1
|
Guharajan S, Parisutham V, Brewster RC. A systematic survey of TF function in E. coli suggests RNAP stabilization is a prevalent strategy for both repressors and activators. Nucleic Acids Res 2025; 53:gkaf058. [PMID: 39921566 PMCID: PMC11806353 DOI: 10.1093/nar/gkaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 02/10/2025] Open
Abstract
Transcription factors (TFs) are often classified as activators or repressors, yet these context-dependent labels are inadequate to predict quantitative profiles that emerge across different promoters. A mechanistic understanding of how different regulatory sequences shape TF function is challenging due to the lack of systematic genetic control in endogenous genes. To address this, we use a library of Escherichia coli strains with precise control of TF copy number, measuring the quantitative regulatory input-output function of 90 TFs on synthetic promoters that isolate the contributions of TF binding sequence, location, and basal promoter strength to gene expression. We interpret the measured regulation of these TFs using a thermodynamic model of gene expression and uncover stabilization of RNA polymerase as a pervasive regulatory mechanism, common to both activating and repressing TFs. This property suggests ways to tune the dynamic range of gene expression through the interplay of stabilizing TF function and RNA polymerase basal occupancy, a phenomenon we confirm by measuring fold change for stabilizing TFs across synthetic promoter sequences spanning over 100-fold basal expression. Our work deconstructs TF function at a mechanistic level, providing foundational principles on how gene expression is realized across different promoter contexts, with implications for decoding the relationship between sequence and gene expression.
Collapse
Affiliation(s)
- Sunil Guharajan
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, United States
| | - Vinuselvi Parisutham
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
| | - Robert C Brewster
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
| |
Collapse
|
2
|
Lagator M, Sarikas S, Steinrueck M, Toledo-Aparicio D, Bollback JP, Guet CC, Tkačik G. Predicting bacterial promoter function and evolution from random sequences. eLife 2022; 11:64543. [PMID: 35080492 PMCID: PMC8791639 DOI: 10.7554/elife.64543] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/09/2022] [Indexed: 12/12/2022] Open
Abstract
Predicting function from sequence is a central problem of biology. Currently, this is possible only locally in a narrow mutational neighborhood around a wildtype sequence rather than globally from any sequence. Using random mutant libraries, we developed a biophysical model that accounts for multiple features of σ70 binding bacterial promoters to predict constitutive gene expression levels from any sequence. We experimentally and theoretically estimated that 10–20% of random sequences lead to expression and ~80% of non-expressing sequences are one mutation away from a functional promoter. The potential for generating expression from random sequences is so pervasive that selection acts against σ70-RNA polymerase binding sites even within inter-genic, promoter-containing regions. This pervasiveness of σ70-binding sites implies that emergence of promoters is not the limiting step in gene regulatory evolution. Ultimately, the inclusion of novel features of promoter function into a mechanistic model enabled not only more accurate predictions of gene expression levels, but also identified that promoters evolve more rapidly than previously thought.
Collapse
Affiliation(s)
- Mato Lagator
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Srdjan Sarikas
- Institute of Science and Technology Austria, Klosterneuburg, Austria.,Center for Physiology and Pharmacology, Medical University of Vienna, Klosterneuburg, Austria
| | | | | | - Jonathan P Bollback
- Institute of Integrative Biology, Functional and Comparative Genomics, University of Liverpool, Liverpool, United Kingdom
| | - Calin C Guet
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
3
|
Guharajan S, Chhabra S, Parisutham V, Brewster RC. Quantifying the regulatory role of individual transcription factors in Escherichia coli. Cell Rep 2021; 37:109952. [PMID: 34758318 PMCID: PMC8667592 DOI: 10.1016/j.celrep.2021.109952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Gene regulation often results from the action of multiple transcription factors (TFs) acting at a promoter, obscuring the individual regulatory effect of each TF on RNA polymerase (RNAP). Here we measure the fundamental regulatory interactions of TFs in E. coli by designing synthetic target genes that isolate individual TFs' regulatory effects. Using a thermodynamic model, each TF's regulatory interactions are decoupled from TF occupancy and interpreted as acting through (de)stabilization of RNAP and (de)acceleration of transcription initiation. We find that the contribution of each mechanism depends on TF identity and binding location; regulation immediately downstream of the promoter is insensitive to TF identity, but the same TFs regulate by distinct mechanisms upstream of the promoter. These two mechanisms are uncoupled and can act coherently, to reinforce the observed regulatory role (activation/repression), or incoherently, wherein the TF regulates two distinct steps with opposing effects.
Collapse
Affiliation(s)
- Sunil Guharajan
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shivani Chhabra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vinuselvi Parisutham
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Robert C Brewster
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
The Context-Dependent Influence of Promoter Sequence Motifs on Transcription Initiation Kinetics and Regulation. J Bacteriol 2021; 203:JB.00512-20. [PMID: 33139481 DOI: 10.1128/jb.00512-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fitness of an individual bacterial cell is highly dependent upon the temporal tuning of gene expression levels when subjected to different environmental cues. Kinetic regulation of transcription initiation is a key step in modulating the levels of transcribed genes to promote bacterial survival. The initiation phase encompasses the binding of RNA polymerase (RNAP) to promoter DNA and a series of coupled protein-DNA conformational changes prior to entry into processive elongation. The time required to complete the initiation phase can vary by orders of magnitude and is ultimately dictated by the DNA sequence of the promoter. In this review, we aim to provide the required background to understand how promoter sequence motifs may affect initiation kinetics during promoter recognition and binding, subsequent conformational changes which lead to DNA opening around the transcription start site, and promoter escape. By calculating the steady-state flux of RNA production as a function of these effects, we illustrate that the presence/absence of a consensus promoter motif cannot be used in isolation to make conclusions regarding promoter strength. Instead, the entire series of linked, sequence-dependent structural transitions must be considered holistically. Finally, we describe how individual transcription factors take advantage of the broad distribution of sequence-dependent basal kinetics to either increase or decrease RNA flux.
Collapse
|
5
|
How the avidity of polymerase binding to the -35/-10 promoter sites affects gene expression. Proc Natl Acad Sci U S A 2019; 116:13340-13345. [PMID: 31196959 PMCID: PMC6613100 DOI: 10.1073/pnas.1905615116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the key promoter elements necessary to drive transcription in Escherichia coli have long been understood, we still cannot predict the behavior of arbitrary novel promoters, hampering our ability to characterize the myriad sequenced regulatory architectures as well as to design new synthetic circuits. This work builds upon a beautiful recent experiment by Urtecho et al. [G. Urtecho, et al, Biochemistry, 68, 1539-1551 (2019)] who measured the gene expression of over 10,000 promoters spanning all possible combinations of a small set of regulatory elements. Using these data, we demonstrate that a central claim in energy matrix models of gene expression-that each promoter element contributes independently and additively to gene expression-contradicts experimental measurements. We propose that a key missing ingredient from such models is the avidity between the -35 and -10 RNA polymerase binding sites and develop what we call a multivalent model that incorporates this effect and can successfully characterize the full suite of gene expression data. We explore several applications of this framework, namely, how multivalent binding at the -35 and -10 sites can buffer RNA polymerase (RNAP) kinetics against mutations and how promoters that bind overly tightly to RNA polymerase can inhibit gene expression. The success of our approach suggests that avidity represents a key physical principle governing the interaction of RNA polymerase to its promoter.
Collapse
|
6
|
Forcier TL, Ayaz A, Gill MS, Jones D, Phillips R, Kinney JB. Measuring cis-regulatory energetics in living cells using allelic manifolds. eLife 2018; 7:40618. [PMID: 30570483 PMCID: PMC6301791 DOI: 10.7554/elife.40618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/27/2018] [Indexed: 12/04/2022] Open
Abstract
Gene expression in all organisms is controlled by cooperative interactions between DNA-bound transcription factors (TFs), but quantitatively measuring TF-DNA and TF-TF interactions remains difficult. Here we introduce a strategy for precisely measuring the Gibbs free energy of such interactions in living cells. This strategy centers on the measurement and modeling of ‘allelic manifolds’, a multidimensional generalization of the classical genetics concept of allelic series. Allelic manifolds are measured using reporter assays performed on strategically designed cis-regulatory sequences. Quantitative biophysical models are then fit to the resulting data. We used this strategy to study regulation by two Escherichia coli TFs, CRP and σ70 RNA polymerase. Doing so, we consistently obtained energetic measurements precise to ∼0.1 kcal/mol. We also obtained multiple results that deviate from the prior literature. Our strategy is compatible with massively parallel reporter assays in both prokaryotes and eukaryotes, and should therefore be highly scalable and broadly applicable. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that minor issues remain unresolved (see decision letter).
