antiinflammatory and antiapoptotic processes that delimit injury and promote repair. What we refer to as the sequelae of injury or disease are often the consequences of this intentionally discoordinated, primitive system that uses a "scorched earth" strategy to rid the invader at the expense of a serious lesion. The EPO-mediated tissue-protective system depends on receptor expression that is upregulated by inflammation and hypoxia in a distinctive temporal and spatial pattern. The tissue-protective receptor (TPR) is generally not expressed by normal tissues but becomes functional immediately after injury. In contrast to robust and early receptor expression within the immediate injury site, EPO production is delayed, transient and relatively weak. The functional EPO receptor that attenuates tissue injury is distinct from the hematopoietic receptor responsible for erythropoiesis. On the basis of current evidence, the TPR is composed of the β common receptor subunit (CD131) in combination with the same EPO receptor subunit that is involved in erythropoiesis. Additional receptors, including that for the vascular endothelial growth factor, also appear to be a component of the TPR in some tissues, for example, the endothelium. The discoordination of the EPO response system and its relative weakness provide a window of opportunity to intervene with the exogenous ligand. Recently, molecules were designed that preferentially activate only the TPR and thus avoid the potential adverse consequences of activating the hematopoietic receptor. On administration, these agents successfully substitute for a relative deficiency of EPO production in damaged tissues in multiple animal models of disease and may pave the way to effective treatment of a wide variety of insults that cause tissue injury, leading to profoundly expanded lesions and attendant, irreversible sequelae.
Collapse
|
15
|
|
16
|
Mirza S, Chen J, Murphy JM, Young IG. The role of interchain heterodisulfide formation in activation of the human common beta and mouse betaIL-3 receptors. J Biol Chem 2010; 285:24759-68. [PMID: 20516062 PMCID: PMC2915712 DOI: 10.1074/jbc.m109.097881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 05/01/2010] [Indexed: 11/06/2022] Open
Abstract
The cytokines, interleukin-3 (IL-3), interleukin-5 (IL-5), and granulocyte-macrophage colony-stimulating factor (GM-CSF), exhibit overlapping activities in the regulation of hematopoietic cells. In humans, the common beta (betac) receptor is shared by the three cytokines and functions together with cytokine-specific alpha subunits in signaling. A widely accepted hypothesis is that receptor activation requires heterodisulfide formation between the domain 1 D-E loop disulfide in human betac (hbetac) and unidentified cysteine residues in the N-terminal domains of the alpha receptors. Since the development of this hypothesis, new data have been obtained showing that domain 1 of hbetac is part of the cytokine binding epitope of this receptor and that an IL-3Ralpha isoform lacking the N-terminal Ig-like domain (the "SP2" isoform) is competent for signaling. We therefore investigated whether distortion of the domain 1-domain 4 ligand-binding epitope in hbetac and the related mouse receptor, beta(IL-3), could account for the loss of receptor signaling when the domain 1 D-E loop disulfide is disrupted. Indeed, mutation of the disulfide in hbetac led to both a complete loss of high affinity binding with the human IL-3Ralpha SP2 isoform and of downstream signaling. Mutation of the orthologous residues in the mouse IL-3-specific receptor, beta(IL-3), not only precluded direct binding of mouse IL-3 but also resulted in complete loss of high affinity binding and signaling with the mouse IL-3Ralpha SP2 isoform. Our data are most consistent with a role for the domain 1 D-E loop disulfide of hbetac and beta(IL-3) in maintaining the precise positions of ligand-binding residues necessary for normal high affinity binding and signaling.
Collapse
Affiliation(s)
- Shamaruh Mirza
- From the Department of Structural Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 0200, Australia and
| | - Jinglong Chen
- From the Department of Structural Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 0200, Australia and
| | - James M. Murphy
- the Division of Molecular Medicine, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Ian G. Young
- From the Department of Structural Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 0200, Australia and
| |
Collapse
|
17
|
Lopez AF, Hercus TR, Ekert P, Littler DR, Guthridge M, Thomas D, Ramshaw HS, Stomski F, Perugini M, D'Andrea R, Grimbaldeston M, Parker MW. Molecular basis of cytokine receptor activation. IUBMB Life 2010; 62:509-18. [DOI: 10.1002/iub.350] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
The Ig-like domain of human GM-CSF receptor α plays a critical role in cytokine binding and receptor activation. Biochem J 2010; 426:307-17. [DOI: 10.1042/bj20091745] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GM-CSF (granulocyte/macrophage colony-stimulating factor) is an important mediator of inducible haemopoiesis and inflammation, and has a critical role in the function of alveolar macrophages. Its clinical applications include the mobilization of haemopoietic progenitors, and a role as an immune stimulant and vaccine adjuvant in cancer patients. GM-CSF signals via a specific α receptor (GM-CSFRα) and the shared hβc (human common β-subunit). The present study has investigated the role of the Ig-like domain of GM-CSFRα in GM-CSF binding and signalling. Deletion of the Ig-like domain abolished direct GM-CSF binding and decreased growth signalling in the presence of hβc. To locate the specific residues in the Ig-like domain of GM-CSFRα involved in GM-CSF binding, a structural alignment was made with a related receptor, IL-13Rα1 (interleukin-13 receptor α1), whose structure and mode of interaction with its ligand has recently been elucidated. Mutagenesis of candidate residues in the predicted region of interaction identified Val51 and Cys60 as having critical roles in binding to the α receptor, with Arg54 and Leu55 also being important. High-affinity binding in the presence of hβc was strongly affected by mutation of Cys60 and was also reduced by mutation of Val51, Arg54 and Leu55. Of the four key residues, growth signalling was most severely affected by mutation of Cys60. The results indicate a previously unrecognized role for the Ig-like domain, and in particular Cys60, of GM-CSFRα in the binding of GM-CSF and subsequent activation of cellular signalling.
Collapse
|
19
|
Brines M, Cerami A. Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response. J Intern Med 2008; 264:405-32. [PMID: 19017170 DOI: 10.1111/j.1365-2796.2008.02024.x] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In its classic hormonal role, erythropoietin (EPO) is produced by the kidney and regulates the number of erythrocytes within the circulation to provide adequate tissue oxygenation. EPO also mediates other effects directed towards optimizing oxygen delivery to tissues, e.g. modulating regional blood flow and reducing blood loss by promoting thrombosis within damaged vessels. Over the past 15 years, many unexpected nonhaematopoietic functions of EPO have been identified. In these more recently appreciated nonhormonal roles, locally-produced EPO signals through a different receptor isoform and is a major molecular component of the injury response, in which it counteracts the effects of pro-inflammatory cytokines. Acutely, EPO prevents programmed cell death and reduces the development of secondary, pro-inflammatory cytokine-induced injury. Within a longer time frame, EPO provides trophic support to enable regeneration and healing. As the region immediately surrounding damage is typically relatively deficient in endogenous EPO, administration of recombinant EPO can provide increased tissue protection. However, effective use of EPO as therapy for tissue injury requires higher doses than for haematopoiesis, potentially triggering serious adverse effects. The identification of a tissue-protective receptor isoform has facilitated the engineering of nonhaematopoietic, tissue-protective EPO derivatives, e.g. carbamyl EPO, that avoid these complications. Recently, regions within the EPO molecule mediating tissue protection have been identified and this has enabled the development of potent tissue-protective peptides, including some mimicking EPO's tertiary structure but unrelated in primary sequence.
Collapse
Affiliation(s)
- M Brines
- Warren Pharmaceuticals, Ossining, NY 10562, USA.
| | | |
Collapse
|
20
|
Hansen G, Hercus TR, McClure BJ, Stomski FC, Dottore M, Powell J, Ramshaw H, Woodcock JM, Xu Y, Guthridge M, McKinstry WJ, Lopez AF, Parker MW. The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell 2008; 134:496-507. [PMID: 18692472 DOI: 10.1016/j.cell.2008.05.053] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/18/2008] [Accepted: 06/05/2008] [Indexed: 11/26/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific alpha subunit and a betac subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.
