1
|
Appelgren S, Ädelroth P. Insertion of the Fe B cofactor in cNORs lacking metal inserting chaperones. FEBS Lett 2025; 599:1269-1284. [PMID: 39927524 PMCID: PMC12067857 DOI: 10.1002/1873-3468.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/26/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Cytochrome c-dependent nitric oxide reductase (cNOR) catalyzes the reduction of NO into nitrous oxide (N2O), a strong greenhouse gas released from denitrifying microorganisms. The cNOR active site holds an essential non-heme iron, FeB, inserted using the chaperone complex NorQD. However, in Thermus thermophilus, the cNOR (TtcNOR) cluster lacks the norQD genes. Here we investigated FeB insertion into TtcNOR and characterized and compared TtcNOR expressed in Escherichia coli to that natively produced. We show that FeB is present in the natively produced TtcNOR only. Analysis of cNOR operon sequences suggests that a hydrophilic K-pathway analogue is present in cNORs that do not rely on NorQD for iron insertion. We discuss the implications of our data for the evolution of the NOR family.
Collapse
Affiliation(s)
- Sofia Appelgren
- Department of Biochemistry and BiophysicsStockholm UniversitySweden
| | - Pia Ädelroth
- Department of Biochemistry and BiophysicsStockholm UniversitySweden
| |
Collapse
|
2
|
Hon-Nami K, Hijikata A, Yura K, Bessho Y. Whole genome analyses for c-type cytochromes associated with respiratory chains in the extreme thermophile, Thermus thermophilus. J GEN APPL MICROBIOL 2023; 69:68-78. [PMID: 37394433 DOI: 10.2323/jgam.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In thermophilic microorganisms, c-type cytochrome (cyt) proteins mainly function in the respiratory chain as electron carriers. Genome analyses at the beginning of this century revealed a variety of genes harboring the heme c motif. Here, we describe the results of surveying genes with the heme c motif, CxxCH, in a genome database comprising four strains of Thermus thermophilus, including strain HB8, and the confirmation of 19 c-type cytochromes among 27 selected genes. We analyzed the 19 genes, including the expression of four, by a bioinformatics approach to elucidate their individual attributes. One of the approaches included an analysis based on the secondary structure alignment pattern between the heme c motif and the 6th ligand. The predicted structures revealed many cyt c domains with fewer β-strands, such as mitochondrial cyt c, in addition to the β-strand unique to Thermus inserted in cyt c domains, as in T. thermophilus cyt c552 and caa3 cyt c oxidase subunit IIc. The surveyed thermophiles harbor potential proteins with a variety of cyt c folds. The gene analyses led to the development of an index for the classification of cyt c domains. Based on these results, we propose names for T. thermophilus genes harboring the cyt c fold.
Collapse
Affiliation(s)
| | - Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University
- Center for Interdisciplinary AI and Data Science, Ochanomizu University
- Graduate School of Advanced Science and Engineering, Waseda University
| | - Yoshitaka Bessho
- Center for Interdisciplinary AI and Data Science, Ochanomizu University
- RIKEN SPring-8 Center, Harima Institute
| |
Collapse
|
3
|
Ben Aoun S, Ibrahim SM. An engineered thermally tolerant apo-cytochrome scaffold for metal-less incorporation of heme derivative. PLoS One 2023; 18:e0293972. [PMID: 37943746 PMCID: PMC10635480 DOI: 10.1371/journal.pone.0293972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Cytochrome c552 from Thermus thermophilus is one of the hot topics for creating smart biomaterials as it possesses remarkable stability, is tolerant to multiple mutations and has therefore been recently reported for a number of functionalizations upon substitution of the original prosthetic group with an artificial prosthetic group. However, all of the substitutions were driven by the coordination through the axial ligands followed by complete reconstitution with a metal-porphyrin complex. This limits the scope of the cytochrome c for incorporating a metal-less non-natural heme species that could improve the versatility of cytochrome c for a new generation of engineered cytochrome proteins for further enhancement in their functionalities such as biocatalysts. In this connection, a new variant of Cytochrome c (rC552 C14A) from Thermus thermophilus was reported, where an easy approach to remove the original prosthetic group was achieved, followed by the incorporation of a number of metal-PPIX derivatives that ultimately led to the formation of artificial c-type cytochromes through covalent bonding. The apo-cytochrome was found to be thermally tolerant and to possess a distinctive overall structure as that of the wild type, as was evident from the corresponding CD spectra, which ultimately encouraged reconstitution with a metal-less protoporphyrin derivative for better understanding the role of axial ligands in the reconstitution process. Successful reconstitution was achieved, resulting in a new type of Cytochrome b-type artificial protein without the metal in its active site, indicating the non-involvement of the axial ligand. In order to prove the non-involvement of the axial ligand, a subsequent double mutant (C14A/M69A) was constructed, replacing the methionine at 69 position with non-coordinating alanine residue. Accordingly, the apo-C14A/M69A was prepared and found to be extremely stable as the earlier mutants and the WT showed no signs of denaturation, even at the elevated temperature of 98°C. Subsequently, heme b was successfully incorporated into the apo-C14A/M69A, which demonstrated itself as a highly thermally tolerant protein scaffold for incorporating a metal-less artificial prosthetic group in the absence of the axial ligand. Further improvement in the reconstitution process is achieved by replacing the methionine at 69 position with phenyl alanine (C14A/M69F mutant), resulting in further stabilization of heme species, possibly through non-covalent π-interactions, as corroborated by molecular docking.
