1
|
He L, Yan M, Naeem M, Chen M, Chen Y, Ni Z, Chen H. Enhancing Manganese Peroxidase: Innovations in Genetic Modification, Screening Processes, and Sustainable Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26040-26056. [PMID: 39535434 DOI: 10.1021/acs.jafc.4c05878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Manganese peroxidase (MnP), a vital extracellular enzyme for the degradation of lignin and other organic pollutants, has demonstrated immense potential for agricultural and environmental applications, including straw pretreatment, feed fermentation, mycotoxin degradation, and water treatment. However, current research remains in its exploratory phase, with naturally sourced MnP unable to meet industrial-scale demands and no mature commercial enzyme preparations available on the market. This comprehensive review innovatively constructs a framework for MnP research, probing into its molecular conformation and catalytic principles, while providing an overview of the advancements in high-throughput screening and In silco designing strategies. Specifically, this review focuses on the practical applications of MnP in sustainable agriculture, elaborating on its potential and challenges in straw resource utilization, efficient feed fermentation, mycotoxin control, and water quality improvement. Furthermore, this review summarizes the recent achievements in optimizing MnP activity through enzyme engineering techniques and discuss customized mutation strategies tailored to specific agricultural and environmental requirements, thereby laying a solid theoretical foundation and scientific basis for the industrial production and commercialization of MnP.
Collapse
Affiliation(s)
- Lu He
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Mingchen Yan
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Muhammad Naeem
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Minghaonan Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Yong Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Zhong Ni
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| |
Collapse
|
2
|
Torres-Farradá G, Thijs S, Rineau F, Guerra G, Vangronsveld J. White Rot Fungi as Tools for the Bioremediation of Xenobiotics: A Review. J Fungi (Basel) 2024; 10:167. [PMID: 38535176 PMCID: PMC10971306 DOI: 10.3390/jof10030167] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 04/09/2025] Open
Abstract
Industrial development has enhanced the release into the environment of large quantities of chemical compounds with high toxicity and limited prospects of degradation. The pollution of soil and water with xenobiotic chemicals has become a major ecological issue; therefore, innovative treatment technologies need to be explored. Fungal bioremediation is a promising technology exploiting their metabolic potential to remove or lower the concentrations of xenobiotics. In particular, white rot fungi (WRF) are unique microorganisms that show high capacities to degrade a wide range of toxic xenobiotic compounds such as synthetic dyes, chlorophenols, polychlorinated biphenyls, organophosphate pesticides, explosives and polycyclic aromatic hydrocarbons (PAHs). In this review, we address the main classes of enzymes involved in the fungal degradation of organic pollutants, the main mechanisms used by fungi to degrade these chemicals and the suitability of fungal biomass or extracellular enzymes for bioremediation. We also exemplify the role of several fungi in degrading pollutants such as synthetic dyes, PAHs and emerging pollutants such as pharmaceuticals and perfluoroalkyl/polyfluoroalkyl substances (PFASs). Finally, we discuss the existing current limitations of using WRF for the bioremediation of polluted environments and future strategies to improve biodegradation processes.
Collapse
Affiliation(s)
- Giselle Torres-Farradá
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, Calle 25 No. 455. Vedado, Habana 10400, Cuba;
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, Diepenbeek, B-3590 Hasselt, Belgium; (S.T.); (F.R.); (J.V.)
| | - Francois Rineau
- Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, Diepenbeek, B-3590 Hasselt, Belgium; (S.T.); (F.R.); (J.V.)
| | - Gilda Guerra
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, Calle 25 No. 455. Vedado, Habana 10400, Cuba;
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, Diepenbeek, B-3590 Hasselt, Belgium; (S.T.); (F.R.); (J.V.)
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Marie Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
3
|
Teo KSK, Kondo K, Khattab SMR, Watanabe T, Nagata T, Katahira M. Enhancing Bioethanol Production from Rice Straw through Environmentally Friendly Delignification Using Versatile Peroxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2657-2666. [PMID: 38288662 DOI: 10.1021/acs.jafc.3c07998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Rice straw (RS), an agricultural residue rich in carbohydrates, has substantial potential for bioethanol production. However, the presence of lignin impedes access to these carbohydrates, hindering efficient carbohydrate-to-bioethanol conversion. Here, we expressed versatile peroxidase (VP), a lignin-degrading enzyme, in Pichia pastoris and used it to delignify RS at 30 °C using a membrane bioreactor that continuously discarded the degraded lignin. Klason lignin analysis revealed that VP-treatment led to 35% delignification of RS. We then investigated the delignified RS by SEC, FTIR, and SEM. The results revealed the changes of RS caused by VP-mediated delignification. Additionally, we compared the saccharification and fermentation yields between RSs treated with and without VP, VP-RS, and Ctrl-RS, respectively. This examination unveiled an improvement in glucose and bioethanol production, VP-RS exhibiting up to 1.5-fold and 1.4-fold production, respectively. These findings underscore the potential of VP for delignifying RS and enhancing bioethanol production through an eco-friendly approach.
Collapse
Affiliation(s)
- Kenneth Sze Kai Teo
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Keiko Kondo
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Sadat Mohamed Rezk Khattab
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Faculty of Science, Al-Azhar University, 2091110 Assiut, Egypt
| | - Takashi Watanabe
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
4
|
De Vitis V, Cannazza P, Mattio L, Romano D, Pinto A, Molinari F, Laurenzi T, Eberini I, Contente ML. Caulobacter segnis Dioxygenase CsO2: A Practical Biocatalyst for Stilbenoid Ozonolysis. Chembiochem 2023; 24:e202300477. [PMID: 37490046 DOI: 10.1002/cbic.202300477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Ozonolysis is a useful as well as dangerous reaction for performing alkene cleavage. On the other hand, enzymes are considered a more sustainable and safer alternative. Among them, Caulobacter segnis dioxygenase (CsO2) known so far for its ability to catalyze the coenzyme-free oxidation of vinylguaiacol into vanillin, was selected and its substrate scope evaluated towards diverse natural and synthetic stilbenoids. Under optimized conditions, CsO2 catalyzed the oxidative cleavage of the C=C double bonds of various trans-stilbenes, providing that a hydroxyl moiety was necessary in para-position of the phenyl group (e. g., resveratrol and its derivatives) for the reaction to take place, which was confirmed by modelling studies. The reactions occurred rapidly (0.5-3 h) with high conversions (95-99 %) and without formation of by-products. The resveratrol biotransformation was carried out on 50-mL scale thus confirming the feasibility of the biocatalytic system as a preparative method.
Collapse
Affiliation(s)
- Valerio De Vitis
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria, 2, 20133, Milan, Italy
| | - Pietro Cannazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria, 2, 20133, Milan, Italy
| | - Luce Mattio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria, 2, 20133, Milan, Italy
| | - Diego Romano
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria, 2, 20133, Milan, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria, 2, 20133, Milan, Italy
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria, 2, 20133, Milan, Italy
| | - Tommaso Laurenzi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti, 9, 20133, Milano, Italy
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti, 9, 20133, Milano, Italy
| | - Martina L Contente
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria, 2, 20133, Milan, Italy
| |
Collapse
|
5
|
Mou B, Gong G, Wu S. Biodegradation mechanisms of polycyclic aromatic hydrocarbons: Combination of instrumental analysis and theoretical calculation. CHEMOSPHERE 2023; 341:140017. [PMID: 37657699 DOI: 10.1016/j.chemosphere.2023.140017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a common class of petroleum hydrocarbons, widely encountered in both environment and industrial pollution sources. Owing to their toxicity, environmental persistence, and potential bioaccumulation properties, a mounting interest has been kindled in addressing the remediation of PAHs. Biodegradation is widely employed for the removal and remediation of PAHs due to its low cost, lack of second-contamination and ease of operation. This paper reviews the degradation efficiency of degradation and the underlying mechanisms exhibited by algae, bacteria, and fungi in remediation. Additionally, it delved into the application of modern instrumental analysis techniques and theoretical investigations in the realm of PAH degradation. Advanced instrumental analysis methods such as mass spectrometry provide a powerful tool for identifying intermediates and metabolites throughout the degradation process. Meanwhile, theoretical calculations could guide the optimization of degradation processes by revealing the reaction mechanisms and energy changes in PAH degradation. The combined use of instrumental analysis and theoretical calculations allows for a comprehensive understanding of the degradation mechanisms of PAHs and provides new insights and approaches for the development of environmental remediation technologies.