Collapse
Affiliation(s)
- Guido Hansen
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ishino T, Harrington AE, Zaks-Zilberman M, Scibek JJ, Chaiken I. Slow-dissociation effect of common signaling subunit beta c on IL5 and GM-CSF receptor assembly. Cytokine 2008; 42:179-190. [PMID: 18294864 PMCID: PMC2587307 DOI: 10.1016/j.cyto.2007.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 10/25/2007] [Accepted: 12/19/2007] [Indexed: 11/26/2022]
Abstract
Receptor activation by IL5 and GM-CSF is a sequential process that depends on their interaction with a cytokine-specific subunit alpha and recruitment of a common signaling subunit beta (betac). In order to elucidate the assembly dynamics of these receptor subunits, we performed kinetic interaction analysis of the cytokine-receptor complex formation by a surface plasmon resonance biosensor. Using the extracellular domains of receptor fused with C-terminal V5-tag, we developed an assay method to co-anchor alpha and betac subunits on the biosensor surface. We demonstrated that dissociation of the cytokine-receptor complexes was slower when both subunits were co-anchored on the biosensor surface than when alpha subunit alone was anchored. The slow-dissociation effect of betac had a similar impact on GM-CSF receptor stabilization to that of IL5. The effects were abolished by alanine replacement of either Tyr18 or Tyr344 residue in betac, which together constitute key parts of a cytokine binding epitope. The data argue that betac plays an important role in preventing the ligand-receptor complexes from rapidly dissociating. This slow-dissociation effect of betac explains how, when multiple betac cytokine receptor alpha subunits are present on the same cell surface, selective betac usage can be controlled by sequestration in stabilized cytokine-alpha-betac complexes.
Collapse
Affiliation(s)
- Tetsuya Ishino
- Drexel University College of Medicine, Department of Biochemistry and Molecular Biology, 245 North, 15th Street, Mail Stop 497, New College Building, Room 11102, Philadelphia, PA 19102-1192, USA
| | - Adrian E Harrington
- Drexel University College of Medicine, Department of Biochemistry and Molecular Biology, 245 North, 15th Street, Mail Stop 497, New College Building, Room 11102, Philadelphia, PA 19102-1192, USA
| | - Meirav Zaks-Zilberman
- Drexel University College of Medicine, Department of Biochemistry and Molecular Biology, 245 North, 15th Street, Mail Stop 497, New College Building, Room 11102, Philadelphia, PA 19102-1192, USA
| | - Jeffery J Scibek
- Drexel University College of Medicine, Department of Biochemistry and Molecular Biology, 245 North, 15th Street, Mail Stop 497, New College Building, Room 11102, Philadelphia, PA 19102-1192, USA
| | - Irwin Chaiken
- Drexel University College of Medicine, Department of Biochemistry and Molecular Biology, 245 North, 15th Street, Mail Stop 497, New College Building, Room 11102, Philadelphia, PA 19102-1192, USA.
| |
Collapse
|
22
|
Clarification of the role of N-glycans on the common beta-subunit of the human IL-3, IL-5 and GM-CSF receptors and the murine IL-3 beta-receptor in ligand-binding and receptor activation. Cytokine 2008; 42:234-242. [PMID: 18374598 DOI: 10.1016/j.cyto.2008.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 02/01/2008] [Accepted: 02/18/2008] [Indexed: 11/20/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3 and IL-5 are related cytokines that play key roles in regulating the differentiation, proliferation, survival and activation of myeloid blood cells. The cell surface receptors for these cytokines are composed of cytokine-specific alpha-subunits and a common beta-receptor (betac), a shared subunit that is essential for receptor signaling in response to GM-CSF, IL-3 and IL-5. Previous studies have reached conflicting conclusions as to whether N-glycosylation of the betac-subunit is necessary for functional GM-CSF, IL-3 and IL-5 receptors. We sought to clarify whether betac N-glycosylation plays a role in receptor function, since all structural studies of human betac to date have utilized recombinant protein lacking N-glycosylation at Asn(328). Here, by eliminating individual N-glycans in human betac and the related murine homolog, beta(IL-3), we demonstrate unequivocally that ligand-binding and receptor activation are not critically dependent on individual N-glycosylation sites within the beta-subunit although the data do not preclude the possibility that N-glycans may exert some sort of fine control. These studies support the biological relevance of the X-ray crystal structures of the human betac domain 4 and the complete ectodomain, both of which lack N-glycosylation at Asn(328).
Collapse
|
23
|
Zaks-Zilberman M, Harrington AE, Ishino T, Chaiken IM. Interleukin-5 receptor subunit oligomerization and rearrangement revealed by fluorescence resonance energy transfer imaging. J Biol Chem 2008; 283:13398-406. [PMID: 18326494 DOI: 10.1074/jbc.m710230200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-5 exerts hematopoietic functions through binding to the IL-5 receptor subunits, alpha and betac. Specific assembly steps of full-length subunits as they occur in cell membranes, ultimately leading to receptor activation, are not well understood. We tracked the oligomerization of IL-5 receptor subunits using fluorescence resonance energy transfer (FRET) imaging. Full-length IL-5Ralpha and betac were expressed in Phoenix cells as chimeric proteins fused to enhanced cyan or yellow fluorescent protein (CFP or YFP, respectively). A time- and dose-dependent increase in FRET signal between IL-5Ralpha-CFP and betac-YFP was observed in response to IL-5, indicative of heteromeric receptor alpha-betac subunit interaction. This response was inhibited by AF17121, a peptide antagonist of IL-5Ralpha. Substantial FRET signals with betac-CFP and betac-YFP co-expressed in the absence of IL-5Ralpha demonstrated that betac subunits exist as preformed homo-oligomers. IL-5 had no effect on this betac-alone FRET signal. Interestingly, the addition of IL-5 to cells co-expressing betac-CFP, betac-YFP, and nontagged IL-5Ralpha led to further increase in FRET efficiency. Observation of preformed betac oligomers fits with the view that this form can lead to rapid cellular responses upon IL-5 stimulation. The IL-5-induced effects on betac assembly in the presence of nontagged IL-5Ralpha provide direct evidence that IL-5 can cause higher order rearrangements of betac homo-oligomers. These results suggest that IL-5 and perhaps other betac cytokines (IL-3 and granulocyte/macrophage colony-stimulating factor) trigger cellular responses by the sequential binding of cytokine ligand to the specificity receptor (subunit alpha), followed by binding of the ligand-subunit alpha complex to, and consequent rearrangement of, a ground state form of betac oligomers.
Collapse
Affiliation(s)
- Meirav Zaks-Zilberman
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | |
Collapse
|
24
|
Murphy JM, Young IG. IL-3, IL-5, and GM-CSF signaling: crystal structure of the human beta-common receptor. VITAMINS AND HORMONES 2006; 74:1-30. [PMID: 17027509 DOI: 10.1016/s0083-6729(06)74001-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cytokines, interleukin-3 (IL-3), interleukin-5 (IL-5), and granulocyte-macrophage colony stimulating factor (GM-CSF), are polypeptide growth factors that exhibit overlapping activities in the regulation of hematopoietic cells. They appear to be primarily involved in inducible hematopoiesis in response to infections and are involved in the pathogenesis of allergic and inflammatory diseases and possibly in leukemia. The X-ray structure of the beta common (betac) receptor ectodomain has given new insights into the structural biology of signaling by IL-3, IL-5, and GM-CSF. This receptor is shared between the three ligands and functions together with three ligand-specific alpha-subunits. The structure shows betac is an intertwined homodimer in which each chain contains four domains with approximate fibronectin type-III topology. The two betac-subunits that compose the homodimer are interlocked by virtue of the swapping of beta-strands between domain 1 of one subunit and domain 3 of the other subunit. Site-directed mutagenesis has shown that the interface between domains 1 and 4 in this unique structure forms the functional epitope. This epitope is similar to those of other members of the cytokine class I receptor family but is novel in that it is formed by two different receptor chains. The chapter also reviews knowledge on the closely related mouse beta(IL-3) receptor and on the alpha-subunit-ligand interactions. The knowledge on the two beta receptors is placed in context with advances in understanding of the structural biology of other members of the cytokine class I receptor family.