Collapse
Affiliation(s)
- Sami Ben Aoun
- Faculty of Science, Department of Chemistry, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Sheikh Muhammad Ibrahim
- Faculty of Science, Chemistry Department, Islamic University of Madinah, Al-Madinah Al-Munawarah, Saudi Arabia
| |
Collapse
|
4
|
Parallel pathways for nitrite reduction during anaerobic growth in Thermus thermophilus. J Bacteriol 2014; 196:1350-8. [PMID: 24443532 DOI: 10.1128/jb.01042-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory reduction of nitrate and nitrite is encoded in Thermus thermophilus by the respective transferable gene clusters. Nitrate is reduced by a heterotetrameric nitrate reductase (Nar) encoded along transporters and regulatory signal transduction systems within the nitrate respiration conjugative element (NCE). The nitrite respiration cluster (nic) encodes homologues of nitrite reductase (Nir) and nitric oxide reductase (Nor). The expression and role of the nirSJM genes in nitrite respiration were analyzed. The three genes are expressed from two promoters, one (nirSp) producing a tricistronic mRNA under aerobic and anaerobic conditions and the other (nirJp) producing a bicistronic mRNA only under conditions of anoxia plus a nitrogen oxide. As for its nitrite reductase homologues, NirS is expressed in the periplasm, has a covalently bound heme c, and conserves the heme d1 binding pocket. NirJ is a cytoplasmic protein likely required for heme d1 synthesis and NirS maturation. NirM is a soluble periplasmic homologue of cytochrome c552. Mutants defective in nirS show normal anaerobic growth with nitrite and nitrate, supporting the existence of an alternative Nir in the cells. Gene knockout analysis of different candidate genes did not allow us to identify this alternative Nir protein but revealed the requirement for Nar in NirS-dependent and NirS-independent nitrite reduction. As the likely role for Nar in the process is in electron transport through its additional cytochrome c periplasmic subunit (NarC), we concluded all the Nir activity takes place in the periplasm by parallel pathways.
Collapse
|
5
|
Characterization of the nitric oxide reductase from Thermus thermophilus. Proc Natl Acad Sci U S A 2013; 110:12613-8. [PMID: 23858452 DOI: 10.1073/pnas.1301731110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas implicated in climate change. The dominant source of atmospheric N2O is incomplete biological dentrification, and the enzymes responsible for the release of N2O are NO reductases. It was recently reported that ambient emissions of N2O from the Great Boiling Spring in the United States Great Basin are high, and attributed to incomplete denitrification by Thermus thermophilus and related bacterial species [Hedlund BP, et al. (2011) Geobiology 9(6)471-480]. In the present work, we have isolated and characterized the NO reductase (NOR) from T. thermophilus. The enzyme is a member of the cNOR family of enzymes and belongs to a phylogenetic clade that is distinct from previously examined cNORs. Like other characterized cNORs, the T. thermophilus cNOR consists of two subunits, NorB and NorC, and contains a one heme c, one Ca(2+), a low-spin heme b, and an active site consisting of a high-spin heme b and FeB. The roles of conserved residues within the cNOR family were investigated by site-directed mutagenesis. The most important and unexpected result is that the glutamic acid ligand to FeB is not essential for function. The E211A mutant retains 68% of wild-type activity. Mutagenesis data and the pattern of conserved residues suggest that there is probably not a single pathway for proton delivery from the periplasm to the active site that is shared by all cNORs, and that there may be multiple pathways within the T. thermophilus cNOR.
Collapse
|
6
|
Travaglini-Allocatelli C. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms. SCIENTIFICA 2013; 2013:505714. [PMID: 24455431 PMCID: PMC3884852 DOI: 10.1155/2013/505714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/24/2013] [Indexed: 05/09/2023]
Abstract
Cytochromes c (Cyt c) are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt) in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i) heme translocation and delivery, (ii) apoCyt thioreductive pathway, and (iii) apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.
Collapse
Affiliation(s)
- Carlo Travaglini-Allocatelli
- Department of Biochemical Sciences, University of Rome “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
- *Carlo Travaglini-Allocatelli:
| |
Collapse
|
7
|
Luna VM, Fee JA, Deniz AA, Stout CD. Mobility of Xe atoms within the oxygen diffusion channel of cytochrome ba(3) oxidase. Biochemistry 2012; 51:4669-76. [PMID: 22607023 DOI: 10.1021/bi3003988] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We use a form of "freeze-trap, kinetic crystallography" to explore the migration of Xe atoms away from the dinuclear heme a(3)/Cu(B) center in Thermus thermophilus cytochrome ba(3) oxidase. This enzyme is a member of the heme-copper oxidase superfamily and is thus crucial for dioxygen-dependent life. The mechanisms involved in the migration of oxygen, water, electrons, and protons into and/or out of the specialized channels of the heme-copper oxidases are generally not well understood. Pressurization of crystals with Xe gas previously revealed a O(2) diffusion channel in cytochrome ba(3) oxidase that is continuous, Y-shaped, 18-20 Å in length and comprised of hydrophobic residues, connecting the protein surface within the bilayer to the a(3)-Cu(B) center in the active site. To understand movement of gas molecules within the O(2) channel, we performed crystallographic analysis of 19 Xe laden crystals freeze-trapped in liquid nitrogen at selected times between 0 and 480 s while undergoing outgassing at room temperature. Variation in Xe crystallographic occupancy at five discrete sites as a function of time leads to a kinetic model revealing relative degrees of mobility of Xe atoms within the channel. Xe egress occurs primarily through the channel formed by the Xe1 → Xe5 → Xe3 → Xe4 sites, suggesting that ingress of O(2) is likely to occur by the reverse of this process. The channel itself appears not to undergo significant structural changes during Xe migration, thereby indicating a passive role in this important physiological function.
Collapse
Affiliation(s)
- V Mitch Luna
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
8
|
Ghosh MK, Rajbongshi J, Basumatary D, Mazumdar S. Role of the Surface-Exposed Leucine 155 in the Metal Ion Binding Loop of the CuA Domain of Cytochrome c Oxidase from Thermus thermophilus on the Function and Stability of the Protein. Biochemistry 2012; 51:2443-52. [DOI: 10.1021/bi2017574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manas Kumar Ghosh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai
400005, India
| | - Jitumani Rajbongshi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai
400005, India
- Department
of Chemistry, Gauhati University, Guwahati
781014, India
| | - Debajani Basumatary
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai
400005, India
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai
400005, India
| |
Collapse
|
9
|
Ibrahim SM, Nakajima H, Ohta T, Ramanathan K, Takatani N, Naruta Y, Watanabe Y. Cytochrome c(552) from Thermus thermophilus engineered for facile substitution of prosthetic group. Biochemistry 2011; 50:9826-35. [PMID: 21985581 DOI: 10.1021/bi201048e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The facile replacement of heme c in cytochromes c with non-natural prosthetic groups has been difficult to achieve due to two thioether linkages between cysteine residues and the heme. Fee et al. demonstrated that cytochrome c(552) from Thermus thermophilus, overproduced in the cytosol of E. coli, has a covalent linkage cleavable by heat between the heme and Cys11, as well as possessing the thioether linkage with Cys14 [Fee, J. A. (2004) Biochemistry 43, 12162-12176]. Prompted by this result, we prepared a C14A mutant, anticipating that the heme species in the mutant was bound to the polypeptide solely through the thermally cleavable linkage; therefore, the removal of the heme would be feasible after heating the protein. Contrary to this expectation, C14A immediately after purification (as-purified C14A) possessed no covalent linkage. An attempt to extract the heme using a conventional acid-butanone method was unsuccessful due to rapid linkage formation between the heme and polypeptide. Spectroscopic analyses suggested that the as-purified C14A possessed a heme b derivative where one of two peripheral vinyl groups had been replaced with a group containing a reactive carbonyl. A reaction of the as-purified C14A with [BH(3)CN](-) blocked the linkage formation on the carbonyl group, allowing a quantitative yield of heme-free apo-C14A. Reconstitution of apo-C14A was achieved with ferric and ferrous heme b and zinc protoporphyrin. All reconstituted C14As showed spontaneous covalent linkage formation. We propose that C14A is a potential source for the facile production of an artificial cytochrome c, containing a non-natural prosthetic group.
