1
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
2
|
Ning J, Sala M, Reina J, Kalagiri R, Hunter T, McCullough BS. Histidine Phosphorylation: Protein Kinases and Phosphatases. Int J Mol Sci 2024; 25:7975. [PMID: 39063217 PMCID: PMC11277029 DOI: 10.3390/ijms25147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.
Collapse
Affiliation(s)
- Jia Ning
- Correspondence: (J.N.); (B.S.M.)
| | | | | | | | | | - Brandon S. McCullough
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (M.S.); (J.R.); (R.K.); (T.H.)
| |
Collapse
|
3
|
Seidl MJ, Scharre S, Posset R, Druck AC, Epp F, Okun JG, Dimitrov B, Hoffmann GF, Kölker S, Zielonka M. ASS1 deficiency is associated with impaired neuronal differentiation in zebrafish larvae. Mol Genet Metab 2024; 141:108097. [PMID: 38113552 DOI: 10.1016/j.ymgme.2023.108097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Citrullinemia type 1 (CTLN1) is a rare autosomal recessive urea cycle disorder caused by deficiency of the cytosolic enzyme argininosuccinate synthetase 1 (ASS1) due to pathogenic variants in the ASS1 gene located on chromosome 9q34.11. Even though hyperammenomia is considered the major pathomechanistic factor for neurological impairment and cognitive dysfunction, a relevant subset of individuals presents with a neurodegenerative course in the absence of hyperammonemic decompensations. Here we show, that ASS1 deficiency induced by antisense-mediated knockdown of the zebrafish ASS1 homologue is associated with defective neuronal differentiation ultimately causing neuronal cell loss and consecutively decreased brain size in zebrafish larvae in vivo. Whereas ASS1-deficient zebrafish larvae are characterized by markedly elevated concentrations of citrulline - the biochemical hallmark of CTLN1, accumulation of L-citrulline, hyperammonemia or therewith associated secondary metabolic alterations did not account for the observed phenotype. Intriguingly, coinjection of the human ASS1 mRNA not only normalized citrulline concentration but also reversed the morphological cerebral phenotype and restored brain size, confirming conserved functional properties of ASS1 across species. The results of the present study imply a novel, potentially non-enzymatic (moonlighting) function of the ASS1 protein in neurodevelopment.
Collapse
Affiliation(s)
- Marie J Seidl
- Heidelberg University, Medical Faculty Heidelberg, and Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Svenja Scharre
- Heidelberg University, Medical Faculty Heidelberg, and Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Roland Posset
- Heidelberg University, Medical Faculty Heidelberg, and Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ann-Catrin Druck
- Heidelberg University, Medical Faculty Heidelberg, and Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Friederike Epp
- Heidelberg University, Medical Faculty Heidelberg, and Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen G Okun
- Heidelberg University, Medical Faculty Heidelberg, and Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Bianca Dimitrov
- Heidelberg University, Medical Faculty Heidelberg, and Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Heidelberg University, Medical Faculty Heidelberg, and Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Heidelberg University, Medical Faculty Heidelberg, and Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Zielonka
- Heidelberg University, Medical Faculty Heidelberg, and Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany.
| |
Collapse
|
4
|
Yang GJ, Tao F, Zhong HJ, Yang C, Chen J. Targeting PGAM1 in cancer: An emerging therapeutic opportunity. Eur J Med Chem 2022; 244:114798. [DOI: 10.1016/j.ejmech.2022.114798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022]
|
5
|
Effect of samarium oxide nanoparticles on virulence factors and motility of multi-drug resistant Pseudomonas aeruginosa. World J Microbiol Biotechnol 2022; 38:209. [PMID: 36040540 DOI: 10.1007/s11274-022-03384-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/09/2022] [Indexed: 10/14/2022]
Abstract
Biofilm formation and quorum sensing (QS) dependent virulence factors are considered the major causes of the emergence of drug resistance, therapeutic failure and development of Pseudomonas aeruginosa infections. This study aimed to investigate the effects of samarium oxide nanoparticles (Sm2O3NPs) on biofilm, virulence factors, and motility of multidrug-resistant P. aeruginosa. Sm2O3NPs were synthesized using curcumin and characterized by Transmission Electron Microscopy, X-ray diffractometer, Field Emission Scanning Electron Microscopy, and Energy-dispersive X-ray spectroscopy. Minimum inhibitory concentration (MIC) was determined using broth microdilution method. The antibiofilm potential of Sm2O3NPs was also evaluated by crystal violet staining and light microscopy examination. Then, the effect of sub-MICs concentrations of Sm2O3NPs on the proteolytic and hemolytic activities of P. aeruginosa was investigated. Finally, the effect of Sm2O3NPs on various types of motility including swarming, swimming, and twitching was studied. Our results showed that Sm2O3NPs significantly inhibited biofilm formation of P. aeruginosa by 49-61%. Additionally, sub-MICs concentrations of Sm2O3NPs effectively decreased virulence factors including pyocyanin (33-55%), protease (24-45%), and hemolytic activity (22-41%). Moreover, swarming, swimming, and twitching motility remarkably was reduced after exposure to the NPs. The findings of this work showed that Sm2O3NPs have a high potential in inhibiting QS-dependent virulence of P. aeruginosa, which could be considered for antibacterial chemotherapy after further characterization.
Collapse
|
6
|
Activation of Nm23-H1 to suppress breast cancer metastasis via redox regulation. Exp Mol Med 2021; 53:346-357. [PMID: 33753879 PMCID: PMC8080780 DOI: 10.1038/s12276-021-00575-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
Non-metastatic protein 23 H1 (Nm23-H1), a housekeeping enzyme, is a nucleoside diphosphate kinase-A (NDPK-A). It was the first identified metastasis suppressor protein. Nm23-H1 prolongs disease-free survival and is associated with a good prognosis in breast cancer patients. However, the molecular mechanisms underlying the role of Nm23-H1 in biological processes are still not well understood. This is a review of recent studies focusing on controlling NDPK activity based on the redox regulation of Nm23-H1, structural, and functional changes associated with the oxidation of cysteine residues, and the relationship between NDPK activity and cancer metastasis. Further understanding of the redox regulation of the NDPK function will likely provide a new perspective for developing new strategies for the activation of NDPK-A in suppressing cancer metastasis.
Collapse
|
7
|
Naghiyan Fesharaki S, Naghiyan Fesharaki S, Esmaeili A, Azadeh M, Ghaedi K. SNP rs1803622 in hsa-miR-548g binding site at GAPDH alters susceptibility to breast cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Li Y, Liu W, Saini V, Wong YH. Mutations at the dimer interface and surface residues of Nm23-H1 metastasis suppressor affect its expression and function. Mol Cell Biochem 2020; 474:95-112. [PMID: 32705629 DOI: 10.1007/s11010-020-03836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/11/2020] [Indexed: 11/25/2022]
Abstract
The Nm23 metastasis suppressor family is involved in a variety of physiological and pathological processes including cell proliferation, differentiation, tumorigenesis, and metastasis. Given that Nm23 proteins may function as hexamers composed of different members of the family, especially Nm23-H1 and H2 isoforms, it is pertinent to assess the importance of interface and surface residues in defining the functional characteristics of Nm23 proteins. Using molecular modeling to identify clusters of residues that may affect dimer formation and isoform specificity, mutants of Nm23-H1 were constructed and assayed for their ability to modulate cell migration. Mutations of dimer interface residues Gly22 and Lys39 affected the expression level of Nm23-H1, without altering the transcript level. The reduced protein expression was not due to increased protein degradation or altered subcellular distribution. Substitution of the surface residues of Nm23-H1 with Nm23-H2-specific Ser131 and/or Lys124/135 affected the electrophoretic mobility of the protein. Moreover, in cell migration assays, several mutants with altered surface residues exhibited impaired ability to suppress the mobility of MDA-MB-231 cells. Collectively, the study suggests that disrupting the dimer interface may affect the expression of Nm23-H1, while the residues at α-helix and β-sheet on the surface of Nm23-H1 may contribute to its metastasis suppressive function.
Collapse
Affiliation(s)
- Yuanjun Li
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China.,Eye Center of Xiangya Hospital, Hunan Key Laboratory of Opthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen Liu
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Vasu Saini
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China. .,State Key Laboratory of Molecular Neuroscience and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
9
|
Moonlighting Proteins at the Candidal Cell Surface. Microorganisms 2020; 8:microorganisms8071046. [PMID: 32674422 PMCID: PMC7409194 DOI: 10.3390/microorganisms8071046] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022] Open
Abstract
The cell wall in Candida albicans is not only a tight protective envelope but also a point of contact with the human host that provides a dynamic response to the constantly changing environment in infection niches. Particularly important roles are attributed to proteins exposed at the fungal cell surface. These include proteins that are stably and covalently bound to the cell wall or cell membrane and those that are more loosely attached. Interestingly in this regard, numerous loosely attached proteins belong to the class of “moonlighting proteins” that are originally intracellular and that perform essentially different functions in addition to their primary housekeeping roles. These proteins also demonstrate unpredicted interactions with non-canonical partners at an a priori unexpected extracellular location, achieved via non-classical secretion routes. Acting both individually and collectively, the moonlighting proteins contribute to candidal virulence and pathogenicity through their involvement in mechanisms critical for successful host colonization and infection, such as the adhesion to host cells, interactions with plasma homeostatic proteolytic cascades, responses to stress conditions and molecular mimicry. The documented knowledge of the roles of these proteins in C. albicans pathogenicity has utility for assisting the design of new therapeutic, diagnostic and preventive strategies against candidiasis.
