1
|
Heltmann‐Meyer S, Detsch R, Hazur J, Kling L, Pechmann S, Kolan RR, Osterloh J, Boccaccini AR, Christiansen S, Geppert CI, Arkudas A, Horch RE, Steiner D. Biofunctionalization of ADA-GEL Hydrogels Based on the Degree of Cross-Linking and Polymer Concentration Improves Angiogenesis. Adv Healthc Mater 2025; 14:e2500730. [PMID: 40095294 PMCID: PMC12023838 DOI: 10.1002/adhm.202500730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 02/26/2025] [Indexed: 03/19/2025]
Abstract
The creation of bioartificial tissues is a promising option for the reconstruction of large-volume defects. The vascularization of tissue engineering constructs, as well as the material properties of the carrier matrix, are important factors for successful clinical application. In this regard, hydrogels are promising biomaterials, providing an extracellular matrix-like milieu that enables the possibility of cell transplantation and de novo tissue formation. Furthermore, biofunctionalization allows for a certain fine-tuning of angiogenic properties. This study aims to investigate vascularization and tissue formation of highly cross-linked alginate dialdehyde (ADA) and gelatin (GEL). This highly cross-linked network is created using a dural cross-linking mechanism combining ionic (Ca2+ ions) and enzymatic (human transglutaminase (hTG)) cross-linking, resulting in reduced swelling and moderate degradation rates. Vascularization of the ADA-GEL-hTG constructs is induced surgically using arteriovenous (AV) loops. Biocompatibility, tissue formation, and vascularization are analyzed by histology and X-ray microscopy. After only 2 weeks, vascularization of the ADA-GEL-hTG constructs is already present. After 4 weeks, both de novo tissue formation and vascularization of the ADA-GEL-hTG matrix increase. In conclusion, ADA-GEL-hTG-based hydrogels are shown to be promising scaffold materials for tissue engineering applications.
Collapse
Affiliation(s)
- Stefanie Heltmann‐Meyer
- Department of Plastic and Hand SurgeryUniversity Hospital of ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Rainer Detsch
- Institute of BiomaterialsUniversity of Erlangen‐Nürnberg91058ErlangenGermany
| | - Jonas Hazur
- Institute of BiomaterialsUniversity of Erlangen‐Nürnberg91058ErlangenGermany
| | - Lasse Kling
- Institute for Nanotechnology and Correlative Microscopy gGmbH (INAM gGmbH)91301ForchheimGermany
| | - Sabrina Pechmann
- Department for Correlative Microscopy and Materials DataFraunhofer Institute for Ceramic Technologies and Systems (IKTS)91301ForchheimGermany
| | - Rajkumar Reddy Kolan
- Institute for Nanotechnology and Correlative Microscopy gGmbH (INAM gGmbH)91301ForchheimGermany
| | - Justus Osterloh
- Department of Plastic and Hand SurgeryUniversity Hospital of ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)91054ErlangenGermany
- Department of Plastic and Hand SurgeryUniversity of Freiburg Medical Center79106FreiburgGermany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsUniversity of Erlangen‐Nürnberg91058ErlangenGermany
| | - Silke Christiansen
- Department for Correlative Microscopy and Materials DataFraunhofer Institute for Ceramic Technologies and Systems (IKTS)91301ForchheimGermany
- Fachbereich PhysikFreie Universität Berlin (FU Berlin)14195BerlinGermany
| | - Carol I. Geppert
- Institute of PathologyUniversity Hospital of ErlangenFriedrich‐Alexander‐UniversitätErlangen‐Nürnberg (FAU)91054ErlangenGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)University Hospital ErlangenFAU Erlangen‐Nuremberg91054ErlangenGermany
| | - Andreas Arkudas
- Department of Plastic and Hand SurgeryUniversity Hospital of ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Raymund E. Horch
- Department of Plastic and Hand SurgeryUniversity Hospital of ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Dominik Steiner
- Department of Plastic and Hand SurgeryUniversity Hospital of ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)91054ErlangenGermany
- Department of HandPlasticReconstructiveand Burn SurgeryBG Trauma ClinicUniversity of Tübingen72076TübingenGermany
| |
Collapse
|
2
|
Tenopoulou M. Fibrinogen post-translational modifications are biochemical determinants of fibrin clot properties and interactions. FEBS J 2025; 292:11-27. [PMID: 39180244 PMCID: PMC11705221 DOI: 10.1111/febs.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/31/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
The structure of fibrinogen and resulting fibrin formed during the coagulation process have important biological functions in human physiology and pathology. Fibrinogen post-translational modifications (PTMs) increase the complexity of the protein structure and many studies have emphasized the potential associations of post-translationally altered fibrinogen with the formation of a fibrin clot with a prothrombotic phenotype. However, the mechanisms by which PTMs exert their action on fibrinogen, and their causal association with disease pathogenesis are relatively unexplored. Moreover, the significance of fibrinogen PTMs in health has yet to be appreciated. In this review, the impact of fibrinogen PTMs on fibrinogen functionality is discussed from a biochemical perspective, emphasizing the potential mechanisms by which PTMs mediate the acquisition of altered fibrinogen properties. A brief discussion on dysfibrinogenemias of genetic origin, attributed to single point variations of the fibrinogen molecule is also provided, highlighting the influence that amino acid properties have on fibrinogen structure, properties, and molecular interactions that arise during thrombus formation.
Collapse
|
3
|
Morrow GB, Flannery S, Charles PD, Heilig R, Feller T, McQuilten Z, Wake E, Ariens RAS, Winearls J, Mutch NJ, Fischer R, Laffan MA, Curry N. A novel method to quantify fibrin-fibrin and fibrin-α 2-antiplasmin cross-links in thrombi formed from human trauma patient plasma. J Thromb Haemost 2024; 22:1758-1771. [PMID: 38462220 DOI: 10.1016/j.jtha.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The widespread use of the antifibrinolytic agent, tranexamic acid (TXA), interferes with the quantification of fibrinolysis by dynamic laboratory assays such as clot lysis, making it difficult to measure fibrinolysis in many trauma patients. At the final stage of coagulation, factor (F)XIIIa catalyzes the formation of fibrin-fibrin and fibrin-α2-antiplasmin (α2AP) cross-links, which increases clot mechanical strength and resistance to fibrinolysis. OBJECTIVES Here, we developed a method to quantify fibrin-fibrin and fibrin-α2AP cross-links that avoids the challenges posed by TXA in determining fibrinolytic resistance in conventional assays. METHODS Fibrinogen alpha (FGA) chain (FGA-FGA), fibrinogen gamma (FGG) chain (FGG-FGG), and FGA-α2AP cross-links were quantified using liquid chromatography-mass spectrometry (LC-MS) and parallel reaction monitoring in paired plasma samples from trauma patients prefibrinogen and postfibrinogen replacement. Differences in the abundance of cross-links in trauma patients receiving cryoprecipitate (cryo) or fibrinogen concentrate (Fg-C) were analyzed. RESULTS The abundance of cross-links was significantly increased in trauma patients postcryo, but not Fg-C transfusion (P < .0001). The abundance of cross-links was positively correlated with the toughness of individual fibrin fibers, the peak thrombin concentration, and FXIII antigen (P < .05). CONCLUSION We have developed a novel method that allows us to quantify fibrin cross-links in trauma patients who have received TXA, providing an indirect measure of fibrinolytic resistance. Using this novel approach, we have avoided the effect of TXA and shown that cryo increases fibrin-fibrin and fibrin-α2AP cross-linking when compared with Fg-C, highlighting the importance of FXIII in clot formation and stability in trauma patients.