Collapse
Affiliation(s)
- Sk Md Ibrahim
- Department of Chemsitry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
A sulfite respiration pathway from Thermus thermophilus and the key role of newly identified cytochrome c₅₅₀. J Bacteriol 2011; 193:3988-97. [PMID: 21665981 DOI: 10.1128/jb.05186-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfite, produced for instance during amino acid metabolism, is a very reactive and toxic compound. Various detoxification mechanisms exist, but sulfite oxidoreductases (SORs) are one of the major actors in sulfite remediation in bacteria and animals. Here we describe the existence of an operon in the extreme thermophilic bacterium Thermus thermophilus HB8 encoding both a SOR and a diheme c-type cytochrome. The in vitro analysis clearly showed that the newly identified cytochrome c₅₅₀ acts as an acceptor of the electrons generated by the SOR enzyme during the oxidation of sulfite. The electrons are then rapidly shuttled via cytochrome c₅₅₂ to the terminal ba₃- and caa₃-type oxidases, thereby unveiling a novel electron transfer pathway, linking sulfite oxidation to oxygen reduction in T. thermophilus: sulfite → SOR(HB8) → cytochrome c₅₅₀ → cytochrome c₅₅₂ → ba₃ oxidase/caa₃ oxidase → O₂. The description of the complete pathway reveals that electrons generated during sulfite oxidation by the SOR are funneled into the respiratory chain, participating in the energy production of T. thermophilus.
Collapse
|
11
|
Bonnard G, Corvest V, Meyer EH, Hamel PP. Redox processes controlling the biogenesis of c-type cytochromes. Antioxid Redox Signal 2010; 13:1385-401. [PMID: 20214494 DOI: 10.1089/ars.2010.3161] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mitochondria, two mono heme c-type cytochromes are essential electron shuttles of the respiratory chain. They are characterized by the covalent attachment of their heme C to a CXXCH motif in the apoproteins. This post-translational modification occurs in the intermembrane space compartment. Dedicated assembly pathways have evolved to achieve this chemical reaction that requires a strict reducing environment. In mitochondria, two unrelated machineries operate, the rather simple System III in yeast and animals and System I in plants and some protozoans. System I is also found in bacteria and shares some common features with System II that operates in bacteria and plastids. This review aims at presenting how different systems control the chemical requirements for the heme ligation in the compartments where cytochrome c maturation takes place. A special emphasis will be given on the redox processes that are required for the heme attachment reaction onto apocytochromes c.
Collapse
Affiliation(s)
- Géraldine Bonnard
- Institut de Biologie Moléculaire des Plantes, CNRS UPR-Université de Strasbourg, France.
| | | | | | | |
Collapse
|
12
|
Variant c-type cytochromes as probes of the substrate specificity of the E. coli cytochrome c maturation (Ccm) apparatus. Biochem J 2009; 419:177-84, 2 p following 184. [PMID: 19090787 DOI: 10.1042/bj20081999] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
c-type cytochromes are normally characterized by covalent attachment of the iron cofactor haem to protein through two thioether bonds between the vinyl groups of the haem and the thiol groups of a CXXCH (Cys-Xaa-Xaa-Cys-His) motif. In cells, the haem attachment is an enzyme-catalysed post-translational modification. We have previously shown that co-expression of a variant of Escherichia coli cytochrome b(562) containing a CXXCH haem-binding motif with the E. coli Ccm (cytochrome c maturation) proteins resulted in homogeneous maturation of a correctly formed c-type cytochrome. In contrast, in the absence of the Ccm apparatus, the product holocytochrome was heterogeneous, the main species having haem inverted and attached through only one thioether bond. In the present study we use further variants of cytochrome b(562) to investigate the substrate specificity of the E. coli Ccm apparatus. The system can mature c-type cytochromes with CCXXCH, CCXCH, CXCCH and CXXCHC motifs, even though these are not found naturally and the extra cysteine residue might, in principle, disrupt the biogenesis proteins which must interact intricately with disulfide-bond oxidizing and reducing proteins in the E. coli periplasm. The Ccm proteins can also attach haem to motifs of the type CX(n)CH where n ranges from 2 to 6. For n=3 and 4, the haem attachment was correct and homogeneous, but for higher values of n the holocytochromes displayed oxidative addition of sulfur and/or oxygen atoms associated with the covalent haem-attachment process. The implications of our observations for the haem-attachment reaction, for genome analyses and for the substrate specificity of the Ccm system, are discussed.
Collapse
|
13
|
Bowman SEJ, Bren KL. The chemistry and biochemistry of heme c: functional bases for covalent attachment. Nat Prod Rep 2008; 25:1118-30. [PMID: 19030605 DOI: 10.1039/b717196j] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A discussion of the literature concerning the synthesis, function, and activity of heme c-containing proteins is presented. Comparison of the properties of heme c, which is covalently bound to protein, is made to heme b, which is bound noncovalently. A question of interest is why nature uses biochemically expensive heme c in many proteins when its properties are expected to be similar to heme b. Considering the effects of covalent heme attachment on heme conformation and on the proximal histidine interaction with iron, it is proposed that heme attachment influences both heme reduction potential and ligand-iron interactions.