Collapse
Affiliation(s)
- Talitha L Forcier
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Andalus Ayaz
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Manraj S Gill
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Daniel Jones
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States.,Department of Applied Physics, California Institute of Technology, Pasadena, United States
| | - Rob Phillips
- Department of Applied Physics, California Institute of Technology, Pasadena, United States
| | - Justin B Kinney
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
7
|
Roy NS, Debnath S, Chakraborty A, Chakraborty P, Bera I, Ghosh R, Ghoshal N, Chakrabarti S, Roy S. Enhanced basepair dynamics pre-disposes protein-assisted flips of key bases in DNA strand separation during transcription initiation. Phys Chem Chem Phys 2018; 20:9449-9459. [DOI: 10.1039/c8cp01119b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Localized separation of strands of duplex DNA is a necessary step in many DNA-dependent processes, including transcription and replication.
Collapse
Affiliation(s)
- Neeladri Sekhar Roy
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Subrata Debnath
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Abhijit Chakraborty
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | | | - Indrani Bera
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Raka Ghosh
- Department of Biophysics
- Bose Institute
- Kolkata 700054
- India
| | - Nanda Ghoshal
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Saikat Chakrabarti
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Siddhartha Roy
- Department of Biophysics
- Bose Institute
- Kolkata 700054
- India
| |
Collapse
|
8
|
Sneppen K. Models of life: epigenetics, diversity and cycles. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:042601. [PMID: 28106010 DOI: 10.1088/1361-6633/aa5aeb] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This review emphasizes aspects of biology that can be understood through repeated applications of simple causal rules. The selected topics include perspectives on gene regulation, phage lambda development, epigenetics, microbial ecology, as well as model approaches to diversity and to punctuated equilibrium in evolution. Two outstanding features are repeatedly described. One is the minimal number of rules to sustain specific states of complex systems for a long time. The other is the collapse of such states and the subsequent dynamical cycle of situations that restitute the system to a potentially new metastable state.
Collapse
Affiliation(s)
- Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Lee J, Borukhov S. Bacterial RNA Polymerase-DNA Interaction-The Driving Force of Gene Expression and the Target for Drug Action. Front Mol Biosci 2016; 3:73. [PMID: 27882317 PMCID: PMC5101437 DOI: 10.3389/fmolb.2016.00073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 11/17/2022] Open
Abstract
DNA-dependent multisubunit RNA polymerase (RNAP) is the key enzyme of gene expression and a target of regulation in all kingdoms of life. It is a complex multifunctional molecular machine which, unlike other DNA-binding proteins, engages in extensive and dynamic interactions (both specific and nonspecific) with DNA, and maintains them over a distance. These interactions are controlled by DNA sequences, DNA topology, and a host of regulatory factors. Here, we summarize key recent structural and biochemical studies that elucidate the fine details of RNAP-DNA interactions during initiation. The findings of these studies help unravel the molecular mechanisms of promoter recognition and open complex formation, initiation of transcript synthesis and promoter escape. We also discuss most current advances in the studies of drugs that specifically target RNAP-DNA interactions during transcription initiation and elongation.
Collapse
Affiliation(s)
- Jookyung Lee
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| | - Sergei Borukhov
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| |
Collapse
|
10
|
Feng Y, Zhang Y, Ebright RH. Structural basis of transcription activation. Science 2016; 352:1330-3. [PMID: 27284196 DOI: 10.1126/science.aaf4417] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme.
Collapse
Affiliation(s)
- Yu Feng
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Zhang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
11
|
Bae B, Chen J, Davis E, Leon K, Darst SA, Campbell EA. CarD uses a minor groove wedge mechanism to stabilize the RNA polymerase open promoter complex. eLife 2015; 4. [PMID: 26349034 PMCID: PMC4593161 DOI: 10.7554/elife.08505] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/04/2015] [Indexed: 01/25/2023] Open
Abstract
A key point to regulate gene expression is at transcription initiation, and activators play a major role. CarD, an essential activator in Mycobacterium tuberculosis, is found in many bacteria, including Thermus species, but absent in Escherichia coli. To delineate the molecular mechanism of CarD, we determined crystal structures of Thermus transcription initiation complexes containing CarD. The structures show CarD interacts with the unique DNA topology presented by the upstream double-stranded/single-stranded DNA junction of the transcription bubble. We confirm that our structures correspond to functional activation complexes, and extend our understanding of the role of a conserved CarD Trp residue that serves as a minor groove wedge, preventing collapse of the transcription bubble to stabilize the transcription initiation complex. Unlike E. coli RNAP, many bacterial RNAPs form unstable promoter complexes, explaining the need for CarD. DOI:http://dx.doi.org/10.7554/eLife.08505.001 Inside cells, molecules of double-stranded DNA encode the instructions needed to make proteins. To make a protein, the two strands of DNA that make up a gene are separated and one strand acts as a template to make molecules of messenger ribonucleic acid (or mRNA for short). This process is called transcription. The mRNA is then used as a template to assemble the protein. An enzyme called RNA polymerase carries out transcription and is found in all cells ranging from bacteria to humans and other animals. Bacteria have the simplest form of RNA polymerase and provide an excellent system to study how it controls transcription. It is made up of several proteins that work together to make RNA using DNA as a template. However, it requires the help of another protein called sigma factor to direct it to regions of DNA called promoters, which are just before the start of the gene. When RNA polymerase and the sigma factor interact the resulting group of proteins is known as the RNA polymerase ‘holoenzyme’. Transcription takes place in several stages. To start with, the RNA polymerase holoenzyme locates and binds to promoter DNA. Next, it separates the two strands of DNA and exposes a portion of the template strand. At this point, the DNA and the holoenzyme are said to be in an ‘open promoter complex’ and the section of promoter DNA that is within it is known as a ‘transcription bubble’. Another protein called CarD helps to speed up transcription but it is not clear how this stage of the process works. Bae et al. have now used X-ray crystallography to reveal the structure of CarD bound to the RNA polymerase holoenyzme and a DNA promoter. The structures show that one part of CarD interacts with the DNA at the start of the transcription bubble, and another part binds to the RNA polymerase. CarD fits between the two strands of DNA in the promoter, like a wedge, to keep the strands apart. Therefore, CarD stabilizes the open promoter complex and prevents the transcription bubble from collapsing. These findings reveal a previously unseen mechanism involved in activating transcription and will guide further experiments probing the role of CarD in living cells. Another study by Bae, Feklistov et al.—which involves some of the same researchers as this study—reveals that the sigma factor also binds to DNA at the start of the transcription bubble. The general principles outlined by these studies may help to identify other proteins that regulate transcription. DOI:http://dx.doi.org/10.7554/eLife.08505.002
Collapse
Affiliation(s)
- Brian Bae
- Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
| | - James Chen
- Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
| | - Elizabeth Davis
- Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
| | - Katherine Leon
- Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
| | - Seth A Darst
- Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
| | - Elizabeth A Campbell
- Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
| |
Collapse
|
12
|
Mitarai N, Semsey S, Sneppen K. Dynamic competition between transcription initiation and repression: Role of nonequilibrium steps in cell-to-cell heterogeneity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022710. [PMID: 26382435 DOI: 10.1103/physreve.92.022710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 06/05/2023]
Abstract
Transcriptional repression may cause transcriptional noise by a competition between repressor and RNA polymerase binding. Although promoter activity is often governed by a single limiting step, we argue here that the size of the noise strongly depends on whether this step is the initial equilibrium binding or one of the subsequent unidirectional steps. Overall, we show that nonequilibrium steps of transcription initiation systematically increase the cell-to-cell heterogeneity in bacterial populations. In particular, this allows also weak promoters to give substantial transcriptional noise.
Collapse
Affiliation(s)
- Namiko Mitarai
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Szabolcs Semsey
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Swapna G, Kumari V, Nagaraja V. Different Modes of Transactivation of Bacteriophage Mu Late Promoters by Transcription Factor C. PLoS One 2015; 10:e0129504. [PMID: 26058069 PMCID: PMC4461284 DOI: 10.1371/journal.pone.0129504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
Transactivator protein C is required for the expression of bacteriophage Mu late genes from lys, I, P and mom promoters during lytic life cycle of the phage. The mechanism of transcription activation of mom gene by C protein is well understood. C activates transcription at Pmom by initial unwinding of the promoter DNA, thereby facilitating RNA polymerase (RNAP) recruitment. Subsequently, C interacts with the ß' subunit of RNAP to enhance promoter clearance. The mechanism by which C activates other late genes of the phage is not known. We carried out promoter-polymerase interaction studies with all the late gene promoters to determine the individual step of C mediated activation. Unlike at Pmom, at the other three promoters, RNAP recruitment and closed complex formation are not C dependent. Instead, the action of C at Plys, PI, and PP is during the isomerization from closed complex to open complex with no apparent effect at other steps of initiation pathway. The mechanism of transcription activation of mom and other late promoters by their common activator is different. This distinction in the mode of activation (promoter recruitment and escape versus isomerization) by the same activator at different promoters appears to be important for optimized expression of each of the late genes.