Collapse
Affiliation(s)
- Gael B Morrow
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom; Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| | - Sarah Flannery
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip D Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Raphael Heilig
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Timea Feller
- Leeds Thrombosis Collective, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Zoe McQuilten
- Transfusion Research Unit, Monash University, Melbourne and Monash Health, Melbourne, Australia
| | - Elizabeth Wake
- Trauma Service, Gold Coast University Hospital, University of Queensland, Southport, Queensland, Australia; School of Medicine, University of Queensland, Southport, Queensland, Australia
| | - Robert A S Ariens
- Leeds Thrombosis Collective, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - James Winearls
- School of Medicine, University of Queensland, Southport, Queensland, Australia; Intensive Care Unit, Gold Coast University Hospital, Southport, Queensland, Australia; Australia and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia
| | - Nicola J Mutch
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mike A Laffan
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Nicola Curry
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
4
|
Marta-Enguita J, Navarro-Oviedo M, Machado FJDM, Bermejo R, Aymerich N, Herrera M, Zandio B, Pagola J, Juega J, Marta-Moreno J, Rodriguez JA, Páramo JA, Roncal C, Muñoz R, Orbe J. Role of factor XIII in ischemic stroke: a key molecule promoting thrombus stabilization and resistance to lysis. J Thromb Haemost 2024; 22:1080-1093. [PMID: 38160727 DOI: 10.1016/j.jtha.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Active coagulation factor XIII (FXIII) catalyzing crosslinking of fibrin and other hemostatic factors plays a key role in clot stability and lysis. OBJECTIVES To evaluate the effect of FXIII inhibition in a mouse model of ischemic stroke (IS) and the role of activated FXIII (FXIIIa) in clot formation and lysis in patients with IS. METHODS A ferric chloride IS murine model was performed before and after administration of a FXIIIa inhibitor (FXIIIinh). Thromboelastometry in human and mice blood was used to evaluate thrombus stiffness and lysis with FXIIIinh. FXIIIa-dependent fibrin crosslinking and lysis with fibrinolytic drugs (tissue plasminogen activator and tenecteplase) were studied on fibrin plates and on thrombi and clotted plasma of patients with IS. Finally, circulating and thrombus FXIIIa were measured in 85 patients with IS. RESULTS FXIIIinh administration before stroke induction reduced infarct size, α2-antiplasmin (α2AP) crosslinking, and local microthrombosis, improving motor coordination and fibrinolysis without intracranial bleeds (24 hours). Interestingly, FXIII blockade after stroke also reduced brain damage and neurologic deficit. Thromboelastometry in human/mice blood with FXIIIinh showed delayed clot formation, reduced clot firmness, and shortened tissue plasminogen activator lysis time. FXIIIa fibrin crosslinking increased fibrin density and lysis resistance, which increased further after α2AP addition. FXIIIinh enhanced ex vivo lysis in stroke thrombi and fibrin plates. In patients with IS, thrombus FXIII and α2AP were associated with inflammatory and hemostatic components, and plasma FXIIIa correlated with thrombus α2AP and fibrin. CONCLUSION Our results suggest a key role of FXIIIa in thrombus stabilization, α2AP crosslinking, and lysis resistance, with a protective effect of FXIIIinh in an IS experimental model.
Collapse
Affiliation(s)
- Juan Marta-Enguita
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain. https://twitter.com/jmartaen
| | - Manuel Navarro-Oviedo
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain
| | - Florencio J D M Machado
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain
| | - Rebeca Bermejo
- Neurointervencionist Radiology, Hospital Universitario Navarra, Pamplona, Spain
| | - Nuria Aymerich
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maria Herrera
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Zandio
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jorge Pagola
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Stroke Unit, Vall d'Hebron Instituto de Investigación (VHIR), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Jesús Juega
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Stroke Unit, Vall d'Hebron Instituto de Investigación (VHIR), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Javier Marta-Moreno
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Neurology Department, Hospital Universitario Miguel Servet, IIS-Aragon, Zaragoza, Spain
| | - Jose-Antonio Rodriguez
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Jose-Antonio Páramo
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain; Hematology Department, Clinica Universidad Navarra, Pamplona, Spain
| | - Carmen Roncal
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Roberto Muñoz
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Josune Orbe
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
5
|
Liu Y, Crossen J, Stalker TJ, Diamond SL. Fluorescent peptide for detecting factor XIIIa activity and fibrin in whole blood clots forming under flow. Res Pract Thromb Haemost 2024; 8:102291. [PMID: 38222077 PMCID: PMC10787300 DOI: 10.1016/j.rpth.2023.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 01/16/2024] Open
Abstract
Background During clotting, thrombin generates fibrin monomers and activates plasma-derived transglutaminase factor (F) XIIIa; collagen and thrombin-activated platelets offer thrombin-independent cellular FXIIIa (cFXIIIa) for clotting. Detecting fibrin on collagen and tissue factor surfaces in whole blood clotting typically uses complex reagents like fluorescent fibrinogen or antifibrin antibody. Objectives We want to test whether the peptide using the α2- antiplasmin crosslinking mechanism by FXIIIa is a useful tool in both monitoring FXIIIa activity, and visualize and monitor fibrin formation, deposition, and extent of crosslinking within fibrin structures in whole blood clots formed under flow. Methods We tested a fluorescent peptide derived from α2-antiplasmin sequence (Ac-GNQEQVSPLTLLKWC-fluorescein) to monitor the location of transglutaminase activity and fibrin during whole blood clotting under microfluidic flow (wall shear rate, 100 s-1). Results The peptide rapidly colocated with accumulating fibrin due to transglutaminase activity, confirmed by Phe-Pro-Arg-chloromethylketone inhibiting fibrin and peptide labeling. The FXIIIa inhibitor T101 had no effect on fibrin generation but ablated the labeling of fibrin by the peptide. Similarly, Gly-Pro-Arg-Pro abated fibrin formation and thus strongly attenuated the peptide signal. At arterial wall shear rate (1000 s-1), less fibrin was formed, and consequently, less peptide labeling of fibrin was detected compared with venous conditions. The addition of tissue plasminogen activator caused a reduction of both fibrin and peptide signals. Also, the peptide strongly colocalized with fibrin (but not platelets) in clots from laser-injured mouse cremaster arterioles. For clotting under flow, FXIIIa activity was most likely plasma-derived since a RhoA inhibitor did not block α2-antiplasmin fragment cross-linking to fibrin. Conclusion Under flow, the majority of FXIIIa-dependent fibrin labeling with peptide during clotting was distal of thrombin activity. The synthetic peptide provided a strong and sustained labeling of fibrin as it formed under flow.
Collapse
Affiliation(s)
- Yue Liu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer Crossen
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy J. Stalker
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Scott L. Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Whyte CS, Mutch NJ. "Going with the flow" in modeling fibrinolysis. Front Cardiovasc Med 2022; 9:1054541. [PMID: 36531720 PMCID: PMC9755328 DOI: 10.3389/fcvm.2022.1054541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2024] Open
Abstract
The formation of thrombi is shaped by intravascular shear stress, influencing both fibrin architecture and the cellular composition which has downstream implications in terms of stability against mechanical and fibrinolytic forces. There have been many advancements in the development of models that incorporate flow rates akin to those found in vivo. Both thrombus formation and breakdown are simultaneous processes, the balance of which dictates the size, persistence and resolution of thrombi. Therefore, there is a requirement to have models which mimic the physiological shear experienced within the vasculature which in turn influences the fibrinolytic degradation of the thrombus. Here, we discuss various assays for fibrinolysis and importantly the development of novel models that incorporate physiological shear rates. These models are essential tools to untangle the molecular and cellular processes which govern fibrinolysis and can recreate the conditions within normal and diseased vessels to determine how these processes become perturbed in a pathophysiological setting. They also have utility to assess novel drug targets and antithrombotic drugs that influence thrombus stability.