Collapse
|
10
|
Tsai CW, Tsai CF, Lin KH, Chen WJ, Lin MS, Hsieh CC, Lin CC. An investigation of the correlation between the S-glutathionylated GAPDH levels in blood and Alzheimer's disease progression. PLoS One 2020; 15:e0233289. [PMID: 32469899 PMCID: PMC7259681 DOI: 10.1371/journal.pone.0233289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/03/2020] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by two aggregates, namely, amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) of hyperphosphorylated tau protein (tau-p), which are released into the blood in a very small amount and cannot be easily detected. An increasing number of recent studies have suggested that S-glutathionylated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is highly correlated with Aβ in patients with AD and that S-glutathionylated GAPDH plays a role as a proapoptotic factor in AD. We found that S-glutathionylated GAPDH is abundant in the blood of AD patients, which is unusual because S-glutathionylated GAPDH cannot exist in the blood under normal conditions. The aim of this study was to further explore the correlation between the S-glutathionylated GAPDH levels in blood plasma and AD progression. As controls, we recruited 191 people without AD, which included 111 healthy individuals and 37 patients with depression and insomnia, in the psychosomatic clinic. Moreover, 47 patients with AD (aged 40–89 years) were recruited at the neurology clinic. The blood S-glutathionylated GAPDH levels in the AD patients were significantly (p < 0.001) higher (752.7 ± 301.7 ng/dL) than those in the controls (59.92 ± 122.4 ng/dL), irrespective of gender and age. For AD diagnosis, the criterion blood S-glutathionylated GAPDH level > 251.62 ng/dL exhibited 95.74% sensitivity and 92.67% specificity. In fact, the individuals aged 70–89 years, namely, 37 patients from the psychosomatic clinic and 42 healthy individuals, showed significant blood S-glutathionylated GAPDH levels (230.5 ± 79.3 and 8.05 ± 20.51 ng/dL, respectively). This finding might indicate neurodegenerative AD progression in psychosomatic patients and suggests that the degree of neuronal apoptosis during AD progression might be sensitively evaluated based on the level of S-glutathionylated GAPDH in blood.
Collapse
Affiliation(s)
- Chen Wei Tsai
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan City, Taiwan
| | - Chia Fan Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuan Hung Lin
- Department of Neurology, Taiwan Adventist Hospital, Taipei, Taiwan
| | - Wei Jung Chen
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan City, Taiwan
| | - Muh Shi Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan City, Taiwan.,Department of Surgery, Kuang Tien General Hospital, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan.,Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan
| | | | - Chai Ching Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan City, Taiwan
| |
Collapse
|
11
|
Adam K, Lesperance J, Hunter T, Zage PE. The Potential Functional Roles of NME1 Histidine Kinase Activity in Neuroblastoma Pathogenesis. Int J Mol Sci 2020; 21:ijms21093319. [PMID: 32392889 PMCID: PMC7247550 DOI: 10.3390/ijms21093319] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood. Gain of chromosome 17q material is found in >60% of neuroblastoma tumors and is associated with poor patient prognosis. The NME1 gene is located in the 17q21.3 region, and high NME1 expression is correlated with poor neuroblastoma patient outcomes. However, the functional roles and signaling activity of NME1 in neuroblastoma cells and tumors are unknown. NME1 and NME2 have been shown to possess histidine (His) kinase activity. Using anti-1- and 3-pHis specific monoclonal antibodies and polyclonal anti-pH118 NME1/2 antibodies, we demonstrated the presence of pH118-NME1/2 and multiple additional pHis-containing proteins in all tested neuroblastoma cell lines and in xenograft neuroblastoma tumors, supporting the presence of histidine kinase activity in neuroblastoma cells and demonstrating the potential significance of histidine kinase signaling in neuroblastoma pathogenesis. We have also demonstrated associations between NME1 expression and neuroblastoma cell migration and differentiation. Our demonstration of NME1 histidine phosphorylation in neuroblastoma and of the potential role of NME1 in neuroblastoma cell migration and differentiation suggest a functional role for NME1 in neuroblastoma pathogenesis and open the possibility of identifying new therapeutic targets and developing novel approaches to neuroblastoma therapy.
Collapse
Affiliation(s)
- Kevin Adam
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA; (K.A.); (T.H.)
| | - Jacqueline Lesperance
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA;
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA; (K.A.); (T.H.)
| | - Peter E. Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence:
| |
Collapse
|
12
|
Crystal structure of GAPDH of Streptococcus agalactiae and characterization of its interaction with extracellular matrix molecules. Microb Pathog 2018; 127:359-367. [PMID: 30553015 DOI: 10.1016/j.micpath.2018.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/10/2018] [Indexed: 11/21/2022]
Abstract
GAPDH being a key enzyme in the glycolytic pathway is one of the surface adhesins of many Gram-positive bacteria including Streptococcus agalactiae. This anchorless adhesin is known to bind to host plasminogen (PLG) and fibrinogen (Fg), which enhances the virulence and modulates the host immune system. The crystal structure of the recombinant GAPDH from S. agalactiae (SagGAPDH) was determined at 2.6 Å resolution by molecular replacement. The structure was found to be highly conserved with a typical NAD binding domain and a catalytic domain. In this paper, using biolayer interferometry studies, we report that the multifunctional SagGAPDH enzyme binds to a variety of host molecules such as PLG, Fg, laminin, transferrin and mucin with a KD value of 4.4 × 10-7 M, 9.8 × 10-7 M, 1 × 10-5 M, 9.7 × 10-12 M and 1.4 × 10-7 M respectively. The ligand affinity blots reveal that SagGAPDH binds specifically to α and β subunits of Fg and the competitive binding ELISA assay reveals that the Fg and PLG binding sites on GAPDH does not overlap each other. The PLG binding motif of GAPDH varies with organisms, however positively charged residues in the hydrophobic surroundings is essential for PLG binding. The lysine analogue competitive binding assay and lysine succinylation experiments deciphered the role of SagGAPDH lysines in PLG binding. On structural comparison with S. pneumoniae GAPDH, K171 of SagGAPDH is being predicted to be involved in PLG binding. Further SagGAPDH exhibited enzymatic activity in the presence of Fg, PLG and transferrin. This suggests that these host molecules does not mask the active site and bind at some other region of GAPDH.
Collapse
|
13
|
Roth Z. Stress-induced alterations in oocyte transcripts are further expressed in the developing blastocyst. Mol Reprod Dev 2018; 85:821-835. [DOI: 10.1002/mrd.23045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 07/18/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Zvi Roth
- Department of Animal Sciences; Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem; Rehovot Israel
| |
Collapse
|
14
|
Adam K, Hunter T. Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. J Transl Med 2018; 98:233-247. [PMID: 29058706 PMCID: PMC5815933 DOI: 10.1038/labinvest.2017.118] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation is the most common type of post-translational modification in eukaryotes. The phosphoproteome is defined as the complete set of experimentally detectable phosphorylation sites present in a cell's proteome under various conditions. However, we are still far from identifying all the phosphorylation sites in a cell mainly due to the lack of information about phosphorylation events involving residues other than Ser, Thr and Tyr. Four types of phosphate-protein linkage exist and these generate nine different phosphoresidues-pSer, pThr, pTyr, pHis, pLys, pArg, pAsp, pGlu and pCys. Most of the effort in studying protein phosphorylation has been focused on Ser, Thr and Tyr phosphorylation. The recent development of 1- and 3-pHis monoclonal antibodies promises to increase our understanding of His phosphorylation and the kinases and phosphatases involved. Several His kinases are well defined in prokaryotes, especially those involved in two-component system (TCS) signaling. However, in higher eukaryotes, NM23, a protein originally characterized as a nucleoside diphosphate kinase, is the only characterized protein-histidine kinase. This ubiquitous and conserved His kinase autophosphorylates its active site His, and transfers this phosphate either onto a nucleoside diphosphate or onto a protein His residue. Studies of NM23 protein targets using newly developed anti-pHis antibodies will surely help illuminate the elusive His phosphorylation-based signaling pathways. This review discusses the role that the NM23/NME/NDPK phosphotransferase has, how the addition of the pHis phosphoproteome will expand the phosphoproteome and make His phosphorylation part of the global phosphorylation world. It also summarizes why our understanding of phosphorylation is still largely restricted to the acid stable phosphoproteome, and highlights the study of NM23 histidine kinase as an entrée into the world of histidine phosphorylation.