Collapse
Affiliation(s)
- James M Murphy
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia 0200
| | | |
Collapse
|
25
|
Ishino T, Robertson N, Chaiken I. Cytokine recognition by human interleukin 5 receptor. VITAMINS AND HORMONES 2005; 71:321-44. [PMID: 16112273 DOI: 10.1016/s0083-6729(05)71011-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The activation of interleukin 5 (IL-5) receptor is a dynamic process that depends on specific interaction of IL-5 with IL-5 receptor alpha, the formation of oligomeric receptor complexes with receptor beta, and the initiation of cytoplasmic phosphorylation events. These steps culminate in the triggering of a cellular response. Important advances have been made recently in understanding the molecular mechanisms of cytokine recognition, receptor assembly, and signal triggering. Cytokine recognition can be envisioned by relating structure to function in IL-5 and IL-5 receptor alpha. A pair of charge-complementary regions plays an essential role in the specific interaction between IL-5 receptor alpha and IL-5. Moreover, peptide library methodology has led to the discovery of IL-5 receptor alpha antagonists that mimic key elements in IL-5 receptor recognition. Because IL-5 has been implicated in the pathology of eosinophil-related inflammatory diseases, revealing the key recognition elements of IL-5, IL-5 mimetic peptides, and IL-5 receptor alpha could help drive the design of new compounds for therapeutic treatment against allergic inflammatory diseases such as asthma.
Collapse
Affiliation(s)
- Tetsuya Ishino
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | |
Collapse
|
26
|
Zabeau L, Defeau D, Iserentant H, Vandekerckhove J, Peelman F, Tavernier J. Leptin receptor activation depends on critical cysteine residues in its fibronectin type III subdomains. J Biol Chem 2005; 280:22632-40. [PMID: 15840566 DOI: 10.1074/jbc.m413308200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leptin receptor (LR) complex is composed of a single subunit belonging to the class I cytokine receptor family and exists as a preformed complex. The extracellular portion contains two cytokine receptor homology (CRH) domains, separated by an Ig-like domain and followed by two membrane-proximal fibronectin type III (FNIII) domains. The mechanisms underlying ligand-induced receptor activation are still poorly understood. LRs can exist as disulfide-linked dimers at the cell surface, even in the absence of leptin. We evaluated the role of the two unpaired cysteine residues (Cys-672 and Cys-751) in the FNIII domains in receptor clustering, leptin binding, and biological activity. Although mutation of cysteine on position 751 to serine has hardly any effect on ligand binding and receptor activation, the C672S mutant exhibits a marked reduction in STAT3-dependent signaling. The double mutant was completely devoid of biological activity, although leptin binding remained unaffected. Mutation of both residues resulted in complete loss of disulfide bridge formation of FNIII domains in solution. In contrast, no difference was observed in ligand-independent oligomerization of the membrane-bound receptor, suggesting a role for cysteines in the CRH2 domain in formation of the preformed LR complex. We propose a model wherein leptin-induced clustering of two preformed dimers forms the activated LR complex. Disulfide bridge formation involving Cys-672 and Cys-751 may be necessary for JAK activation and hence signaling.
Collapse
Affiliation(s)
- Lennart Zabeau
- Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Flanders Interuniversity Institute for Biotechnology, VIB09, Ghent University, Belgium
| | | | | | | | | | | |
Collapse
|
27
|
Warby TJ, Crowe SM, Jaworowski A. Human immunodeficiency virus type 1 infection inhibits granulocyte-macrophage colony-stimulating factor-induced activation of STAT5A in human monocyte-derived macrophages. J Virol 2003; 77:12630-8. [PMID: 14610185 PMCID: PMC262552 DOI: 10.1128/jvi.77.23.12630-12638.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Accepted: 08/29/2003] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects cells of the monocyte/macrophage lineage. While infection of macrophages by HIV-1 is generally not cytopathic, it does impair macrophage function. In this study, we examined the effect of HIV-1 infection on intracellular signaling in human monocyte-derived macrophages (MDM) stimulated with the growth factor granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF is an important growth factor for cells of both the macrophage and granulocyte lineages and enhances effector functions of these cells via the heterodimeric GM-CSF receptor (GM-CSFR). A major pathway which mediates the effects of GM-CSF on macrophages involves activation of the latent transcription factor STAT5A via a Janus kinase 2 (JAK2)-dependent pathway. We demonstrate that GM-CSF-induced activation of STAT5A is inhibited in MDM after infection in vitro with the laboratory-adapted R5 strain of HIV-1, HIV-1(Ba-L), but not after infection with adenovirus. HIV-1 infection of MDM did not decrease the STAT5A or JAK2 mRNA level or STAT5A protein level or result in increased constitutive activation of STAT5A. Surface expression of either the alpha-chain or common beta(c)-chain of GM-CSFR was also unaffected. We conclude that HIV-1 inhibits GM-CSF activation of STAT5A without affecting expression of the known components of the signaling pathway. These data provide further evidence of disruption of cellular signaling pathways after HIV-1 infection, which may contribute to immune dysfunction and HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Tammra J Warby
- AIDS Pathogenesis Research Unit, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, 3004 Victoria, Australia
| | | | | |
Collapse
|
28
|
Scibek JJ, Evergren E, Zahn S, Canziani GA, Van Ryk D, Chaiken IM. Biosensor analysis of dynamics of interleukin 5 receptor subunit beta(c) interaction with IL5:IL5R(alpha) complexes. Anal Biochem 2002; 307:258-65. [PMID: 12202242 DOI: 10.1016/s0003-2697(02)00043-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To gain insight into IL5 receptor subunit recruitment mechanism, and in particular the experimentally elusive pathway for assembly of signaling subunit beta(c), we constructed a soluble beta(c) ectodomain (s(beta)(c)) and developed an optical biosensor assay to measure its binding kinetics. Functionally active s(beta)(c) was anchored via a C-terminal His tag to immobilized anti-His monoclonal antibodies on the sensor surface. Using this surface, we quantitated for the first time direct binding of s(beta)(c) to IL5R(alpha) complexed to either wild-type or single-chain IL5. Binding was much weaker if at all with either R(alpha) or IL5 alone. Kinetic evaluation revealed a moderate affinity (0.2-1 microM) and relatively fast off rate for the s(beta)(c) interaction with IL5:R(alpha) complexes. The data support a model in which beta(c) recruitment occurs with preformed IL5:R(alpha) complex. Dissociation kinetics analysis suggests that the IL5-alpha-beta(c) complex is relatively short-lived. Overall, this study solidifies a model of sequential recruitment of receptor subunits by IL5, provides a novel biosensor binding assay of beta(c) recruitment dynamics, and sets the stage for more advanced characterization of the roles of structural elements within R(alpha), beta(c), and cytokines of the IL5/IL3/GM-CSF family in receptor recruitment and activation.