Collapse
Affiliation(s)
- Claire S. Whyte
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | | |
Collapse
|
7
|
Fibrinogen and Antifibrinolytic Proteins: Interactions and Future Therapeutics. Int J Mol Sci 2021; 22:ijms222212537. [PMID: 34830419 PMCID: PMC8625824 DOI: 10.3390/ijms222212537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Thrombus formation remains a major cause of morbidity and mortality worldwide. Current antiplatelet and anticoagulant therapies have been effective at reducing vascular events, but at the expense of increased bleeding risk. Targeting proteins that interact with fibrinogen and which are involved in hypofibrinolysis represents a more specific approach for the development of effective and safe therapeutic agents. The antifibrinolytic proteins alpha-2 antiplasmin (α2AP), thrombin activatable fibrinolysis inhibitor (TAFI), complement C3 and plasminogen activator inhibitor-2 (PAI-2), can be incorporated into the fibrin clot by FXIIIa and affect fibrinolysis by different mechanisms. Therefore, these antifibrinolytic proteins are attractive targets for the development of novel therapeutics, both for the modulation of thrombosis risk, but also for potentially improving clot instability in bleeding disorders. This review summarises the main properties of fibrinogen-bound antifibrinolytic proteins, their effect on clot lysis and association with thrombotic or bleeding conditions. The role of these proteins in therapeutic strategies targeting the fibrinolytic system for thrombotic diseases or bleeding disorders is also discussed.
Collapse
|
8
|
Llucià-Carol L, Muiño E, Gallego-Fabrega C, Cárcel-Márquez J, Martín-Campos J, Lledós M, Cullell N, Fernández-Cadenas I. Pharmacogenetics studies in stroke patients treated with rtPA: a review of the most interesting findings. Pharmacogenomics 2021; 22:1091-1097. [PMID: 34698533 DOI: 10.2217/pgs-2021-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recombinant tissue-plasminogen activator (rtPA) is the only drug used during the acute phase of stroke. Despite its important benefits, a percentage of patients suffer symptomatic hemorrhagic transformations or a lack of early recanalization rates. These undesirable effects are associated with acute neurological and long-term functional deterioration. For the past 20 years, pharmacogenetic studies have tried to find the genetic risk factors associated with rtPA response. Most of these studies have used a gene-candidate strategy; however, recent genome-wide association studies have emerged indicating that genetic predisposition could modulate rtPA response. This review summarizes the most interesting findings in this field, including which genes and genetic variations are associated with hemorrhagic transformations and recanalization rates after thrombolytic therapy.
Collapse
Affiliation(s)
- Laia Llucià-Carol
- Institute for Biomedical Research of Barcelona (IIBB), National Spanish Research Council (CSIC), Barcelona, Spain.,Stroke Pharmacogenomics & Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics & Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain
| | - Cristina Gallego-Fabrega
- Stroke Pharmacogenomics & Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics & Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain
| | - Jesus Martín-Campos
- Stroke Pharmacogenomics & Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain
| | - Miquel Lledós
- Stroke Pharmacogenomics & Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain
| | - Natalia Cullell
- Stroke Pharmacogenomics & Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain.,Neurology Unit, Hospital Universitari Mútua Terrassa, Terrassa, Spain
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics & Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain
| |
Collapse
|
9
|
Fibrin(ogen) as a Therapeutic Target: Opportunities and Challenges. Int J Mol Sci 2021; 22:ijms22136916. [PMID: 34203139 PMCID: PMC8268464 DOI: 10.3390/ijms22136916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fibrinogen is one of the key molecular players in haemostasis. Thrombin-mediated release of fibrinopeptides from fibrinogen converts this soluble protein into a network of fibrin fibres that form a building block for blood clots. Thrombin-activated factor XIII further crosslinks the fibrin fibres and incorporates antifibrinolytic proteins into the network, thus stabilising the clot. The conversion of fibrinogen to fibrin also exposes binding sites for fibrinolytic proteins to limit clot formation and avoid unwanted extension of the fibrin fibres. Altered clot structure and/or incorporation of antifibrinolytic proteins into fibrin networks disturbs the delicate equilibrium between clot formation and lysis, resulting in either unstable clots (predisposing to bleeding events) or persistent clots that are resistant to lysis (increasing risk of thrombosis). In this review, we discuss the factors responsible for alterations in fibrin(ogen) that can modulate clot stability, in turn predisposing to abnormal haemostasis. We also explore the mechanistic pathways that may allow the use of fibrinogen as a potential therapeutic target to treat vascular thrombosis or bleeding disorders. Better understanding of fibrinogen function will help to devise future effective and safe therapies to modulate thrombosis and bleeding risk, while maintaining the fine balance between clot formation and lysis.
Collapse
|
10
|
Factor XIII-A: An Indispensable "Factor" in Haemostasis and Wound Healing. Int J Mol Sci 2021; 22:ijms22063055. [PMID: 33802692 PMCID: PMC8002558 DOI: 10.3390/ijms22063055] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Factor XIII (FXIII) is a transglutaminase enzyme that catalyses the formation of ε-(γ-glutamyl)lysyl isopeptide bonds into protein substrates. The plasma form, FXIIIA2B2, has an established function in haemostasis, with fibrin being its principal substrate. A deficiency in FXIII manifests as a severe bleeding diathesis emphasising its crucial role in this pathway. The FXIII-A gene (F13A1) is expressed in cells of bone marrow and mesenchymal lineage. The cellular form, a homodimer of the A subunits denoted FXIII-A, was perceived to remain intracellular, due to the lack of a classical signal peptide for its release. It is now apparent that FXIII-A can be externalised from cells, by an as yet unknown mechanism. Thus, three pools of FXIII-A exist within the circulation: plasma where it circulates in complex with the inhibitory FXIII-B subunits, and the cellular form encased within platelets and monocytes/macrophages. The abundance of this transglutaminase in different forms and locations in the vasculature reflect the complex and crucial roles of this enzyme in physiological processes. Herein, we examine the significance of these pools of FXIII-A in different settings and the evidence to date to support their function in haemostasis and wound healing.
Collapse
|
11
|
Memtsas VP, Arachchillage DRJ, Gorog DA. Role, Laboratory Assessment and Clinical Relevance of Fibrin, Factor XIII and Endogenous Fibrinolysis in Arterial and Venous Thrombosis. Int J Mol Sci 2021; 22:ijms22031472. [PMID: 33540604 PMCID: PMC7867291 DOI: 10.3390/ijms22031472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Diseases such as myocardial infarction, ischaemic stroke, peripheral vascular disease and venous thromboembolism are major contributors to morbidity and mortality. Procoagulant, anticoagulant and fibrinolytic pathways are finely regulated in healthy individuals and dysregulated procoagulant, anticoagulant and fibrinolytic pathways lead to arterial and venous thrombosis. In this review article, we discuss the (patho)physiological role and laboratory assessment of fibrin, factor XIII and endogenous fibrinolysis, which are key players in the terminal phase of the coagulation cascade and fibrinolysis. Finally, we present the most up-to-date evidence for their involvement in various disease states and assessment of cardiovascular risk.
Collapse
Affiliation(s)
- Vassilios P. Memtsas
- Cardiology Department, East and North Hertfordshire NHS Trust, Stevenage, Hertfordshire SG1 4AB, UK;
| | - Deepa R. J. Arachchillage
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London SW7 2AZ, UK;
- Department of Haematology, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Department of Haematology, Royal Brompton Hospital, London SW3 6NP, UK
| | - Diana A. Gorog
- Cardiology Department, East and North Hertfordshire NHS Trust, Stevenage, Hertfordshire SG1 4AB, UK;
- School of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hertfordshire AL10 9AB, UK
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
- Correspondence: ; Tel.: +44-207-0348841
| |
Collapse
|
12
|
Pedersen NB, Stolberg CR, Mundbjerg LH, Juhl CB, Gram B, Funch-Jensen P, de Maat MPM, Münster AMB, Bladbjerg EM. Reductions in plasmin inhibitor and fibrinogen predict the improved fibrin clot lysis 6 months after obesity surgery. Clin Obes 2020; 10:e12397. [PMID: 32827201 DOI: 10.1111/cob.12397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Prothrombotic and metabolic variables are decreased after obesity surgery, and fibrin clot lysis is increased. It is unknown how fibrinolytic variables are affected, and whether fibrinolytic and metabolic changes predict the enhanced clot lysis. Study aims were to determine fibrinolytic biomarkers before and 6 months after Roux-en-Y gastric bypass (RYGB) and to identify predictors of the RYGB-induced increase in clot lysis. Women (n = 42) and men (n = 18) with obesity underwent RYGB, and factor XIII (FXIII), thrombin activatable fibrinolysis inhibitor (TAFI), plasminogen and plasmin inhibitor (PI) were measured before and 6 months after surgery. Regression analyses identified determinants of the RYGB-induced increase in clot lysis among changes in fibrinogen and in fibrinolytic and metabolic variables. Results showed that after RYGB, FXIII, TAFI, plasminogen and PI were reduced (P < .0005). Reductions in PI (β = -0.59) and fibrinogen (β = -0.35), together with age (β = -0.22) and male sex (β = 0.22), predicted the enhanced clot lysis with the model explaining 56% (P < .0005). Predictors of the reduction in PI were reductions in cholesterol (β = 0.37) and glucose (β = 0.29), together with male sex (β = -0.28), whereas reductions in fibrinogen were predicted by lowering of interleukin-6 (IL-6) (β = 0.32). In conclusion, fibrinolytic variables were reduced 6 months after RYGB. Targeting PI and fibrinogen, by reducing metabolic variables such as glucose, cholesterol and IL-6, has a profibrinolytic effect in obesity.