Collapse
Affiliation(s)
- Sarah E J Bowman
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
14
|
Ichikawa Y, Nakajima H, Watanabe Y. Characterization of peroxide-bound heme species generated in the reaction of thermally tolerant cytochrome c552 with hydrogen peroxide. Chembiochem 2007; 7:1582-9. [PMID: 16921577 DOI: 10.1002/cbic.200600135] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peroxide-bound heme species have been considered difficult to detect under physiological conditions because of their intrinsically transient properties. Cytochrome c552 (cyt c552), from Thermus thermophirus HB8, bearing a mutation to an alanine at Met69 (M69A) reacts with hydrogen peroxide (H(2)O(2)) to generate a detectable hydroperoxo-ferric heme ([Fe(3+)--OOH]) species at ambient temperature. EPR measurements during appropriate reaction periods reveal that the [Fe(3+)--OOH] species is in a preequilibrium state between the resting form of the cyt c552 variant and a subsequent intermediate, compound II with a protein radical. Addition of ascorbic acid to the reaction mixture of the cyt c552 variant and H(2)O(2) does not affect the formation of the [Fe(3+)--OOH] species,a result suggesting that the species is incompetent for the oxidation of even an oxidatively fragile substrate such as ascorbic acid. Another variant bearing an additional mutation to aspartic acid at Val49 (V49D/M69A) reveals that a highly hydrophobic heme cavity in cyt c552 accounts for the generation of the durable [Fe(3+)--OOH] species. The less polar environment inside the cavity is expected to prevent H(2)O from approaching the cavity. This would suppress protonation of the distal oxygen atom of the [Fe(3+)--OOH] species and retard subsequent dissociation of H(2)O from the OOH moiety.
Collapse
Affiliation(s)
- Yusuke Ichikawa
- Department of Chemistry, Graduate School of Science Nagoya University, 464-8602 Nagoya, Japan
| | | | | |
Collapse
|
15
|
Allen J, Ginger M, Ferguson S. Maturation of the unusual single-cysteine (XXXCH) mitochondrial c-type cytochromes found in trypanosomatids must occur through a novel biogenesis pathway. Biochem J 2005; 383:537-42. [PMID: 15500440 PMCID: PMC1133747 DOI: 10.1042/bj20040832] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The c-type cytochromes are characterized by the covalent attachment of haem to the polypeptide via thioether bonds formed from haem vinyl groups and, normally, the thiols of two cysteines in a CXXCH motif. Intriguingly, the mitochondrial cytochromes c and c1 from two euglenids and the Trypanosomatidae contain only a single cysteine within the haem-binding motif (XXXCH). There are three known distinct pathways by which c-type cytochromes are matured post-translationally in different organisms. The absence of genes encoding any of these c-type cytochrome biogenesis machineries is established here by analysis of six trypanosomatid genomes, and correlates with the presence of single-cysteine cytochromes c and c1. In contrast, we have identified a comprehensive catalogue of proteins required for a typical mitochondrial oxidative phosphorylation apparatus. Neither spontaneous nor catalysed maturation of the single-cysteine Trypanosoma brucei cytochrome c occurred in Escherichia coli. However, a CXXCH variant was matured by the E. coli cytochrome c maturation machinery, confirming the proposed requirement of the latter for two cysteines in the haem-binding motif and indicating that T. brucei cytochrome c can accommodate a second cysteine in a CXXCH motif. The single-cysteine haem attachment conserved in cytochromes c and c1 of the trypanosomatids is suggested to be related to their cytochrome c maturation machinery, and the environment in the mitochondrial intermembrane space. Our genomic and biochemical studies provide very persuasive evidence that the trypanosomatid mitochondrial cytochromes c are matured by a novel biogenesis system.
Collapse
Affiliation(s)
- James W. A. Allen
- *Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- To whom correspondence should be addressed (email or )
| | - Michael L. Ginger
- †Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
- To whom correspondence should be addressed (email or )
| | - Stuart J. Ferguson
- *Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
16
|
Chen Y, Hunsicker-Wang L, Pacoma RL, Luna E, Fee JA. A homologous expression system for obtaining engineered cytochrome ba3 from Thermus thermophilus HB8. Protein Expr Purif 2005; 40:299-318. [PMID: 15766872 DOI: 10.1016/j.pep.2004.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/17/2004] [Indexed: 10/26/2022]
Abstract
Cytochrome ba3 is an integral membrane protein that serves as a terminal oxidase of the respiratory chain in some prokaryotes. We have cloned the complete cba operon of Thermus thermophilus HB8 in an Escherichia coli/T. thermophilus shuttle vector. The ba3-encoding operon, cba, was eliminated from the chromosome of T. thermophilus strain MT111 using the pyrE system of Yamagishi and co-workers. Expression of functional cytochrome ba3 occurred in cells grown at reduced dioxygen levels. A hepta-histidine tag was placed at the N-terminus of subunit I, and a purification method for this form of the enzyme was developed. Growth conditions were investigated for moderate sized cultures (2L) with typical yields of approximately 2 mg of highly pure enzyme per liter of culture medium. The physical properties and enzymatic activities of these recombinant enzymes were compared with those of native enzyme. Recombinant enzyme lacking the histidine tag is spectrally identical to wild-type enzyme. Histidine-tagged cytochrome ba3 shows minor differences from wild-type, and it appears be somewhat less active as a cytochrome c552 oxidase. Exemplary mutants were also produced and compared to native protein. Tyrosine I-237, previously found to be covalently bonded to I-His-233, was changed to phenylalanine (I-Y237F) and to histidine (I-Y237H) in the hepta-histidine tagged cytochrome ba3. The Y to F mutant is devoid of enzyme activity whereas the Y to H mutant possesses approximately 5% wild-type oxidase activity; their properties are compared with those of wild-type enzyme. The above versions of the histidine-tagged enzyme have been crystallized, and our analysis of a 2.3 angstrom resolution electron-density map will be discussed elsewhere.