Collapse
Affiliation(s)
- Ganduri Swapna
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Vandana Kumari
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- * E-mail:
| |
Collapse
|
14
|
Abstract
The histone-like nucleoid-structuring (H-NS) protein binds to horizontally acquired genes in the bacterium Salmonella enterica serovar Typhimurium, silencing their expression. We now report that overcoming the silencing effects of H-NS imposes a delay in the expression of genes activated by the transcriptional regulator PhoP. We determine that PhoP-activated genes ancestral to Salmonella are expressed before those acquired horizontally. This expression timing reflects the in vivo occupancy of the corresponding promoters by the PhoP protein. These results are surprising because some of these horizontally acquired genes reached higher mRNA levels than ancestral genes expressed earlier and were transcribed from promoters harboring PhoP-binding sites with higher in vitro affinity for the PhoP protein. Our findings challenge the often-made assumption that for genes coregulated by a given transcription factor, early genes are transcribed to higher mRNA levels than those transcribed at later times. Moreover, they provide a singular example of how gene ancestry can impact expression timing. We report that gene ancestry dictates the expression behavior of genes under the direct control of the Salmonella transcriptional regulator PhoP. That is, ancestral genes are transcribed before horizontally acquired genes. This reflects both the need to overcome silencing by the H-NS protein of the latter genes and the architecture of the corresponding promoters. Unexpectedly, transcription levels do not reflect transcription timing. Our results illustrate how a bacterium can exhibit an elaborate temporal expression behavior among genes coregulated by a transcription factor even though the products encoded by the target genes do not participate in a morphological or developmental pathway.
Collapse
|
15
|
Lim HG, Seo SW, Jung GY. Engineered Escherichia coli for simultaneous utilization of galactose and glucose. BIORESOURCE TECHNOLOGY 2013; 135:564-7. [PMID: 23246298 DOI: 10.1016/j.biortech.2012.10.124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 05/20/2023]
Abstract
In this study, the Leloir pathway of galactose metabolism was rebuilt in Escherichia coli to remove CCR and amplify galactose utilization rate. All genes encoding pathway enzymes were expressed under the control of a synthetic module that included promoters, 5'-untranslated regions, and terminators as a re-organized single operon in the chromosome. The engineered strain showed both an enhanced galactose utilization rate and the capacity to simultaneously assimilate galactose and glucose. This work demonstrates the feasibility of using synthetic biology tools to re-build biological systems for engineering purpose.
Collapse
Affiliation(s)
- Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| | | | | |
Collapse
|
16
|
Menghani S, Chikhale R, Raval A, Wadibhasme P, Khedekar P. Chandipura Virus: an emerging tropical pathogen. Acta Trop 2012; 124:1-14. [PMID: 22721825 DOI: 10.1016/j.actatropica.2012.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 05/30/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Chandipura Virus (CHPV), a member of Rhabdoviridae, is responsible for an explosive outbreak in rural areas of India. It affects mostly children and is characterized by influenza-like illness and neurologic dysfunctions. It is transmitted by vectors such as mosquitoes, ticks and sand flies. An effective real-time one step reverse-transcriptase PCR assay method is adopted for diagnosis of this virus. CHPV has a negative sense RNA genome encoding five different proteins (N, P, M, G, and L). P protein plays a vital role in the virus's life cycle, while M protein is lethal in nature. There is no specific treatment available to date, symptomatic treatment involves use of mannitol to reduce brain edema. A Vero cell based vaccine candidate against CHPV was evaluated efficiently as a preventive agent against it. Prevention is the best method to suppress CHPV infection. Containment of disease transmitting vectors, maintaining good nutrition, health, hygiene and awareness in rural areas will help in curbing the menace of CHPV. Thus, to control virus transmission some immense preventive measures need to be attempted until a good anti-CHPV agent is developed.
Collapse
|
17
|
Shin M, Lagda AC, Lee JW, Bhat A, Rhee JH, Kim JS, Takeyasu K, Choy HE. Gene silencing by H-NS from distal DNA site. Mol Microbiol 2012; 86:707-19. [PMID: 22924981 DOI: 10.1111/mmi.12012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 11/29/2022]
Abstract
In the modern concept of gene regulation, 'DNA looping' is the most common underlying mechanism in the interaction between RNA polymerase (RNAP) and transcription factors acting at a distance. This study demonstrates an additional mechanism by which DNA-bound proteins communicate with each other, by analysing the bacterial histone-like nucleoid-structuring protein (H-NS), a general transcriptional silencer. The LEE5 promoter (LEE5p) of enteropathogenic Escherichia coli was used as a model system to investigate the mechanism of H-NS-mediated transcription repression. We found that H-NS represses LEE5p by binding to a cluster of A tracks upstream of -114, followed by spreading to a site at the promoter through the oligomerization of H-NS molecules. At the promoter, the H-NS makes a specific contact with the carboxy terminal domain of the α subunit of RNAP, which prevents the processing of RNAP-promoter complexes into initiation-competent open promoter complexes, thereby regulating LEE5p from distance.
Collapse
Affiliation(s)
- Minsang Shin
- Center for Host Defense against Enteropathogenic Bacteria Infection, Kwangju, 501-746, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Bacteria use a variety of mechanisms to direct RNA polymerase to specific promoters in order to activate transcription in response to growth signals or environmental cues. Activation can be due to factors that interact at specific promoters, thereby increasing transcription directed by these promoters. We examine the range of architectures found at activator-dependent promoters and outline the mechanisms by which input from different factors is integrated. Alternatively, activation can be due to factors that interact with RNA polymerase and change its preferences for target promoters. We summarize the different mechanistic options for activation that are focused directly on RNA polymerase.
Collapse
Affiliation(s)
- David J Lee
- School of Biosciences, University of Birmingham, United Kingdom.
| | | | | |
Collapse
|
19
|
Zwir I, Latifi T, Perez JC, Huang H, Groisman EA. The promoter architectural landscape of the Salmonella PhoP regulon. Mol Microbiol 2012; 84:463-85. [PMID: 22435712 PMCID: PMC3335776 DOI: 10.1111/j.1365-2958.2012.08036.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The DNA-binding protein PhoP controls virulence and Mg2+ homeostasis in the Gram-negative pathogen Salmonella enterica serovar Typhimurium. PhoP regulates expression of a large number of genes that differ both in their ancestry and in the biochemical functions and physiological roles of the encoded products. This suggests that PhoP-regulated genes are differentially expressed. To understand how a bacterial activator might generate varied gene expression behaviour, we investigated the cis-acting promoter features (i.e. the number of PhoP binding sites, as well as their orientation and location with respect to the sites bound by RNA polymerase and the sequences that constitute the PhoP binding sites) in 23 PhoP-activated promoters. Our results show that natural PhoP-activated promoters utilize only a limited number of combinations of cis-acting features – or promoter architectures. We determine that PhoP activates transcription by different mechanisms, and that ancestral and horizontally acquired PhoP-activated genes have distinct promoter architectures.
Collapse
Affiliation(s)
- Igor Zwir
- Section of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, 354D, New Haven, CT 06536, USA
| | | | | | | | | |
Collapse
|
20
|
Swapna G, Chakraborty A, Kumari V, Sen R, Nagaraja V. Mutations in β' subunit of Escherichia coli RNA polymerase perturb the activator polymerase functional interaction required for promoter clearance. Mol Microbiol 2011; 80:1169-85. [PMID: 21435034 DOI: 10.1111/j.1365-2958.2011.07636.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcription activator C employs a unique mechanism to activate mom gene of bacteriophage Mu. The activation process involves, facilitating the recruitment of RNA polymerase (RNAP) by altering the topology of the promoter and enhancing the promoter clearance by reducing the abortive transcription. To understand the basis of this multi-step activation mechanism, we investigated the nature of the physical interaction between C and RNAP during the process. A variety of assays revealed that only DNA-bound C contacts the β' subunit of RNAP. Consistent to these results, we have also isolated RNAP mutants having mutations in the β' subunit which were compromised in C-mediated activation. Mutant RNAPs show reduced productive transcription and increased abortive initiation specifically at the C-dependent mom promoter. Positive control (pc) mutants of C, defective in interaction with RNAP, retained the property of recruiting RNAP to the promoter but were unable to enhance promoter clearance. These results strongly suggest that the recruitment of RNAP to the mom promoter does not require physical interaction with C, whereas a contact between the β' subunit and the activator, and the subsequent allosteric changes in the active site of the enzyme are essential for the enhancement of promoter clearance.