Collapse
Affiliation(s)
- Nadja Bødker Pedersen
- Department of Clinical Biochemistry, Unit for Thrombosis Research, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Charlotte R Stolberg
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Medicine, Section of Endocrinology, University Hospital of Southern Denmark, Esbjerg, Denmark
- OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Lene H Mundbjerg
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Medicine, Section of Endocrinology, University Hospital of Southern Denmark, Esbjerg, Denmark
- OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Claus B Juhl
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Medicine, Section of Endocrinology, University Hospital of Southern Denmark, Esbjerg, Denmark
- Steno Diabetes Center Odense, Odense, Denmark
| | - Bibi Gram
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Research Unit of Health Sciences, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Peter Funch-Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Moniek P M de Maat
- Department of Clinical Biochemistry, Unit for Thrombosis Research, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Anna-Marie B Münster
- Department of Clinical Biochemistry, Unit for Thrombosis Research, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Else-Marie Bladbjerg
- Department of Clinical Biochemistry, Unit for Thrombosis Research, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
13
|
Kattula S, Bagoly Z, Tóth NK, Muszbek L, Wolberg AS. The factor XIII-A Val34Leu polymorphism decreases whole blood clot mass at high fibrinogen concentrations. J Thromb Haemost 2020; 18:885-894. [PMID: 31989767 PMCID: PMC8059250 DOI: 10.1111/jth.14744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/05/2020] [Accepted: 01/21/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Factor XIII (FXIII) promotes fibrin crosslinking and red blood cell (RBC) retention in clots. The FXIII-A polymorphism, Val34Leu, is associated with protection against venous thrombosis. This effect is hypothesized to result from fibrinogen concentration-dependent changes in fibrin structure. Effects of the FXIII-A Val34Leu polymorphism in whole blood clots have not been investigated. AIM Characterize effects of FXIII-A Val34Leu polymorphism and fibrinogen on whole blood clots. METHODS We isolated platelet-poor plasmas from human donors (FXIIIVal/Val , FXIIIVal/Leu , FXIIILeu/Leu ), reconstituted plasmas with platelets and RBCs, and triggered clotting. We assessed contributions of gender, age, clotting times, thrombin generation, FXIII activity, FXIII-A Val34Leu polymorphism, and fibrinogen to clot mass. We also reconstituted FXIII-depleted plasma with platelets, RBCs, and purified FXIIIVal/Val or FXIIILeu/Leu , varied fibrinogen, and characterized effects on clot mass. RESULTS Clot mass was associated with age, fibrinogen, prothrombin time, and thrombin generation. Clots reconstituted with plasmas from individuals with FXIII-AVal/Val and FXIII-AVal/Leu did not differ in mass from clots with FXIII-ALeu/Leu . However, clots containing a 34Val allele demonstrated a fibrinogen concentration-dependent increase in mass, whereas clots with homozygous 34Leu did not. In plasmas with high fibrinogen, mass was higher for clots with 34Val alleles compared with clots with homozygous 34Leu. In clots reconstituted with purified FXIII, increasing fibrinogen enhanced clot mass in the presence of 34Val, but decreased mass in the presence of 34Leu. CONCLUSIONS FXIII 34Leu mitigates the effect of elevated fibrinogen on whole blood clot mass. The Val34Leu polymorphism may protect against venous thrombosis by reducing clot mass.
Collapse
Affiliation(s)
- Sravya Kattula
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, USA
| | - Zsuzsa Bagoly
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Medical Faculty, Debrecen, Hungary
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, University of Debrecen, Debrecen, Hungary
| | - Noémi Klára Tóth
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Medical Faculty, Debrecen, Hungary
| | - László Muszbek
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Medical Faculty, Debrecen, Hungary
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
14
|
Tang Z, Kattula S, Holle LA, Cooley BC, Lin F, Wolberg AS. Factor XIII deficiency does not prevent FeCl 3-induced carotid artery thrombus formation in mice. Res Pract Thromb Haemost 2020; 4:111-116. [PMID: 31989092 PMCID: PMC6971319 DOI: 10.1002/rth2.12278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/04/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The compositions of venous (red blood cell-rich) and arterial (platelet-rich) thrombi are mediated by distinct pathophysiologic processes; however, fibrin is a major structural component of both. The transglutaminase factor XIII (FXIII) stabilizes fibrin against mechanical and biochemical disruption and promotes red blood cell retention in contracted venous thrombi. Previous studies have shown factor XIII (FXIII) inhibition decreases whole blood clot mass and therefore, may be a therapeutic target for reducing venous thrombosis. The role of FXIII in arterial thrombogenesis is less studied, and the particular contribution of platelet FXIII remains unresolved. OBJECTIVE To determine whether FXIII reduction prevents experimental arterial thrombogenesis. METHODS Using wild-type mice and mice with genetically imposed deficiency in FXIII, we measured thrombus formation and stability following ferric chloride-induced arterial thrombosis. We also determined the impact of FXIII on the mass of contracted platelet-rich plasma clots. RESULTS Following vessel injury, F13a+/+ , F13a+/- , and F13a-/- mice developed occlusive arterial thrombi. FXIII deficiency did not significantly reduce the incidence or prolong the time to occlusion. FXIII deficiency also did not alter the timing of reflow events or decrease platelet-rich clot mass. CONCLUSIONS FXIII does not significantly alter the underlying pathophysiology of experimental arterial thrombus formation.
Collapse
Affiliation(s)
- Zhaoming Tang
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Sravya Kattula
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Lori A. Holle
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Brian C. Cooley
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Feng‐Chang Lin
- Department of Biostatistics and North Carolina Translational and Clinical Sciences InstituteUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
15
|
Protopopova AD, Ramirez A, Klinov DV, Litvinov RI, Weisel JW. Factor XIII topology: organization of B subunits and changes with activation studied with single-molecule atomic force microscopy. J Thromb Haemost 2019; 17:737-748. [PMID: 30773828 PMCID: PMC6917434 DOI: 10.1111/jth.14412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Essentials Factor XIII is a heterotetramer with 2 catalytic A subunits and 2 non-catalytic B subunits. Structure of active and inactive factor XIII was studied with atomic force microscopy. Inactive factor XIII is made of an A2 globule and 2 flexible B subunits extending from it. Activated factor XIII separates into a B2 homodimer and 2 monomeric active A subunits. SUMMARY: Background Factor XIII (FXIII) is a precursor of the blood plasma transglutaminase (FXIIIa) that is generated by thrombin and Ca2+ and covalently crosslinks fibrin to strengthen blood clots. Inactive plasma FXIII is a heterotetramer with two catalytic A subunits and two non-catalytic B subunits. Inactive A subunits have been characterized crystallographically, whereas the atomic structure of the entire FXIII and B subunits is unknown and the oligomerization state of activated A subunits remains controversial. Objectives Our goal was to characterize the (sub)molecular structure of inactive FXIII and changes upon activation. Methods Plasma FXIII, non-activated or activated with thrombin and Ca2+ , was studied by single-molecule atomic force microscopy. Additionally, recombinant separate A and B subunits were visualized and compared with their conformations and dimensions in FXIII and FXIIIa. Results and Conclusions We showed that heterotetrameric FXIII forms a globule composed of two catalytic A subunits with two flexible strands comprising individual non-catalytic B subunits that protrude on one side of the globule. Each strand corresponds to seven to eight out of 10 tandem repeats building each B subunit, called sushi domains. The remainder were not seen, presumably because they were tightly bound to the globular A2 dimer. Some FXIII molecules had one or no visible strands, suggesting dissociation of the B subunits from the globular core. After activation of FXIII with thrombin and Ca2+ , B subunits dissociated and formed B2 homodimers, whereas the activated globular A subunits dissociated into monomers. These results characterize the molecular organization of FXIII and changes with activation.