Collapse
Affiliation(s)
- Ying Chen
- Division of Biology, University of California at San Diego, 9500 Gilman Dr., La Jolla CA 92093-0116, USA
| | | | | | | | | |
Collapse
|
17
|
Bren KL, Kellogg JA, Kaur R, Wen X. Folding, Conformational Changes, and Dynamics of Cytochromes c Probed by NMR Spectroscopy. Inorg Chem 2004; 43:7934-44. [PMID: 15578827 DOI: 10.1021/ic048925t] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMR spectroscopy has become a vital tool for studies of protein conformational changes and dynamics. Oxidized Fe(III)cytochromes c are a particularly attractive target for NMR analysis because their paramagnetism (S = (1)/(2)) leads to high (1)H chemical shift dispersion, even for unfolded or otherwise disordered states. In addition, analysis of shifts induced by the hyperfine interaction reveals details of the structure of the heme and its ligands for native and nonnative protein conformational states. The use of NMR spectroscopy to investigate the folding and dynamics of paramagnetic cytochromes c is reviewed here. Studies of nonnative conformations formed by denaturation and by anomalous in vivo maturation (heme attachment) are facilitated by the paramagnetic, low-spin nature of native and nonnative forms of cytochromes c. Investigation of the dynamics of folded cytochromes c also are aided by their paramagnetism. As an example of this analysis, the expression in Escherichia coli of cytochrome c(552) from Nitrosomonas europaea is reported here, along with analysis of its unusual heme hyperfine shifts. The results are suggestive of heme axial methionine fluxion in N. europaea ferricytochrome c(552). The application of NMR spectroscopy to investigate paramagnetic cytochrome c folding and dynamics has advanced our understanding of the structure and dynamics of both native and nonnative states of heme proteins.
Collapse
Affiliation(s)
- Kara L Bren
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
| | | | | | | |
Collapse
|
18
|
Fujita K, Nakamura N, Ohno H, Leigh BS, Niki K, Gray HB, Richards JH. Mimicking Protein−Protein Electron Transfer: Voltammetry of Pseudomonas aeruginosa Azurin and the Thermus thermophilus CuA Domain at ω-Derivatized Self-Assembled-Monolayer Gold Electrodes. J Am Chem Soc 2004; 126:13954-61. [PMID: 15506756 DOI: 10.1021/ja047875o] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Well-defined voltammetric responses of redox proteins with acidic-to-neutral pI values have been obtained on pure alkanethiol as well as on mixed self-assembled-monolayer (SAM) omega-derivatized alkanethiol/gold bead electrodes. Both azurin (P. aeruginosa) (pI = 5.6) and subunit II (Cu(A) domain) of ba(3)-type cytochrome c oxidase (T. thermophilus) (pI = 6.0) exhibit optimal voltammetric responses on 1:1 mixtures of [H(3)C(CH(2))(n)()SH + HO(CH(2))(n)()SH] SAMs. The electron transfer (ET) rate vs distance behavior of azurin and Cu(A) is independent of the omega-derivatized alkanethiol SAM headgroups. Strikingly, only wild-type azurin and mutants containing Trp48 give voltammetric responses: based on modeling, we suggest that electronic coupling with the SAM headgroup (H(3)C- and/or HO-) occurs at the Asn47 side chain carbonyl oxygen and that an Asn47-Cys112 hydrogen bond promotes intramolecular ET to the copper. Inspection of models also indicates that the Cu(A) domain of ba(3)-type cytochrome c oxidase is coupled to the SAM headgroup (H(3)C- and/or HO-) near the main chain carbonyl oxygen of Cys153 and that Phe88 (analogous to Trp143 in subunit II of cytochrome c oxidase from R. sphaeroides) is not involved in the dominant tunneling pathway. Our work suggests that hydrogen bonds from hydroxyl or other proton-donor groups to carbonyl oxygens potentially can facilitate intermolecular ET between physiological redox partners.
Collapse
Affiliation(s)
- Kyoko Fujita
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Fee JA, Todaro TR, Luna E, Sanders D, Hunsicker-Wang LM, Patel KM, Bren KL, Gomez-Moran E, Hill MG, Ai J, Loehr TM, Oertling WA, Williams PA, Stout CD, McRee D, Pastuszyn A. Cytochrome rC552, Formed during Expression of the Truncated, Thermus thermophilus Cytochrome c552 Gene in the Cytoplasm of Escherichia coli, Reacts Spontaneously To Form Protein-Bound 2-Formyl-4-vinyl (Spirographis) Heme,. Biochemistry 2004; 43:12162-76. [PMID: 15379555 DOI: 10.1021/bi048968l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression of the truncated (lacking an N-terminal signal sequence) structural gene of Thermus thermophilus cytochrome c(552) in the cytoplasm of Escherichia coli yields both dimeric (rC(557)) and monomeric (rC(552)) cytochrome c-like proteins [Keightley, J. A., et al. (1998) J. Biol. Chem. 273, 12006-12016], which form spontaneously without the involvement of cytochrome c maturation factors. Cytochrome rC(557) is comprised of a dimer and has been structurally characterized [McRee, D., et al. (2001) J. Biol. Chem. 276, 6537-6544]. Unexpectedly, the monomeric rC(552) transforms spontaneously to a cytochrome-like chromophore having, in its reduced state, the Q(oo) transition (alpha-band) at 572 nm (therefore called p572). The X-ray crystallographic structure of rC(552), at 1.41 A resolution, shows that the 2-vinyl group of heme ring I is converted to a [heme-CO-CH(2)-S-CH(2)-C(alpha)] conjugate with cysteine 11. Electron density maps obtained from isomorphous crystals of p572 at 1.61 A resolution reveal that the 2-vinyl group has been oxidized to a formyl group. This explains the lower energy of the Q(oo)() transition, the presence of a new, high-frequency band in the resonance Raman spectra at 1666 cm(-1) for oxidized and at 1646 cm(-1) for reduced samples, and the greatly altered, paramagnetically shifted (1)H NMR spectrum observed for this species. The overall process defines a novel mechanism for oxidation of the 2-vinyl group to a 2-formyl group and adds to the surprising array of chemical reactions that occur in the interaction of heme with the CXXCH sequence motif in apocytochromes c.
Collapse
Affiliation(s)
- James A Fee
- Department of Biology, University of California at San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ishida M, Dohmae N, Shiro Y, Oku T, Iizuka T, Isogai Y. Design and Synthesis of de Novo Cytochromes c. Biochemistry 2004; 43:9823-33. [PMID: 15274636 DOI: 10.1021/bi049546e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natural c-type cytochromes are characterized by the consensus Cys-X-X-Cys-His heme-binding motif (where X is any amino acid) by which the heme is covalently attached to protein by the addition of the sulfhydryl groups of two cysteine residues to the vinyl groups of the heme. In this work, the consensus sequence was used for the heme-binding site of a designed four-helix bundle, and the apoproteins with either a histidine residue or a methionine residue positioned at the sixth coordination site were synthesized and reacted with iron protoporphyrin IX (protoheme) under mild reducing conditions in vitro. These polypeptides bound one heme per helix-loop-helix monomer via a single thioether bond and formed four-helix bundle dimers in the holo forms as designed. They exhibited visible absorption spectra characteristic of c-type cytochromes, in which the absorption bands shifted to lower wavelengths in comparison with the b-type heme binding intermediates of the same proteins. Unexpectedly, the designed cytochromes c with bis-His-coordinated heme iron exhibited oxidation-reduction potentials similar to those of their b-type intermediates, which have no thioether bond. Furthermore, the cytochrome c with His and Met residues as the axial ligands exhibited redox potentials increased by only 15-30 mV in comparison with the cytochrome with the bis-His coordination. These results indicate that highly positive redox potentials of natural cytochromes c are not only due to the heme covalent structure, including the Met ligation, but also due to noncovalent and hydrophobic environments surrounding the heme. The covalent attachment of heme to the polypeptide in natural cytochromes c may contribute to their higher redox potentials by reducing the thermodynamic stability of the oxidized forms relatively against that of the reduced forms without the loss of heme.