Collapse
Affiliation(s)
- Kevin Adam
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
15
|
Muronetz VI, Kuravsky ML, Barinova KV, Schmalhausen EV. Sperm-Specific Glyceraldehyde-3-Phosphate Dehydrogenase - An Evolutionary Acquisition of Mammals. BIOCHEMISTRY (MOSCOW) 2016; 80:1672-89. [PMID: 26878573 DOI: 10.1134/s0006297915130040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review is focused on the mammalian sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS). GAPDS plays the major role in the production of energy required for sperm cell movement and does not perform non-glycolytic functions that are characteristic of the somatic isoenzyme of glyceraldehyde-3-phosphate dehydrogenase. The GAPDS sequence is composed of 408 amino acid residues and includes an additional N-terminal region of 72 a.a. that binds the protein to the sperm tail cytoskeleton. GAPDS is present only in the sperm cells of mammals and lizards, possibly providing them with certain evolutionary advantages in reproduction. In this review, studies concerning the problems of GAPDS isolation, its catalytic properties, and its structural features are described in detail. GAPDS is much more stable compared to the somatic isoenzyme, perhaps due to the necessity of maintaining the enzyme function in the absence of protein expression. The site-directed mutagenesis approach revealed the two GAPDS-specific proline residues, as well as three salt bridges, which seem to be the basis of the increased stability of this protein. As distinct from the somatic isoenzyme, GAPDS exhibits positive cooperativity in binding of the coenzyme NAD+. The key role in transduction of structural changes induced by NAD+ is played by the salt bridge D311-H124. Disruption of this salt bridge cancels GAPDS cooperativity and twofold increases its enzymatic activity instead. The expression of GAPDS was detected in some melanoma cells as well. Its role in the development of certain pathologies, such as cancer and neurodegenerative diseases, is discussed.
Collapse
Affiliation(s)
- V I Muronetz
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia
| | | | | | | |
Collapse
|
16
|
Kubo T, Nakajima H, Nakatsuji M, Itakura M, Kaneshige A, Azuma YT, Inui T, Takeuchi T. Active site cysteine-null glyceraldehyde-3-phosphate dehydrogenase (GAPDH) rescues nitric oxide-induced cell death. Nitric Oxide 2015; 53:13-21. [PMID: 26725192 DOI: 10.1016/j.niox.2015.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/30/2015] [Accepted: 12/23/2015] [Indexed: 11/30/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a homotetrameric enzyme involved in a key step of glycolysis, also has a role in mediating cell death under nitrosative stress. Our previous reports suggest that nitric oxide-induced intramolecular disulfide-bonding GAPDH aggregation, which occurs through oxidation of the active site cysteine (Cys-152), participates in a mechanism to account for nitric oxide-induced death signaling in some neurodegenerative/neuropsychiatric disorders. Here, we demonstrate a rescue strategy for nitric oxide-induced cell death accompanied by GAPDH aggregation in a mutant with a substitution of Cys-152 to alanine (C152A-GAPDH). Pre-incubation of purified wild-type GAPDH with C152A-GAPDH under exposure to nitric oxide inhibited wild-type GAPDH aggregation in a concentration-dependent manner in vitro. Several lines of structural analysis revealed that C152A-GAPDH extensively interfered with nitric oxide-induced GAPDH-amyloidogenesis. Overexpression of doxycycline-inducible C152A-GAPDH in SH-SY5Y neuroblastoma significantly rescued nitric oxide-induced death, concomitant with the decreased formation of GAPDH aggregates. Further, both co-immunoprecipitation assays and simulation models revealed a heterotetramer composed of one dimer each of wild-type GAPDH and C152A-GAPDH. These results suggest that the C152A-GAPDH mutant acts as a dominant-negative molecule against GAPDH aggregation via the formation of this GAPDH heterotetramer. This study may contribute to a new therapeutic approach utilizing C152A-GAPDH against brain damage in nitrosative stress-related disorders.
Collapse
Affiliation(s)
- Takeya Kubo
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinkuourai-kita, Izumisano, Osaka 5988531, Japan
| | - Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinkuourai-kita, Izumisano, Osaka 5988531, Japan.
| | - Masatoshi Nakatsuji
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Sakai, Osaka 5998531, Japan
| | - Masanori Itakura
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinkuourai-kita, Izumisano, Osaka 5988531, Japan
| | - Akihiro Kaneshige
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinkuourai-kita, Izumisano, Osaka 5988531, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinkuourai-kita, Izumisano, Osaka 5988531, Japan
| | - Takashi Inui
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Sakai, Osaka 5998531, Japan
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinkuourai-kita, Izumisano, Osaka 5988531, Japan
| |
Collapse
|
17
|
Inhibition of Aggregation of Mutant Huntingtin by Nucleic Acid Aptamers In Vitro and in a Yeast Model of Huntington's Disease. Mol Ther 2015; 23:1912-26. [PMID: 26310631 DOI: 10.1038/mt.2015.157] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 08/21/2015] [Indexed: 12/20/2022] Open
Abstract
Elongated polyglutamine stretch in mutant huntingtin (mhtt) correlates well with the pathology of Huntington's disease (HD). Inhibition of aggregation of mhtt is a promising strategy to arrest disease progression. In this work, specific, high-affinity RNA aptamers were selected against monomeric mhtt (51Q-htt). Some of them inhibited its aggregation in vitro by stabilizing the monomer. They also recognized 103Q-htt but not 20Q-htt (nonpathogenic length). Inhibition of aggregation corresponded with reduced leakage of a fluorescent probe from liposomes and diminished oxidative stress in RBCs. The presence of aptamers was able to rescue the sequestration of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by aggregated mhtt. Some of the aptamers were able to enhance the partitioning of mhtt in the soluble fraction in a yeast model of HD. They were also able to rescue endocytotic defect due to aggregation of mhtt. The beneficial effect of a combination of aptamers was enhanced with improvement in cell survival. Since HD is a monogenic autosomal dominant disorder, aptamers may be developed as a viable strategy to slow down the progress of the disease. Since they are nonimmunogenic and nontoxic, aptamers may emerge as strong candidates to reduce protein-protein interaction and hence protein aggregation in protein misfolding disorders in general.
Collapse
|
18
|
Shen H, Wang H, Liu Q, Liu H, Teng M, Li X. Structural insights into RNA recognition properties of glyceraldehyde-3-phosphate dehydrogenase 3 fromSaccharomyces cerevisiae. IUBMB Life 2014; 66:631-8. [DOI: 10.1002/iub.1313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/08/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Shen
- School of Life Sciences; University of Science and Technology of China, Hefei; Anhui People's Republic of China
| | - Hong Wang
- School of Life Sciences; University of Science and Technology of China, Hefei; Anhui People's Republic of China
| | - Qiao Liu
- School of Life Sciences; University of Science and Technology of China, Hefei; Anhui People's Republic of China
| | - Huihui Liu
- School of Life Sciences; University of Science and Technology of China, Hefei; Anhui People's Republic of China
| | - Maikun Teng
- School of Life Sciences; University of Science and Technology of China, Hefei; Anhui People's Republic of China
| | - Xu Li
- School of Life Sciences; University of Science and Technology of China, Hefei; Anhui People's Republic of China
| |
Collapse
|
19
|
Banerjee S, Jha HC, Robertson ES. Regulation of the metastasis suppressor Nm23-H1 by tumor viruses. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:207-24. [PMID: 25199839 DOI: 10.1007/s00210-014-1043-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/21/2014] [Indexed: 12/16/2022]
Abstract
Metastasis is the most common cause of cancer mortality. To increase the survival of patients, it is necessary to develop more effective methods for treating as well as preventing metastatic diseases. Recent advancement of knowledge in cancer metastasis provides the basis for development of targeted molecular therapeutics aimed at the tumor cell or its interaction with the host microenvironment. Metastasis suppressor genes (MSGs) are promising targets for inhibition of the metastasis process. During the past decade, functional significance of these genes, their regulatory pathways, and related downstream effector molecules have become a major focus of cancer research. Nm23-H1, first in the family of Nm23 human homologues, is a well-characterized, anti-metastatic factor linked with a large number of human malignancies. Mounting evidence to date suggests an important role for Nm23-H1 in reducing virus-induced tumor cell motility and migration. A detailed understanding of the molecular association between oncogenic viral antigens with Nm23-H1 may reveal the underlying mechanisms for tumor virus-associated malignancies. In this review, we will focus on the recent advances to our understanding of the molecular basis of oncogenic virus-induced progression of tumor metastasis by deregulation of Nm23-H1.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
20
|
Ávila CL, Torres-Bugeau CM, Barbosa LRS, Sales EM, Ouidja MO, Socías SB, Celej MS, Raisman-Vozari R, Papy-Garcia D, Itri R, Chehín RN. Structural characterization of heparin-induced glyceraldehyde-3-phosphate dehydrogenase protofibrils preventing α-synuclein oligomeric species toxicity. J Biol Chem 2014; 289:13838-50. [PMID: 24671416 DOI: 10.1074/jbc.m113.544288] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme that has been associated with neurodegenerative diseases. GAPDH colocalizes with α-synuclein in amyloid aggregates in post-mortem tissue of patients with sporadic Parkinson disease and promotes the formation of Lewy body-like inclusions in cell culture. In a previous work, we showed that glycosaminoglycan-induced GAPDH prefibrillar species accelerate the conversion of α-synuclein to fibrils. However, it remains to be determined whether the interplay among glycosaminoglycans, GAPDH, and α-synuclein has a role in pathological states. Here, we demonstrate that the toxic effect exerted by α-synuclein oligomers in dopaminergic cell culture is abolished in the presence of GAPDH prefibrillar species. Structural analysis of prefibrillar GAPDH performed by small angle x-ray scattering showed a particle compatible with a protofibril. This protofibril is shaped as a cylinder 22 nm long and a cross-section diameter of 12 nm. Using biocomputational techniques, we obtained the first all-atom model of the GAPDH protofibril, which was validated by cross-linking coupled to mass spectrometry experiments. Because GAPDH can be secreted outside the cell where glycosaminoglycans are present, it seems plausible that GAPDH protofibrils could be assembled in the extracellular space kidnapping α-synuclein toxic oligomers. Thus, the role of GAPDH protofibrils in neuronal proteostasis must be considered. The data reported here could open alternative ways in the development of therapeutic strategies against synucleinopathies like Parkinson disease.