Collapse
Affiliation(s)
- Bolin Mou
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guangyi Gong
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
6
|
Wu X, Amanze C, Wang J, Yu Z, Shen L, Wu X, Li J, Yu R, Liu Y, Zeng W. Isolation and characterization of a novel thermotolerant alkali lignin-degrading bacterium Aneurinibacillus sp. LD3 and its application in food waste composting. CHEMOSPHERE 2022; 307:135859. [PMID: 35987270 DOI: 10.1016/j.chemosphere.2022.135859] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/16/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to isolate thermotolerant alkali lignin-degrading bacteria and to investigate their degradation characteristics and application in food waste composting. Two thermotolerant alkali lignin-degrading bacteria isolates were identified as Bacillus sp. LD2 (LD2) and a novel species Aneurinibacillus sp. LD3 (LD3). Compared with strain LD2, LD3 had a higher alkali lignin degradation rate (61.28%) and ligninolytic enzyme activities, and the maximum lignin peroxidase, laccase, and manganese peroxidase activities were 3117.25, 1484.5, and 1770.75 U L-1, respectively. GC-MS analysis revealed that low-molecular-weight compounds such as 4'-hydroxy-3'-methoxy acetophenone, vanillic acid, 1-(4-hydroxy-3,5-dimethoxyphenyl), benzoic acid, and octadecanoic acid were formed in the degradation of alkali lignin by LD3, indicating the cleavage of β-aryl ether, Cα-Cβ bonds, and aromatic rings in lignin. Composting results showed that inoculating LD3 improved the degradation of organic matter by 20.11% and reduced the carbon-to-nitrogen (C/N) ratio (15.66). Additionally, a higher decrease in the content of lignocellulose was observed in the LD treatment. FTIR and 3D-EEM spectra analysis indicated that inoculating LD3 promoted the decomposition of easily available organic substances and lignocellulose and the formation of aromatic structures and humic acid-like substances. In brief, the thermotolerant lignin-degrading bacterium Aneurinibacillus sp. LD3 is effective in degrading lignin and improving the quality of composting.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Jingshu Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Zhaojing Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
7
|
Biochemical and molecular characterization of a new heme peroxidase from Aspergillus niger CTM10002, and its application in textile reactive dye decolorization. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ali SS, Al-Tohamy R, Sun J. Performance of Meyerozyma caribbica as a novel manganese peroxidase-producing yeast inhabiting wood-feeding termite gut symbionts for azo dye decolorization and detoxification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150665. [PMID: 34597540 DOI: 10.1016/j.scitotenv.2021.150665] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
For hazardous toxic pollutants such as textile wastewater and azo dyes, microbial-based and peroxidase-assisted remediation represents a highly promising and environmentally friendly alternative. Under this scope, gut symbionts of the wood-feeding termites Coptotermes formosanus and Reticulitermes chinenesis were used for the screening of manganese peroxidase (MnP) producing yeasts intended for decolorization and detoxification of textile azo dyes, such as Acid Orange 7 (AO7). To this end, nine out of 38 yeast isolates exhibited high levels of extracellular MnP activity ranging from 23 to 27 U/mL. The isolate PPY-27, which had the highest MnP activity, was able to decolorize various azo dyes with an efficiency ranging from 87.2 to 98.8%. This isolate, which represents the molecularly identified species Meyerozyma caribbica, was successfully characterized in terms of morphological and physiological traits, as well as enzymatic activities. Almost complete decolorization was achieved by the MnP-producing M. caribbica strain SSA1654 after 6 h of incubation with 50 mg/L of the sulfonated azo dye AO7 at 28 °C with an agitation speed of 150 rpm. The maximum decolorization efficiency of AO7 reached 93.8% at 400 mg/L. The decolorization of AO7 was confirmed by Fourier transform infrared (FTIR) and UV-Vis spectral analysis. High performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) were used to identify AO7 decomposition intermediates. Based on UV-Vis spectra, FTIR, HPLC, and GC-MS analyses, a plausible AO7 biodegradation mechanism pathway was explored, showing azo bond (-N=N-) cleavage and toxic aromatic amines mineralization CO2 and H2O. Microtox® and phytotoxicity assays confirmed that the AO7 metabolites produced by the strain SSA1654 were almost non-toxic compared to the original sulfonated azo dye.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Miyake K, Baba Y. De novo transcriptome assembly of the midgut glands of herbivorous land crabs, Chiromantes haematocheir, and identification of laccase genes involved in lignin degradation. J Comp Physiol B 2022; 192:247-261. [PMID: 35088170 DOI: 10.1007/s00360-021-01424-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/26/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022]
Abstract
Herbivorous land crabs such as Chiromantes haematocheir and C. dehaani show biomass-degrading activities. In this study, we performed RNA-seq analysis to detect biomass-degrading enzymes. A de novo transcriptome assembly in the midgut glands of molting and non-molting C. haematocheir crabs was constructed using RNA sequencing. Illumina sequencing generated 44,937,002 and 44,394,310 reads from the two midgut glands. In total, 178,710 contigs with an average length of 750 bp and an N50 value of 1,235 bp were assembled, of which 37,890 contigs were annotated using BLASTx search against the NCBI database. We identified 22 contigs (11 genes) belonging to the laccase family and 44 contigs (22 genes) belonging to the peroxidase family. Sixteen contigs (three genes) belonging to the GH9 cellulase family were also detected. We selected the gene accounting for the majority of expressed laccase and analyzed its properties. The 24131-laccase transcript (2465 bp) had one complete open reading frame, nt 149-1987, encoding a protein of 613 amino acids with a deduced molecular mass of 67.708 kDa. The enzyme was shown to belong to the multicopper oxidase family. The 24131-laccase protein was confirmed to have oxidation activity against 2,6-dimethoxyphenol by ectopic expression in Escherichia coli. Laccase activity was significantly enhanced by feeding land crabs with plant diets. These data suggest that the enzyme plays an important role in the digestion of lignin in the guts of land crabs.
Collapse
Affiliation(s)
- Katsuhide Miyake
- Department of Environmental Technology, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku, Nagoya, Aichi, 468-8502, Japan.
| | - Yasunori Baba
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| |
Collapse
|
10
|
Xiong BJ, Dusny C, Wang L, Appel J, Lindstaedt K, Schlosser D, Harms H, Wick LY. Illuminate the hidden: in vivo mapping of microscale pH in the mycosphere using a novel whole-cell biosensor. ISME COMMUNICATIONS 2021; 1:75. [PMID: 36765263 PMCID: PMC9723660 DOI: 10.1038/s43705-021-00075-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023]
Abstract
The pH of an environment is both a driver and the result of diversity and functioning of microbial habitats such as the area affected by fungal hyphae (mycosphere). Here we used a novel pH-sensitive bioreporter, Synechocystis sp. PCC6803_peripHlu, and ratiometric fluorescence microscopy, to spatially and temporally resolve the mycosphere pH at the micrometre scale. Hyphae of the basidiomycete Coprionopsis cinerea were allowed to overgrow immobilised and homogeneously embedded pH bioreporters in an agarose microcosm. Signals of >700 individual cells in an area of 0.4 × 0.8 mm were observed over time and used to create highly resolved (3 × 3 µm) pH maps using geostatistical approaches. C. cinerea changed the pH of the agarose from 6.9 to ca. 5.0 after 48 h with hyphal tips modifying pH in their vicinity up to 1.8 mm. pH mapping revealed distinct microscale spatial variability and temporally stable gradients between pH 4.4 and 5.8 over distances of ≈20 µm. This is the first in vivo mapping of a mycosphere pH landscape at the microscale. It underpins the previously hypothesised establishment of pH gradients serving to create spatially distinct mycosphere reaction zones.