Collapse
Affiliation(s)
- Jeffery J Scibek
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
29
|
Wagner K, Kafert-Kasting S, Heil G, Ganser A, Eder M. Inhibition of granulocyte-macrophage colony-stimulating factor receptor function by a splice variant of the common beta-receptor subunit. Blood 2001; 98:2689-96. [PMID: 11675339 DOI: 10.1182/blood.v98.9.2689] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 are composed of a ligand-specific alpha-chain (eg, alpha-GM-CSF receptor [alpha-GMR]) and a common beta-subunit (beta-GMR). Ligand binding is believed to induce assembly or conformational changes in preformed complexes containing more than one alpha- and beta-subunit in the activated receptor complex. To analyze the function of a splice variant of beta-GMR with a truncation in the intracellular domain (beta-GMR(IT)), BaF-3 cells expressing human alpha-GMR plus beta-GMR were transfected with beta-GMR(IT). In these cells, coexpression of beta-GMR(IT) inhibits GM-CSF-mediated survival and proliferation in a GM-CSF concentration-dependent manner. To analyze the effect of cytoplasmic assembly of truncated and full-length intracellular beta-GMR sequences, beta-GMR and beta-GMR(IT) were coexpressed with different chimeric alpha/beta-GMR constructs. Whereas both beta-GMR and beta-GMR(IT) generate high-affinity GMR complexes in the presence of alpha/beta-GMR, beta-GMR(IT) inhibits while beta-GMR supports proliferation and cell survival mediated by alpha/beta-GMR. Correspondingly, beta-GMR, but not beta-GMR(IT), generates functional GMR complexes when coexpressed with a defective alpha/beta-GMR construct. These data indicate that beta-GMR(IT) can inhibit survival and mitogenic signaling of the wild-type GMR and demonstrate that recruitment of alternatively spliced receptor subunits may regulate the function of heteromeric cytokine receptors.
Collapse
Affiliation(s)
- K Wagner
- Department of Hematology and Oncology, Hannover Medical School, and the Center for Cell Therapy/Cytonet, Hannover, Germany
| | | | | | | | | |
Collapse
|
30
|
Zabeau L, Van der Heyden J, Broekaert D, Verhee A, Vandekerckhove J, Wu SJ, Chaiken I, Heinrich P, Behrmann I, Tavernier J. Neutralizing monoclonal antibodies can potentiate IL-5 signaling. Eur J Immunol 2001; 31:1087-97. [PMID: 11298333 DOI: 10.1002/1521-4141(200104)31:4<1087::aid-immu1087>3.0.co;2-q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
IL-5 is a major determinant in the survival, differentiation and effector-functions of eosinophils. It mediates its effect upon binding and activation of a membrane bound receptor (R), composed of a ligand-specific alpha-chain and a beta-chain, shared with the receptors for IL-3 and granulocyte-macrophage colony-stimulating factor. We have generated and mapped the epitopes of three monoclonal antibodies (mAb) directed against this cytokine: the strong neutralizing mAb 5A5 and 1E1, and the very weak neutralizing mAb H30. We found that H30 as well as 5A5 can increase proliferation above the level induced by human (h)IL-5 alone, in a JAK-2-dependent manner, and at every sub-optimal hIL-5 concentration analyzed. This effect is dependent on mAb-mediated cross-linking of IL-5R complexes, and is only observed on cell lines expressing a hybrid human/mouse IL-5Ralpha-chain. We discuss these findings in view of the stoichiometric and topological requirements for an activated IL-5R. Since humanized anti-IL-5 mAb are currently in clinical testing, our findings imply that such mAb should be carefully evaluated for their potentiating effects.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Cell Division/drug effects
- Cell Line
- Dose-Response Relationship, Immunologic
- Drug Synergism
- Epitope Mapping
- Epitopes/immunology
- Humans
- Hybrid Cells/drug effects
- Hybrid Cells/metabolism
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/pharmacology
- Interleukin-5/chemistry
- Interleukin-5/immunology
- Interleukin-5/pharmacology
- Janus Kinase 2
- Mice
- Models, Biological
- Models, Molecular
- Neutralization Tests
- Protein Conformation
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins
- Rats
- Receptor Aggregation/drug effects
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-5
- Signal Transduction/drug effects
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- L Zabeau
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research (VIB09), Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Monahan JB, Hood WF, Welply JK, Shieh JJ, Polazzi JO, Li X. Bivalent binding and signaling characteristics of Leridistim, a novel chimeric dual agonist of interleukin-3 and granulocyte colony-stimulating factor receptors. Exp Hematol 2001; 29:416-24. [PMID: 11301181 DOI: 10.1016/s0301-472x(01)00611-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Leridistim is a member of a novel family of engineered chimeric cytokines, myelopoietins, that contain agonists of both interleukin-3 (IL-3) receptors (IL-3R) and granulocyte colony-stimulating factor (G-CSF) receptors (G-CSFR). To more clearly understand Leridistim's function at the molecular level, binding to both IL-3R and G-CSFR and subsequent signaling characteristics have been delineated. The affinity of Leridistim for the human G-CSFR was found to be comparable to that of native G-CSF (IC(50) = 0.96 nM and 1.0 nM, respectively). Both Leridistim and G-CSF induced receptor tyrosine phosphorylation to a similar maximal level. Compared with native recombinant human IL-3 (rhIL-3), Leridistim was found to possess higher affinity for the IL-3R alpha chain (IL-3Ralpha) (IC(50) = 85 nM and 162 nM, respectively). However, the increase in Leridistim binding affinity to the functional, high-affinity heterodimeric IL-3Ralphabeta(c) receptor is lower than that observed with rhIL-3 (85 nM and 14 nM vs 162 nM and 3.5 nM, respectively). Leridistim induced tyrosine phosphorylation of beta(c) to a level comparable to native IL-3, and the level of JAK2 tyrosine phosphorylation in cells expressing both IL-3R and G-CSFR was comparable to that observed with IL-3 or G-CSF alone. The ability of Leridistim to interact with IL-3R and G-CSFR simultaneously was demonstrated using surface plasmon resonance analysis. These studies were extended to demonstrate that Leridistim exhibited a higher affinity for the IL-3R on cells that express both the IL-3Ralphabeta(c) and the G-CSFR (IC(50) = 2 nM) compared with cells that contain the IL-3Ralphabeta(c) alone (IC(50) = 14 nM). Leridistim binds to both IL-3R and G-CSFR simultaneously and has been shown to activate both receptors. The bivalent avidity may explain the unique biologic effects and unexpected potency of Leridistim in hematopoietic cells compared with rhIL-3 or G-CSF alone or in combination.
Collapse
MESH Headings
- Animals
- Antigens, CD34/analysis
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cell Line
- Cricetinae
- DNA/metabolism
- DNA-Binding Proteins/metabolism
- Dimerization
- Electrophoresis
- Granulocyte Colony-Stimulating Factor/metabolism
- Granulocyte Colony-Stimulating Factor/pharmacology
- Humans
- Interleukin-3/genetics
- Interleukin-3/metabolism
- Janus Kinase 2
- Leukemia, Myeloid, Acute
- Mice
- Milk Proteins
- Phosphorylation
- Phosphotyrosine/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins
- Receptors, Granulocyte Colony-Stimulating Factor/agonists
- Receptors, Granulocyte Colony-Stimulating Factor/genetics
- Receptors, Granulocyte Colony-Stimulating Factor/metabolism
- Receptors, Interleukin-3/agonists
- Receptors, Interleukin-3/genetics
- Receptors, Interleukin-3/metabolism
- Recombinant Fusion Proteins/metabolism
- Recombinant Proteins/metabolism
- STAT5 Transcription Factor
- Signal Transduction
- Surface Plasmon Resonance
- Trans-Activators/metabolism
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J B Monahan
- Discovery Research, Pharmacia Corporation, 700 Chesterfield Village Parkway, Chesterfield, MO 63017, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Carr PD, Gustin SE, Church AP, Murphy JM, Ford SC, Mann DA, Woltring DM, Walker I, Ollis DL, Young IG. Structure of the complete extracellular domain of the common beta subunit of the human GM-CSF, IL-3, and IL-5 receptors reveals a novel dimer configuration. Cell 2001; 104:291-300. [PMID: 11207369 DOI: 10.1016/s0092-8674(01)00213-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The receptor systems for the hemopoietic cytokines GM-CSF, IL-3, and IL-5 consist of ligand-specific alpha receptor subunits that play an essential role in the activation of the shared betac subunit, the major signaling entity. Here, we report the structure of the complete betac extracellular domain. It has a structure unlike any class I cytokine receptor described thus far, forming a stable interlocking dimer in the absence of ligand in which the G strand of domain 1 hydrogen bonds into the corresponding beta sheet of domain 3 of the dimer-related molecule. The G strand of domain 3 similarly partners with the dimer-related domain 1. The structure provides new insights into receptor activation by the respective alpha receptor:ligand complexes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Baculoviridae/genetics
- Blotting, Western
- Dimerization
- Humans
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Protein Conformation
- Protein Folding
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Protein Subunits
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/chemistry
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-3/chemistry
- Receptors, Interleukin-3/metabolism
- Receptors, Interleukin-5
- Sequence Alignment
Collapse
Affiliation(s)
- P D Carr
- Research School of Chemistry, Australian National University, Acton, ACT 0200, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Scott CW, Logsdon NJ, Wilkins DE, Norris TE, Sobotka-Briner C, Hubbs S, Graham A. Molecular cloning of the guinea-pig IL-5 receptor alpha and beta subunits and reconstitution of a high affinity receptor. Cytokine 2000; 12:858-66. [PMID: 10880229 DOI: 10.1006/cyto.1999.0657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functional IL-5 receptor is a heteromeric complex consisting of an alpha and beta subunit. The cloning, sequencing and expression of guinea-pig IL-5Ralpha and beta subunits is described. The guinea-pig IL-5Ralpha subunit cDNA encodes a protein of M(r)47 kDa, which is 72 and 66% homologous to the human and murine orthologs, respectively. Three guinea-pig IL-5Rbeta subunit cDNA clones were isolated, which differ in the N-terminus and are 56-64% homologous to the human and murine IL-5Rbeta subunits. Expressing human IL-5Ralphabeta and guinea-pig IL-5Ralphabeta(1)in the baculovirus-insect cell system resulted in recombinant receptors which bound hIL-5 with high affinity (K(d)=0.19 and 0.11 nM, respectively). Expressing just gpIL-5Ralpha was not sufficient to demonstrate binding. This contrasts with the human receptor, where hIL-5Ralpha alone can bind hIL-5 with high affinity. gpIL-5Ralphabeta(1)bound both hIL-5 and mIL-5 with comparable affinity (K(i)=0.10 and 0.06 nM), similar to that seen with hIL-5Ralphabeta. Thus, both the heteromeric hIL-5R and gpIL-5Ralphabeta(1)can bind multiple IL-5 orthologs with high affinity whereas the murine IL-5R is selective for the murine ligand.