Collapse
Affiliation(s)
- Anna D Protopopova
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Andrea Ramirez
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Dmitry V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
16
|
Pieters M, Wolberg AS. Fibrinogen and fibrin: An illustrated review. Res Pract Thromb Haemost 2019; 3:161-172. [PMID: 31011700 PMCID: PMC6462751 DOI: 10.1002/rth2.12191] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Since its discovery over 350 years ago, studies of fibrinogen have revealed remarkable characteristics. Its complex structure as a large (340 kDa) hexameric homodimer supports complex roles in hemostasis and homeostasis. Fibrinogen synthesis is regulated at the transcriptional and translational levels, undergoing both constitutive (basal) secretion from liver, and inducible upregulation in response to inflammatory events. In addition, alternative splicing yields fibrinogen variants with unique properties and contributions to coagulation biochemistry. During coagulation, fibrinogen conversion to fibrin occurs via thrombin‐mediated proteolytic cleavage that produces intermediate protofibrils and then mature fibers that provide remarkable biochemical and mechanical stability to clots. Fibrin formation, structure, and stability are regulated by various genetic, biochemical, and environmental factors, allowing for dynamic kinetics of fibrin formation and structure. Interactions between fibrinogen and/or fibrin and plasma proteins and receptors on platelets, leukocytes, endothelial cells, and other cells enable complex functions in hemostasis, thrombosis, pregnancy, inflammation, infection, cancer, and other pathologies. Disorders in fibrinogen concentration and/or function increase risk of bleeding, thrombosis, and infection. This illustrated review covers fundamental aspects of fibrinogen and fibrin biology, biochemistry, biophysics, epidemiology, and clinical applications. Continued efforts to enhance our understanding of fibrinogen and fibrin in these processes are likely to advance treatment and prevention of many human diseases.
Collapse
Affiliation(s)
- Marlien Pieters
- Center of Excellence for Nutrition North-West University Potchefstroom South Africa
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
17
|
Mitchell JL, Mutch NJ. Let's cross-link: diverse functions of the promiscuous cellular transglutaminase factor XIII-A. J Thromb Haemost 2019; 17:19-30. [PMID: 30489000 DOI: 10.1111/jth.14348] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Indexed: 12/16/2022]
Abstract
Essentials Plasma Factor XIII, a heterodimer of A and B subunits FXIIIA2 B2 , is a transglutaminase enzyme with a well-established role in haemostasis. Cells of bone marrow and mesenchymal lineage express the FXIII-A gene (F13A1) that encodes the cellular form of the transglutaminase, a homodimer of the A subunits, FXIII-A. FXIII-A was presumed to function intracellularly, however, several lines of evidence now indicate that FXIII-A is externalised by an as yet unknown mechanism This review describes the mounting evidence that FXIII-A is a diverse transglutaminase with many intracellular and extracellular substrates that can participate in an array of biological processes SUMMARY: Factor XIII is a tranglutaminase enzyme that catalyzes the formation of ε-(γ-glutamyl)lysyl isopeptide bonds in protein substrates. The plasma form, FXIII-A2 B2 , has an established function in hemostasis, where its primary substrate is fibrin. A deficiency in FXIII manifests as a severe bleeding diathesis, underscoring its importance in this pathway. The cellular form of the enzyme, a homodimer of the A-subunits, denoted FXIII-A, has not been studied in as extensive detail. FXIII-A was generally perceived to remain intracellular, owing to the lack of a classical signal peptide for its release. In the last decade, emerging evidence has revealed that this diverse transglutaminase can be externalized from cells, by an as yet unknown mechanism, and can cross-link extracellular substrates and participate in a number of diverse pathways. The FXIII-A gene (F13A1) is expressed in cells of bone marrow and mesenchymal lineage, notably megakaryocytes, monocytes/macrophages, dendritic cells, chrondrocytes, osteoblasts, and preadipocytes. The biological processes that FXIII-A is coupled with, such as wound healing, phagocytosis, and bone and matrix remodeling, reflect its expression in these cell types. This review describes the mounting evidence that this cellular transglutaminase can be externalized, usually in response to stimuli, and participate in extracellular cross-linking reactions. A corollary of being involved in these biological pathways is the participation of FXIII-A in pathological processes. In conclusion, the functions of this transglutaminase extend far beyond its role in hemostasis, and our understanding of this enzyme in terms of its secretion, regulation and substrates is in its infancy.
Collapse
Affiliation(s)
- J L Mitchell
- School of Biological Sciences, University of Reading, Reading, UK
| | - N J Mutch
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
18
|
Mutch NJ. Regulation of Fibrinolysis by Platelets. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Henderson SJ, Weitz JI, Kim PY. Fibrinolysis: strategies to enhance the treatment of acute ischemic stroke. J Thromb Haemost 2018; 16:1932-1940. [PMID: 29953716 DOI: 10.1111/jth.14215] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Indexed: 02/03/2023]
Abstract
Stroke is a major cause of disability worldwide, and is the second leading cause of death after ischemic heart disease. Until recently, tissue-type plasminogen activator (t-PA) was the only treatment for acute ischemic stroke. If administered within 4.5 h of symptom onset, t-PA improves the outcome in stroke patients. Mechanical thrombectomy is now the preferred treatment for patients with acute ischemic stroke resulting from a large-artery occlusion in the anterior circulation. However, the widespread use of mechanical thrombectomy is limited by two factors. First, only ⁓ 10% of patients with acute ischemic stroke have a proximal large-artery occlusion in the anterior circulation and present early enough to undergo mechanical thrombectomy within 6 h; an additional 9-10% of patients presenting within the 6-24-h time window may also qualify for the procedure. Second, not all stroke centers have the resources or expertise to perform mechanical thrombectomy. Nonetheless, patients who present to hospitals where thrombectomy is not an option can receive intravenous t-PA, and those with qualifying anterior circulation strokes can then be transferred to tertiary stroke centers where thrombectomy is available. Therefore, despite the advances afforded by mechanical thrombectomy, there remains a need for treatments that improve the efficacy and safety of thrombolytic therapy. In this review, we discuss: (i) current treatment options for acute ischemic stroke; (ii) the mechanism of action of fibrinolytic agents; and (iii) potential strategies to manipulate the fibrinolytic system to promote endogenous fibrinolysis or to enhance the efficacy of fibrinolytic therapy.
Collapse
Affiliation(s)
- S J Henderson
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - J I Weitz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - P Y Kim
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Pryzdial ELG, Lee FMH, Lin BH, Carter RLR, Tegegn TZ, Belletrutti MJ. Blood coagulation dissected. Transfus Apher Sci 2018; 57:449-457. [PMID: 30049564 DOI: 10.1016/j.transci.2018.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hemostasis is the physiological control of bleeding and is initiated by subendothelial exposure. Platelets form the primary vascular seal in three stages (localization, stimulation and aggregation), which are triggered by specific interactions between platelet surface receptors and constituents of the subendothelial matrix. As a secondary hemostatic plug, fibrin clot formation is initiated and feedback-amplified to advance the seal and stabilize platelet aggregates comprising the primary plug. Once blood leakage has been halted, the fibrinolytic pathway is initiated to dissolve the clot and restore normal blood flow. Constitutive and induced anticoagulant and antifibrinolytic pathways create a physiological balance between too much and too little clot production. Hemostatic imbalance is a major burden to global healthcare, resulting in thrombosis or hemorrhage.