Collapse
Affiliation(s)
- Bi-Jing Xiong
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Christian Dusny
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Lin Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jens Appel
- Department of Biology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 5, 24118, Kiel, Germany
| | - Kristin Lindstaedt
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| |
Collapse
|
11
|
Removal of Aflatoxin B 1 by Edible Mushroom-Forming Fungi and Its Mechanism. Toxins (Basel) 2021; 13:toxins13090668. [PMID: 34564672 PMCID: PMC8473272 DOI: 10.3390/toxins13090668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022] Open
Abstract
Aflatoxins (AFs) are biologically active toxic metabolites, which are produced by certain toxigenic Aspergillus sp. on agricultural crops. In this study, five edible mushroom-forming fungi were analyzed using high-performance liquid chromatography fluorescence detector (HPLC-FLD) for their ability to remove aflatoxin B1 (AFB1), one of the most potent naturally occurring carcinogens known. Bjerkandera adusta and Auricularia auricular-judae showed the most significant AFB1 removal activities (96.3% and 100%, respectively) among five strains after 14-day incubation. The cell lysate from B. adusta exhibited higher AFB1 removal activity (35%) than the cell-free supernatant (13%) after 1-day incubation and the highest removal activity (80%) after 5-day incubation at 40 °C. In addition, AFB1 analyses using whole cells, cell lysates, and cell debris from B. adusta showed that cell debris had the highest AFB1 removal activity at 5th day (95%). Moreover, exopolysaccharides from B. adusta showed an increasing trend (24–48%) similar to whole cells and cell lysates after 5- day incubation. Our results strongly suggest that AFB1 removal activity by whole cells was mainly due to AFB1 binding onto cell debris during early incubation and partly due to binding onto cell lysates along with exopolysaccharides after saturation of AFB1 binding process onto cell wall components.
Collapse
|
12
|
Functional Characterization of Melanin Decolorizing Extracellular Peroxidase of Bjerkandera adusta. J Fungi (Basel) 2021; 7:jof7090762. [PMID: 34575800 PMCID: PMC8466778 DOI: 10.3390/jof7090762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Melanin pigmentation in the human skin results from complicated cellular mechanisms that remain to be entirely understood. Uneven melanin pigmentation has been counteracted by inhibiting synthesis or transfer of melanin in the skin. Recently, an enzymatic approach has been proposed, wherein the melanin in the skin is decolorized using lignin peroxidase. However, not many enzymes are available for decolorizing melanin; the most studied one is lignin peroxidase derived from a lignin degrading fungus, Phanerochaete chrysosporium. Our current study reveals that versatile peroxidase from Bjerkandera adusta can decolorize synthetic melanin. Melanin decolorization was found to be dependent on veratryl alcohol and hydrogen peroxide, but not on Mn2+. The degree of decolorization reached over 40% in 10 min at 37 °C and a pH of 4.5. Optimized storage conditions were slightly different from those for the reaction; crude enzyme preparation was the most stable at 25 °C at pH 5.5. Since the enzyme rapidly lost its activity at 50 °C, stabilizers were screened. As a result, glycerol, a major component in several cosmetic formulations, was found to be a promising excipient. Our results suggest that B. adusta versatile peroxidase can be considered for future cosmetic applications aimed at melanin decolorization.
Collapse
|
13
|
Korniłłowicz-Kowalska T, Rybczyńska-Tkaczyk K. Decolorization and biodegradation of melanoidin contained in beet molasses by an anamorphic strain of Bjerkandera adusta CCBAS930 and its mutants. World J Microbiol Biotechnol 2020; 37:1. [PMID: 33349893 PMCID: PMC7752745 DOI: 10.1007/s11274-020-02944-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/30/2020] [Indexed: 02/02/2023]
Abstract
We used a ligninolytic strain of the white-rot fungus B. adusta CCBAS 930 and its mutants with modified ligninolytic activity to assess their potential to remove of molasses. The analyzed strains have been shown to be able to decolorize 1% or 2% molasses solutions containing brown-colored toxic melanoidins. It was found that the decolorization process was determined by the transition to the stage of production of sporulating aerial mycelium (liquid and agar cultures) coupled with an increase in peroxidase activity, which was accompanied by a decrease in the level of melanoidin, free radicals, and phenolic compounds. Four different peroxidase activities were detected in post-culture liquids, i.e. horseradish-like (HRP-like), manganese-dependent (MnP), lignin (LiP), and versatile (VP) peroxidase activities. The HRP-like peroxidase was characterized by the highest activity. The efficiency of removal of melanoidins from a 1% molasses solution by the parental strain and the mutants was dependent on the culture method. The highest efficiency was noted in immobilized cultures (threefold higher than in the mycelium-free cultures), which was accompanied by stimulation of HRP-like peroxidase activity. Mutant 930-5 was found to be the most effective in the decolorization and decomposition of melanoidin. The HRP-like activity in the immobilized cultures of B. adusta 930-5 was 640-fold higher than in the mycelium-free cultures of the fungus. Moreover, decolorization and biodegradation of melanoidin by B. adusta CCBAS 930 and 930-5 was coupled with detoxification.
Collapse
Affiliation(s)
- Teresa Korniłłowicz-Kowalska
- Department of Environmental Microbiology, Laboratory of Mycology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069 Lublin, Poland
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, Laboratory of Mycology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069 Lublin, Poland
| |
Collapse
|
14
|
Liu S, Xu X, Kang Y, Xiao Y, Liu H. Degradation and detoxification of azo dyes with recombinant ligninolytic enzymes from Aspergillus sp. with secretory overexpression in Pichia pastoris. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200688. [PMID: 33047030 PMCID: PMC7540776 DOI: 10.1098/rsos.200688] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/10/2020] [Indexed: 05/24/2023]
Abstract
Ligninolytic enzymes, including laccase (Lac), manganese peroxidase (MnP) and lignin peroxidase (LiP), have attracted much attention in the degradation of contaminants. Genes of Lac (1827 bp), MnP (1134 bp) and LiP (1119 bp) were cloned from Aspergillus sp. TS-A, and the recombinant Lac (69 kDa), MnP (45 kDa) and LiP (35 kDa) were secretory expressed in Pichia pastoris GS115, with enzyme activities of 34, 135.12 and 103.13 U l-1, respectively. Dyes of different structures were treated via the recombinant ligninolytic enzymes under the optimal degradation conditions, and the result showed that the decolourization rate of Lac on Congo red (CR) in 5 s was 45.5%. Fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry analysis and toxicity tests further proved that the ligninolytic enzymes could destroy the dyes, both those with one or more azo bonds, and the degradation products were non-toxic. Moreover, the combined ligninolytic enzymes could degrade CR more completely compared with the individual enzyme. Remarkably, besides azo dyes, ligninolytic enzymes could also degrade triphenylmethane and anthracene dyes. This suggests that ligninolytic enzymes from Aspergillus sp. TS-A have the potential for application in the treatment of contaminants.