Collapse
Affiliation(s)
- C W Scott
- Respiratory, Inflammation and Neuroscience Department, AstraZeneca Pharmaceuticals, Wilmington, DE 19850, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Mulhern TD, Lopez AF, D'Andrea RJ, Gaunt C, Vandeleur L, Vadas MA, Booker GW, Bagley CJ. The solution structure of the cytokine-binding domain of the common beta-chain of the receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3 and interleukin-5. J Mol Biol 2000; 297:989-1001. [PMID: 10736232 DOI: 10.1006/jmbi.2000.3610] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The haemopoietic cytokines, granulocyte-macrophage colony-stimulating factor, interleukin-3 and interleukin-5 bind to cell-surface receptors comprising ligand-specific alpha-chains and a shared beta-chain. The beta-chain is the critical signalling subunit of the receptor and its fourth domain not only plays a critical role in interactions with ligands, hence in receptor activation, but also contains residues whose mutation can lead to ligand-independent activation of the receptor. We have determined the NMR solution structure of the isolated human fourth domain of the beta-chain. The protein has a fibronectin type III fold with a well-defined hydrophobic core and is stabilised by an extensive network of pi-cation interactions involving Trp and Arg side-chains, including two Trp residues outside the highly conserved Trp-Ser-Xaa-Trp-Ser motif (where Xaa is any amino acid) that is found in many cytokine receptors. Most of the residues implicated in factor-independent mutants localise to the rigid core of the domain or the pi-cation stack. The loops between the B and C, and the F and G strands, that contain residues important for interactions with cytokines, lie adjacent at the membrane-distal end of the domain, consistent with their being involved cooperatively in binding cytokines. The elucidation of the structure of the cytokine-binding domain of the beta-chain provides insight into the cytokine-dependent and factor-independent activation of the receptor.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Arginine/metabolism
- Binding Sites
- Conserved Sequence
- Cytokines/metabolism
- Humans
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/chemistry
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-3/chemistry
- Receptors, Interleukin-3/metabolism
- Receptors, Interleukin-5
- Solutions
- Tryptophan/metabolism
Collapse
Affiliation(s)
- T D Mulhern
- Department of Biochemistry, University of Adelaide, Adelaide, 5005, Australia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
D'Andrea RJ, Gonda TJ. A model for assembly and activation of the GM-CSF, IL-3 and IL-5 receptors: insights from activated mutants of the common beta subunit. Exp Hematol 2000; 28:231-43. [PMID: 10720688 DOI: 10.1016/s0301-472x(99)00159-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF), Interleukin-3 (IL-3) and Interleukin-5 (IL-5) have overlapping, pleiotropic effects on hematopoietic cells, including neutrophils, eosinophils, monocytes and early progenitor cells. The high-affinity receptors for human GM-CSF, IL-3, and IL-5 share a common beta-subunit (hbeta(c)), which is essential for signalling and plays a major role in recruiting intracellular signalling molecules. While activation of the cytoplasmic tyrosine kinase JAK2 appears to be the initiating event for signalling, the immediate events that trigger this are still unclear. We have isolated a number of activated mutants of hbeta(c), which can be grouped into classes defined by their state of receptor phosphorylation, their requirement for alpha subunit as a cofactor, and their activities in primary cells and cell lines. We discuss these findings with regard to the stoichiometry, activation, and signalling of the normal GM-CSF/IL-3/IL-5 receptor complexes. Specifically, this work has implications for the role of the ligand-specific alpha-subunits in initiating the signalling through the beta-subunit, the role of beta subunit dimerization as a receptor trigger, and the function of receptor tyrosine phosphorylation in generating growth and survival signals. Based on the properties of the activated mutants and the recent structures of erythropoietin receptor (Epo-R) complexes, we propose a model in which (1) activation of hbeta(c) can occur via alternative states that differ with respect to stoichiometry and subunit assembly, but which all mediate proliferative responses, and (2) each of the different classes of activated mutants mimics one of these alternative states.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Humans
- Interleukin-3/metabolism
- Interleukin-5/metabolism
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/chemistry
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-3/chemistry
- Receptors, Interleukin-3/genetics
- Receptors, Interleukin-3/metabolism
- Receptors, Interleukin-5
- Signal Transduction
Collapse
Affiliation(s)
- R J D'Andrea
- Hanson Centre for Cancer Research and, Adelaide, South Australia, Australia
| | | |
Collapse
|
36
|
Le F, Stomski F, Woodcock JM, Lopez AF, Gonda TJ. The role of disulfide-linked dimerization in interleukin-3 receptor signaling and biological activity. J Biol Chem 2000; 275:5124-30. [PMID: 10671557 DOI: 10.1074/jbc.275.7.5124] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine residues 86 and 91 of the beta subunit of the human interleukin (hIL)-3 receptor (hbetac) participate in disulfide-linked receptor subunit heterodimerization. This linkage is essential for receptor tyrosine phosphorylation, since the Cys-86 --> Ala (Mc4) and Cys-91 --> Ala (Mc5) mutations abolished both events. Here, we used these mutants to examine whether disulfide-linked receptor dimerization affects the biological and biochemical activities of the IL-3 receptor. Murine T cells expressing hIL-3Ralpha and Mc4 or Mc5 did not proliferate in hIL-3, whereas cells expressing wild-type hbetac exhibited rapid proliferation. However, a small subpopulation of cells expressing each mutant could be selected for growth in IL-3, and these proliferated similarly to cells expressing wild-type hbetac, despite failing to undergo IL-3-stimulated hbetac tyrosine phosphorylation. The Mc4 and Mc5 mutations substantially reduced, but did not abrogate, IL-3-mediated anti-apoptotic activity in the unselected populations. Moreover, the mutations abolished IL-3-induced JAK2, STAT, and AKT activation in the unselected cells, whereas activation of these molecules in IL-3-selected cells was normal. In contrast, Mc4 and Mc5 showed a limited effect on activation of Erk1 and -2 in unselected cells. These data suggest that whereas disulfide-mediated cross-linking and hbetac tyrosine phosphorylation are normally important for receptor activation, alternative mechanisms can bypass these requirements.