Collapse
Affiliation(s)
- César L Ávila
- From the Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj," FBQF-UNT, Chacabuco 461, T4000ILI Tucumán, Argentina
| | - Clarisa M Torres-Bugeau
- From the Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj," FBQF-UNT, Chacabuco 461, T4000ILI Tucumán, Argentina
| | - Leandro R S Barbosa
- the Instituto de Física da Universidade de São Paulo, Rua do Matão, Travessa R, 187, São Paulo, Brazil
| | - Elisa Morandé Sales
- the Instituto de Física da Universidade de São Paulo, Rua do Matão, Travessa R, 187, São Paulo, Brazil
| | - Mohand O Ouidja
- INSERM U1127, CNRS UMR 7225, Institut de Cerveau et de la Moelle Epinière, Paris, France, the Laboratoire Croissance, Réparation et Régénération Tissulaires, CNRS EAC 7149, Université Paris Est Créteil, Université Paris Est, F-94000, Créteil, France, and
| | - Sergio B Socías
- INSERM U1127, CNRS UMR 7225, Institut de Cerveau et de la Moelle Epinière, Paris, France
| | - M Soledad Celej
- the Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Rita Raisman-Vozari
- INSERM U1127, CNRS UMR 7225, Institut de Cerveau et de la Moelle Epinière, Paris, France
| | - Dulce Papy-Garcia
- the Laboratoire Croissance, Réparation et Régénération Tissulaires, CNRS EAC 7149, Université Paris Est Créteil, Université Paris Est, F-94000, Créteil, France, and
| | - Rosangela Itri
- the Instituto de Física da Universidade de São Paulo, Rua do Matão, Travessa R, 187, São Paulo, Brazil
| | - Rosana N Chehín
- From the Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj," FBQF-UNT, Chacabuco 461, T4000ILI Tucumán, Argentina,
| |
Collapse
|
21
|
Jiang X, Sun Q, Li H, Li K, Ren X. The role of phosphoglycerate mutase 1 in tumor aerobic glycolysis and its potential therapeutic implications. Int J Cancer 2013; 135:1991-6. [PMID: 24285383 DOI: 10.1002/ijc.28637] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/11/2013] [Accepted: 11/18/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Xiangli Jiang
- Department of Thoracic Medical Oncology; Tianjin Medical University Cancer Institute and Hospital; Tianjin China
- National Clinical Research Center of Cancer; Tianjin China
- Key Laboratory of Cancer Immunology and Biotherapy; Tianjin China
| | - Qian Sun
- National Clinical Research Center of Cancer; Tianjin China
- Key Laboratory of Cancer Immunology and Biotherapy; Tianjin China
- Department of Immunology; Tianjin Medical University Cancer Institute and Hospital; Tianjin China
| | - Hui Li
- National Clinical Research Center of Cancer; Tianjin China
- Key Laboratory of Cancer Immunology and Biotherapy; Tianjin China
- Department of Immunology; Tianjin Medical University Cancer Institute and Hospital; Tianjin China
| | - Kai Li
- Department of Thoracic Medical Oncology; Tianjin Medical University Cancer Institute and Hospital; Tianjin China
| | - Xiubao Ren
- National Clinical Research Center of Cancer; Tianjin China
- Key Laboratory of Cancer Immunology and Biotherapy; Tianjin China
- Department of Biotherapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin China
| |
Collapse
|
22
|
Marino N, Nakayama J, Collins JW, Steeg PS. Insights into the biology and prevention of tumor metastasis provided by the Nm23 metastasis suppressor gene. Cancer Metastasis Rev 2013; 31:593-603. [PMID: 22706779 DOI: 10.1007/s10555-012-9374-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metastatic disease is the major cause of death among cancer patients. A class of genes, named metastasis suppressors, has been described to specifically regulate the metastatic process. The metastasis suppressor genes are downregulated in the metastatic lesion compared to the primary tumor. In this review, we describe the body of research surrounding the first metastasis suppressor identified, Nm23. Nm23 overexpression in aggressive cancer cell lines reduced their metastatic potential in vivo with no significant reduction in primary tumor size. A complex mechanism of anti-metastatic action is unfolding involving several known Nm23 enzymatic activities (nucleotide diphosphate kinase, histidine kinase, and 3'-5' exonuclease), protein-protein interactions, and downstream gene regulation properties. Translational approaches involving Nm23 have progressed to the clinic. The upregulation of Nm23 expression by medroxyprogesterone acetate has been tested in a phase II trial. Other approaches with significant preclinical success include gene therapy using traditional or nanoparticle delivery, and cell permeable Nm23 protein. Recently, based on the inverse correlation of Nm23 and LPA1 expression, a LPA1 inhibitor has been shown to both inhibit metastasis and induce metastatic dormancy.
Collapse
Affiliation(s)
- Natascia Marino
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 1122, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
23
|
Elkhalfi B, Araya-Garay JM, Rodríguez-Castro J, Rey-Méndez M, Soukri A, Serrano Delgado A. Cloning and heterologous overexpression of three gap genes encoding different glyceraldehyde-3-phosphate dehydrogenases from the plant pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000. Protein Expr Purif 2013; 89:146-55. [PMID: 23507306 DOI: 10.1016/j.pep.2013.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
The gammaproteobacterium Pseudomonas syringae pv. tomato DC3000 is the causal agent of bacterial speck, a common disease of tomato. The mode of infection of this pathogen is not well understood, but according to molecular biological, genomic and proteomic data it produces a number of proteins that may promote infection and draw nutrients from the plant. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a major enzyme of carbon metabolism that was reported to be a surface antigen and virulence factor in other pathogenic microorganisms, but its possible role in the infection process of P. syringae has so far not been studied. Whole-genome sequence analyses revealed the occurrence in this phytopathogenic bacterium of three paralogous gap genes encoding distinct GAPDHs, namely two class I enzymes having different molecular mass subunits and one class III bifunctional D-erythrose-4-phosphate dehydrogenase/GAPDH enzyme. By using genome bioinformatics data, as well as alignments of both DNA and deduced protein sequences, the three gap genes of P. syringae were one-step cloned with a His-Tag in pET21a vector using a PCR-based strategy, and its expression optimized in Escherichia coli BL21 to achieve high yield of the heterologous proteins. In accordance with their distinct molecular phylogenies, these bacterial gap genes encode functional GAPDHs of diverse molecular masses and nicotinamide-coenzyme specificities, suggesting specific metabolic and/or cellular roles.
Collapse
Affiliation(s)
- Bouchra Elkhalfi
- Laboratory of Physiology & Genetics Molecular, Faculty of Sciences Ain Chock, Casablanca, Morocco
| | | | | | | | | | | |
Collapse
|
24
|
Kim MS, Jeong J, Jeong J, Shin DH, Lee KJ. Structure of Nm23-H1 under oxidative conditions. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:669-80. [PMID: 23519676 DOI: 10.1107/s0907444913001194] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/11/2013] [Indexed: 01/06/2023]
Abstract
Nm23-H1/NDPK-A, a tumour metastasis suppressor, is a multifunctional housekeeping enzyme with nucleoside diphosphate kinase activity. Hexameric Nm23-H1 is required for suppression of tumour metastasis and it is dissociated into dimers under oxidative conditions. Here, the crystal structure of oxidized Nm23-H1 is presented. It reveals the formation of an intramolecular disulfide bond between Cys4 and Cys145 that triggers a large conformational change that destabilizes the hexameric state. The dependence of the dissociation dynamics on the H2O2 concentration was determined using hydrogen/deuterium-exchange experiments. The quaternary conformational change provides a suitable environment for the oxidation of Cys109 to sulfonic acid, as demonstrated by peptide sequencing using nanoUPLC-ESI-q-TOF tandem MS. From these and other data, it is proposed that the molecular and cellular functions of Nm23-H1 are regulated by a series of oxidative modifications coupled to its oligomeric states and that the modified cysteines are resolvable by NADPH-dependent reduction systems. These findings broaden the understanding of the complicated enzyme-regulatory mechanisms that operate under oxidative conditions.