Collapse
Affiliation(s)
| | - Xiaolin Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Ilić Đurđić K, Ostafe R, Đurđević Đelmaš A, Popović N, Schillberg S, Fischer R, Prodanović R. Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. Enzyme Microb Technol 2020; 136:109509. [DOI: 10.1016/j.enzmictec.2020.109509] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/25/2019] [Accepted: 01/11/2020] [Indexed: 11/26/2022]
|
16
|
Improvement in oxidative stability of versatile peroxidase by flow cytometry-based high-throughput screening system. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
|
18
|
Kumar A, Chandra R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 2020; 6:e03170. [PMID: 32095645 PMCID: PMC7033530 DOI: 10.1016/j.heliyon.2020.e03170] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/04/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
Ligninolytic enzymes play a key role in degradation and detoxification of lignocellulosic waste in environment. The major ligninolytic enzymes are laccase, lignin peroxidase, manganese peroxidase, and versatile peroxidase. The activities of these enzymes are enhanced by various mediators as well as some other enzymes (feruloyl esterase, aryl-alcohol oxidase, quinone reductases, lipases, catechol 2, 3-dioxygenase) to facilitate the process for degradation and detoxification of lignocellulosic waste in environment. The structurally laccase is isoenzymes with monomeric or dimeric and glycosylation levels (10–45%). This contains four copper ions of three different types. The enzyme catalyzes the overall reaction: 4 benzenediol + O2 to 4 benzosemiquinone + 2H2O. While, lignin peroxidase is a glycoprotein molecular mass of 38–46 kDa containing one mole of iron protoporphyrin IX per one mol of protein, catalyzes the H2O2 dependent oxidative depolymerization of lignin. The manganese peroxidase is a glycosylated heme protein with molecular mass of 40–50kDa. It depolymerizes the lignin molecule in the presence of manganese ion. The versatile peroxidase has broad range substrate sharing typical features of the manganese and lignin peroxidase families. Although ligninolytic enzymes have broad range of industrial application specially the degradation and detoxification of lignocellulosic waste discharged from various industrial activities, its large scale application is still limited due to lack of limited production. Further, the extremophilic properties of ligninolytic enzymes indicated their broad prospects in varied environmental conditions. Therefore it needs more extensive research for understanding its structure and mechanisms for broad range commercial applications.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| |
Collapse
|
19
|
Chan JC, Paice M, Zhang X. Enzymatic Oxidation of Lignin: Challenges and Barriers Toward Practical Applications. ChemCatChem 2019. [DOI: 10.1002/cctc.201901480] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jou C. Chan
- Voiland School of Chemical Engineering and Bioengineering Washington State University 2710 Crimson Way Richland WA-99354 USA
| | - Michael Paice
- FPInnovations Pulp Paper & Bioproducts 2665 East Mall Vancouver BC V6T 1Z4 Canada
| | - Xiao Zhang
- Voiland School of Chemical Engineering and Bioengineering Washington State University 2710 Crimson Way Richland WA-99354 USA
- Pacific Northwest National Laboratory 520 Battelle Boulevard P.O. Box 999, MSIN P8-60 Richland WA-99352 USA
| |
Collapse
|
20
|
Sekan AS, Myronycheva OS, Karlsson O, Gryganskyi AP, Blume Y. Green potential of Pleurotus spp. in biotechnology. PeerJ 2019; 7:e6664. [PMID: 30967974 PMCID: PMC6446892 DOI: 10.7717/peerj.6664] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/22/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The genus Pleurotus is most exploitable xylotrophic fungi, with valuable biotechnological, medical, and nutritional properties. The relevant features of the representatives of this genus to provide attractive low-cost industrial tools have been reported in numerous studies to resolve the pressure of ecological issues. Additionally, a number of Pleurotus species are highly adaptive, do not require any special conditions for growth, and possess specific resistance to contaminating diseases and pests. The unique properties of Pleurotus species widely used in many environmental technologies, such as organic solid waste recycling, chemical pollutant degradation, and bioethanol production. METHODOLOGY The literature study encompasses peer-reviewed journals identified by systematic searches of electronic databases such as Google Scholar, NCBI, Springer, ResearchGate, ScienceDirect, and ISI Web of Knowledge. The search scheme was divided into several steps, as described below. RESULTS In this review, we describe studies examining the biotechnological feasibility of Pleurotus spp. to elucidate the importance of this genus for use in green technology. Here, we review areas of application of the genus Pleurotus as a prospective biotechnological tool. CONCLUSION The incomplete description of some fungal biochemical pathways emphasises the future research goals for this fungal culture.
Collapse
Affiliation(s)
- Alona S. Sekan
- Institute of Food Biotechnology and Genomics, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Olena S. Myronycheva
- Division of Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Lulea University of Technology, Skelleftea, Sweden
| | - Olov Karlsson
- Division of Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Lulea University of Technology, Skelleftea, Sweden
| | | | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Science of Ukraine, Kyiv, Ukraine
| |
Collapse
|
21
|
Rekik H, Zaraî Jaouadi N, Bouacem K, Zenati B, Kourdali S, Badis A, Annane R, Bouanane-Darenfed A, Bejar S, Jaouadi B. Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. Int J Biol Macromol 2018; 125:514-525. [PMID: 30528991 DOI: 10.1016/j.ijbiomac.2018.12.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/25/2022]
Abstract
A new manganese peroxidase-producing white-rot basidiomycete fungus was isolated from symptomatic wood of the camphor trees Cinnamomum camphora (L.) at the Hamma Botanical Garden (Algeria) and identified as Trametes pubescens strain i8. The enzyme was purified (MnP TP55) to apparent electrophoretic homogeneity and biochemically characterized. The specific activity and Reinheitzahl value of the purified enzyme were 221 U/mg and 2.25, respectively. MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 55.2 kDa. The NH2-terminal sequence of the first 26 amino acid residues of MnP TP55 showed high similarity with those of white-rot fungal peroxidases. It revealed optimal activity at pH 5 and 40 °C. This peroxidase was completely inhibited by sodium azide and potassium cyanide, suggesting the presence of heme-components in its tertiary structure. Interestingly, MnP TP55 showed higher catalytic efficiency, organic solvent-tolerance, dye-decolorization ability, and detergent-compatibility than that of horseradish peroxidase (HRP) from roots of Armoracia rustanica, manganese peroxidase from Bjerkandera adusta strain CX-9 (MnP BA30), and manganese peroxidase from Phanerochaete chrysosporium (MnP PC). Overall, the findings provide strong support for the potential candidacy of MnP TP55 for environmental applications, mainly the development of enzyme-based technologies for lignin biodegradation, textile-dyes biodecolorization, and detergent formulations.
Collapse
Affiliation(s)
- Hatem Rekik
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Nadia Zaraî Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Khelifa Bouacem
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Bilal Zenati
- National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA), 11, Bd Amirouche PO Box 67, Bou Ismaïl 42415, Tipaza, Algeria
| | - Sidali Kourdali
- National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA), 11, Bd Amirouche PO Box 67, Bou Ismaïl 42415, Tipaza, Algeria
| | - Abdelmalek Badis
- National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA), 11, Bd Amirouche PO Box 67, Bou Ismaïl 42415, Tipaza, Algeria; Laboratory of Natural Products Chemistry and Biomolecules (LNPC-BioM), Faculty of Sciences, University of Blida 1, Road of Soumaâ, PO Box 270, 09000 Blida, Algeria
| | - Rachid Annane
- National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA), 11, Bd Amirouche PO Box 67, Bou Ismaïl 42415, Tipaza, Algeria
| | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia.
| |
Collapse
|
22
|
Zhang R, Li C, Wang J, Yan Y. Microbial Ligninolysis: Toward a Bottom-Up Approach for Lignin Upgrading. Biochemistry 2018; 58:1501-1510. [DOI: 10.1021/acs.biochem.8b00920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ruihua Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Chenyi Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
23
|
Ćilerdžić J, Galić M, Ivanović Ž, Brčeski I, Vukojević J, Stajić M. Stimulation of Wood Degradation by Daedaleopsis confragosa and D. tricolor. Appl Biochem Biotechnol 2018; 187:1371-1383. [PMID: 30229433 DOI: 10.1007/s12010-018-2884-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/09/2018] [Indexed: 11/25/2022]
Abstract
Biological pretreatment of the lignocellulosic residues, in which white-rot fungi have a crucial role, has many advantages compared to the chemical, physical, and physico-chemical methods of delignification and therefore attracts increasing scientific attention. Regarding the fact that properties and capacities of the ligninolytic enzymes of Daedaleopsis spp. are still unknown, the aim of this study was to research how nitrogen sources and inducers affect the potential of Daedaleopsis confragosa and Daedaleopsis tricolor to degrade cherry sawdust. NH4NO3, (NH4)2SO4, and peptone were tested as nitrogen sources, while veratryl alcohol, p-anisidine, vanillic acid, and phenylmethylsulfonyl fluoride were the studied inducers. As Mn-dependent peroxidase and laccase were the leader enzymes and cherry sawdust/peptone medium the best stimulator of their activities, the effect of inducers on delignification potential of these species was studied during fermentation of that substrate. Veratryl alcohol was the best stimulator of laccase and phenylmethylsulfonyl fluoride of Mn-dependent peroxidase activity (27,610.0 and 1338.4 U/L, respectively). These inducers also increased cherry sawdust delignification selectivity, particularly in D. tricolor in the presence of phenylmethylsulfonyl fluoride (lignin:hemicellulose:cellulose = 32.1%:0.9%:11.7%). Owing to the presented results, studied species could have an important role in the phase of lignocellulose pretreatment in various biotechnological processes.