Collapse
Affiliation(s)
- F Le
- Hanson Centre for Cancer Research, The Institute of Medical and Veterinary Science, Adelaide, South Australia 5000, Australia
| | | | | | | | | |
Collapse
|
37
|
Zhang Y, Jiang J, Kopchick JJ, Frank SJ. Disulfide linkage of growth hormone (GH) receptors (GHR) reflects GH-induced GHR dimerization. Association of JAK2 with the GHR is enhanced by receptor dimerization. J Biol Chem 1999; 274:33072-33084. [PMID: 10551877 DOI: 10.1074/jbc.274.46.33072] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The growth hormone (GH) receptor (GHR) binds GH in its extracellular domain and transduces activating signals via its cytoplasmic domain. Both GH-induced GHR dimerization and JAK2 tyrosine kinase activation are critical in initiation of GH signaling. We previously described a rapid GH-induced disulfide linkage of GHRs in human IM-9 cells. In this study, three GH-induced phenomena (GHR dimerization, GHR disulfide linkage, and enhanced GHR-JAK2 association) were examined biochemically and immunologically. By using the GH antagonist, G120K, and an antibody recognizing a dimerization-sensitive GHR epitope, we demonstrated that GH-induced GHR disulfide linkage reflects GH-induced GHR dimerization. GH, not G120K, promoted both GHR disulfide linkage and enhanced association with JAK2. Measures that diminished GH-dependent JAK2 and GHR tyrosine phosphorylation diminished neither GH-induced GHR disulfide linkage nor GH-enhanced GHR-JAK2 association. By using both transient and stable expression systems, we determined that cysteine 241 (an unpaired extracellular cysteine) was critical for GH-induced GHR disulfide linkage; however, GH-induced GHR dimerization, GHR-JAK2 interaction, and GHR, JAK2, and STAT5 tyrosine phosphorylation still proceeded when this cysteine residue was mutated. We conclude GH-induced GHR disulfide linkage is not required for GHR dimerization, and activation and GH-enhanced GHR-JAK2 association depends more on GHR dimerization than on GHR and/or JAK2 tyrosine phosphorylation.
Collapse
Affiliation(s)
- Y Zhang
- Department of Medicine, Division of Endocrinology and Metabolism, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
38
|
Woodcock JM, Bagley CJ, Lopez AF. The functional basis of granulocyte-macrophage colony stimulating factor, interleukin-3 and interleukin-5 receptor activation, basic and clinical implications. Int J Biochem Cell Biol 1999; 31:1017-25. [PMID: 10582336 DOI: 10.1016/s1357-2725(99)00084-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cytokines granulocyte-macrophage colony stimulating factor, interleukin-3 and interleukin-5 have overlapping activities on cells expressing their receptors. This is explained by their sharing a receptor signal transduction subunit, beta c. This communal signaling subunit is also required for high affinity binding of all three cytokines. Therapeutic approaches attempting to interfere or modulate haemopoietic cells using cytokines or their analogues can in some instances be limited due to functional redundancy amongst cytokines using shared receptor signaling subunits. Therefore, a better approach would be to develop therapeutics against the shared subunit. Studies examining the GM-CSF, IL-3 and IL-5 receptors have identified the key events leading to functional receptor activation. With this knowledge, it is now possible to identify new targets for the development of a new class of antagonist that blocks the biological activity of all the cytokines utilizing beta c. This approach may be extended to other receptor systems such as IL-4 and IL-13 where receptor activation is dependent on a common signaling and binding subunit.
Collapse
MESH Headings
- Animals
- Binding Sites
- Humans
- Ligands
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Receptors, Cytokine/metabolism
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Receptors, Interleukin/genetics
- Receptors, Interleukin/immunology
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-3/genetics
- Receptors, Interleukin-3/immunology
- Receptors, Interleukin-3/metabolism
- Receptors, Interleukin-5
Collapse
Affiliation(s)
- J M Woodcock
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, SA, Australia
| | | | | |
Collapse
|
39
|
Simultaneous Antagonism of Interleukin-5, Granulocyte-Macrophage Colony-Stimulating Factor, and Interleukin-3 Stimulation of Human Eosinophils by Targetting the Common Cytokine Binding Site of Their Receptors. Blood 1999. [DOI: 10.1182/blood.v94.6.1943] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHuman interleukin-5 (IL-5), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-3 are eosinophilopoietic cytokines implicated in allergy in general and in the inflammation of the airways specifically as seen in asthma. All 3 cytokines function through cell surface receptors that comprise a ligand-specific chain and a shared subunit (βc). Although binding of IL-5, GM-CSF, and IL-3 to their respective receptor chains is the first step in receptor activation, it is the recruitment of βc that allows high-affinity binding and signal transduction to proceed. Thus, βc is a valid yet untested target for antiasthma drugs with the added advantage of potentially allowing antagonism of all 3 eosinophil-acting cytokines with a single compound. We show here the first development of such an agent in the form of a monoclonal antibody (MoAb), BION-1, raised against the isolated membrane proximal domain of βc. BION-1 blocked eosinophil production, survival, and activation stimulated by IL-5 as well as by GM-CSF and IL-3. Studies of the mechanism of this antagonism showed that BION-1 prevented the high-affinity binding of125I–IL-5, 125I–GM-CSF, and125I–IL-3 to purified human eosinophils and that it bound to the major cytokine binding site of βc. Interestingly, epitope analysis using several βc mutants showed that BION-1 interacted with residues different from those used by IL-5, GM-CSF, and IL-3. Furthermore, coimmunoprecipitation experiments showed that BION-1 prevented ligand-induced receptor dimerization and phosphorylation of βc, suggesting that ligand contact with βc is a prerequisite for recruitment of βc, receptor dimerization, and consequent activation. These results demonstrate the feasibility of simultaneously inhibiting IL-5, GM-CSF, and IL-3 function with a single agent and that BION-1 represents a new tool and lead compound with which to identify and generate further agents for the treatment of eosinophil-dependent diseases such as asthma.
Collapse
|
40
|
Identification of a 14-3-3 Binding Sequence in the Common β Chain of the Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), Interleukin-3 (IL-3), and IL-5 Receptors That Is Serine-Phosphorylated by GM-CSF. Blood 1999. [DOI: 10.1182/blood.v94.6.1933.418k10_1933_1942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The common β chain (βc) of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 receptors is the major signaling subunit of these receptors coupling ligand binding to multiple biological activities. It is thought that these multiple functions arise as a consequence of the recruitment of specific signaling molecules to tyrosine-phosphorylated residues in the cytoplasmic domain of βc. However, the contribution of serine phosphorylation in βc to the recruitment of signaling molecules is not known. We show here the identification of a phosphoserine motif in the cytoplasmic domain of βc that interacts with the adaptor protein 14-3-3ζ. Coimmunoprecipitation and pull-down experiments with a glutathione S-transferase (GST):14-3-3ζ fusion protein showed that 14-3-3 directly associates with βc but not the GM-CSF receptor chain. C-terminal truncation mutants of βcfurther showed that a region between amino acids 544 and 626 in βc was required for its association with 14-3-3ζ. This region contains the sequence 582HSRSLP587, which closely resembles the RSXSXP (where S is phosphorylated) consensus 14-3-3 binding site identified in a number of signaling molecules, including Raf-1. Significantly, substitution of582HSRSLP587 for EFAAAA completely abolished interaction of βc with GST–14-3-3ζ. Furthermore, the interaction of βc with GST–14-3-3 was greatly reduced in the presence of a peptide containing the 14-3-3 binding site, but only when 585Ser was phosphorylated. Direct binding experiments showed that the peptide containing phosphorylated 585Ser bound 14-3-3ζ with an affinity of 150 nmol/L. To study the regulation of 585S phosphorylation in vivo, we raised antibodies that specifically recognized 585Ser-phosphorylated βc. Using these antibodies, we showed that GM-CSF stimulation strongly upregulated 585Ser phosphorylation in M1 myeloid leukemic cells. The proximity of the SHC-binding site (577Tyr) to the 14-3-3–binding site (582HSRSLP587) and their conservation between mouse, rat, and human βc but not in other cytokine receptors suggest that they form a distinct motif that may subserve specialized functions associated with the GM-CSF, IL-3, and IL-5 receptors.