Collapse
Affiliation(s)
- Mi-Sun Kim
- The Center for Cell Signaling and Drug Discovery Research, College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
25
|
Analysis of dormant bud (Banjhi) specific transcriptome of tea (Camellia sinensis (L.) O. Kuntze) from cDNA library revealed dormancy-related genes. Appl Biochem Biotechnol 2013; 169:1405-17. [PMID: 23315209 DOI: 10.1007/s12010-012-0070-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/26/2012] [Indexed: 01/27/2023]
Abstract
Bud dormancy is of ecological and economical interest due to its impact on tea (Camellia sinensis (L.) O. Kuntze) plant growth and yield. Growth regulation associated with dormancy is an essential element in plant's life cycle that leads to changes in expression of large number of genes. In order to identify and provide a picture of the transcriptome profile, cDNA library was constructed from dormant bud (banjhi) of tea. Sequence and gene ontology analysis of 3,500 clones, in many cases, enabled their functional categorization concerning the bud growth. Based on the cDNA library data, the putative role of identified genes from tea is discussed in relation to growth and dormancy, which includes morphogenesis, cellular differentiation, tropism, cell cycle, signaling, and various metabolic pathways. There was a higher representation of unknown processes such as unknown molecular functions (65.80 %), unknown biological processes (62.46 %), and unknown cellular components (67.42 %). However, these unknown transcripts represented a novel component of transcripts in tea plant bud growth and/or dormancy development. The identified transcripts and expressed sequence tags provides a valuable public resource and preliminary insights into the molecular mechanisms of bud dormancy regulation. Further, the findings will be the target of future expression experiments, particularly for further identification of dormancy-related genes in this species.
Collapse
|
26
|
Abstract
GAPDH interacts with a plethora of diverse cellular proteins. The network of interacting partners, or interactome, is presented for GAPDH with the interacting molecules grouped into specific functional and structural categories. By organizing the binding partners in this way, certain common structural features are beginning to surface, such as acidic dipeptide sequences that are found in several of these binding proteins. Additionally, the consensus sequences for target polynucleotides are being brought to light. The categories, which are presented according to function, offer an opportunity for research into the corresponding structural correlates to these interactions. Recent discoveries of interacting proteins have revealed novel relationships that are generating emerging mechanisms. Proteins that are associated with age-related neurodegenerative diseases appear to be particularly prone to binding GAPDH, suggesting that GAPDH may be playing a role in these diseases. Neurodegenerative diseases that are discussed are the conformational diseases of aging, suggesting that GAPDH may be a global sensor for cellular conformational stress. In addition to GAPDH's oxidoreductase activity, several other enzymatic functions have been discovered, including peroxidase, nitrosylase, mono-ADP-ribosylase and kinase activities.
Collapse
Affiliation(s)
- Norbert W Seidler
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| |
Collapse
|
27
|
Tien YC, Chuankhayan P, Huang YC, Chen CD, Alikhajeh J, Chang SL, Chen CJ. Crystal structures of rice (Oryza sativa) glyceraldehyde-3-phosphate dehydrogenase complexes with NAD and sulfate suggest involvement of Phe37 in NAD binding for catalysis. PLANT MOLECULAR BIOLOGY 2012; 80:389-403. [PMID: 22903596 DOI: 10.1007/s11103-012-9953-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/06/2012] [Indexed: 05/03/2023]
Abstract
Cytosolic Oryza sativa glyceraldehyde-3-phosphate dehydrogenase (OsGAPDH), the enzyme involved in the ubiquitous glycolysis, catalyzes the oxidative phosphorylation of glyceraldehyde-3-phosphate to 1,3-biphosphoglycerate (BPG) using nicotinamide adenine dinucleotide (NAD) as an electron acceptor. We report crystal structures of OsGAPDH in three conditions of NAD-free, NAD-bound and sulfate-soaked forms to discuss the molecular determinants for coenzyme specificity. The structure of OsGAPDH showed a homotetramer form with each monomer comprising three domains-NAD-binding, catalytic and S-loop domains. NAD binds to each OsGAPDH subunits with some residues forming positively charged grooves that attract sulfate anions, as a simulation of phosphate groups in the product BPG. Phe37 not only forms a bottleneck to improve NAD-binding but also combines with Pro193 and Asp35 as key conserved residues for NAD-specificity in OsGAPDH. The binding of NAD alters the side-chain conformation of Phe37 with a 90° rotation related to the adenine moiety of NAD, concomitant with clamping the active site about 0.6 Å from the "open" to "closed" form, producing an increased affinity specific for NAD. Phe37 exists only in higher organisms, whereas it is replaced by other residues (Thr or Leu) with smaller side chains in lower organisms, which makes a greater distance between Leu34 and NAD of E. coli GAPDH than that between Phe37 and NAD of OsGAPDH. We demonstrated that Phe37 plays a crucial role in stabilizing NAD binding or intermediating of apo-holo transition, resulting in a greater NAD-dependent catalytic efficiency using site-directed mutagenesis. Phe37 might be introduced by evolution generating a catalytic advantage in cytosolic GAPDH.
Collapse
Affiliation(s)
- Yueh-Chu Tien
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | | | | | | | | | | | | |
Collapse
|
28
|
Gendelman M, Roth Z. In vivo vs. in vitro models for studying the effects of elevated temperature on the GV-stage oocyte, subsequent developmental competence and gene expression. Anim Reprod Sci 2012; 134:125-34. [DOI: 10.1016/j.anireprosci.2012.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/12/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
|
29
|
Guo C, Liu S, Sun MZ. Novel insight into the role of GAPDH playing in tumor. Clin Transl Oncol 2012; 15:167-72. [PMID: 22911551 DOI: 10.1007/s12094-012-0924-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 07/24/2012] [Indexed: 01/01/2023]
Abstract
The role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) being consistently regarded as the main housekeeping gene and reference gene/protein for expression quantification in tumors has been gradually questioned and challenged by accumulated experiment evidence. The current review notified that the GAPDH expression was deregulated in lung cancer, renal cancer, breast cancer, gastric cancer, glioma, liver cancer, colorectal cancer, melanoma, prostatic cancer, pancreatic cancer and bladder cancer. Interestingly, GAPDH was commonly up-regulated in a variety of types of cancer, which was revealed to be potentially required for the cancer cell growth and tumor formation. The relevant mechanisms were also discussed in current review. This work might provide useful insights for future studies on GAPDH in tumors.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | | | | |
Collapse
|
30
|
Gendelman M, Roth Z. Seasonal Effect on Germinal Vesicle-Stage Bovine Oocytes Is Further Expressed by Alterations in Transcript Levels in the Developing Embryos Associated with Reduced Developmental Competence1. Biol Reprod 2012; 86:1-9. [DOI: 10.1095/biolreprod.111.092882] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
31
|
Marino N, Marshall JC, Steeg PS. Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 384:351-62. [PMID: 21713383 PMCID: PMC6545597 DOI: 10.1007/s00210-011-0646-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/14/2011] [Indexed: 01/12/2023]
Abstract
Nm23-H1, also known as NDPK-A, was the first of a class of metastasis suppressor genes to be identified. Overexpression of Nm23-H1 in metastatic cell lines (melanoma, breast carcinoma, prostate, colon, hepatocellular, and oral squamous cell carcinoma) reduced cell motility in in vitro assays and metastatic potential in xenograft models, without a significant effect on primary tumor size. The mechanism of Nm23-H1 suppression of metastasis, however, is incompletely understood. Nm23-H1 has been reported to bind proteins, including those in small G-protein complexes, transcriptional complexes, the Map kinase, the TGF-β signaling pathways and the cytoskeleton. Evidence supporting these associations is presented together with evidence of resultant biochemical and phenotypic consequences of association. Cumulatively, the data suggest that part of the anti-metastatic function of Nm23-H1 lies in pathways that it interrupts via binding and inactivation of proteins.