Collapse
Affiliation(s)
- Manabu Ishida
- RIKEN Harima Institute/SPring-8, Mikazuki-cho, Sayo, Hyogo 679-5143, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Allen JWA, Barker PD, Ferguson SJ. A Cytochrome b562 Variant with a c-Type Cytochrome CXXCH Heme-binding Motif as a Probe of the Escherichia coli Cytochrome c Maturation System. J Biol Chem 2003; 278:52075-83. [PMID: 14534316 DOI: 10.1074/jbc.m307196200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome b562 is a periplasmic Escherichia coli protein; previous work has shown that heme can be attached covalently in vivo as a consequence of introduction of one or two cysteines into the heme-binding pocket. A heterogeneous mixture of products was obtained, and it was not established whether the covalent bond formation was catalyzed or spontaneous. Here, we show that coexpression from plasmids of a variant of cytochrome b562 containing a CXXCH heme-binding motif with the E. coli cytochrome c maturation (Ccm) proteins results in an essentially homogeneous product that is a correctly matured c-type cytochrome. Formation of the holocytochrome was accompanied by substantial production of its apo form, in which, for the protein as isolated, there is a disulfide bond between the two cysteines in the CXXCH motif. Following addition of heme to reduced CXXCH apoprotein, spontaneous covalent addition of heme to polypeptide occurred in vitro. Strikingly, the spectral properties were very similar to those of the material obtained from cells in which presumed uncatalyzed addition of heme (i.e. in the absence of Ccm) had been observed. The major product from uncatalyzed heme attachment was an incorrectly matured cytochrome with the heme rotated by 180 degrees relative to its normal orientation. The contrast between Ccm-dependent and Ccm-independent covalent attachment of heme indicates that the Ccm apparatus presents heme to the protein only in the orientation that results in formation of the correct product and also that heme does not become covalently attached to the apocytochrome b562 CXXCH variant without being handled by the Ccm system in the periplasm. The CXXCH variant of cytochrome b562 was also expressed in E. coli strains deficient in the periplasmic reductant DsbD or oxidant DsbA. In the DsbA- strain under aerobic conditions, c-type cytochromes were made abundantly and correctly when the Ccm proteins were expressed. This contrasts with previous reports indicating that DsbA is essential for cytochrome c biogenesis in E. coli.
Collapse
Affiliation(s)
- James W A Allen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
22
|
Allen JWA, Daltrop O, Stevens JM, Ferguson SJ. C-type cytochromes: diverse structures and biogenesis systems pose evolutionary problems. Philos Trans R Soc Lond B Biol Sci 2003; 358:255-66. [PMID: 12594933 PMCID: PMC1693095 DOI: 10.1098/rstb.2002.1192] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
C-type cytochromes are a structurally diverse group of haemoproteins, which are related by the occurrence of haem covalently attached to a polypeptide via two thioether bonds formed by the vinyl groups of haem and cysteine side chains in a CXXCH peptide motif. Remarkably, three different post-translational systems for forming these cytochromes have been identified. The evolution of both the proteins themselves and the biogenesis systems poses many questions to which answers are currently being sought. In this article we review the progress that has been made in understanding the need for covalent attachment of haem to proteins in cytochromes c and the complex systems involved in their formation.
Collapse
Affiliation(s)
- James W A Allen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
23
|
Kellogg JA, Bren KL. Characterization of recombinant horse cytochrome c synthesized with the assistance of Escherichia coli cytochrome c maturation factors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1601:215-21. [PMID: 12445485 DOI: 10.1016/s1570-9639(02)00471-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytochromes c are characterized by the presence of a protoporphyrin IX group covalently attached to the polypeptide via one or two thioether bonds to Cys side chains. The heme attachment process, known as cytochrome c maturation, occurs posttranslationally in the periplasm (for bacterial cytochromes c) or in the mitochondrial intermembrane space (for eukaryotic cytochromes c) through a pathway dependent on the organism. It is demonstrated in this work that a mitochondrial cytochrome c expressed in Escherichia coli that undergoes maturation under control of the E. coli cytochrome c maturation factors achieves a native-like structure and stability. The recombinant protein is characterized spectroscopically (by circular dichroism (CD), absorption, and nuclear magnetic resonance (NMR) spectroscopy) and it is verified that the heme and its environment are indistinguishable from authentic horse cytochrome c. Mass spectrometry reveals that the recombinant protein is not acetylated at the N terminus, however, no significant effect on protein structure or stability is detected as a result.
Collapse
Affiliation(s)
- Jason A Kellogg
- Department of Chemistry, College of Arts and Science, University of Rochester, Rochester, NY 14627-0216, USA
| | | |
Collapse
|
24
|
Zafra O, Ramírez S, Castán P, Moreno R, Cava F, Vallés C, Caro E, Berenguer J. A cytochrome c encoded by the nar operon is required for the synthesis of active respiratory nitrate reductase in Thermus thermophilus. FEBS Lett 2002; 523:99-102. [PMID: 12123812 DOI: 10.1016/s0014-5793(02)02953-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cytochrome c (NarC) is encoded as the first gene of the operon for nitrate respiration in Thermus thermophilus. NarC is required for anaerobic growth and for the synthesis of active nitrate reductase (NR). The alpha and delta subunits (NarG, NarJ) of the NR were constitutively expressed in narC::kat mutants, but NarG appeared in the soluble fraction instead of associated with the membranes. Our data demonstrate for NarC an essential role in the synthesis of active enzyme and for the attachment to the membrane of the respiratory NR from T. thermophilus.