Collapse
|
41
|
Simultaneous Antagonism of Interleukin-5, Granulocyte-Macrophage Colony-Stimulating Factor, and Interleukin-3 Stimulation of Human Eosinophils by Targetting the Common Cytokine Binding Site of Their Receptors. Blood 1999. [DOI: 10.1182/blood.v94.6.1943.418k04_1943_1951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human interleukin-5 (IL-5), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-3 are eosinophilopoietic cytokines implicated in allergy in general and in the inflammation of the airways specifically as seen in asthma. All 3 cytokines function through cell surface receptors that comprise a ligand-specific chain and a shared subunit (βc). Although binding of IL-5, GM-CSF, and IL-3 to their respective receptor chains is the first step in receptor activation, it is the recruitment of βc that allows high-affinity binding and signal transduction to proceed. Thus, βc is a valid yet untested target for antiasthma drugs with the added advantage of potentially allowing antagonism of all 3 eosinophil-acting cytokines with a single compound. We show here the first development of such an agent in the form of a monoclonal antibody (MoAb), BION-1, raised against the isolated membrane proximal domain of βc. BION-1 blocked eosinophil production, survival, and activation stimulated by IL-5 as well as by GM-CSF and IL-3. Studies of the mechanism of this antagonism showed that BION-1 prevented the high-affinity binding of125I–IL-5, 125I–GM-CSF, and125I–IL-3 to purified human eosinophils and that it bound to the major cytokine binding site of βc. Interestingly, epitope analysis using several βc mutants showed that BION-1 interacted with residues different from those used by IL-5, GM-CSF, and IL-3. Furthermore, coimmunoprecipitation experiments showed that BION-1 prevented ligand-induced receptor dimerization and phosphorylation of βc, suggesting that ligand contact with βc is a prerequisite for recruitment of βc, receptor dimerization, and consequent activation. These results demonstrate the feasibility of simultaneously inhibiting IL-5, GM-CSF, and IL-3 function with a single agent and that BION-1 represents a new tool and lead compound with which to identify and generate further agents for the treatment of eosinophil-dependent diseases such as asthma.
Collapse
|
42
|
Identification of a 14-3-3 Binding Sequence in the Common β Chain of the Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), Interleukin-3 (IL-3), and IL-5 Receptors That Is Serine-Phosphorylated by GM-CSF. Blood 1999. [DOI: 10.1182/blood.v94.6.1933] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe common β chain (βc) of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 receptors is the major signaling subunit of these receptors coupling ligand binding to multiple biological activities. It is thought that these multiple functions arise as a consequence of the recruitment of specific signaling molecules to tyrosine-phosphorylated residues in the cytoplasmic domain of βc. However, the contribution of serine phosphorylation in βc to the recruitment of signaling molecules is not known. We show here the identification of a phosphoserine motif in the cytoplasmic domain of βc that interacts with the adaptor protein 14-3-3ζ. Coimmunoprecipitation and pull-down experiments with a glutathione S-transferase (GST):14-3-3ζ fusion protein showed that 14-3-3 directly associates with βc but not the GM-CSF receptor chain. C-terminal truncation mutants of βcfurther showed that a region between amino acids 544 and 626 in βc was required for its association with 14-3-3ζ. This region contains the sequence 582HSRSLP587, which closely resembles the RSXSXP (where S is phosphorylated) consensus 14-3-3 binding site identified in a number of signaling molecules, including Raf-1. Significantly, substitution of582HSRSLP587 for EFAAAA completely abolished interaction of βc with GST–14-3-3ζ. Furthermore, the interaction of βc with GST–14-3-3 was greatly reduced in the presence of a peptide containing the 14-3-3 binding site, but only when 585Ser was phosphorylated. Direct binding experiments showed that the peptide containing phosphorylated 585Ser bound 14-3-3ζ with an affinity of 150 nmol/L. To study the regulation of 585S phosphorylation in vivo, we raised antibodies that specifically recognized 585Ser-phosphorylated βc. Using these antibodies, we showed that GM-CSF stimulation strongly upregulated 585Ser phosphorylation in M1 myeloid leukemic cells. The proximity of the SHC-binding site (577Tyr) to the 14-3-3–binding site (582HSRSLP587) and their conservation between mouse, rat, and human βc but not in other cytokine receptors suggest that they form a distinct motif that may subserve specialized functions associated with the GM-CSF, IL-3, and IL-5 receptors.
Collapse
|
43
|
van Dijk TB, Baltus B, Raaijmakers JAM, Lammers JWJ, Koenderman L, de Groot RP. A Composite C/EBP Binding Site Is Essential for the Activity of the Promoter of the IL-3/IL-5/Granulocyte-Macrophage Colony-Stimulating Factor Receptor βc Gene. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The common β-chain (βc) is the main signaling component of the heterodimeric receptors for IL-3, IL-5, and GM-CSF and is primarily expressed on myeloid cells. The proximal βc promoter is regulated by GGAA binding proteins, including PU.1, a hemopoietic specific member of the Ets family. However, it is not likely that PU.1 alone accounts for the myeloid-restricted expression of the βc subunit. Here we describe the identification of a C/EBP binding enhancer that is located 2 kb upstream of the transcription start site. The enhancer contains two elements that bind C/EBPα and -β in U937 cells, while C/EBPε is also bound in extracts of HL-60 cells. Importantly, deletion of the enhancer or mutation of either of one of the C/EBP sites results in a complete loss of promoter activity in cell lines as well as in primary cells, showing the importance of C/EBP members in βc gene activation. We further show that PU.1 has to cooperate with C/EBP proteins to induce βc transcription. Since the βc is already expressed on CD34+ cells, these results demonstrate that both C/EBP and PU.1 are not only important for the myeloid-specific gene regulation at later stages of myeloid differentiation.
Collapse
Affiliation(s)
- Thamar B. van Dijk
- Department of Pulmonary Diseases, University Hospital Utrecht, Utrecht, The Netherlands
| | - Belinda Baltus
- Department of Pulmonary Diseases, University Hospital Utrecht, Utrecht, The Netherlands
| | - Jan A. M. Raaijmakers
- Department of Pulmonary Diseases, University Hospital Utrecht, Utrecht, The Netherlands
| | - Jan-Willem J. Lammers
- Department of Pulmonary Diseases, University Hospital Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Department of Pulmonary Diseases, University Hospital Utrecht, Utrecht, The Netherlands
| | - Rolf P. de Groot
- Department of Pulmonary Diseases, University Hospital Utrecht, Utrecht, The Netherlands
| |
Collapse
|
44
|
Vollmer P, Oppmann B, Voltz N, Fischer M, Rose-John S. A role for the immunoglobulin-like domain of the human IL-6 receptor. Intracellular protein transport and shedding. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:438-46. [PMID: 10406952 DOI: 10.1046/j.1432-1327.1999.00511.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interleukin (IL)-6, IL-11 and cililary neurotrophic factor (CNTF) belong to the same family of hematopoietic and neurotrophic cytokines. Their receptor complexes contain a cytokine-binding alpha receptor and the common glycoprotein (gp)130 subunit for signal transduction. The extracellular parts of the alpha-receptor subunits consist of a membrane-proximal cytokine-binding domain and an N-terminal immunoglobulin (Ig)-like domain with unknown function. We examined the role of the Ig-like domain of IL-6R by constructing deletion mutants lacking the Ig domain (IL-6RDeltaIg and soluble IL-6RDeltaIg). IL-6RDeltaIg was shed as effectively as wild-type IL-6R from transfected COS-7 cells upon 4beta-phorbol 12-myristate 13-acetate (PMA) treatment, whereas nonstimulated shedding of IL-6RDeltaIg was not observed. The shed sIL-6RDeltaIg from PMA-treated cells, as well as the transmembrane IL-6RDeltaIg, had the same biological activity as wild-type sIL-6R, as measured by the induction of haptoglobin secretion in HepG2-IL-6 cells and IL-6-dependent proliferation of IL-6RDeltaIg transfected BAF/gp130 cells. In COS-7 cells transfected with IL-6RDeltaIg or soluble IL-6RDeltaIg cDNA, transport of the deletion mutants through the secretory pathway appeared to be delayed because a sizeable proportion of the mutants was detected as an endo-beta-N-acetylglucosaminidase-sensitive intermediate, suggesting that transport and processing of the DeltaIg mutants on the secretory pathway were impaired. These experiments suggest that the Ig-like domain of the IL-6R is important for intracellular transport of IL-6R through the secretory pathway. Furthermore, the Ig-like domain is necessary for noninduced shedding of the IL-6R, whereas it has no function in PKC-dependent shedding of the IL-6R.