Collapse
Affiliation(s)
- Natascia Marino
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
32
|
PAN ZY, DENG XX. Proteomic Comparison Between Leaves from a Red-Flesh Mutant and Its Wild-Type in Sweet Orange. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60111-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Kuravsky ML, Aleshin VV, Frishman D, Muronetz VI. Testis-specific glyceraldehyde-3-phosphate dehydrogenase: origin and evolution. BMC Evol Biol 2011; 11:160. [PMID: 21663662 PMCID: PMC3224139 DOI: 10.1186/1471-2148-11-160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 06/10/2011] [Indexed: 11/25/2022] Open
Abstract
Background Glyceraldehyde-3-phosphate dehydrogenase (GAPD) catalyses one of the glycolytic reactions and is also involved in a number of non-glycolytic processes, such as endocytosis, DNA excision repair, and induction of apoptosis. Mammals are known to possess two homologous GAPD isoenzymes: GAPD-1, a well-studied protein found in all somatic cells, and GAPD-2, which is expressed solely in testis. GAPD-2 supplies energy required for the movement of spermatozoa and is tightly bound to the sperm tail cytoskeleton by the additional N-terminal proline-rich domain absent in GAPD-1. In this study we investigate the evolutionary history of GAPD and gain some insights into specialization of GAPD-2 as a testis-specific protein. Results A dataset of GAPD sequences was assembled from public databases and used for phylogeny reconstruction by means of the Bayesian method. Since resolution in some clades of the obtained tree was too low, syntenic analysis was carried out to define the evolutionary history of GAPD more precisely. The performed selection tests showed that selective pressure varies across lineages and isoenzymes, as well as across different regions of the same sequences. Conclusions The obtained results suggest that GAPD-1 and GAPD-2 emerged after duplication during the early evolution of chordates. GAPD-2 was subsequently lost by most lineages except lizards, mammals, as well as cartilaginous and bony fishes. In reptilians and mammals, GAPD-2 specialized to a testis-specific protein and acquired the novel N-terminal proline-rich domain anchoring the protein in the sperm tail cytoskeleton. This domain is likely to have originated by exonization of a microsatellite genomic region. Recognition of the proline-rich domain by cytoskeletal proteins seems to be unspecific. Besides testis, GAPD-2 of lizards was also found in some regenerating tissues, but it lacks the proline-rich domain due to tissue-specific alternative splicing.
Collapse
Affiliation(s)
- Mikhail L Kuravsky
- Faculty of Bioengineering and Bioinformatics, MV Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | | | |
Collapse
|
34
|
Hurst DR, Welch DR. Metastasis suppressor genes at the interface between the environment and tumor cell growth. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:107-80. [PMID: 21199781 DOI: 10.1016/b978-0-12-385859-7.00003-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms and genetic programs required for cancer metastasis are sometimes overlapping, but components are clearly distinct from those promoting growth of a primary tumor. Every sequential, rate-limiting step in the sequence of events leading to metastasis requires coordinated expression of multiple genes, necessary signaling events, and favorable environmental conditions or the ability to escape negative selection pressures. Metastasis suppressors are molecules that inhibit the process of metastasis without preventing growth of the primary tumor. The cellular processes regulated by metastasis suppressors are diverse and function at every step in the metastatic cascade. As we gain knowledge into the molecular mechanisms of metastasis suppressors and cofactors with which they interact, we learn more about the process, including appreciation that some are potential targets for therapy of metastasis, the most lethal aspect of cancer. Until now, metastasis suppressors have been described largely by their function. With greater appreciation of their biochemical mechanisms of action, the importance of context is increasingly recognized especially since tumor cells exist in myriad microenvironments. In this chapter, we assemble the evidence that selected molecules are indeed suppressors of metastasis, collate the data defining the biochemical mechanisms of action, and glean insights regarding how metastasis suppressors regulate tumor cell communication to-from microenvironments.
Collapse
Affiliation(s)
- Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
35
|
Biochemical characterization of glyceraldehyde-3-phosphate dehydrogenase from Thermococcus kodakarensis KOD1. Extremophiles 2011; 15:337-46. [PMID: 21409597 DOI: 10.1007/s00792-011-0365-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an essential role in glycolysis by catalyzing the conversion of D-glyceraldehyde 3-phosphate (D-G3P) to 1,3-diphosphoglycerate using NAD(+) as a cofactor. In this report, the GAPDH gene from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (GAPDH-tk) was cloned and the protein was purified to homogeneity. GAPDH-tk exists as a homotetramer with a native molecular mass of 145 kDa; the subunit molecular mass was 37 kDa. GAPDH-tk is a thermostable protein with a half-life of 5 h at 80-90°C. The apparent K (m) values for NAD(+) and D-G3P were 77.8 ± 7.5 μM and 49.3 ± 3.0 μM, respectively, with V (max) values of 45.1 ± 0.8 U/mg and 59.6 ± 1.3 U/mg, respectively. Transmission electron microscopy (TEM) and image processing confirmed that GAPDH-tk has a tetrameric structure. Interestingly, GAPDH-tk migrates as high molecular mass forms (~232 kDa and ~669 kDa) in response to oxidative stress.
Collapse
|
36
|
Röwer C, Koy C, Hecker M, Reimer T, Gerber B, Thiesen HJ, Glocker MO. Mass spectrometric characterization of protein structure details refines the proteome signature for invasive ductal breast carcinoma. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:440-456. [PMID: 21472563 DOI: 10.1007/s13361-010-0031-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/30/2010] [Accepted: 11/03/2010] [Indexed: 05/30/2023]
Abstract
Early diagnosis as well as individualized therapies are necessary to reduce the mortality of breast cancer, and personalized patient care strategies rely on novel prognostic or predictive factors. In this study, with six breast cancer patients, 2D gel analysis was applied for studying protein expression differences in order to distinguish invasive ductal breast carcinoma, the most frequent breast tumor subtype, from control samples. In total, 1203 protein spots were assembled in a 2D reference gel. Differentially abundant spots were subjected to peptide mass fingerprinting for protein identification. Twenty proteins with their corresponding 38 differentially expressed 2D gel spots were contained in our previously reported proteome signature, suggesting that distinct protein forms were contributing. In-depth MS/MS measurements enabled analyses of protein structure details of selected proteins. In protein spots that significantly contributed to our signature, we found that glyceraldehyde-3-phosphate dehydrogenase was N-terminally truncated, pyruvate kinase M2 and nucleoside diphosphate kinase A but not other isoforms of these proteins were of importance, and nucleophosmin phosphorylation at serine residues 106 and 125 were clearly identified. Principle component analysis and hierarchical clustering with normalized quantitative data from the 38 spots resulted in accurate separation of tumor from control samples. Thus, separation of tissue samples as in our initial proteome signature could be confirmed even with a different proteome analysis platform. In addition, detailed protein structure investigations enabled refining our proteome signature for invasive ductal breast carcinoma, opening the way to structure-/function studies with respect to disease processes and/or therapeutic intervention.
Collapse
Affiliation(s)
- Claudia Röwer
- Proteome Center Rostock, Department for Proteome Research, Institute of Immunology, Medical Faculty, University of Rostock, Schillingallee 69, P.O. Box 100 888, Rostock 18055, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Lamson DR, House AJ, Danshina PV, Sexton JZ, Sanyang K, O’Brien DA, Yeh LA, Williams KP. Recombinant human sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDHS) is expressed at high yield as an active homotetramer in baculovirus-infected insect cells. Protein Expr Purif 2011; 75:104-13. [PMID: 20828617 PMCID: PMC2992962 DOI: 10.1016/j.pep.2010.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 11/19/2022]
Abstract
The sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDHS) isoform is a promising contraceptive target because it is specific to male germ cells, essential for sperm motility and male fertility, and well suited to pharmacological inhibition. However, GAPDHS is difficult to isolate from native sources and recombinant expression frequently results in high production of insoluble enzyme. We chose to use the Bac-to-Bac baculovirus-insect cell system to express a His-tagged form of human GAPDHS (Hu his-GAPDHS) lacking the proline-rich N-terminal sequence. This recombinant Hu his-GAPDHS was successfully produced in Spodoptera frugiperda 9 (Sf9) cells by infection with recombinant virus as a soluble, enzymatically active form in high yield, >35 mg/L culture. Biochemical characterization of the purified enzyme by mass spectrometry and size exclusion chromatography confirmed the presence of the tetrameric form. Further characterization by peptide ion matching mass spectrometry and Edman sequencing showed that unlike the mixed tetramer forms produced in bacterial expression systems, human his-GAPDHS expressed in baculovirus-infected insect cells is homotetrameric. The ability to express and purify active human GAPDHS as homotetramers in high amounts will greatly aid in drug discovery efforts targeting this enzyme for discovery of novel contraceptives and three compounds were identified as inhibitors of Hu his-GAPDHS from a pilot screen of 1120 FDA-approved compounds.
Collapse
Affiliation(s)
- David R. Lamson
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Alan J. House
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Polina V. Danshina
- Department of Cell and Developmental Biology, Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jonathan Z. Sexton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Khaddijatou Sanyang
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Deborah A. O’Brien
- Department of Cell and Developmental Biology, Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Li-An Yeh
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Kevin P. Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
38
|
Dharmasiri S, Harrington HM, Dharmasiri N. Heat shock modulates phosphorylation status and activity of nucleoside diphosphate kinase in cultured sugarcane cells. PLANT CELL REPORTS 2010; 29:1305-14. [PMID: 20821213 DOI: 10.1007/s00299-010-0917-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/17/2010] [Accepted: 08/23/2010] [Indexed: 05/29/2023]
Abstract
Nucleoside diphosphate kinase (NDPK) is involved in the regeneration of nucleoside triphosphates (NTPs) through its phosphotransferase activity via an autophosphorylating histidine residue. Additionally, autophosphorylation of serine and/or threonine residues is documented for NDPKs from various organisms. However, the metabolic significance of serine/threonine phosphorylation has not been well characterized. In this study we report the cloning and characterization of NDPKI from cultured sugarcane (Saccharum officinarum L. line H50-7209) cells, and modulation of serine autophosphorylation of NDPK1 in response to heat-shock (HS). Heat-shock treatment at 40°C for 2 h resulted in a 40% reduction in labeled phosphoserine in NDPK1. This dephosphorylation was accompanied by an increase in NDPK enzyme activity. In contrast, NDPK1 in cultured tobacco (cv. W-38) cells did not show changes in autophosphorylation or increased enzyme activity in response to HS. The mRNA or protein level of NDPK1 did not increase in response to HS. Sugarcane cells sustain the constitutive protein synthesis in addition to heat-shock protein synthesis during HS, while constitutive protein synthesis is significantly reduced in tobacco cells during HS. Thus, HS modulation of NDPK1 activity and serine dephosphorylation in sugarcane cells may represent an important physiological role in maintaining cellular metabolic functions during heat stress.