Collapse
Affiliation(s)
- Edward L G Pryzdial
- Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Frank M H Lee
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Bryan H Lin
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rolinda L R Carter
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tseday Z Tegegn
- Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mark J Belletrutti
- Pediatric Hematology, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Urano T, Castellino FJ, Suzuki Y. Regulation of plasminogen activation on cell surfaces and fibrin. J Thromb Haemost 2018; 16:S1538-7836(22)02204-8. [PMID: 29779246 PMCID: PMC6099326 DOI: 10.1111/jth.14157] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 01/27/2023]
Abstract
The fibrinolytic system dissolves fibrin and maintains vascular patency. Recent advances in imaging analyses allowed visualization of the spatiotemporal regulatory mechanism of fibrinolysis, as well as its regulation by other plasma hemostasis cofactors. Vascular endothelial cells (VECs) retain tissue-type plasminogen activator (tPA) after secretion and maintain high plasminogen (plg) activation potential on their surfaces. As in plasma, the serpin, plasminogen activator inhibitor type 1 (PAI-1), regulates fibrinolytic potential via inhibition of the VEC surface-bound plg activator, tPA. Once fibrin is formed, plg activation by tPA is initiated and effectively amplified on the surface of fibrin, and fibrin is rapidly degraded. The specific binding of plg and tPA to lytic edges of partly degraded fibrin via newly generated C-terminal lysine residues, which amplifies fibrin digestion, is a central aspect of this pathophysiological mechanism. Thrombomodulin (TM) plays a role in the attenuation of plg binding on fibrin and the associated fibrinolysis, which is reversed by a carboxypeptidase B inhibitor. This suggests that the plasma procarboxypeptidase B, thrombin-activatable fibrinolysis inhibitor (TAFI), which is activated by thrombin bound to TM on VECs, is a critical aspect of the regulation of plg activation on VECs and subsequent fibrinolysis. Platelets also contain PAI-1, TAFI, TM, and the fibrin cross-linking enzyme, factor (F) XIIIa, and either secrete or expose these agents upon activation in order to regulate fibrinolysis. In this review, the native machinery of plg activation and fibrinolysis, as well as their spatiotemporal regulatory mechanisms, as revealed by imaging analyses, are discussed.
Collapse
Affiliation(s)
- T. Urano
- Department of Medical PhysiologyHamamatsu University School of MedicineHamamatsuJapan
| | - F. J. Castellino
- W.M. Keck Center for Transgene ResearchUniversity of Notre DameUniversity of Notre DameNotre DameINUSA
| | - Y. Suzuki
- Department of Medical PhysiologyHamamatsu University School of MedicineHamamatsuJapan
| |
Collapse
|
22
|
Factor XIII in plasma, but not in platelets, mediates red blood cell retention in clots and venous thrombus size in mice. Blood Adv 2018; 2:25-35. [PMID: 29344582 DOI: 10.1182/bloodadvances.2017011890] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 01/08/2023] Open
Abstract
The transglutaminase factor XIII (FXIII) stabilizes clots against mechanical and biochemical disruption and is essential for hemostasis. In vitro and in vivo models of venous thrombosis demonstrate that FXIII mediates clot size by promoting red blood cell (RBC) retention. However, the key source of FXIII and whether FXIII activity can be reduced to suppress thrombosis without imposing deleterious hemostatic consequences are 2 critical unresolved questions. FXIII is present in multiple compartments, including plasma (FXIIIplasma) as a heterotetramer of A2 and B2 subunits and platelets (FXIIIplt) as an A2 homodimer. We determined the role of the FXIII compartment and level in clot contraction, composition, and size in vitro and using in vivo models of hemostasis and venous thrombosis. Reducing overall FXIII levels decreased whole blood clot weight but did not alter thrombin generation or contraction of platelet-rich plasma clots. In reconstituted platelet-rich plasma and whole blood clot contraction assays, FXIIIplasma, but not FXIIIplt, produced high-molecular-weight fibrin crosslinks, promoted RBC retention, and increased clot weights. Genetically imposed reduction of FXIII delayed FXIII activation and fibrin crosslinking, suggesting FXIII levels mediate the kinetics of FXIII activation and activity and that the timing of these processes is a critical determinant of RBC retention during clot formation and contraction. A 50% reduction in FXIIIplasma produced significantly smaller venous thrombi but did not increase bleeding in tail transection or saphenous vein puncture models in vivo. Collectively, these findings suggest that partial FXIII reduction may be a therapeutic strategy for reducing venous thrombosis.
Collapse
|
23
|
Inhibition of Fibrinolysis by Coagulation Factor XIII. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1209676. [PMID: 28761875 PMCID: PMC5518539 DOI: 10.1155/2017/1209676] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/17/2017] [Indexed: 11/17/2022]
Abstract
The inhibitory effect of coagulation factor XIII (FXIII) on fibrinolysis has been studied for at least 50 years. Our insight into the underlying mechanisms has improved considerably, aided in particular by the discovery that activated FXIII cross-links α2-antiplasmin (α2AP) to fibrin. In this review, the most important effects of different cross-linking reactions on fibrinolysis are summarized. A distinction is made between fibrin-fibrin cross-links studied in purified systems and fibrin-α2AP cross-links studied in plasma or whole blood systems. While the formation of γ chain dimers in fibrin does not affect clot lysis, the formation of α chain polymers has a weak inhibitory effect. Only strong cross-linking of fibrin, associated with high molecular weight α chain polymers and/or γ chain multimers, results in a moderate inhibition fibrinolysis. The formation of fibrin-α2AP cross-links has only a weak effect on clot lysis, but this effect becomes strong when clot retraction occurs. Under these conditions, FXIII prevents α2AP being expelled from the clot and makes the clot relatively resistant to degradation by plasmin.
Collapse
|
24
|
Hudson NE. Biophysical Mechanisms Mediating Fibrin Fiber Lysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2748340. [PMID: 28630861 PMCID: PMC5467299 DOI: 10.1155/2017/2748340] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/30/2017] [Indexed: 01/19/2023]
Abstract
The formation and dissolution of blood clots is both a biochemical and a biomechanical process. While much of the chemistry has been worked out for both processes, the influence of biophysical properties is less well understood. This review considers the impact of several structural and mechanical parameters on lytic rates of fibrin fibers. The influences of fiber and network architecture, fiber strain, FXIIIa cross-linking, and particle transport phenomena will be assessed. The importance of the mechanical aspects of fibrinolysis is emphasized, and future research avenues are discussed.
Collapse
Affiliation(s)
- Nathan E. Hudson
- Department of Physics, East Carolina University, N304 Howell Science Complex, Greenville, NC 27858, USA
| |
Collapse
|
25
|
Kearney K, Tomlinson D, Smith K, Ajjan R. Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk. Cardiovasc Diabetol 2017; 16:34. [PMID: 28279217 PMCID: PMC5345237 DOI: 10.1186/s12933-017-0515-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022] Open
Abstract
An enhanced thrombotic environment and premature atherosclerosis are key factors for the increased cardiovascular risk in diabetes. The occlusive vascular thrombus, formed secondary to interactions between platelets and coagulation proteins, is composed of a skeleton of fibrin fibres with cellular elements embedded in this network. Diabetes is characterised by quantitative and qualitative changes in coagulation proteins, which collectively increase resistance to fibrinolysis, consequently augmenting thrombosis risk. Current long-term therapies to prevent arterial occlusion in diabetes are focussed on anti-platelet agents, a strategy that fails to address the contribution of coagulation proteins to the enhanced thrombotic milieu. Moreover, antiplatelet treatment is associated with bleeding complications, particularly with newer agents and more aggressive combination therapies, questioning the safety of this approach. Therefore, to safely control thrombosis risk in diabetes, an alternative approach is required with the fibrin network representing a credible therapeutic target. In the current review, we address diabetes-specific mechanistic pathways responsible for hypofibrinolysis including the role of clot structure, defects in the fibrinolytic system and increased incorporation of anti-fibrinolytic proteins into the clot. Future anti-thrombotic therapeutic options are discussed with special emphasis on the potential advantages of modulating incorporation of the anti-fibrinolytic proteins into fibrin networks. This latter approach carries theoretical advantages, including specificity for diabetes, ability to target a particular protein with a possible favourable risk of bleeding. The development of alternative treatment strategies to better control residual thrombosis risk in diabetes will help to reduce vascular events, which remain the main cause of mortality in this condition.