Collapse
Affiliation(s)
- P Vollmer
- I. Medical Clinic-Section Pathophysiology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | | | | | | | | |
Collapse
|
45
|
Abstract
LEARNING OBJECTIVES Reading this article will increase the readers' knowledge of the biology of interleukin-5 (IL-5), an important cytokine. The immune and inflammatory responses of any organism are the basis of the defense mechanism ensuring its survival. The role of IL-5 in these processes, as well as in the pathogenesis of various diseases has been discussed along with the effects of various pharmacologic agents on the production and function of IL-5. DATA SOURCES A detailed literature search was performed. Studies considered relevant and important, in all languages, which involved humans and animals were used. STUDY SELECTION Information was obtained only from peer reviewed journals. RESULTS Interleukin-5 is normally produced by T-cells, mast cells, and eosinophils while Reed Sternberg and Epstein Barr virus (EBV) transformed cells also produce IL-5. Monoclonal antibodies (mAb) to IL-5 are potent inhibitors of IL-5 mediated tissue damage, secondary to eosinophil infiltration. The majority of the studies on IL-5 are preliminary, often the information is obtained from animal studies or in vitro systems and occasionally from pathologic tissue analysis. This along with the absence of confirmatory studies is a limiting factor. Nonetheless, the role of IL-5 in allergic and immunologic disease and asthma may be central to their pathogenesis. CONCLUSIONS Interleukin-5 is an important molecule that is participant to many processes that maintain health and are involved directly or indirectly in the pathogenesis of disease. Some pharmacologic agents can modify IL-5 production in vivo. Development of selective inhibitors of IL-5 may have a potential use for specific therapy of certain autoimmune, inflammatory, and neoplastic diseases.
Collapse
Affiliation(s)
- T Lalani
- Department of Oral Medicine and Diagnostic Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02112, USA
| | | | | |
Collapse
|
46
|
Jenkins BJ, Le F, Gonda TJ. A cell type-specific constitutive point mutant of the common beta-subunit of the human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 receptors requires the GM-CSF receptor alpha-subunit for activation. J Biol Chem 1999; 274:8669-77. [PMID: 10085105 DOI: 10.1074/jbc.274.13.8669] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMRalpha) and a common signal-transducing beta-subunit (hbetac) that is shared with the interleukin-3 and -5 receptors. We have previously identified a constitutively active extracellular point mutant of hbetac, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287). This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMRalpha (mGMRalpha) subunit, since introduction of mGMRalpha, but not hGMRalpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence. Experiments utilizing mouse/human chimeric GMRalpha subunits indicated that the species specificity lies in the extracellular domain of GMRalpha. Importantly, the requirement for mGMRalpha correlated with the ability of I374N (but not wild-type hbetac) to constitutively associate with mGMRalpha. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMRalpha surface expression. Taken together, these findings suggest a critical role for association with GMRalpha in the constitutive activity of I374N.
Collapse
Affiliation(s)
- B J Jenkins
- Hanson Centre for Cancer Research and Division of Human Immunology, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia 5000, Australia
| | | | | |
Collapse
|
47
|
Cole AR, Hall NE, Treutlein HR, Eddes JS, Reid GE, Moritz RL, Simpson RJ. Disulfide bond structure and N-glycosylation sites of the extracellular domain of the human interleukin-6 receptor. J Biol Chem 1999; 274:7207-15. [PMID: 10066782 DOI: 10.1074/jbc.274.11.7207] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high affinity interleukin-6 (IL-6) receptor is a hexameric complex consisting of two molecules each of IL-6, IL-6 receptor (IL-6R), and the high affinity converter and signaling molecule, gp130. The extracellular "soluble" part of the IL-6R (sIL-6R) consists of three domains: an amino-terminal Ig-like domain and two fibronectin-type III (FN III) domains. The two FN III domains comprise the cytokine-binding domain defined by a set of 4 conserved cysteine residues and a WSXWS sequence motif. Here, we have determined the disulfide structure of the human sIL-6R by peptide mapping in the absence and presence of reducing agent. Mass spectrometric analysis of these peptides revealed four disulfide bonds and two free cysteines. The disulfides Cys102-Cys113 and Cys146-Cys157 are consistent with known cytokine-binding domain motifs, and Cys28-Cys77 with known Ig superfamily domains. An unusual cysteine connectivity between Cys6-Cys174, which links the Ig-like and NH2-terminal FN III domains causing them to fold back onto each other, has not previously been observed among cytokine receptors. The two free cysteines (Cys192 and Cys258) were detected as cysteinyl-cysteines, although a small proportion of Cys258 was reactive with the alkylating agent 4-vinylpyridine. Of the four potential N-glycosylation sites, carbohydrate moieties were identified on Asn36, Asn74, and Asn202, but not on Asn226.
Collapse
Affiliation(s)
- A R Cole
- Joint Protein Structure Laboratory, Ludwig Institute for Cancer Research (Melbourne Tumour Biology Branch) and The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Guthridge MA, Stomski FC, Thomas D, Woodcock JM, Bagley CJ, Berndt MC, Lopez AF. Mechanism of activation of the GM-CSF, IL-3, and IL-5 family of receptors. Stem Cells 1998; 16:301-13. [PMID: 9766809 DOI: 10.1002/stem.160301] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The process of ligand binding leading to receptor activation is an ordered and sequential one. High-affinity binding of GM-CSF, interleukin 3 (IL-3), and IL-5 to their receptors induces a number of key events at the cell surface and within the cytoplasm that are necessary for receptor activation. These include receptor oligomerization, activation of tyrosine kinase activity, phosphorylation of the receptor, and the recruitment of SH2 (src-homology) and PTB (phosphotyrosine binding) domain proteins to the receptor. Such a sequence of events represents a recurrent theme among cytokine, growth factor, and hormone receptors; however, a number of very recent and interesting findings have identified unique features in this receptor system in terms of: A) how GM-CSF/IL-3/IL-5 bind, oligomerize, and activate their cognate receptors; B) how multiple biological responses such as proliferation, survival, and differentiation can be transduced from activated GM-CSF, IL-3, or IL-5 receptors, and C) how the presence of novel phosphotyrosine-independent signaling motifs within a specific cytoplasmic domain of betaC may be important for mediating survival and differentiation by these cytokines. This review does not attempt to be all-encompassing but rather to focus on the most recent and significant discoveries that distinguish the GM-CSF/IL-3/IL-5 receptor subfamily from other cytokine receptors.
Collapse
Affiliation(s)
- M A Guthridge
- Division of Human Immunology, The Hanson Centre for Cancer Research, The Institute of Medical and Veterinary Science, Adelaide, SA, Australia
| | | | | | | | | | | | | |
Collapse
|