Collapse
Affiliation(s)
- Olga Zafra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Aubert C, Guerlesquin F, Bianco P, Leroy G, Tron P, Stetter KO, Bruschi M. Cytochromes c555 from the hyperthermophilic bacterium Aquifex aeolicus. 2. Heterologous production of soluble cytochrome c555s and investigation of the role of methionine residues. Biochemistry 2001; 40:13690-8. [PMID: 11695918 DOI: 10.1021/bi011202q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cycB2 gene encoding the soluble cytochrome c555s from Aquifex aeolicus, an hyperthermophilic organism, has been cloned and expressed using Escherichia coli as the host organism. The cytochrome was successfully produced in the periplasm of an E. coli strain coexpressing the ccmABCDEFGH genes involved in the cytochrome c maturation process. Comparison of native and recombinant cytochrome c555s shows that both proteins are indistinguishable in terms of spectroscopic and physicochemical properties. Since two different methionine residues are present in the sequence stretch usually providing the sixth ligand to the heme iron, site-directed mutagenesis has been performed in order to identify the methionine serving as the axial ligand. Two single mutations were introduced, leading to the replacement of each methionine by a histidine residue. Characterization of both mutants, M78H and M84H cytochromes c555s, using biochemical and biophysical techniques has been carried out. The M84H mutant exhibits spectral features identical to those of native cytochrome. Its redox midpoint potential is decreased by 40 mV. By contrast, substitution of methionine 78 by a histidine residue strongly alters the structural and physicochemical properties of the molecule which exhibits characteristics of His/His iron coordination type rather than His/Met. These results allow us to identify methionine 78 as the sixth ligand of cytochrome c555s heme iron. Preliminary results on the thermostability of the native and mutant cytochromes c555 are also reported.
Collapse
Affiliation(s)
- C Aubert
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UPR9036), CNRS-IBSM, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Gordon EH, Steensma E, Ferguson SJ. The cytochrome c domain of dimeric cytochrome cd(1) of Paracoccus pantotrophus can be produced at high levels as a monomeric holoprotein using an improved c-type cytochrome expression system in Escherichia coli. Biochem Biophys Res Commun 2001; 281:788-94. [PMID: 11237728 DOI: 10.1006/bbrc.2001.4425] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome cd(1) nitrite reductase from Paracoccus pantotrophus is a dimer; within each monomer there is a largely alpha-helical domain that contains the c-type cytochrome centre. The structure of this domain changes significantly upon reduction of the heme iron, for which the ligands change from His17/His69 to Met106/His69. Overproduction, using an improved Escherichia coli expression system, of this c-type cytochrome domain as an independent monomer is reported here. The properties of the independent domain are compared with those when it is part of dimeric holo or semi-apo cytochrome cd(1).
Collapse
Affiliation(s)
- E H Gordon
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | |
Collapse
|
27
|
McRee DE, Williams PA, Sridhar V, Pastuszyn A, Bren KL, Patel KM, Chen Y, Todaro TR, Sanders D, Luna E, Fee JA. Recombinant cytochrome rC557 obtained from Escherichia coli cells expressing a truncated Thermus thermophilus cycA gene. Heme inversion in an improperly matured protein. J Biol Chem 2001; 276:6537-44. [PMID: 11069913 DOI: 10.1074/jbc.m008421200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome rC(557) is an improperly matured, dimeric cytochrome c obtained from expression of the "signal peptide-lacking" Thermus thermophilus cycA gene in the cytoplasm of Escherichia coli. It is characterized by its Q(00) (or alpha-) optical absorption band at 557 nm in the reduced form (Keightley, J. A., Sanders, D., Todaro, T. R., Pastuszyn, A., and Fee, J. A. (1998) J. Biol. Chem. 273, 12006-12016). We report results of a broad ranging, biochemical and spectral characterization of this protein that reveals the presence of a free vinyl group on the porphyrin and a disulfide bond between the protomers and supports His-Met ligation in both valence states of the iron. A 3-A resolution x-ray structure shows that, in comparison with the native protein, the heme moiety is rotated 180 degrees about its alpha,gamma-axis; cysteine 14 has formed a thioether bond with the 2-vinyl of pyrrole ring I instead of the 4-vinyl of pyrrole ring II, as occurs in the native protein; and a cysteine 11 from each protomer has formed an intermolecular disulfide bond. Numerous, minor perturbations exist within the structure of rC(557) in comparison with that of native protein, which result from heme inversion and protein-protein interactions across the dimer interface. The unusual spectral properties of rC(557) are rationalized in terms of this structure.
Collapse
Affiliation(s)
- D E McRee
- Department of Molecular Biology, the Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fee JA, Chen Y, Todaro TR, Bren KL, Patel KM, Hill MG, Gomez-Moran E, Loehr TM, Ai J, Thöny-Meyer L, Williams PA, Stura E, Sridhar V, McRee DE. Integrity of thermus thermophilus cytochrome c552 synthesized by Escherichia coli cells expressing the host-specific cytochrome c maturation genes, ccmABCDEFGH: biochemical, spectral, and structural characterization of the recombinant protein. Protein Sci 2000; 9:2074-84. [PMID: 11152119 PMCID: PMC2144481 DOI: 10.1110/ps.9.11.2074] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We describe the design of Escherichia coli cells that synthesize a structurally perfect, recombinant cytochrome c from the Thermus thermophilus cytochrome c552 gene. Key features are (1) construction of a plasmid-borne, chimeric cycA gene encoding an Escherichia coli-compatible, N-terminal signal sequence (MetLysIleSerIleTyrAlaThrLeu AlaAlaLeuSerLeuAlaLeuProAlaGlyAla) followed by the amino acid sequence of mature Thermus cytochrome c552; and (2) coexpression of the chimeric cycA gene with plasmid-borne, host-specific cytochrome c maturation genes (ccmABCDEFGH). Approximately 1 mg of purified protein is obtained from 1 L of culture medium. The recombinant protein, cytochrome rsC552, and native cytochrome c552 have identical redox potentials and are equally active as electron transfer substrates toward cytochrome ba3, a Thermus heme-copper oxidase. Native and recombinant cytochromes c were compared and found to be identical using circular dichroism, optical absorption, resonance Raman, and 500 MHz 1H-NMR spectroscopies. The 1.7 A resolution X-ray crystallographic structure of the recombinant protein was determined and is indistinguishable from that reported for the native protein (Than, ME, Hof P, Huber R, Bourenkov GP, Bartunik HD, Buse G, Soulimane T, 1997, J Mol Biol 271:629-644). This approach may be generally useful for expression of alien cytochrome c genes in E. coli.