Collapse
Affiliation(s)
- Ganduri Swapna
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
21
|
Ji SC, Wang X, Yun SH, Jeon HJ, Lee HJ, Kim H, Lim HM. In vivo transcription dynamics of the galactose operon: a study on the promoter transition from P1 to P2 at onset of stationary phase. PLoS One 2011; 6:e17646. [PMID: 21445255 PMCID: PMC3060815 DOI: 10.1371/journal.pone.0017646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 02/09/2011] [Indexed: 12/04/2022] Open
Abstract
Quantitative analyses of the 5′ end of gal transcripts indicate that transcription from the galactose operon P1 promoter is higher during cell division. When cells are no longer dividing, however, transcription is initiated more often from the P2 promoter. Escherichia coli cells divide six times before the onset of the stationary phase when grown in LB containing 0.5% galactose at 37°C. Transcription from the two promoters increases, although at different rates, during early exponential phase (until the third cell division, OD600 0.4), and then reaches a plateau. The steady-state transcription from P1 continues in late exponential phase (the next three cell divisions, OD600 3.0), after which transcription from this promoter decreases. However, steady-state transcription from P2 continues 1 h longer into the stationary phase, before decreasing. This longer steady-state P2 transcription constitutes the promoter transition from P1 to P2 at the onset of the stationary phase. The intracellular cAMP concentration dictates P1 transcription dynamics; therefore, promoter transition may result from a lack of cAMP-CRP complex binding to the gal operon. The decay rate of gal-specific transcripts is constant through the six consecutive cell divisions that comprise the exponential growth phase, increases at the onset of the stationary phase, and is too low to be measured during the stationary phase. These data suggest that a regulatory mechanism coordinates the synthesis and decay of gal mRNAs to maintain the observed gal transcription. Our analysis indicates that the increase in P1 transcription is the result of cAMP-CRP binding to increasing numbers of galactose operons in the cell population.
Collapse
Affiliation(s)
- Sang Chun Ji
- Department of Biological Science, College of Biological Sciences and Biotechnology, Chungnam National University, Taejon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Feng Y, Cronan JE. Complex binding of the FabR repressor of bacterial unsaturated fatty acid biosynthesis to its cognate promoters. Mol Microbiol 2011; 80:195-218. [PMID: 21276098 DOI: 10.1111/j.1365-2958.2011.07564.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two transcriptional regulators, the FadR activator and the FabR repressor, control biosynthesis of unsaturated fatty acids in Escherichia coli. FabR represses expression of the two genes, fabA and fabB, required for unsaturated fatty acid synthesis and has been reported to require the presence of an unsaturated thioester (of either acyl carrier protein or CoA) in order to bind the fabA and fabB promoters in vitro. We report in vivo experiments in which unsaturated fatty acid synthesis was blocked in the absence of exogenous unsaturated fatty acids in a ΔfadR strain and found that the rates of transcription of fabA and fabB were unaffected by the lack of unsaturated thioesters. To examine the discrepancy between our in vivo results and the prior in vitro results we obtained active, natively folded forms of the E. coli and Vibrio cholerae FabRs by use of an in vitro transcription-translation system. We report that FabR bound the intact promoter regions of both fabA and fabB in the absence of unsaturated acyl thioesters, but bound the two promoters differently. Native FabR bound the fabA promoter region provided that the canonical FabR binding site is extended by inclusion of flanking sequences that overlap the neighbouring FadR binding site. In contrast, although binding to the fabB operator also required a flanking sequence, a non-specific sequence could suffice. However, unsaturated thioesters did allow FabR binding to the minimal FabR operator sites of both promoters which otherwise were not bound. Thus unsaturated thioester ligands were not essential for FabR/target DNA interaction, but acted to enhance binding. The gel mobility shift data plus in vivo expression data indicate that despite the remarkably similar arrangements of promoter elements, FadR predominately regulates fabA expression whereas FabR is the dominant regulator of fabB expression. We also report that E. coli fabR expression is not autoregulated. Complementation, qRT-PCR and fatty acid composition analyses demonstrated that V. cholerae FabR was a functional repressor of unsaturated fatty acid synthesis. However, in contrast to E. coli, gel mobility shift assays indicated that neither E. coli nor V. cholerae FabRs bound the V. cholerae fabB promoter, although both proteins efficiently bound the V. cholerae fabA promoter. This asymmetry was shown to be due to the lack of a FabR binding site within the V. cholerae fabB promoter region.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
23
|
Harari O, Park SY, Huang H, Groisman EA, Zwir I. Defining the plasticity of transcription factor binding sites by Deconstructing DNA consensus sequences: the PhoP-binding sites among gamma/enterobacteria. PLoS Comput Biol 2010; 6:e1000862. [PMID: 20661307 PMCID: PMC2908699 DOI: 10.1371/journal.pcbi.1000862] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 06/15/2010] [Indexed: 01/12/2023] Open
Abstract
Transcriptional regulators recognize specific DNA sequences. Because these sequences are embedded in the background of genomic DNA, it is hard to identify the key cis-regulatory elements that determine disparate patterns of gene expression. The detection of the intra- and inter-species differences among these sequences is crucial for understanding the molecular basis of both differential gene expression and evolution. Here, we address this problem by investigating the target promoters controlled by the DNA-binding PhoP protein, which governs virulence and Mg(2+) homeostasis in several bacterial species. PhoP is particularly interesting; it is highly conserved in different gamma/enterobacteria, regulating not only ancestral genes but also governing the expression of dozens of horizontally acquired genes that differ from species to species. Our approach consists of decomposing the DNA binding site sequences for a given regulator into families of motifs (i.e., termed submotifs) using a machine learning method inspired by the "Divide & Conquer" strategy. By partitioning a motif into sub-patterns, computational advantages for classification were produced, resulting in the discovery of new members of a regulon, and alleviating the problem of distinguishing functional sites in chromatin immunoprecipitation and DNA microarray genome-wide analysis. Moreover, we found that certain partitions were useful in revealing biological properties of binding site sequences, including modular gains and losses of PhoP binding sites through evolutionary turnover events, as well as conservation in distant species. The high conservation of PhoP submotifs within gamma/enterobacteria, as well as the regulatory protein that recognizes them, suggests that the major cause of divergence between related species is not due to the binding sites, as was previously suggested for other regulators. Instead, the divergence may be attributed to the fast evolution of orthologous target genes and/or the promoter architectures resulting from the interaction of those binding sites with the RNA polymerase.
Collapse
Affiliation(s)
- Oscar Harari
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sun-Yang Park
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Henry Huang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eduardo A. Groisman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Igor Zwir
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
24
|
Monotonicity, frustration, and ordered response: an analysis of the energy landscape of perturbed large-scale biological networks. BMC SYSTEMS BIOLOGY 2010; 4:83. [PMID: 20537143 PMCID: PMC2909160 DOI: 10.1186/1752-0509-4-83] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 06/10/2010] [Indexed: 01/19/2023]
Abstract
BACKGROUND For large-scale biological networks represented as signed graphs, the index of frustration measures how far a network is from a monotone system, i.e., how incoherently the system responds to perturbations. RESULTS In this paper we find that the frustration is systematically lower in transcriptional networks (modeled at functional level) than in signaling and metabolic networks (modeled at stoichiometric level). A possible interpretation of this result is in terms of energetic cost of an interaction: an erroneous or contradictory transcriptional action costs much more than a signaling/metabolic error, and therefore must be avoided as much as possible. Averaging over all possible perturbations, however, we also find that unlike for transcriptional networks, in the signaling/metabolic networks the probability of finding the system in its least frustrated configuration tends to be high also in correspondence of a moderate energetic regime, meaning that, in spite of the higher frustration, these networks can achieve a globally ordered response to perturbations even for moderate values of the strength of the interactions. Furthermore, an analysis of the energy landscape shows that signaling and metabolic networks lack energetic barriers around their global optima, a property also favouring global order. CONCLUSION In conclusion, transcriptional and signaling/metabolic networks appear to have systematic differences in both the index of frustration and the transition to global order. These differences are interpretable in terms of the different functions of the various classes of networks.
Collapse
|
25
|
Wall ME, Markowitz DA, Rosner JL, Martin RG. Model of transcriptional activation by MarA in Escherichia coli. PLoS Comput Biol 2009; 5:e1000614. [PMID: 20019803 PMCID: PMC2787020 DOI: 10.1371/journal.pcbi.1000614] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/16/2009] [Indexed: 11/18/2022] Open
Abstract
The AraC family transcription factor MarA activates ∼40 genes (the marA/soxS/rob regulon) of the Escherichia coli chromosome resulting in different levels of resistance to a wide array of antibiotics and to superoxides. Activation of marA/soxS/rob regulon promoters occurs in a well-defined order with respect to the level of MarA; however, the order of activation does not parallel the strength of MarA binding to promoter sequences. To understand this lack of correspondence, we developed a computational model of transcriptional activation in which a transcription factor either increases or decreases RNA polymerase binding, and either accelerates or retards post-binding events associated with transcription initiation. We used the model to analyze data characterizing MarA regulation of promoter activity. The model clearly explains the lack of correspondence between the order of activation and the MarA-DNA affinity and indicates that the order of activation can only be predicted using information about the strength of the full MarA-polymerase-DNA interaction. The analysis further suggests that MarA can activate without increasing polymerase binding and that activation can even involve a decrease in polymerase binding, which is opposite to the textbook model of activation by recruitment. These findings are consistent with published chromatin immunoprecipitation assays of interactions between polymerase and the E. coli chromosome. We find that activation involving decreased polymerase binding yields lower latency in gene regulation and therefore might confer a competitive advantage to cells. Our model yields insights into requirements for predicting the order of activation of a regulon and enables us to suggest that activation might involve a decrease in polymerase binding which we expect to be an important theme of gene regulation in E. coli and beyond. When environmental conditions change, cell survival can depend on sudden production of proteins that are normally in low demand. Protein production is controlled by transcription factors which bind to DNA near genes and either increase or decrease RNA production. Many puzzles remain concerning the ways transcription factors do this. Recently we collected data relating the intracellular level of a single transcription factor, MarA, to the increase in expression of several genes related to antibiotic and superoxide resistance in Escherichia coli. These data indicated that target genes are turned on in a well-defined order with respect to the level of MarA, enabling cells to mount a response that is commensurate to the level of threat detected in the environment. Here we develop a computational model to yield insight into how MarA turns on its target genes. The modeling suggests that MarA can increase the frequency with which a transcript is made while decreasing the overall presence of the transcription machinery at the start of a gene. This mechanism is opposite to the textbook model of transcriptional activation; nevertheless it enables cells to respond quickly to environmental challenges and is likely of general importance for gene regulation in E. coli and beyond.