Collapse
Affiliation(s)
- Katherine Kearney
- Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, LS2 9JT, UK
| | - Darren Tomlinson
- Biomedical Health Research Centre, Astbury Building, University of Leeds, Leeds, LS2 9JT, UK
| | - Kerrie Smith
- Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, LS2 9JT, UK
| | - Ramzi Ajjan
- Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
26
|
Abstract
Fibrinogen and fibrin are essential for hemostasis and are major factors in thrombosis, wound healing, and several other biological functions and pathological conditions. The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms of fibrin formation, its organization, and properties. On cleavage of fibrinopeptides by thrombin, fibrinogen is converted to fibrin monomers, which interact via knobs exposed by fibrinopeptide removal in the central region, with holes always exposed at the ends of the molecules. The resulting half-staggered, double-stranded oligomers lengthen into protofibrils, which aggregate laterally to make fibers, which then branch to yield a three-dimensional network. Much is now known about the structural origins of clot mechanical properties, including changes in fiber orientation, stretching and buckling, and forced unfolding of molecular domains. Studies of congenital fibrinogen variants and post-translational modifications have increased our understanding of the structure and functions of fibrin(ogen). The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active proteolytic enzyme, plasmin, results in digestion of fibrin at specific lysine residues. In spite of a great increase in our knowledge of all these interconnected processes, much about the molecular mechanisms of the biological functions of fibrin(ogen) remains unknown, including some basic aspects of clotting, fibrinolysis, and molecular origins of fibrin mechanical properties. Even less is known concerning more complex (patho)physiological implications of fibrinogen and fibrin.
Collapse
Affiliation(s)
- John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
27
|
Abstract
Arterial and venous thromboses are major contributors to coagulation-associated morbidity and mortality. Greater understanding of mechanisms leading to thrombus formation and stability is expected to lead to improved treatment strategies. Factor XIII (FXIII) is a transglutaminase found in plasma and platelets. During thrombosis, activated FXIII cross-links fibrin and promotes thrombus stability. Recent studies have provided new information about FXIII activity during coagulation and its effects on clot composition and function. These findings reveal newly-recognized roles for FXIII in thrombosis. Herein, we review published literature on FXIII biology and effects on fibrin structure and stability, epidemiologic data associating FXIII with thrombosis, and evidence from animal models indicating FXIII has an essential role in determining thrombus stability, composition, and size.
Collapse
Affiliation(s)
- James R Byrnes
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
28
|
|
29
|
Plug T, Meijers JCM. Structure-function relationships in thrombin-activatable fibrinolysis inhibitor. J Thromb Haemost 2016; 14:633-44. [PMID: 26786060 DOI: 10.1111/jth.13261] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/30/2022]
Abstract
Thrombin-activatable fibrinolysis inhibitor (TAFI) is an important regulator in the balance of coagulation and fibrinolysis. TAFI is a metallocarboxypeptidase that circulates in plasma as zymogen. Activated TAFI (TAFIa) cleaves C-terminal lysine or arginine residues from peptide substrates. The removal of C-terminal lysine residues from partially degraded fibrin leads to reduced plasmin formation and thus attenuation of fibrinolysis. TAFI also plays a role in inflammatory processes via the removal of C-terminal arginine or lysine residues from bradykinin, thrombin-cleaved osteopontin, C3a, C5a and chemerin. TAFI has been studied extensively over the past three decades and recent publications provide a wealth of information, including crystal structures, mutants and structural data obtained with antibodies and peptides. In this review, we combined and compared available data on structure/function relationships of TAFI.
Collapse
Affiliation(s)
- T Plug
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Bridge KI, Philippou H, Ariëns RAS. Clot properties and cardiovascular disease. Thromb Haemost 2014; 112:901-8. [PMID: 24899357 DOI: 10.1160/th14-02-0184] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/29/2014] [Indexed: 12/19/2022]
Abstract
Fibrinogen is cleaved by thrombin to fibrin, which provides the blood clot with its essential structural backbone. As an acute phase protein, the plasma levels of fibrinogen are increased in response to inflammatory conditions. In addition to fibrinogen levels, fibrin clot structure is altered by a number of factors. These include thrombin levels, treatment with common cardiovascular medications, such as aspirin, anticoagulants, statins and fibrates, as well as metabolic disease states such as diabetes mellitus and hyperhomocysteinaemia. In vitro studies of fibrin clot structure can provide information regarding fibre density, clot porosity, the mechanical strength of fibres and fibrinolysis. A change in fibrin clot structure, to a denser clot with smaller pores which is more resistant to lysis, is strongly associated with cardiovascular disease. This pathological change is present in patients with arterial as well as venous diseases, and is also found in a moderate form in relatives of patients with cardiovascular disease. Pharmacological therapies, aimed at both the treatment and prophylaxis of cardiovascular disease, appear to result in positive changes to the fibrin clot structure. As such, therapies aimed at 'normalising' fibrin clot structure may be of benefit in the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
| | | | - Robert A S Ariëns
- Prof. R. A. S. Ariëns, LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK, Tel.: +44 113 343 7734, E-mail:
| |
Collapse
|
31
|
Abstract
Factor XIII (FXIII) stabilizes thrombi against fibrinolysis by cross-linking α2-antiplasmin (α2AP) to fibrin. Cellular FXIII (FXIII-A) is abundant in platelets, but the extracellular functions of this pool are unclear because it is not released by classical secretion mechanisms. We examined the function of platelet FXIII-A using Chandler model thrombi formed from FXIII-depleted plasma. Platelets stabilized FXIII-depleted thrombi in a transglutaminase-dependent manner. FXIII-A activity on activated platelets was unstable and was rapidly lost over 1 hour. Inhibiting platelet activation abrogated the ability of platelets to stabilize thrombi. Incorporating a neutralizing antibody to α2AP into FXIII-depleted thrombi revealed that the stabilizing effect of platelet FXIII-A on lysis was α2AP dependent. Platelet FXIII-A activity and antigen were associated with the cytoplasm and membrane fraction of unstimulated platelets, and these fractions were functional in stabilizing FXIII-depleted thrombi against lysis. Fluorescence confocal microscopy and flow cytometry revealed exposure of FXIII-A on activated membranes, with maximal signal detected with thrombin and collagen stimulation. FXIII-A was evident in protruding caps on the surface of phosphatidylserine-positive platelets. Our data show a functional role for platelet FXIII-A through exposure on the activated platelet membrane where it exerts antifibrinolytic function by cross-linking α2AP to fibrin.
Collapse
|
32
|
Evaluating factor XIII specificity for glutamine-containing substrates using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay. Anal Biochem 2014; 457:74-84. [DOI: 10.1016/j.ab.2014.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/26/2014] [Accepted: 04/11/2014] [Indexed: 11/19/2022]
|
33
|
Nikolajsen CL, Dyrlund TF, Poulsen ET, Enghild JJ, Scavenius C. Coagulation factor XIIIa substrates in human plasma: identification and incorporation into the clot. J Biol Chem 2014; 289:6526-6534. [PMID: 24443567 DOI: 10.1074/jbc.m113.517904] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Coagulation factor XIII (FXIII) is a transglutaminase with a well defined role in the final stages of blood coagulation. Active FXIII (FXIIIa) catalyzes the formation of ε-(γ-glutamyl)lysine isopeptide bonds between specific Gln and Lys residues. The primary physiological outcome of this catalytic activity is stabilization of the fibrin clot during coagulation. The stabilization is achieved through the introduction of cross-links between fibrin monomers and through cross-linking of proteins with anti-fibrinolytic activity to fibrin. FXIIIa additionally cross-links several proteins with other functionalities to the clot. Cross-linking of proteins to the clot is generally believed to modify clot characteristics such as proteolytic susceptibility and hereby affect the outcome of tissue damage. In the present study, we use a proteomic approach in combination with transglutaminase-specific labeling to identify FXIIIa plasma protein substrates and their reactive residues. The results revealed a total of 147 FXIIIa substrates, of which 132 have not previously been described. We confirm that 48 of the FXIIIa substrates were indeed incorporated into the insoluble fibrin clot during the coagulation of plasma. The identified substrates are involved in, among other activities, complement activation, coagulation, inflammatory and immune responses, and extracellular matrix organization.