Collapse
Affiliation(s)
- J A Fee
- Department of Biology, University of California at San Diego, La Jolla 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tomlinson EJ, Ferguson SJ. Loss of either of the two heme-binding cysteines from a class I c-type cytochrome has a surprisingly small effect on physicochemical properties. J Biol Chem 2000; 275:32530-4. [PMID: 10922364 DOI: 10.1074/jbc.m004022200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Almost without exception, c-type cytochromes have heme covalently attached via two thioether linkages to the cysteine residues of a CXXCH motif. The reasons for the covalent attachment are not understood. Reported here is cytoplasmic expression in Escherichia coli of AXXCH and CXXAH variants of cytochrome c(552) from Hydrogenobacter thermophilus; remarkably, the single thioether bond proteins have, apart from an altered visible absorption spectrum, almost identical properties, including thermal stability and reduction potential, to the wild type CXXCH protein. In combination with previous work showing that an AXXAH variant of cytochrome c(552) is much less stable than the CXXCH form, it can be concluded that covalent attachment of heme via either of thioether bonds is sufficient to confer considerable stability and that these bonds contribute little to the setting of the reduction potential. The absence of AXXCH or CXXAH heme-binding motifs from bacterial cytochromes c may relate to the coexistence of the assembly pathway with that for formation of disulfide bonds in the bacterial periplasm.
Collapse
Affiliation(s)
- E J Tomlinson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|
30
|
Cronin CN, McIntire WS. Heterologous expression in Pseudomonas aeruginosa and purification of the 9.2-kDa c-type cytochrome subunit of p-cresol methylhydroxylase. Protein Expr Purif 2000; 19:74-83. [PMID: 10833393 DOI: 10.1006/prep.2000.1218] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 9.2-kDa c-type cytochrome subunit (PchC) of the flavocytochrome p-cresol methylhydroxylase from Pseudomonas putida NCIMB 9869 has been overexpressed in recombinant form in Pseudomonas aeruginosa PAO1-LAC, using the recently developed pUCP-Nde vector. Efforts to produce the cytochrome in Escherichia coli using a pET vector, with or without its signal peptide, were generally unsuccessful, yielding relatively low levels of the protein. In contrast, the mature form of PchC accumulated in the periplasmic space of P. aeruginosa PAO1-LAC to about 1 mg/g wet cell paste. A periplasmic fraction enriched to about 12% (w/w) of total protein with recombinant PchC was isolated from the remainder of the cells by a washing procedure using ethylenediaminetetraacetate in the presence of sucrose. The cytochrome was purified to homogeneity from the periplasmic extract by anion-exchange chromatography on DEAE-Sepharose CL-6B followed by chromatofocusing on PolyBuffer Exchanger 94. Purified PchC was obtained in a yield of about 50% and was shown to be identical to that resolved from the native flavocytochrome isolated from P. putida. This system may prove to be of general use for the production of recombinant c-type cytochromes.
Collapse
Affiliation(s)
- C N Cronin
- Molecular Biology Division, Department of Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| | | |
Collapse
|
31
|
Tomlinson EJ, Ferguson SJ. Conversion of a c type cytochrome to a b type that spontaneously forms in vitro from apo protein and heme: implications for c type cytochrome biogenesis and folding. Proc Natl Acad Sci U S A 2000; 97:5156-60. [PMID: 10792037 PMCID: PMC25798 DOI: 10.1073/pnas.090089397] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c(552) from Hydrogenobacter thermophilus, a thermophilic bacterium, has been converted into a b type cytochrome, after mutagenesis of both heme-binding cysteines to alanine and expression in the cytoplasm of Escherichia coli. The b type variant is less stable, with the guanidine hydrochloride unfolding midpoint occurring at a concentration 2 M lower than for the wild-type protein. The reduction potential is 75 mV lower than that of the recombinant wild-type protein. The heme can be removed from the b type variant, thus generating an apo protein that has, according to circular dichroism spectroscopy, an alpha-helical content different from that of the holo b type protein. The latter is readily reformed in vitro by addition of heme to the apo protein. This reforming suggests that previously observed assembly of cytochrome c(552), which has the typical class I cytochrome c fold, in the E. coli cytoplasm is a consequence of spontaneous thioether bond formation after binding of heme to a prefolded polypeptide. These observations have implications for the general problem of c type cytochrome biogenesis.
Collapse
Affiliation(s)
- E J Tomlinson
- Department of Biochemistry and Oxford Centre for Molecular Sciences, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|
32
|
Abstract
c-Type cytochromes are a group of proteins with diverse structures and functions. Their common feature is covalent attachment of haem to one or more CXXCH motifs. There does not seem to be a single advantageous reason for this covalent attachment.
Collapse
Affiliation(s)
- P D Barker
- University Chemical Laboratory, University of Cambridge, UK
| | | |
Collapse
|
33
|
Reincke B, Thöny-Meyer L, Dannehl C, Odenwald A, Aidim M, Witt H, Rüterjans H, Ludwig B. Heterologous expression of soluble fragments of cytochrome c552 acting as electron donor to the Paracoccus denitrificans cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:114-20. [PMID: 10216157 DOI: 10.1016/s0005-2728(99)00037-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A membrane-bound c-type cytochrome, c552, acts as the electron mediator between the cytochrome bc1 complex and cytochrome c oxidase in the branched respiratory chain of the bacterium Paracoccus denitrificans. Unlike in mitochondria where a soluble cytochrome c interacts with both complexes, the bacterial c552, the product of the cycM gene, shows a tripartite structure, with an N-terminal membrane anchor separated from a typical class I cytochrome domain by a highly charged region. Two derivative fragments, lacking either only the membrane spanning region or both N-terminal domains, were constructed on the genetic level, and expressed in Escherichia coli cotransformed with the ccm gene cluster encoding host-specific cytochrome c maturation factors. High levels of cytochromes c were expressed and located in the periplasm as holo-proteins; both these purified c552 fragments are functional in electron transport to oxidase, as ascertained by kinetic measurements, and will prove useful for future structural studies of complex formation by NMR and X-ray diffraction.
Collapse
Affiliation(s)
- B Reincke
- Institute of Biophysical Chemistry, Biozentrum, J.W. Goethe-Universität, D-60439, Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|