Collapse
Affiliation(s)
- Sunethra Dharmasiri
- Department of Biology, Texas State University, 601, University Drive, San Marcos, USA.
| | | | | |
Collapse
|
39
|
Charro N, Hood BL, Faria D, Pacheco P, Azevedo P, Lopes C, de Almeida AB, Couto FM, Conrads TP, Penque D. Serum proteomics signature of cystic fibrosis patients: a complementary 2-DE and LC-MS/MS approach. J Proteomics 2010; 74:110-26. [PMID: 20950718 DOI: 10.1016/j.jprot.2010.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/17/2010] [Accepted: 10/05/2010] [Indexed: 01/01/2023]
Abstract
Complementary 2D-PAGE and 'shotgun' LC-MS/MS approaches were combined to identify medium and low-abundant proteins in sera of Cystic Fibrosis (CF) patients (mild or severe pulmonary disease) in comparison with healthy CF-carrier and non-CF carrier individuals aiming to gain deeper insights into the pathogenesis of this multifactorial genetic disease. 78 differentially expressed spots were identified from 2D-PAGE proteome profiling yielding 28 identifications and postulating the existence of post-translation modifications (PTM). The 'shotgun' approach highlighted altered levels of proteins actively involved in CF: abnormal tissue/airway remodeling, protease/antiprotease imbalance, innate immune dysfunction, chronic inflammation, nutritional imbalance and Pseudomonas aeruginosa colonization. Members of the apolipoproteins family (VDBP, ApoA-I, and ApoB) presented gradually lower expression from non-CF to CF-carrier individuals and from those to CF patients, results validated by an independent assay. The multifunctional enzyme NDKB was identified only in the CF group and independently validated by WB. Its functions account for ion sensor in epithelial cells, pancreatic secretion, neutrophil-mediated inflammation and energy production, highlighting its physiological significance in the context of CF. Complementary proteomics-based approaches are reliable tools to reveal pathways and circulating proteins actively involved in a heterogeneous disease such as CF.
Collapse
Affiliation(s)
- Nuno Charro
- Laboratório de Proteómica, Departamento de Genética, INSA, I.P., Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gendelman M, Aroyo A, Yavin S, Roth Z. Seasonal effects on gene expression, cleavage timing, and developmental competence of bovine preimplantation embryos. Reproduction 2010; 140:73-82. [DOI: 10.1530/rep-10-0055] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined the association between season and expression of genes involved in early embryonic development with an emphasis on cleavage rate and timing of the first embryonic cleavage. In Exp. 1, oocytes were aspirated during the cold (Dec–Apr) and hot (May–Nov) seasons. Matured oocytes were chemically activated and culturedin vitro. The developmental peak to the two- and four-cell stages occurred earlier, with a higher proportion of first-cleaved embryos, during the cold season relative to the hot season (P<0.01). In Exp. 2, a time-lapse system was employed to characterize the delayed cleavage noted for the hot season. Cleavage to the two-cell stage occurred in two distinct waves: early cleavage occurred between 18 and 25 h post activation, and late cleavage occurred between 27 and 40 h post activation. In Exp. 3, oocytes were aspirated during the cold and hot seasons, maturedin vitro, fertilized, and cultured for 8 days. In each season, early- and late-cleaved two-cell stage embryos were collected. Total RNA was isolated, and semi-quantitative and real-time PCRs were carried out with primers forGDF9,POU5F1, andGAPDHusing18S rRNAas the reference gene. In both seasons, the expression of all examined genes was higher (P<0.05) in early- versus late-cleaved embryos.POU5F1expression was higher (P<0.05) in early-cleaved embryos developed in the cold season versus the hot season counterparts. The findings suggest a deleterious seasonal effect on oocyte developmental competence with delayed cleavage and variation in gene expression.
Collapse
|
41
|
Xu C, Sibicky T, Huang B. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. PLANT CELL REPORTS 2010; 29:595-615. [PMID: 20361191 DOI: 10.1007/s00299-010-0847-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 02/25/2010] [Accepted: 03/16/2010] [Indexed: 05/21/2023]
Abstract
Knowledge of stress-responsive proteins is critical for further understanding the molecular mechanisms of stress tolerance. The objectives of this study were to establish a proteomic map for a perennial grass species, creeping bentgrass (A. stolonifera L.), and to identify differentially expressed, salt-responsive proteins in two cultivars differing in salinity tolerance. Plants of two cultivars ('Penncross' and 'Penn-A4') were irrigated daily with water (control) or NaCl solution to induce salinity stress in a growth chamber. Salinity stress was obtained by adding NaCl solution of 2, 4, 6, and 8 dS m(-1) in the soil daily for 2-day intervals at each concentration, and then by watering soil with 10 dS m(-1) solution daily for 28 days. For proteomic map, using two-dimensional electrophoresis (2-DE), approximately 420 and 300 protein spots were detected in leaves and roots, respectively. A total of 148 leaf protein spots and 40 root protein spots were excised from the 2-DE gels and subjected to mass spectrometry analysis. In total, 106 leaf protein spots and 24 root protein spots were successfully identified. Leaves had more salt-responsive proteins than roots in both cultivars. The superior salt tolerance in 'Penn-A4', indicated by shoot extension rate, relative water content, and cell membrane stability during the 28-day salinity stress could be mainly associated with its higher level of vacuolar H(+)-ATPase in roots and UDP-sulfoquinovose synthase, methionine synthase, and glucan exohydrolase in leaves, as well as increased accumulation of catalase and glutathione S-transferase in leaves. Our results suggest that salinity tolerance in creeping bentgrass could be in part controlled by an alteration of ion transport through vacuolar H(+)-ATPase in roots, maintenance of the functionality and integrity of thylakoid membranes, sustained polyamine biosynthesis, and by the activation of cell wall loosening proteins and antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Chenping Xu
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, USA
| | | | | |
Collapse
|
42
|
Vladusić T, Hrasćan R, Vrhovac I, Kruslin B, Gamulin M, Grgić M, Pećina-Slaus N, Franekić Colić J. Loss of heterozygosity of selected tumor suppressor genes in human testicular germ cell tumors. Pathol Res Pract 2010; 206:163-7. [PMID: 20092957 DOI: 10.1016/j.prp.2009.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/05/2009] [Accepted: 10/22/2009] [Indexed: 10/19/2022]
Abstract
Human testicular germ cell tumors (TGCTs) are histologically heterogenous neoplasms with a variable malignant potential. Two main groups of germ cell tumors occur in men: seminomas and nonseminomas. In the present study, a set of four tumor suppressor genes was investigated in testicular cancers. CDH1, APC, p53, and nm23-H1 genes were tested for loss of heterozygosity (LOH). Thirty-eight testicular germ cell tumors (17 seminomas and 21 nonseminomas) were analyzed by PCR using restriction fragment length polymorphism or the dinucleotide/tetranucleotide repeat polymorphism method. An allelic loss of p53 at exon 4 was detected in five nonseminomas, whereas LOH of p53 at intron 6 occurred in one of the seminoma and two of the nonseminoma samples. Allelic losses of the APC gene were present in three seminomas and one nonseminoma, whereas one seminoma and three nonseminomas showed LOH of CDH1. The analysis of allelic losses showed no common structural genetic alterations in tumor tissues, although a different pattern of LOH was observed between the two main histological groups of TGCTs.