Collapse
Affiliation(s)
- Jasmina Ćilerdžić
- Faculty of Biology, University of Belgrade, Takovska 43, Belgrade, 11000, Serbia.
| | - Milica Galić
- Faculty of Biology, University of Belgrade, Takovska 43, Belgrade, 11000, Serbia
| | - Žarko Ivanović
- Institute for Plant Protection and Environment, Teodora Drajzera 9, Belgrade, 11000, Serbia
| | - Ilija Brčeski
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, 11000, Serbia
| | - Jelena Vukojević
- Faculty of Biology, University of Belgrade, Takovska 43, Belgrade, 11000, Serbia
| | - Mirjana Stajić
- Faculty of Biology, University of Belgrade, Takovska 43, Belgrade, 11000, Serbia
| |
Collapse
|
24
|
Copete-Pertuz LS, Plácido J, Serna-Galvis EA, Torres-Palma RA, Mora A. Elimination of Isoxazolyl-Penicillins antibiotics in waters by the ligninolytic native Colombian strain Leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1195-1204. [PMID: 29554741 DOI: 10.1016/j.scitotenv.2018.02.244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
In this work, Leptosphaerulina sp. (a Colombian native fungus) significantly removed three Isoxazolyl-Penicillin antibiotics (IP): oxacillin (OXA, 16000 μg L-1), cloxacillin (CLX, 17500 μg L-1) and dicloxacillin (DCX, 19000 μg L-1) from water. The biological treatment was performed at pH 5.6, 28 °C, and 160 rpm for 15 days. The biotransformation process and lack of toxicity of the final solutions (antibacterial activity (AA) and cytotoxicity) were tested. The role of enzymes in IP removal was analysed through in vitro studies with enzymatic extracts (crude and pre-purified) from Leptosphaerulina sp., commercial enzymes and enzymatic inhibitors. Furthermore, the applicability of mycoremediation process to a complex matrix (simulated hospital wastewater) was evaluated. IP were considerably abated by the fungus, OXA was the fastest degraded (day 6), followed by CLX (day 7) and DCX (day 8). Antibiotics biodegradation was associated to laccase and versatile peroxidase action. Assays using commercial enzymes (i.e. laccase from Trametes versicolor and horseradish peroxidase) and inhibitors (EDTA, NaCl, sodium acetate, manganese (II) ions) confirmed the significant role of enzymatic transformation. Whereas, biomass sorption was not an important process in the antibiotics elimination. Evaluation of AA against Staphylococcus aureus ATCC 6538 revealed that Leptosphaerulina sp. also eliminated the AA. In addition, the cytotoxicity assay (MTT) on the HepG2 cell line demonstrated that the IP final solutions were non-toxic. Finally, Leptosphaerulina sp. eliminated OXA and its AA from synthetic hospital wastewater at 6 days. All these results evidenced the potential of Leptosphaerulina sp. mycoremediation as a novel environmentally friendly process for the removal of IP from aqueous systems.
Collapse
Affiliation(s)
- Ledys S Copete-Pertuz
- Grupo de Investigación Producción Estructura y Aplicación de Biomoléculas (PROBIOM), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia - Sede Medellín, Calle 59A No 63-20, Medellín, Colombia
| | - Jersson Plácido
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Medical School, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Amanda Mora
- Grupo de Investigación Producción Estructura y Aplicación de Biomoléculas (PROBIOM), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia - Sede Medellín, Calle 59A No 63-20, Medellín, Colombia.
| |
Collapse
|
25
|
Schneider WDH, Fontana RC, Mendonça S, de Siqueira FG, Dillon AJP, Camassola M. High level production of laccases and peroxidases from the newly isolated white-rot basidiomycete Marasmiellus palmivorus VE111 in a stirred-tank bioreactor in response to different carbon and nitrogen sources. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Breslmayr E, Hanžek M, Hanrahan A, Leitner C, Kittl R, Šantek B, Oostenbrink C, Ludwig R. A fast and sensitive activity assay for lytic polysaccharide monooxygenase. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:79. [PMID: 29588664 PMCID: PMC5865291 DOI: 10.1186/s13068-018-1063-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/24/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Lytic polysaccharide monooxygenases (LPMO) release a spectrum of cleavage products from their polymeric substrates cellulose, hemicellulose, or chitin. The correct identification and quantitation of these released products is the basis of MS/HPLC-based detection methods for LPMO activity. The duration, effort, and intricate analysis allow only specialized laboratories to measure LPMO activity in day-to-day work. A spectrophotometric assay will simplify the screening for LPMO in culture supernatants, help monitor recombinant LPMO expression and purification, and support enzyme characterization. RESULTS Based on a newly discovered peroxidase activity of LPMO, we propose a fast, robust, and sensitive spectrophotometric activity assay using 2,6-dimethoxyphenol (2,6-DMP) and H2O2. The fast enzymatic assay (300 s) consists of 1 mM 2,6-DMP as chromogenic substrate, 100 µM H2O2 as cosubstrate, and an adequate activity of LPMO in a suitable buffer. The high molar absorption coefficient of the formed product coerulignone (ε469 = 53,200 M-1 cm-1) makes the assay sensitive and allows reliable activity measurements of LPMO in concentrations of approx. 0.5-50 mg L-1. CONCLUSIONS The activity assay based on 2,6-DMP detects a novel peroxidase activity of LPMO. This activity can be accurately measured and used for enzyme screening, production, and purification, and can also be applied to study binding constants or thermal stability. However, the assay has to be used with care in crude extracts, because other enzymes such as laccase or peroxidase will interfere with the assay. We also want to stress that the peroxidase activity is a homogeneous reaction with soluble substrates and should not be correlated to heterogeneous LPMO activity on polymeric substrates.
Collapse
Affiliation(s)
- Erik Breslmayr
- Department of Food Science and Technology, Vienna Institute of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- Department of Material Science and Process Engineering, Institute of Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Marija Hanžek
- Department of Food Science and Technology, Vienna Institute of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Aoife Hanrahan
- Department of Food Science and Technology, Vienna Institute of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Christian Leitner
- Department of Food Science and Technology, Vienna Institute of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Roman Kittl
- Department of Food Science and Technology, Vienna Institute of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Božidar Šantek
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Chris Oostenbrink
- Department of Material Science and Process Engineering, Institute of Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Roland Ludwig
- Department of Food Science and Technology, Vienna Institute of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
27
|
Houtman CJ, Maligaspe E, Hunt CG, Fernández-Fueyo E, Martínez AT, Hammel KE. Fungal lignin peroxidase does not produce the veratryl alcohol cation radical as a diffusible ligninolytic oxidant. J Biol Chem 2018; 293:4702-4712. [PMID: 29462790 DOI: 10.1074/jbc.ra117.001153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/07/2018] [Indexed: 11/06/2022] Open
Abstract
Peroxidases are considered essential agents of lignin degradation by white-rot basidiomycetes. However, low-molecular-weight oxidants likely have a primary role in lignin breakdown because many of these fungi delignify wood before its porosity has sufficiently increased for enzymes to infiltrate. It has been proposed that lignin peroxidases (LPs, EC 1.11.1.14) fulfill this role by oxidizing the secreted fungal metabolite veratryl alcohol (VA) to its aryl cation radical (VA+•), releasing it to act as a one-electron lignin oxidant within woody plant cell walls. Here, we attached the fluorescent oxidant sensor BODIPY 581/591 throughout beads with a nominal porosity of 6 kDa and assessed whether peroxidase-generated aryl cation radical systems could oxidize the beads. As positive control, we used the 1,2,4,5-tetramethoxybenzene (TMB) cation radical, generated from TMB by horseradish peroxidase. This control oxidized the beads to depths that increased with the amount of oxidant supplied, ultimately resulting in completely oxidized beads. A reaction-diffusion computer model yielded oxidation profiles that were within the 95% confidence intervals for the data. By contrast, bead oxidation caused by VA and the LPA isozyme of Phanerochaete chrysosporium was confined to a shallow shell of LP-accessible volume at the bead surface, regardless of how much oxidant was supplied. This finding contrasted with the modeling results, which showed that if the LP/VA system were to release VA+•, it would oxidize the bead interiors. We conclude that LPA releases insignificant quantities of VA+• and that a different mechanism produces small ligninolytic oxidants during white rot.