Collapse
Affiliation(s)
- Michael E Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
| | | | | | | |
Collapse
|
26
|
Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H, Cai R, Zuo J, Tang X, Li X, Guo H, Zhou JM. ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. THE PLANT CELL 2009; 21:2527-40. [PMID: 19717619 PMCID: PMC2751940 DOI: 10.1105/tpc.108.065193] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 08/03/2009] [Accepted: 08/16/2009] [Indexed: 05/18/2023]
Abstract
Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) trigger plant immunity that forms the first line inducible defenses in plants. The regulatory mechanism of MAMP-triggered immunity, however, is poorly understood. Here, we show that Arabidopsis thaliana transcription factors ETHYLENE INSENSITIVE3 (EIN3) and ETHYLENE INSENSITIVE3-LIKE1 (EIL1), previously known to mediate ethylene signaling, also negatively regulate PAMP-triggered immunity. Plants lacking EIN3 and EIL1 display enhanced PAMP defenses and heightened resistance to Pseudomonas syringae bacteria. Conversely, plants overaccumulating EIN3 are compromised in PAMP defenses and exhibit enhanced disease susceptibility to Pseudomonas syringae. Microarray analysis revealed that EIN3 and EIL1 negatively control PAMP response genes. Further analyses indicated that SALICYLIC ACID INDUCTION DEFICIENT2 (SID2), which encodes isochorismate synthase required for pathogen-induced biosynthesis of salicylic acid (SA), is a key target of EIN3 and EIL1. Consistent with this, the ein3-1 eil1-1 double mutant constitutively accumulates SA in the absence of pathogen attack, and a mutation in SID2 restores normal susceptibility in the ein3 eil1 double mutant. EIN3 can specifically bind SID2 promoter sequence in vitro and in vivo. Taken together, our data provide evidence that EIN3/EIL1 directly target SID2 to downregulate PAMP defenses.
Collapse
Affiliation(s)
- Huamin Chen
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lewis DEA, Komissarova N, Le P, Kashlev M, Adhya S. DNA sequences in gal operon override transcription elongation blocks. J Mol Biol 2008; 382:843-58. [PMID: 18691599 DOI: 10.1016/j.jmb.2008.07.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/12/2008] [Accepted: 07/23/2008] [Indexed: 12/01/2022]
Abstract
The DNA loop that represses transcription from galactose (gal) promoters is infrequently formed in stationary-phase cells because the concentration of the loop architectural protein HU is significantly low at that state, resulting in expression of the operon in the absence of the gal inducer D-galactose. Unexpectedly, transcription from the gal promoters under these conditions overrides physical block because of the presence of the Gal repressor bound to an internal operator (O(I)) located downstream of the promoters. We have shown here that although a stretch of pyrimidine residues (UUCU) in the RNA:DNA hybrid located immediately upstream of O(I) weakens the RNA:DNA hybrid and favors RNA polymerase (RNAP) pausing and backtracking, a stretch of purines (GAGAG) in the RNA present immediately upstream of the pause sequence in the hybrid acts as an antipause element by stabilizing the RNA:DNA duplex and preventing backtracking. This facilitates forward translocation of RNAP, including overriding of the DNA-bound Gal repressor barrier at O(I). When the GAGAG sequence is separated from the pyrimidine sequence by a 5-bp DNA insertion, RNAP backtracking is favored from a weak hybrid to a more stable hybrid. RNAP backtracking is sensitive to Gre factors, D-galactose, and antisense oligonucleotides. The ability of a native DNA sequence to override transcription elongation blocks in the gal operon uncovers a previously unknown way of regulating gal metabolism in Escherichia coli. It also explains the synthesis of gal enzymes in the absence of inducer for biosynthetic reactions.
Collapse
Affiliation(s)
- Dale E A Lewis
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA.
| | | | | | | | | |
Collapse
|
28
|
Dynamical analysis on gene activity in the presence of repressors and an interfering promoter. Biophys J 2008; 95:4228-40. [PMID: 18658208 DOI: 10.1529/biophysj.108.132894] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription is regulated through interplay among transcription factors, an RNA polymerase (RNAP), and a promoter. Even for a simple repressive transcription factor that disturbs promoter activity at initial binding of RNAP, its repression level is not determined solely by the dissociation constant of transcription factor but is sensitive to timescales of processes in RNAP. We first analyze the promoter activity under strong repression by a slow binding repressor, in which case transcription events occur in bursts, followed by long quiescent periods while a repressor binds to the operator; the number of transcription events, bursting, and quiescent times are estimated by reaction rates. We then examine interference effect from an opposing promoter, using the correlation function of initiation events for a single promoter. The interference is shown to de-repress the promoter because RNAPs from the opposing promoter most likely encounter the repressor and remove it in case of strong repression. This de-repression mechanism should be especially prominent for the promoters that facilitate fast formation of open complex with the repressor whose binding rate is slower than approximately 1/s. Finally, we discuss possibility of this mechanism for high activity of promoter PR in the hyp-mutant of lambda-phage.
Collapse
|
29
|
Binding cooperativity in phage lambda is not sufficient to produce an effective switch. Biophys J 2008; 94:3384-92. [PMID: 18400951 DOI: 10.1529/biophysj.107.121756] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the wild-type phage lambda, binding of CI to O(R)2 helps polymerase bound to P(RM) transition from a closed to open complex. Activators on other promoters increase the polymerase-DNA binding energy, or affect both the binding energy and the closed-open transition probability. Using a validated mathematical model, we show that these two modes of upregulation have very different effects on the promoter function. We predict that if CI(2) bound to O(R)2 produced equal increase in RNAP-DNA binding constant (compared to wild-type increase in the closed-open transition probability), the lysogen would be significantly less stable.
Collapse
|
30
|
Polley S, Guha S, Roy NS, Kar S, Sakaguchi K, Chuman Y, Swaminathan V, Kundu T, Roy S. Differential recognition of phosphorylated transactivation domains of p53 by different p300 domains. J Mol Biol 2007; 376:8-12. [PMID: 18155245 DOI: 10.1016/j.jmb.2007.11.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/16/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
Abstract
Histone acetyltransferases form crucial links in transducing extrinsic signals to actual initiation of transcription. A multitude of stress signal integrations occur through the interaction of p300 with p53 phosphorylated at different residues of the transactivation domain. How such interactions activate different gene expression programs remains largely unknown. p300 contains at least five domains that are known to interact with p53, but their role in transcription regulation is not known. We measured the binding affinity of various phosphorylated transactivation domains towards several p53 binding domains of p300 by fluorescence anisotropy. The binding affinities of different phosphorylated transactivation domains of p53 towards different domains of p300 vary by several orders of magnitude, indicating that interactions of different post-translationally modified forms of p53 may occur through different domains of p300. Thus, different post-translationally modified p53 fragments may form transcription-initiating complexes of different configurations, leading to the activation of different promoters and pathways.
Collapse
Affiliation(s)
- Smarajit Polley
- Division of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700 032, India
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Basak S, Mondal A, Polley S, Mukhopadhyay S, Chattopadhyay D. Reviewing Chandipura: a vesiculovirus in human epidemics. Biosci Rep 2007; 27:275-98. [PMID: 17610154 PMCID: PMC7087735 DOI: 10.1007/s10540-007-9054-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chandipura virus, a member of the rhabdoviridae family and vesiculovirus genera, has recently emerged as human pathogen that is associated with a number of outbreaks in different parts of India. Although, the virus closely resembles with the prototype vesiculovirus, Vesicular Stomatitis Virus, it could be readily distinguished by its ability to infect humans. Studies on Chandipura virus while shed light into distinct stages of viral infection; it may also allow us to identify potential drug targets for antiviral therapy. In this review, we have summarized our current understanding of Chandipura virus life cycle at the molecular detail with particular interest in viral RNA metabolisms, namely transcription, replication and packaging of viral RNA into nucleocapsid structure. Contemporary research on otherwise extensively studied family member Vesicular Stomatitis Virus has also been addressed to present a more comprehensive picture of vesiculovirus life cycle. Finally, we reveal examples of protein economy in Chandipura virus life-cycle whereby each viral protein has evolved complexity to perform multiple tasks.