Collapse
Affiliation(s)
- Tomislav Vladusić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Butterfield DA, Hardas SS, Lange MLB. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many pathways to neurodegeneration. J Alzheimers Dis 2010; 20:369-93. [PMID: 20164570 PMCID: PMC2922983 DOI: 10.3233/jad-2010-1375] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recently, the oxidoreductase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has become a subject of interest as more and more studies reveal a surfeit of diverse GAPDH functions, extending beyond traditional aerobic metabolism of glucose. As a result of multiple isoforms and cellular locales, GAPDH is able to come in contact with a variety of small molecules, proteins, membranes, etc., that play important roles in normal and pathologic cell function. Specifically, GAPDH has been shown to interact with neurodegenerative disease-associated proteins, including the amyloid-beta protein precursor (AbetaPP). Studies from our laboratory have shown significant inhibition of GAPDH dehydrogenase activity in Alzheimer's disease (AD) brain due to oxidative modification. Although oxidative stress and damage is a common phenomenon in the AD brain, it would seem that inhibition of glycolytic enzyme activity is merely one avenue in which AD pathology affects neuronal cell development and survival, as oxidative modification can also impart a toxic gain-of-function to many proteins, including GAPDH. In this review, we examine the many functions of GAPDH with respect to AD brain; in particular, the apparent role(s) of GAPDH in AD-related apoptotic cell death is emphasized.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, University of Kentucky, Center of Membrane Sciences, Lexington, KY40506-0055, USA.
| | | | | |
Collapse
|
44
|
Demarse NA, Ponnusamy S, Spicer EK, Apohan E, Baatz JE, Ogretmen B, Davies C. Direct binding of glyceraldehyde 3-phosphate dehydrogenase to telomeric DNA protects telomeres against chemotherapy-induced rapid degradation. J Mol Biol 2009; 394:789-803. [PMID: 19800890 DOI: 10.1016/j.jmb.2009.09.062] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 01/01/2023]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that displays several non-glycolytic activities, including the maintenance and/or protection of telomeres. In this study, we determined the molecular mechanism and biological role of the interaction between GAPDH and human telomeric DNA. Using gel-shift assays, we show that recombinant GAPDH binds directly with high affinity (K(d)=45 nM) to a single-stranded oligonucleotide comprising three telomeric DNA repeats, and that nucleotides T1, G5, and G6 of the TTAGGG repeat are essential for binding. The stoichiometry of the interaction is 2:1 (DNA:GAPDH), and GAPDH appears to form a high-molecular-weight complex when bound to the oligonucleotide. Mutation of Asp32 and Cys149, which are localized to the NAD-binding site and the active-site center of GAPDH, respectively, produced mutants that almost completely lost their telomere-binding functions both in vitro and in situ (in A549 human lung cancer cells). Treatment of A549 cells with the chemotherapeutic agents gemcitabine and doxorubicin resulted in increased nuclear localization of expressed wild-type GAPDH, where it protected telomeres against rapid degradation, concomitant with increased resistance to the growth-inhibitory effects of these drugs. The non-DNA-binding mutants of GAPDH also localized to the nucleus when expressed in A549 cells, but did not confer any significant protection of telomeres against chemotherapy-induced degradation or growth inhibition; this occurred without the involvement of caspase activation or apoptosis regulation. Overall, these data demonstrate that GAPDH binds telomeric DNA directly in vitro and may have a biological role in the protection of telomeres against rapid degradation in response to chemotherapeutic agents in A549 human lung cancer cells.
Collapse
Affiliation(s)
- Neil A Demarse
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Makhina T, Loers G, Schulze C, Ueberle B, Schachner M, Kleene R. Extracellular GAPDH binds to L1 and enhances neurite outgrowth. Mol Cell Neurosci 2009; 41:206-18. [PMID: 19285135 DOI: 10.1016/j.mcn.2009.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 12/08/2008] [Accepted: 02/26/2009] [Indexed: 10/21/2022] Open
Abstract
We have identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding partner for the cell adhesion molecule L1. GAPDH binds to sites within the extracellular domain of L1, namely the immunoglobulin-like domains I-VI and the fibronectin type III homologous repeats 4-5. Extracellular GAPDH was detected at the cell surface of neuronal cells by surface biotinylation and immunocytochemistry. Addition of GAPDH antibodies to cultured cerebellar neurons inhibited L1-dependent neurite outgrowth in the presence of ATP, while the application of exogenous GAPDH promoted L1-dependent neurite outgrowth. Pre-treatment of substrate-coated L1-Fc with ATP and GAPDH, which phosphorylates L1, subsequently led to an enhanced neurite outgrowth. Furthermore, aggregation of L1-Fc carrying beads was enhanced in the presence of both GAPDH and ATP. L1-dependent neurite outgrowth and aggregation of L1 were diminished in the presence of alkaline phosphatase or a protein kinase inhibitor. Our results show that GAPDH-dependent phosphorylation of L1 is a novel mechanism in regulating L1-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Tatjana Makhina
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Remmerie N, Roef L, Van De Slijke E, Van Leene J, Persiau G, Eeckhout D, Stals H, Laukens K, Lemière F, Esmans E, Van Onckelen H, Inzé D, De Jaeger G, Witters E. A bioanalytical method for the proteome wide display and analysis of protein complexes from whole plant cell lysates. Proteomics 2009; 9:598-609. [DOI: 10.1002/pmic.200800100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Bryksin AV, Laktionov PP. Role of glyceraldehyde-3-phosphate dehydrogenase in vesicular transport from golgi apparatus to endoplasmic reticulum. BIOCHEMISTRY (MOSCOW) 2008; 73:619-25. [PMID: 18620527 DOI: 10.1134/s0006297908060011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-studied glycolytic protein with energy production as its implied occupation. It has established itself lately as a multifunctional protein. Recent studies have found GAPDH to be involved in a variety of nuclear and cytosolic pathways ranging from its role in apoptosis and regulation of gene expression to its involvement in regulation of Ca2+ influx from endoplasmic reticulum. Numerous studies also indicate that GAPDH interacts with microtubules and participates in cell membrane fusion. This review is focused on the cytosolic functions of the protein related to vesicular transport. Suggestions for future directions as well as the model of protein polymer structure and possible post-translational modifications as a basis for its multifunctional activities in the early secretory pathway are given.
Collapse
Affiliation(s)
- A V Bryksin
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.
| | | |
Collapse
|
48
|
Xu C, Huang B. Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4183-94. [PMID: 19008411 PMCID: PMC2639019 DOI: 10.1093/jxb/ern258] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 09/05/2008] [Accepted: 09/26/2008] [Indexed: 05/18/2023]
Abstract
Protein metabolism plays an important role in plant adaptation to heat stress. This study was designed to identify heat-responsive proteins in roots associated with thermotolerance for two C3 grass species contrasting in heat tolerance, thermal Agrostis scabra and heat-sensitive Agrostis stolonifera L. Plants were exposed to 20 degrees C (control), 30 C (moderate heat stress), or 40 degrees C (severe heat stress) in growth chambers. Roots were harvested at 2 d and 10 d after temperature treatment. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis. Seventy protein spots were regulated by heat stress in at least one species. Under both moderate and severe heat stress, more proteins were down-regulated than were up-regulated, and thermal A. scabra roots had more up-regulated proteins than A. stolonifera roots. The sequences of 66 differentially expressed protein spots were identified using mass spectrometry. The results suggested that the up-regulation of sucrose synthase, glutathione S-transferase, superoxide dismutase, and heat shock protein Sti (stress-inducible protein) may contribute to the superior root thermotolerance of A. scabra. In addition, phosphoproteomic analysis indicated that two isoforms of fructose-biphosphate aldolase were highly phosphorylated under heat stress, and thermal A. scabra had greater phosphorylation than A. stolonifera, suggesting that the aldolase phosphorylation might be involved in root thermotolerance.
Collapse
Affiliation(s)
| | - Bingru Huang
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Xu C, Sullivan JH, Garrett WM, Caperna TJ, Natarajan S. Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. PHYTOCHEMISTRY 2008; 69:38-48. [PMID: 17645898 DOI: 10.1016/j.phytochem.2007.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 05/04/2007] [Accepted: 06/05/2007] [Indexed: 05/16/2023]
Abstract
Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) was used to systematically investigate the impact of solar ultraviolet-B (UV-B) radiation on the soybean leaf proteome. In order to investigate the protective role of flavonoids against UV-B, two isolines of the Clark cultivar (the standard line with moderate levels of flavonoids and the magenta line with reduced flavonoids) were grown in the field with or without natural levels of UV-B. The 12-day-old first trifoliates were harvested for proteomic analysis. More than 300 protein spots were reproducibly resolved and detected on each gel. Statistical analysis showed that 67 protein spots were significantly (P<0.05) affected by solar UV-B. Many more spots were altered by UV-B in the magenta line than in the standard line. Another 12 protein spots were not altered by UV-B but showed significantly (P<0.05) different accumulations between the two lines, and for most spots the line-specific differences were also observed under UV-B exclusion. Most of the differentially accumulated spots were identified by mass spectrometry. The proteins were quite diverse, and were involved in metabolism, energy, protein destination/storage, protein synthesis, disease/defense, transcription, and secondary metabolism. The results suggest that high levels of flavonoids lead to a reduction in UV-B sensitivity at the proteomic level.
Collapse
Affiliation(s)
- Chenping Xu
- University of Maryland, Department of Plant Science and Landscape Architecture, College Park, MD 20742, United States
| | | | | | | | | |
Collapse
|
50
|
Stafford LJ, Vaidya KS, Welch DR. Metastasis suppressors genes in cancer. Int J Biochem Cell Biol 2008; 40:874-91. [DOI: 10.1016/j.biocel.2007.12.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 01/31/2023]
|