Collapse
Affiliation(s)
- Carl J Houtman
- United States Forest Products Laboratory, Madison, Wisconsin 53726
| | - Eranda Maligaspe
- United States Forest Products Laboratory, Madison, Wisconsin 53726
| | | | - Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Kenneth E Hammel
- United States Forest Products Laboratory, Madison, Wisconsin 53726; Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
28
|
Gao Y, Li JJ, Zheng L, Du Y. Rational design of Pleurotus eryngii versatile ligninolytic peroxidase for enhanced pH and thermal stability through structure-based protein engineering. Protein Eng Des Sel 2017; 30:743-751. [DOI: 10.1093/protein/gzx055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/04/2017] [Indexed: 01/23/2023] Open
Affiliation(s)
- Yu Gao
- Department of Microbiology and Parasitology, China Medical University, No. 77 Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Jian-Jun Li
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 North 2nd Street, Beijing 100190, China
| | - Lanyan Zheng
- Department of Microbiology and Parasitology, China Medical University, No. 77 Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Yuguang Du
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 North 2nd Street, Beijing 100190, China
| |
Collapse
|
29
|
Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 2017; 41:941-962. [PMID: 29088355 PMCID: PMC5812493 DOI: 10.1093/femsre/fux049] [Citation(s) in RCA: 396] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Anna Pawlik
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Justyna Sulej
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Urszula Swiderska-Burek
- Department of Botany and Mycology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Anna Jarosz-Wilkolazka
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Andrzej Paszczynski
- School of Food Science, Food Research Center, Room 103, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
30
|
Kong W, Fu X, Wang L, Alhujaily A, Zhang J, Ma F, Zhang X, Yu H. A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:218. [PMID: 28924453 PMCID: PMC5598073 DOI: 10.1186/s13068-017-0906-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/07/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND The selective lignin-degrading white-rot fungi are regarded to be the best lignin degraders and have been widely used for reducing the saccharification recalcitrance of lignocellulose. However, the biological delignification and conversion of lignocellulose in biorefinery is still limited. It is necessary to develop novel and more efficient bio-delignification systems. RESULTS Physisporinus vitreus relies on a new versatile peroxidase (VP)-based delignification strategy to remove enzymatic recalcitrance of corn stover efficiently, so that saccharification of corn stover was significantly enhanced to 349.1 mg/g biomass (yield of glucose) and 91.5% (hydrolysis yield of cellulose) at 28 days, as high as levels reached by thermochemical treatment. Analysis of the lignin structure using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) showed that the total abundance of lignin-derived compounds decreased by 54.0% and revealed a notable demethylation during lignin degradation by P. vitreus. Monomeric and dimeric lignin model compounds were used to confirm the ligninolytic capabilities of extracellular ligninases secreted by P. vitreus. The laccase (Lac) from P. vitreus could not oxidize nonphenolic lignin compounds and polymerized β-O-4 and 5-5' dimers to precipitate which had a negative effect on the enzymatic hydrolysis of corn stover in vitro. However, the VP from P. vitreus could oxidize both phenolic and nonphenolic lignin model compounds as well as break the β-O-4 and 5-5' dimers into monomeric compounds, which were measured by high-performance liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Moreover, we showed that addition of purified VP in vitro improved the enzymatic hydrolysis of corn stover by 14.1%. CONCLUSIONS From the highly efficient system of enzymatic recalcitrance removal by new white-rot fungus, we identified a new delignification strategy based on VP which could oxidize both phenolic and nonphenolic lignin units and break different linkages in lignin. In addition, this is the first evidence that VP could break 5-5' linkage efficiently in vitro. Moreover, VP improved the enzymatic hydrolysis of corn stover in vitro. The remarkable lignin-degradative potential makes VP attractive for biotechnological applications.
Collapse
Affiliation(s)
- Wen Kong
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Xiao Fu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Lei Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Ahmad Alhujaily
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Jingli Zhang
- College of Life Science and Technology, WuHan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Fuying Ma
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Xiaoyu Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Hongbo Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| |
Collapse
|
31
|
Hermosilla E, Schalchli H, Mutis A, Diez MC. Combined effect of enzyme inducers and nitrate on selective lignin degradation in wheat straw by Ganoderma lobatum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21984-21996. [PMID: 28785941 DOI: 10.1007/s11356-017-9841-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Lignin is one of the main barriers to obtaining added-value products from cellulosic fraction of lignocellulosic biomass due to its random aromatic structure and strong association with cellulose and hemicellulose. Inorganic and organic compounds have been used as enzyme inducers to increase the ligninolytic potential of white-rot fungi, without considering their effect on the selectivity of degradation. In this study, the selective lignin degradation in wheat straw by Ganoderma lobatum was optimized using a central composite design to evaluate the combined effect of Fe2+ and Mn2+ as inducers of ligninolytic enzymes and NO3- as an additional nitrogen source. Selective lignin degradation was promoted to maximize lignin degradation and minimize weight losses. The optimal conditions were 0.18 M NO3-, 0.73 mM Fe2+, and 1 mM Mn2+, which resulted in 50.0% lignin degradation and 18.5% weight loss after 40 days of fungal treatment. A decrease in absorbance at 1505 and 900 cm-1 in fungal-treated samples was observed in the FTIR spectra, indicating lignin and cellulose degradation in fungal-treated wheat straw, respectively. The main ligninolytic enzymes detected during lignin degradation were manganese-dependent and manganese-independent peroxidases. Additionally, confocal laser scanning microscopy revealed that lignin degradation in wheat straw by G. lobatum resulted in higher cellulose accessibility. We concluded that the addition of enzyme inducers and NO3- promotes selective lignin degradation in wheat straw by G. lobatum.
Collapse
Affiliation(s)
- Edward Hermosilla
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Temuco, Chile
| | - Heidi Schalchli
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
- Chemical Engineering Department, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Ana Mutis
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
- Chemical Science and Natural Resource Department, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - María Cristina Diez
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile.
- Chemical Engineering Department, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
32
|
Lauber C, Schwarz T, Nguyen QK, Lorenz P, Lochnit G, Zorn H. Identification, heterologous expression and characterization of a dye-decolorizing peroxidase of Pleurotus sapidus. AMB Express 2017; 7:164. [PMID: 28831735 PMCID: PMC5567573 DOI: 10.1186/s13568-017-0463-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/17/2017] [Indexed: 11/10/2022] Open
Abstract
The coding sequence of a peroxidase from the secretome of Pleurotus sapidus was cloned from a cDNA library. Bioinformatic analyses revealed an open reading frame of 1551 bp corresponding to a primary translation product of 516 amino acids. The DyP-type peroxidase was heterologously produced in Trichoderma reesei with an activity of 55,000 U L-1. The enzyme was purified from the culture supernatant, biochemically characterized and the kinetic parameters were determined. The enzyme has an N-terminal signal peptide composed of 62 amino acids. Analysis by Blue Native PAGE and activity staining with ABTS, as well as gel filtration chromatography showed the native dimeric state of the enzyme (115 kDa). Analysis of the substrate range revealed that the recombinant enzyme catalyzes, in addition to the conversion of some classic peroxidase substrates such as 2,2'-azino-bis(3-ethylthiazoline-6-sulfonate) and substituted phenols like 2,6-dimethoxyphenol, also the decolorization of the anthraquinonic dye Reactive Blue 5. The enzyme also catalyzes bleaching of natural colorants such as β-carotene and annatto. Surprisingly, β-carotene was transformed in the presence and absence of H2O2 by rPsaDyP, however enzyme activity was increased by the addition of H2O2. This indicates that the rPsaDyP has an oxidase function in addition to a peroxidase activity. As a consequence of the high affinity to the characteristic substrate Reactive Blue 5 the rPsaDyP belongs functionally to the dyp-type peroxidase family.
Collapse
|
33
|
Affiliation(s)
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Madrid, Spain
| |
Collapse
|
34
|
Bouacem K, Rekik H, Jaouadi NZ, Zenati B, Kourdali S, El Hattab M, Badis A, Annane R, Bejar S, Hacene H, Bouanane-Darenfed A, Jaouadi B. Purification and characterization of two novel peroxidases from the dye-decolorizing fungus Bjerkandera adusta strain CX-9. Int J Biol Macromol 2017; 106:636-646. [PMID: 28813685 DOI: 10.1016/j.ijbiomac.2017.08.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Two extracellular peroxidases from Bjerkandera adusta strain CX-9, namely a lignin peroxidase (called LiP BA45) and manganese peroxidase (called MnP BA30), were purified simultaneously by applying successively, ammonium sulfate precipitation-dialysis, Mono-S Sepharose anion-exchange and Sephacryl S-200 gel filtration and biochemically characterized. The sequence of their NH2-terminal amino acid residues showed high homology with those of fungi peroxidases. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzymes MnP BA30 and LiP BA45 were a monomers with a molecular masses 30125.16 and 45221.10Da, respectively. While MnP BA30 was optimally active at pH 3 and 70°C, LiP BA45 showed optimum activity at pH 4 and 50°C. The two enzymes were inhibited by sodium azide and potassium cyanide, suggesting the presence of heme-components in their tertiary structures. The Km and Vmax for LiP BA45 toward 2,4-Dichlorolphenol (2,4-DCP) were 0.099mM and 9.12U/mg, respectively and for MnP BA30 toward 2,6-Dimethylphenol (2,6-DMP), they were 0.151mM and 18.60U/mg, respectively. Interestingly, MnP BA30 and LiP BA45 demonstrated higher catalytic efficiency than that of other tested peroxidases (MnP, LiP, HaP4, and LiP-SN) and marked organic solvent-stability and dye-decolorization efficiency. Data suggest that these peroxidases may be considered as potential candidates for future applications in distaining synthetic-dyes.