Collapse
Affiliation(s)
- Soumen Basak
- Department of Chemistry and Biochemistry, Signaling Systems Laboratory, University of California, 9500 Gilman Dr, San Diego, CA 92093 USA
| | - Arindam Mondal
- Department of Biochemistry, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 B. C. Road, Kolkata, 700019 India
| | - Smarajit Polley
- Department of Biochemistry, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 B. C. Road, Kolkata, 700019 India
| | - Subhradip Mukhopadhyay
- Department of Biochemistry, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 B. C. Road, Kolkata, 700019 India
| | - Dhrubajyoti Chattopadhyay
- Department of Biochemistry, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 B. C. Road, Kolkata, 700019 India
| |
Collapse
|
32
|
Dodd IB, Shearwin KE, Sneppen K. Modelling transcriptional interference and DNA looping in gene regulation. J Mol Biol 2007; 369:1200-13. [PMID: 17498740 DOI: 10.1016/j.jmb.2007.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 11/25/2022]
Abstract
We describe a hybrid statistical mechanical and dynamical approach for modelling the formation of closed, open and elongating complexes of RNA polymerase, the interactions of these polymerases to produce transcriptional interference, and the regulation of these processes by a DNA-binding and DNA-looping regulatory protein. As a model system, we have used bacteriophage 186, for which genetic, biochemical and structural studies have suggested that the CI repressor binds as a 14-mer to form alternative DNA-looped complexes, and activates lysogenic transcription indirectly by relieving transcriptional interference caused by the convergent lytic promoter. The modelling showed that the original mechanisms proposed to explain this relief of transcriptional interference are not consistent with the available in vivo reporter data. However, a good fit to the reporter data was given by a revised model that incorporates a novel predicted regulatory mechanism: that RNA polymerase bound at the lysogenic promoter protects itself from transcriptional interference by recruiting CI to the lytic promoter. This mechanism and various estimates of in vivo biochemical parameters for the 186 CI system should be testable. Our results demonstrate the power of mathematical modelling for the extraction of detailed biochemical information from in vivo data.
Collapse
Affiliation(s)
- Ian B Dodd
- Centre for Models of Life, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
33
|
Abstract
The Escherichia coli transcriptional regulator MarA affects functions that include antibiotic resistance, persistence, and survival. MarA functions as an activator or repressor of transcription utilizing similar degenerate DNA sequences (marboxes) with three different binding site configurations with respect to the RNA polymerase-binding sites. We demonstrate that MarA down-regulates rob transcripts both in vivo and in vitro via a MarA-binding site within the rob promoter that is positioned between the -10 and -35 hexamers. As for the hdeA and purA promoters, which are repressed by MarA, the rob marbox is also in the "backward" orientation. Protein-DNA interactions show that SoxS and Rob, like MarA, bind the same marbox in the rob promoter. Electrophoretic mobility shift analyses with a MarA-specific antibody demonstrate that MarA and RNA polymerase form a ternary complex with the rob promoter DNA. Transcription experiments in vitro and potassium permanganate footprinting analysis show that MarA affects the RNA polymerase-mediated closed to open complex formation at the rob promoter.
Collapse
Affiliation(s)
- Thamarai Schneiders
- Center for Adaptation Genetics and Drug Resistance and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
34
|
Shin M, Song M, Rhee JH, Hong Y, Kim YJ, Seok YJ, Ha KS, Jung SH, Choy HE. DNA looping-mediated repression by histone-like protein H-NS: specific requirement of Esigma70 as a cofactor for looping. Genes Dev 2005; 19:2388-98. [PMID: 16204188 PMCID: PMC1240047 DOI: 10.1101/gad.1316305] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcription initiation by RNA polymerase (RNP) carrying the house-keeping sigma subunit, sigma70 (Esigma70), is repressed by H-NS at a number of promoters including hdeABp in Escherichia coli, while initiation with RNP carrying the stationary phase sigma, sigma38 (Esigma38), is not. We investigated the molecular mechanism of selective repression by H-NS to identify the differences in transcription initiation by the two forms of RNPs, which show indistinguishable promoter selectivities in vitro. Using hdeABp as a model promoter, we observed with purified components that H-NS, acting at a sequence centered at -118, selectively repressed transcription by Esigma70. This selective repression is attributed to the differences in the interactions between hdeABp and the two forms of RNPs, since no other factor is required for the repression. We observed that the two forms of RNPs could form an open initiation complex (RP(O)) at hdeABp, but that Esigma70 failed to initiate transcription in the presence of H-NS. Interestingly, KMnO4 assays and high-resolution atomic force microscopy (AFM) revealed that hdeABp DNA wrapped around Esigma70 more tightly than around Esigma38, resulting in the potential crossing over of the DNA arms that project out of Esigma70 . RP(O) but not out of Esigma38 . RP(O). Based on these observations, we postulated that H-NS bound at -118 laterally extends by the cooperative recruitment of H-NS molecules to the promoter-downstream sequence joined by wrapping of the DNA around Esigma70 . RP(O), resulting in effective sealing of the DNA loop and trapping of Esigma70. Such a ternary complex of H-NS . Esigma70 hdeABp was demonstrated by AFM. In this case, therefore, Esigma70 acts as a cofactor for DNA looping. Expression of this class of genes by Esigma38 in the stationary phase is not due to its promoter specificity but to the architecture of the promoter . Esigma38 complex.
Collapse
Affiliation(s)
- Minsang Shin
- Genome Research Center for Enteropathogenic Bacteria and Research Institute of Vibrio Infection, Department of Microbiology, Chonnam National University Medical School, Kwangju 501-746, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mishra M, Deora R. Mode of action of the Bordetella BvgA protein: transcriptional activation and repression of the Bordetella bronchiseptica bipA promoter. J Bacteriol 2005; 187:6290-9. [PMID: 16159761 PMCID: PMC1236631 DOI: 10.1128/jb.187.18.6290-6299.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bordetella BvgAS signal transduction system controls the transition among at least three known phenotypic phases (Bvg+, Bvg(i), and Bvg-) and the expression of a number of genes which have distinct phase-specific expression profiles. This complex regulation of gene expression along the Bvg signaling continuum is best exemplified by the gene bipA, which is expressed at a low level in the Bvg+ phase, at a maximal level in the Bvg(i) phase, and at undetectable levels in the Bvg- phase. The bipA promoter has multiple BvgA binding sites which play distinct regulatory roles. We had previously speculated that the expression profile of bipA is a consequence of the differential occupancy of the various BvgA binding sites as a result of variation in the levels of phosphorylated BvgA (BvgA-P) inside the cell. In this report, we provide in vitro evidence for this model and show that bipA expression is activated at low concentrations of BvgA-P and is repressed at high concentrations. By using independent DNA binding assays, we demonstrate that under activating conditions there is a synergistic effect on the binding of BvgA and RNA polymerase (RNAP), leading to the formation of open complexes at the promoter. We further show that, under in vitro conditions, when bipA transcription is minimal, there is competition between the binding of RNAP and BvgA-P to the bipA promoter. Our results show that the BvgA binding site IR2 plays a central role in mediating this repression.
Collapse
Affiliation(s)
- Meenu Mishra
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Medical Center Blvd., Gray 5086, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
36
|
Paul BJ, Berkmen MB, Gourse RL. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc Natl Acad Sci U S A 2005; 102:7823-8. [PMID: 15899978 PMCID: PMC1142371 DOI: 10.1073/pnas.0501170102] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Amino acid starvation in Escherichia coli results in a spectrum of changes in gene expression, including inhibition of rRNA and tRNA promoters and activation of certain promoters for amino acid biosynthesis and transport. The unusual nucleotide ppGpp plays an important role in both negative and positive regulation. Previously, we and others suggested that positive effects of ppGpp might be indirect, resulting from the inhibition of rRNA transcription and, thus, liberation of RNA polymerase for binding to other promoters. Recently, we showed that DksA binds to RNA polymerase and greatly enhances direct effects of ppGpp on the negative control of rRNA promoters. This conclusion prompted us to reevaluate whether ppGpp might also have a direct role in positive control. We show here that ppGpp greatly increases the rate of transcription initiation from amino acid promoters in a purified system but only when DksA is present. Activation occurs by stimulation of the rate of an isomerization step on the pathway to open complex formation. Consistent with the model that ppGpp/DksA stimulates amino acid promoters both directly and indirectly in vivo, cells lacking dksA fail to activate transcription from the hisG promoter after amino acid starvation. Our results illustrate how transcription factors can positively regulate transcription initiation without binding DNA, demonstrate that dksA directly affects promoters in addition to those for rRNA, and suggest that some of the pleiotropic effects previously associated with dksA might be ascribable to direct effects of dksA on promoters involved in a wide variety of cellular functions.