Collapse
Affiliation(s)
- Khelifa Bouacem
- Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria; Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia.
| | - Hatem Rekik
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia
| | - Nadia Zaraî Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia
| | - Bilal Zenati
- National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA) 11, Bd Amirouche PO Box 67, Bou Ismaïl, 42415, Tipaza, Algeria
| | - Sidali Kourdali
- National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA) 11, Bd Amirouche PO Box 67, Bou Ismaïl, 42415, Tipaza, Algeria
| | - Mohamed El Hattab
- Laboratory of Natural Products Chemistry and Biomolecules (LNPC-BioM), Faculty of Sciences, University of Blida 1, Road of Soumaâ, PO Box 270, 09000 Blida, Algeria
| | - Abdelmalek Badis
- National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA) 11, Bd Amirouche PO Box 67, Bou Ismaïl, 42415, Tipaza, Algeria; Laboratory of Natural Products Chemistry and Biomolecules (LNPC-BioM), Faculty of Sciences, University of Blida 1, Road of Soumaâ, PO Box 270, 09000 Blida, Algeria
| | - Rachid Annane
- National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA) 11, Bd Amirouche PO Box 67, Bou Ismaïl, 42415, Tipaza, Algeria
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia
| | - Hocine Hacene
- Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia.
| |
Collapse
|
35
|
Ansari Z, Karimi A, Ebadi Fard Azar F, Latifi NA. Effect of glucose oxidase on decolorization efficiency of crystal violet by Phanerochaete chrysosporium cultures. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1360869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zahra Ansari
- Department of Chemical Engineering, Biotechnology Research Center, Sahand University of Technology, Tabriz, Iran
| | - Afzal Karimi
- Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farbod Ebadi Fard Azar
- Department of Health Services and Health Education, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Nour-Ahmad Latifi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Khatoon N, Jamal A, Ali MI. Polymeric pollutant biodegradation through microbial oxidoreductase: A better strategy to safe environment. Int J Biol Macromol 2017. [PMID: 28648638 DOI: 10.1016/j.ijbiomac.2017.06.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The detoxification of xenobiotic organic compounds by various microorganisms through oxidative coupling is facilitated with oxidoreductases. With the help of energy yielding biochemical reactions, these microbes extract energy for their metabolic pathway. They promote the transfer of electrons from a reduced organic substrate to another chemical compound. During such oxidation-reduction reactions, the toxic polymeric substance is finally oxidized into harmless compounds. Enzymatic bioremediation of toxic organic pollutant is a very effective strategy in complex environmental conditions. Oxidoreductases enzymes have a significant potential for the bioremediation of the xenobiotic compounds. Various electron donor complex polymeric substrates containing Phenol and aromatic amines are oxidized by peroxidase in the presence of H2O2 while O2 in the case of dioxygenase. This review attempts to present relevant information on the peroxidases and dioxygenase from various microbial isolates involved in the biodegradation of a wide range of pollutants.
Collapse
Affiliation(s)
- Nazia Khatoon
- Environmental Microbiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Asif Jamal
- Environmental Microbiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Ishtiaq Ali
- Environmental Microbiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
37
|
Casciello C, Tonin F, Berini F, Fasoli E, Marinelli F, Pollegioni L, Rosini E. A valuable peroxidase activity from the novel species Nonomuraea gerenzanensis growing on alkali lignin. ACTA ACUST UNITED AC 2017; 13:49-57. [PMID: 28352563 PMCID: PMC5361131 DOI: 10.1016/j.btre.2016.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022]
Abstract
Actinomycetes represent an attractive source of ligninolytic enzymes. 43 actinomycetes were screened for laccase and peroxidase activities. The novel species N. gerenzanensis produces a valuable bacterial peroxidase activity. The dye-decolorizing activity paves the way for an industrial use of this peroxidase.
Degradation of lignin constitutes a key step in processing biomass to become useful monomers but it remains challenging. Compared to fungi, bacteria are much less characterized with respect to their lignin metabolism, although it is reported that many soil bacteria, especially actinomycetes, attack and solubilize lignin. In this work, we screened 43 filamentous actinomycetes by assaying their activity on chemically different substrates including a soluble and semi-degraded lignin derivative (known as alkali lignin or Kraft lignin), and we discovered a novel and valuable peroxidase activity produced by the recently classified actinomycete Nonomuraea gerenzanensis. Compared to known fungal manganese and versatile peroxidases, the stability of N. gerenzanensis peroxidase activity at alkaline pHs and its thermostability are significantly higher. From a kinetic point of view, N. gerenzanensis peroxidase activity shows a Km for H2O2 similar to that of Phanerochaete chrysosporium and Bjerkandera enzymes and a lower affinity for Mn2+, whereas it differs from the six Pleurotus ostreatus manganese peroxidase isoenzymes described in the literature. Additionally, N. gerenzanensis peroxidase shows a remarkable dye-decolorizing activity that expands its substrate range and paves the way for an industrial use of this enzyme. These results confirm that by exploring new bacterial diversity, we may be able to discover and exploit alternative biological tools putatively involved in lignin modification and degradation.
Collapse
Key Words
- 2,4-DCP, 2,4-dichlorophenol
- 2,6-DMP, 2,6-dimethoxyphenol
- ABTS, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
- Alkali lignin
- DyP, dye decolorizing peroxidase
- Filamentous actinomycetes
- Kraft lignin
- LiP, lignin peroxidase
- MAM, mannitol agar medium
- MM-L, minimal salt medium plus lignin
- MnP, manganese peroxidase
- Nonomuraea gerenzanensis
- Peroxidases
- RB5, reactive black 5
- RBBR, remazol brilliant blue R
- VP, versatile peroxidase
Collapse
Affiliation(s)
- Carmine Casciello
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Fabio Tonin
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico of Milano, via Mancinelli 7, 20131, Milano, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
38
|
Gao Y, Zheng L, Li JJ, Du Y. Insight into the impact of two structural calcium ions on the properties of Pleurotus eryngii versatile ligninolytic peroxidase. Arch Biochem Biophys 2016; 612:9-16. [PMID: 27720685 DOI: 10.1016/j.abb.2016.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 11/16/2022]
Abstract
Two structural Ca2+ (proximal and distal) is known to be important for ligninolytic peroxidases. However, few studies toward impact of residues involved in two Ca2+ on properties of ligninolytic peroxidases have been done, especially the proximal one. In this study, mutants of nine residues involved in liganding two Ca2+ of Pleurotus eryngii versatile peroxidase (VP) were investigated. Most mutants almost completely lost activities, except the mutants of proximal Ca2+ - S170A and V192T. In comparison with WT (wild type), optimal pH values of S170A, S170D, and V192T shifted from pH 3.0 to pH 3.5. The order of thermal and pH stabilities of WT, V192T, S170A, and S170D is similar to that of their specific activities: WT > V192T > S170A > S170D. The CD (circular dichroism) results of WT and several mutants indicated that mutations had some effects on secondary structures. For the first time, it was observed that the thermostability of ligninolytic peroxidases is related with proximal Ca2+ too, and the mutant containing distal Ca2+ only was obtained. Our results clearly demonstrated that enzymatic activities, pH and thermal stabilities, Ca2+content, and secondary structures of VP have close relationship with the residues involved in two structural Ca2+.
Collapse
Affiliation(s)
- Yu Gao
- Department of Microbiology and Parasitology, China Medical University, No.77 Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Lanyan Zheng
- Department of Microbiology and Parasitology, China Medical University, No.77 Puhe Road, Shenyang 110122, Liaoning Province, China.
| | - Jian-Jun Li
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 North 2nd Street, Beijing 100190, China.
| | - Yuguang Du
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 North 2nd Street, Beijing 100190, China.
| |
Collapse
|
39
|
Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. Int J Biol Macromol 2016; 89:181-9. [DOI: 10.1016/j.ijbiomac.2016.04.075] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 11/20/2022]
|
40
|
Sánchez-Alejandro F, Juarez-Moreno K, Baratto MC, Basosi R, Vazquez-Duhalt R. Tryptophan-surface modification of versatile peroxidase from Bjerkandera adusta enhances its catalytic performance. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Potential of White-Rot Fungi to Treat Xenobiotic-Containing Wastewater. FUNGAL APPLICATIONS IN SUSTAINABLE ENVIRONMENTAL BIOTECHNOLOGY 2016. [DOI: 10.1007/978-3-319-42852-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Palma C, Lloret L, Sepúlveda L, Contreras E. Production of versatile peroxidase from Pleurotus eryngii by solid-state fermentation using agricultural residues and evaluation of its catalytic properties. Prep Biochem Biotechnol 2015; 46:200-7. [PMID: 26444982 DOI: 10.1080/10826068.2015.1084513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Interest in production of ligninolytic enzymes has been growing over recent years for their use in various applications such as recalcitrant pollutants bioremediation; specifically, versatile peroxidase (VP) presents a great potential due to its catalytic versatility. The proper selection of the fermentation mode and the culture medium should be an imperative to ensure a successful production by an economic and available medium that favors the process viability. VP was produced by solid-state fermentation (SSF) of Pleurotus eryngii, using the agricultural residue banana peel as growth medium; an enzymatic activity of 10,800 U L(-1) (36 U g(-1) of substrate) was detected after 18 days, whereas only 1800 U L(-1) was reached by conventional submerged fermentation (SF) with glucose-based medium. The kinetic parameters were determined by evaluating the H2O2 and Mn(2+) concentration effects on the Mn(3+)-tartrate complex formation. The results indicated that although the H2O2 inhibitory effect was observed for the enzyme produced by both media, the reaction rates for VP obtained by SSF were less impacted. This outcome suggests the presence of substances released from banana peel during the fermentation, which might exhibit a protective effect resulting in an improved kinetic behavior of the enzyme.
Collapse
Affiliation(s)
- C Palma
- a Departamento de Ingeniería Química y Ambiental , Universidad Técnica Federico Santa María , Santiago , Chile
| | - L Lloret
- a Departamento de Ingeniería Química y Ambiental , Universidad Técnica Federico Santa María , Santiago , Chile
| | - L Sepúlveda
- b Departamento de Ingeniería Química , Universidad de Santiago de Chile , Santiago , Chile
| | - E Contreras
- b Departamento de Ingeniería Química , Universidad de Santiago de Chile , Santiago , Chile
| |
Collapse
|
43
|
Baratto MC, Juarez-Moreno K, Pogni R, Basosi R, Vazquez-Duhalt R. EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:8683-8692. [PMID: 25567062 DOI: 10.1007/s11356-014-4051-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
The mechanisms of industrial dye transformation by versatile peroxidase were elucidated. Purified versatile peroxidase from Bjerkandera adusta was able to decolorize different classes of dyes including azo and phthalocyanines, but unable to transform any of the anthraquinones tested. Kinetic constants for selected dyes were determined and the transformation products were analyzed by EPR spectroscopy and mass spectrometry. The EPR and MS analyses of the enzymatic decolorization products showed the cleavage of the azo bond in azo dyes and the total disruption of the phthalocyaninic ring in phthalocyanine dyes. The EPR analysis on two copper-containing dyes, reactive violet 5 (azo) and reactive blue 72 (phthalocyanine), showed that the transformation can or not break the metal-ion coordination bond according the dye nature. The role of the catalytic Trp172 in the dye transformation by a long-range electron transfer pathway was confirmed and the oxidation mechanisms are proposed and discussed.
Collapse
Affiliation(s)
- Maria Camilla Baratto
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | | | | | | | | |
Collapse
|
44
|
Ligninolytic Enzymes for Water Depollution, Coal Breakdown, and Paper Industry. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2015. [DOI: 10.1007/978-3-319-11906-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Characterization of Lignocellulolytic Enzymes from White-Rot Fungi. Curr Microbiol 2014; 70:485-98. [DOI: 10.1007/s00284-014-0743-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/27/2014] [Indexed: 12/26/2022]
|
46
|
Microbial enzyme systems for lignin degradation and their transcriptional regulation. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1336-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Nousiainen P, Kontro J, Manner H, Hatakka A, Sipilä J. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Fungal Genet Biol 2014; 72:137-149. [DOI: 10.1016/j.fgb.2014.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 11/29/2022]
|
48
|
Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes. Fungal Genet Biol 2014; 72:124-130. [DOI: 10.1016/j.fgb.2014.05.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 11/20/2022]
|
49
|
Korniłłowicz-Kowalska T, Rybczyńska K. Anthraquinone dyes decolorization capacity of anamorphic Bjerkandera adusta CCBAS 930 strain and its HRP-like negative mutants. World J Microbiol Biotechnol 2014; 30:1725-36. [PMID: 24415463 PMCID: PMC4018482 DOI: 10.1007/s11274-014-1595-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 01/02/2014] [Indexed: 12/03/2022]
Abstract
Cultures of the anamorphic fungus Bjerkandera adusta CCBAS 930 decolorizing, in stationary cultures, 0.01 % solutions of carminic acid and Poly R-478, were characterised by a strong increase in the activity of the horseradish peroxidase (HRP-like) and manganese-dependent peroxidase (MnP) at a low activity of lignin peroxidase. Genotypically modified mutants of B. adusta CCBAS 930: 930-5 and 930-14, with total or partial loss of decolorization capabilities relative to anthraquinonic dyes, showed inhibition of the activity of HRP-like peroxidase and MnP. Whereas, compared to the parental strain, in the mutant cultures there was an increase in the activity of lignin peroxidase and laccase. The paper presents a discussion of the role of the studied enzymatic activities in the process of decolorization of anthraquinonic dyes by the strain B. adusta CCBAS 930.
Collapse
Affiliation(s)
- Teresa Korniłłowicz-Kowalska
- Department of Environmental Microbiology, Laboratory of Mycology, University of Life Sciences, Leszczyńskiego 7, 20-069, Lublin, Poland,
| | | |
Collapse
|
50
|
Choi J, Détry N, Kim KT, Asiegbu FO, Valkonen JPT, Lee YH. fPoxDB: fungal peroxidase database for comparative genomics. BMC Microbiol 2014; 14:117. [PMID: 24885079 PMCID: PMC4029949 DOI: 10.1186/1471-2180-14-117] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 04/24/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Peroxidases are a group of oxidoreductases which mediate electron transfer from hydrogen peroxide (H2O2) and organic peroxide to various electron acceptors. They possess a broad spectrum of impact on industry and fungal biology. There are numerous industrial applications using peroxidases, such as to catalyse highly reactive pollutants and to breakdown lignin for recycling of carbon sources. Moreover, genes encoding peroxidases play important roles in fungal pathogenicity in both humans and plants. For better understanding of fungal peroxidases at the genome-level, a novel genomics platform is required. To this end, Fungal Peroxidase Database (fPoxDB; http://peroxidase.riceblast.snu.ac.kr/) has been developed to provide such a genomics platform for this important gene family. DESCRIPTION In order to identify and classify fungal peroxidases, 24 sequence profiles were built and applied on 331 genomes including 216 from fungi and Oomycetes. In addition, NoxR, which is known to regulate NADPH oxidases (NoxA and NoxB) in fungi, was also added to the pipeline. Collectively, 6,113 genes were predicted to encode 25 gene families, presenting well-separated distribution along the taxonomy. For instance, the genes encoding lignin peroxidase, manganese peroxidase, and versatile peroxidase were concentrated in the rot-causing basidiomycetes, reflecting their ligninolytic capability. As a genomics platform, fPoxDB provides diverse analysis resources, such as gene family predictions based on fungal sequence profiles, pre-computed results of eight bioinformatics programs, similarity search tools, a multiple sequence alignment tool, domain analysis functions, and taxonomic distribution summary, some of which are not available in the previously developed peroxidase resource. In addition, fPoxDB is interconnected with other family web systems, providing extended analysis opportunities. CONCLUSIONS fPoxDB is a fungi-oriented genomics platform for peroxidases. The sequence-based prediction and diverse analysis toolkits with easy-to-follow web interface offer a useful workbench to study comparative and evolutionary genomics of peroxidases in fungi.
Collapse
Affiliation(s)
- Jaeyoung Choi
- Fungal Bioinformatics Laboratory and Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
- Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Korea
| | - Nicolas Détry
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Ki-Tae Kim
- Fungal Bioinformatics Laboratory and Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jari PT Valkonen
- Department of Agricultural Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Yong-Hwan Lee
- Fungal Bioinformatics Laboratory and Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
- Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Korea
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Agricultural Sciences, University of Helsinki, 00014 Helsinki, Finland
- Center for Fungal Genetic Resources, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|