Collapse
Affiliation(s)
- Brian J Paul
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706, USA
| | | | | |
Collapse
|
37
|
Abstract
The Mediator complex acts as a bridge, conveying regulatory information from enhancers and other control elements to the basal RNA polymerase II transcription machinery. Mediator is required for the regulated transcription of nearly all RNA polymerase II-dependent genes in Saccharomyces cerevisiae, and post-translational modifications of specific Mediator subunits can affect global patterns of gene transcription.
Collapse
Affiliation(s)
- Stefan Björklund
- Department of Medical Biochemistry, Umeå University, S-901 87 Umeå, Sweden.
| | | |
Collapse
|
38
|
Roy S, Semsey S, Liu M, Gussin GN, Adhya S. GalR represses galP1 by inhibiting the rate-determining open complex formation through RNA polymerase contact: a GalR negative control mutant. J Mol Biol 2005; 344:609-18. [PMID: 15533432 DOI: 10.1016/j.jmb.2004.09.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/23/2004] [Accepted: 09/23/2004] [Indexed: 11/19/2022]
Abstract
GalR represses the galP1 promoter by a DNA looping-independent mechanism. Equilibrium binding of GalR and RNA polymerase to DNA, and real-time kinetics of base-pair distortion (isomerization) showed that the equilibrium dissociation constant of RNA polymerase-P1 closed complexes is largely unaffected in the presence of saturating GalR, indicating that mutual antagonism (steric hindrance) of the regulator and the RNA polymerase does not occur at this promoter. In fluorescence kinetics with 2-AP labeled P1 DNA, GalR inhibited the slower of the two-step base-pair distortion process. We isolated a negative control GalR mutant, S29R, which while bound to the operator DNA was incapable of repression of P1. Based on these results and previous demonstration that repression requires the C-terminal domain of the alpha subunit (alpha-CTD) of RNA polymerase, we propose that GalR establishes contact with alpha-CTD at the last resolved isomerization intermediate, forming a kinetic trap.
Collapse
Affiliation(s)
- Siddhartha Roy
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
39
|
Datta AB, Roy S, Parrack P. Role of C-Terminal Residues in Oligomerization and Stability of λ CII: Implications for Lysis-Lysogeny Decision of the Phage. J Mol Biol 2005; 345:315-24. [PMID: 15571724 DOI: 10.1016/j.jmb.2004.09.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 09/29/2004] [Accepted: 09/29/2004] [Indexed: 01/10/2023]
Abstract
A crucial element in the lysis-lysogeny decision of the temperate coliphage lambda is the phage protein CII, which has several interesting properties. It promotes lysogeny through activation of three phage promoters p(E), p(I) and p(aQ), recognizing a direct repeat sequence TTGCN6TTGC at each. The three-dimensional structure of CII, a homo-tetramer of 97 residue subunits, is unknown. It is an unstable protein in vivo, being rapidly degraded by the host protease HflB (FtsH). This instability is essential for the function of CII in the lysis-lysogeny switch. From NMR and limited proteolysis we show that about 15 C-terminal residues of CII are highly flexible, and may act as a target for proteolysis in vivo. From in vitro transcription, isothermal calorimetry and gel chromatography of CII (1-97) and its truncated fragments CIIA (4-81/82) and CIIB (4-69), we find that residues 70-81/82 are essential for (a) tetramer formation, (b) operator binding and (c) transcription activation. Presumably, tetramerization is necessary for the latter functions. Based on these results, we propose a model for CII structure, in which protein-protein contacts for dimer and tetramer formation are different. The implications of tetrameric organization, essential for CII activity, on the recognition of the direct repeat sequence is discussed.
Collapse
Affiliation(s)
- Ajit Bikram Datta
- Department of Biochemistry, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700 054, India
| | | | | |
Collapse
|
40
|
Zheng D, Constantinidou C, Hobman JL, Minchin SD. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 2004; 32:5874-93. [PMID: 15520470 PMCID: PMC528793 DOI: 10.1093/nar/gkh908] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Escherichia coli cyclic AMP receptor protein (CRP) is a global regulator that controls transcription initiation from more than 100 promoters by binding to a specific DNA sequence within cognate promoters. Many genes in the CRP regulon have been predicted simply based on the presence of DNA-binding sites within gene promoters. In this study, we have exploited a newly developed technique, run-off transcription/microarray analysis (ROMA) to define CRP-regulated promoters. Using ROMA, we identified 176 operons that were activated by CRP in vitro and 16 operons that were repressed. Using positive control mutants in different regions of CRP, we were able to classify the different promoters into class I or class II/III. A total of 104 operons were predicted to contain Class II CRP-binding sites. Sequence analysis of the operons that were repressed by CRP revealed different mechanisms for CRP inhibition. In contrast, the in vivo transcriptional profiles failed to identify most CRP-dependent regulation because of the complexity of the regulatory network. Analysis of these operons supports the hypothesis that CRP is not only a regulator of genes required for catabolism of sugars other than glucose, but also regulates the expression of a large number of other genes in E.coli. ROMA has revealed 152 hitherto unknown CRP regulons.
Collapse
Affiliation(s)
- Dongling Zheng
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
41
|
Liu M, Garges S, Adhya S. lacP1 promoter with an extended -10 motif. Pleiotropic effects of cyclic AMP protein at different steps of transcription initiation. J Biol Chem 2004; 279:54552-7. [PMID: 15385551 DOI: 10.1074/jbc.m408609200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclic AMP receptor protein (CRP), which activates transcription from the wild-type lacP1 promoter and most of its mutants, represses productive RNA synthesis from a lacP1 promoter variant that contains an extended -10 element, although CRP enhances RNA polymerase binding as well as open complex formation in both promoters. Moreover, abortive RNA synthesis, which is already higher in the extended -10 variant compared with the parent promoter, was further enhanced by CRP. These results, together with the observed decrease in productive RNA synthesis, indicate that CRP, while facilitating the earlier steps of initiation, inhibits transcription from the extended -10 lacP1 by hindering promoter clearance. We propose that CRP decreases energetic barriers to RNA polymerase binding, isomerization, and abortive RNA synthesis but stabilizes the abortive RNA initiating complex, which results in increasing the activation energy of the transition state before the elongation complex. The results demonstrate for the first time that a DNA-binding regulatory protein acts as an activator or a repressor in different steps of the transcription initiation pathway because of the energetic differences of the intermediate complex in the same promoter.
Collapse
Affiliation(s)
- Mofang Liu
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4264, USA
| | | | | |
Collapse
|
42
|
Abstract
The cI protein of bacteriophage lambda (lambdacI) activates transcription by binding a DNA operator just upstream of the promoter and interacting with the RNA polymerase sigma subunit domain 4 (sigma(4)). We determined the crystal structure of the lambdacI/sigma(4)/DNA ternary complex at 2.3 A resolution. There are no conformational changes in either protein, which interact through an extremely small interface involving at most 6 amino acid residues. The interactions of the two proteins stabilize the binding of each protein to the DNA. The results provide insight into how activators can operate through a simple cooperative binding mechanism but affect different steps of the transcription initiation process.
Collapse
Affiliation(s)
- Deepti Jain
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
43
|
Roy S, Lim HM, Liu M, Adhya S. Asynchronous basepair openings in transcription initiation: CRP enhances the rate-limiting step. EMBO J 2004; 23:869-75. [PMID: 14963488 PMCID: PMC381006 DOI: 10.1038/sj.emboj.7600098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 12/15/2003] [Indexed: 11/08/2022] Open
Abstract
The mechanism of isomerization (basepair openings) during transcription initiation by RNA polymerase at the galP1 promoter of Escherichia coli was investigated by 2-aminopurine (2,AP) fluorescence. The fluorescence of 2,AP is quenched in DNA duplex and enhanced when the basepair is distorted or deformed. The increase of 2,AP fluorescence was used to monitor basepair distortion at several individual positions in the promoter. We observed that basepair distortions during isomerization are a multi-step process. Three distinct hitherto unresolved steps in kinetic terms were observed, where significant fluorescence change occurs: a fast step with a half-life of around 1 s, which is followed by two slower steps occurring with a half-life in the range of minutes at 25 degrees C. Contrary to commonly held expectations, basepairs at different positions opened by 2,AP assays without any obvious pattern, suggesting that basepair opening is an asynchronous multi-step process. cAMP.CRP, which activates transcription at galP1, enhanced the rate-limiting step.
Collapse
Affiliation(s)
- Siddhartha Roy
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Biophysics, Bose Institute, Calcutta, India
| | - Heon Man Lim
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Chungnam National University, Taejon, South Korea
| | - Mofang Liu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, 37 Convent Dr., Rm 5138, Bethesda, MD 20892-4264, USA. Tel.: +1 301 496 2495; Fax: +1 301 480 7687; E-mail:
| |
Collapse
|
44
|
Liu M, Gupte G, Roy S, Bandwar RP, Patel SS, Garges S. Kinetics of transcription initiation at lacP1. Multiple roles of cyclic AMP receptor protein. J Biol Chem 2003; 278:39755-61. [PMID: 12881519 DOI: 10.1074/jbc.m305995200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclic AMP receptor protein (CRP) acts as a transcription activator at many promoters of Escherichia coli. We have examined the kinetics of open complex formation at the lacP1 promoter using tryptophan fluorescence of RNA polymerase and DNA fragments with 2-aminopurine substituted at specific positions. Apart from the closed complex formation and promoter clearance, we were able to detect three steps. The first step after the closed complex formation leads to a rapid increase of 2-aminopurine fluorescence. This was followed by another rapid step in which quenching of tryptophan fluorescence of RNA polymerase was observed. The slowest step detected by 2-aminopurine fluorescence increase is assigned to the final open complex formation. We have found that CRP not only enhances RNA polymerase binding at the promoter, but also enhances the slowest isomerization step by about 2-fold. Furthermore, potassium permanganate probing shows that the conformation of the open complex in the presence of CRP appears qualitatively and quantitatively different from that in the absence of CRP, suggesting that contact with RNA polymerase is maintained throughout the transcription initiation.
Collapse
Affiliation(s)
- Mofang Liu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Cashel M, Hsu LM, Hernandez VJ. Changes in conserved region 3 of Escherichia coli sigma 70 reduce abortive transcription and enhance promoter escape. J Biol Chem 2003; 278:5539-47. [PMID: 12477716 DOI: 10.1074/jbc.m211430200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations within the Escherichia coli rpoD gene encoding amino acid substitutions in conserved region 3 of the sigma(70) subunit of E. coli RNA polymerase restore normal stress responsiveness to strains devoid of the stress alarmone, guanosine-3',5'-(bis)pyrophosphate (ppGpp). The presence of a mutant protein, either sigma(70)(P504L) or sigma(70)(S506F), suppresses the physiological defects in strains devoid of ppGpp. In vitro, when reconstituted into RNA polymerase holoenzyme, these sigma mutants confer unique transcriptional properties, namely they reduce the probabilities of forming abortive RNAs. Here we investigated the behavior of these mutant enzymes during transcription of the highly abortive cellular promoter, gal P2. No differences between mutant and wild-type enzymes were observed prior to and including open complex formation. Remarkably, the mutant enzymes produced drastically reduced levels of gal P2 abortive RNAs and increased production of full-length gal P2 RNAs relative to the wild-type enzyme, leading to greatly reduced ratios of abortive to productive RNAs. These results are attributed mainly to a decreased formation of unproductive initial transcribing complexes with the mutant polymerases and increased rates of promoter escape. Altered transcription properties of these mutant polymerases arise from an alternative structure of the sigma(70) region 3.2 segment that permits efficient positioning of the nascent RNA into the RNA exit channel displacing sigma and facilitating sigma release.
Collapse
Affiliation(s)
- Michael Cashel
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
46
|
Roy S. On the Use of 2-Aminopurine as a Probe for Base Pair Opening During Transcription Initiation. Methods Enzymol 2003; 370:568-76. [PMID: 14712676 DOI: 10.1016/s0076-6879(03)70048-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Siddhartha Roy
- Department of Biophysics, Bose Institute, P-1/12, C.I.T., Scheme VII M, Calcutta 700 054, India
| |
Collapse
|
47
|
Chatterjee S, Ghosh K, Dhar A, Roy S. Ligand specificity and ligand-induced conformational change in gal repressor. Proteins 2002; 49:554-9. [PMID: 12402363 DOI: 10.1002/prot.10236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gal repressor (GalR) binds D-galactose, which is responsible for lifting of repression of the gal operon. Proton T1 measurements of alpha- and beta-anomers of galactose as a function of gal repressor show preferential binding of the beta-anomer. The beta-anomer was isolated by high-performance liquid chromatography and was shown to bind tightly to GalR. Calorimetry was used to determine enthalpy changes at several temperatures. Heat capacity change was found to be positive, indicating that a significant amount of hydrophobic surface area was exposed upon galactose binding. Bis-ANS binding to GalR is significantly enhanced in the presence of a saturating amount of galactose, indicating additional exposure of hydrophobic surfaces. We propose that the galactose-induced conformational change involves the opening of the two subdomains, which may disrupt protein-protein interactions responsible for repression.
Collapse
Affiliation(s)
- Sumana Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 C.I.T. Scheme VII M, Calcutta, India
| | | | | | | |
Collapse
|
48
|
Brantl S, Wagner EGH. An antisense RNA-mediated transcriptional attenuation mechanism functions in Escherichia coli. J Bacteriol 2002; 184:2740-7. [PMID: 11976303 PMCID: PMC135013 DOI: 10.1128/jb.184.10.2740-2747.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antisense RNA-mediated transcriptional attenuation is a regulatory mechanism operating in the replication control of two groups of plasmids in gram-positive bacteria, the pT181 group and the inc18 family, represented by pIP501. In contrast, this control mechanism has so far not been identified in gram-negative bacteria or their plasmids. In this work we asked whether such a mechanism can be supported by Escherichia coli. The core replication control regions of plasmids pT181 and pIP501 were transferred into this heterologous host. In vivo lacZ reporter gene assays showed that the antisense RNAs of these plasmids can inhibit lacZ expression and that most of this effect can be accounted for by reduced mRNA readthrough. Northern analyses confirmed that the ratio of attenuated to readthrough target RNA was increased in the presence of the cognate antisense RNA, as expected for this mechanism. Similarly, both antisense RNAs induced premature termination of their cognate target RNAs in an E. coli in vitro transcription system, whereas the noncognate antisense RNAs had no effect. Thus, this report shows that antisense RNA-mediated transcriptional attenuation is supported by at least one gram-negative host, although the data indicate that inhibitory efficiencies are lower than those for, e.g., Bacillus subtilis. Possible explanations for the apparent absence of this control mode in plasmids of gram-negative bacteria are discussed.
Collapse
Affiliation(s)
- Sabine Brantl
- Institut für Molekularbiologie, Friedrich-Schiller-Universität Jena, Winzerlaer Strasse 10, Jena D-07745, Germany.
| | | |
Collapse
|
49
|
Tapias A, Fernández S, Alonso JC, Barbé J. Rhodobacter sphaeroides LexA has dual activity: optimising and repressing recA gene transcription. Nucleic Acids Res 2002; 30:1539-46. [PMID: 11917014 PMCID: PMC101838 DOI: 10.1093/nar/30.7.1539] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcription of the Rhodobacter sphaeroides recA promoter (P(recA)) is induced upon DNA damage in a lexA-dependent manner. In vivo experiments demonstrate that LexA protein represses and might also activate transcription of P(recA). Purified R.sphaeroides LexA protein specifically binds the SOS boxes located within the P(recA) region. In vitro transcription analysis, using Escherichia coli RNA polymerase (RNAP), indicated that the presence of LexA may stimulate and repress transcription of P(recA). EMSA and DNase I footprinting experiments show that LexA and RNAP can bind simultaneously to P(recA). At low LexA concentrations it enhances RNAP binding to P(recA), stimulates open complex formation and strand separation beyond the transcription start site. At high LexA concentrations, however, RNAP-promoted strand separation is not observed beyond the +5 region. LexA might repress transcription by interfering with the clearance process instead of blocking the access of RNAP to the promoter region. Based on these findings we propose that the R.sphaeroides LexA protein performs fine tuning of the SOS response, which might provide a physiological advantage by enhancing transcription of SOS genes and delaying full activation of the response.
Collapse
Affiliation(s)
- Angels Tapias
- Departamento de Genética y Microbiología, Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
50
|
Lewis DEA, Adhya S. In vitro repression of the gal promoters by GalR and HU depends on the proper helical phasing of the two operators. J Biol Chem 2002; 277:2498-504. [PMID: 11700313 DOI: 10.1074/jbc.m108456200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Repression of transcription initiation from the two gal promoters, P1 and P2, requires binding of GalR protein to two flanking operators, O(E) and O(I), binding of HU to a site, hbs, located between the two operators, and supercoiled DNA template. Previous experiments suggested that repression involves the interaction of two DNA-bound GalR proteins, which generates a 113-bp DNA loop encompassing the promoter region. Interaction between two DNA-bound proteins would be allowed if the binding sites on DNA are properly aligned. To test the idea that the observed repression of gal transcription in vitro is mediated by DNA looping, we investigated the effect of changing the relative angular orientation of O(E) and O(I) in the DNA helix. We found that repression is a periodic function of the distance between the two operator sites. Since repression recurred commensurate with DNA helical repeat, we conclude that the observed in vitro repression is mediated by DNA looping and the in vitro conditions reflect the in vivo situation.
Collapse
Affiliation(s)
- Dale E A Lewis
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | |
Collapse
|