Collapse
Affiliation(s)
- Camilla Lund Nikolajsen
- Department of Molecular Biology and Genetics, Science Park, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Thomas F Dyrlund
- Department of Molecular Biology and Genetics, Science Park, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Ebbe Toftgaard Poulsen
- Department of Molecular Biology and Genetics, Science Park, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Science Park, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Science Park, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| |
Collapse
|
34
|
Tanaka KA, Kor DJ. Emerging haemostatic agents and patient blood management. Best Pract Res Clin Anaesthesiol 2013; 27:141-60. [DOI: 10.1016/j.bpa.2013.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/20/2013] [Indexed: 12/20/2022]
|
35
|
Vercauteren E, Mutch NJ, Declerck PJ, Gils A. Plasmin and the thrombin-thrombomodulin complex both contribute to thrombin-activatable fibrinolysis inhibitor activation in whole blood model thrombi. J Thromb Haemost 2013; 11:190-2. [PMID: 23140098 DOI: 10.1111/jth.12062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- E Vercauteren
- Laboratory for Pharmaceutical Biology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
36
|
Abstract
FXIII (Factor XIII) is a Ca2+-dependent enzyme which forms covalent ϵ-(γ-glutamyl)lysine cross-links between the γ-carboxy-amine group of a glutamine residue and the ϵ-amino group of a lysine residue. FXIII was originally identified as a protein involved in fibrin clot stabilization; however, additional extracellular and intracellular roles for FXIII have been identified which influence thrombus resolution and tissue repair. The present review discusses the substrates of FXIIIa (activated FXIII) involved in thrombosis and wound healing with a particular focus on: (i) the influence of plasma FXIIIa on the formation of stable fibrin clots able to withstand mechanical and enzymatic breakdown through fibrin–fibrin cross-linking and cross-linking of fibrinolysis inhibitors, in particular α2-antiplasmin; (ii) the role of intracellular FXIIIa in clot retraction through cross-linking of platelet cytoskeleton proteins, including actin, myosin, filamin and vinculin; (iii) the role of intracellular FXIIIa in cross-linking the cytoplasmic tails of monocyte AT1Rs (angiotensin type 1 receptors) and potential effects on the development of atherosclerosis; and (iv) the role of FXIIIa on matrix deposition and tissue repair, including cross-linking of extracellular matrix proteins, such as fibronectin, collagen and von Willebrand factor, and the effects on matrix deposition and cell–matrix interactions. The review highlights the central role of FXIIIa in the regulation of thrombus stability, thrombus regulation, cell–matrix interactions and wound healing, which is supported by observations in FXIII-deficient humans and animals.
Collapse
|
37
|
Hardes K, Becker GL, Zouhir Hammamy M, Steinmetzer T. Design, synthesis, and characterization of chromogenic substrates of coagulation factor XIIIa. Anal Biochem 2012; 428:73-80. [DOI: 10.1016/j.ab.2012.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/18/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
|
38
|
Talens S, Leebeek FWG, Demmers JAA, Rijken DC. Identification of fibrin clot-bound plasma proteins. PLoS One 2012; 7:e41966. [PMID: 22870270 PMCID: PMC3411686 DOI: 10.1371/journal.pone.0041966] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/28/2012] [Indexed: 02/06/2023] Open
Abstract
Several proteins are known to bind to a fibrin network and to change clot properties or function. In this study we aimed to get an overview of fibrin clot-bound plasma proteins. A plasma clot was formed by adding thrombin, CaCl2 and aprotinin to citrated platelet-poor plasma and unbound proteins were washed away with Tris-buffered saline. Non-covalently bound proteins were extracted, separated with 2D gel electrophoresis and visualized with Sypro Ruby. Excised protein spots were analyzed with mass spectrometry. The identity of the proteins was verified by checking the mass of the protein, and, if necessary, by Western blot analysis. Next to established fibrin-binding proteins we identified several novel fibrin clot-bound plasma proteins, including α2-macroglobulin, carboxypeptidase N, α1-antitrypsin, haptoglobin, serum amyloid P, and the apolipoproteins A-I, E, J, and A-IV. The latter six proteins are associated with high-density lipoprotein particles. In addition we showed that high-density lipoprotein associated proteins were also present in fibrinogen preparations purified from plasma. Most plasma proteins in a fibrin clot can be classified into three groups according to either blood coagulation, protease inhibition or high-density lipoprotein metabolism. The presence of high-density lipoprotein in clots might point to a role in hemostasis.
Collapse
Affiliation(s)
- Simone Talens
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank W. G. Leebeek
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A. A. Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dingeman C. Rijken
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
39
|
Vercauteren E, Gils A. Is there any need for a TAFI(a) inhibitor as thrombolytic drug? Thromb Res 2012; 130:574-5. [PMID: 22840781 DOI: 10.1016/j.thromres.2012.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 11/29/2022]
|
40
|
Nikolajsen CL, Scavenius C, Enghild JJ. Human complement C3 is a substrate for transglutaminases. A functional link between non-protease-based members of the coagulation and complement cascades. Biochemistry 2012; 51:4735-42. [PMID: 22630814 DOI: 10.1021/bi3004022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we report the finding of functional cross-talk between two non-protease components of the complement and coagulation cascades. We show that complement C3, a central component of the complement system, is associated with the fibrin clot and that C3 becomes covalently cross-linked to other proteins during coagulation. Enzymatic incorporation of dansylcadaverine and dansyl-PGGQQIV into C3 by coagulation factor XIIIa and tissue transglutaminase demonstrated that C3 is a transglutaminase substrate. This suggested that coagulation factor XIIIa covalently cross-links C3 to clot components during coagulation. Using mass spectrometry, we verified that C3 indeed is covalently associated with the fibrin clot in a ratio of 0.05:1 relative to the known coagulation factor XIIIa substrate α2-antiplasmin.
Collapse
|
41
|
Scavenius C, Sanggaard KW, Nikolajsen CL, Bak S, Valnickova Z, Thøgersen IB, Jensen ON, Højrup P, Enghild JJ. Human inter-α-inhibitor is a substrate for factor XIIIa and tissue transglutaminase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1624-30. [PMID: 21939789 DOI: 10.1016/j.bbapap.2011.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/10/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
In this study, we show that inter-α-inhibitor is a substrate for both factor XIIIa and tissue transglutaminase. These enzymes catalyze the incorporation of dansylcadaverine and biotin-pentylamine, revealing that inter-α-inhibitor contains reactive Gln residues within all three subunits. These findings suggest that transglutaminases catalyze the covalent conjugation of inter-α-inhibitor to other proteins. This was demonstrated by the cross-linking between inter-α-inhibitor and fibrinogen by either factor XIIIa or tissue transglutaminase. Finally, using quantitative mass spectrometry, we show that inter-α-inhibitor is cross-linked to the fibrin clot in a 1:20 ratio relative to the known factor XIIIa substrate α2-antiplasmin. This interaction may protect fibrin or other Lys-donating proteins from adventitious proteolysis by increasing the local concentration of bikunin. In addition, the reaction may influence the TSG-6/heavy Chain 2-mediated transfer of heavy chains observed during inflammation.
Collapse
Affiliation(s)
- Carsten Scavenius
- Department of Molecular Biology, University of Aarhus, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona É. Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 2011; 91:931-72. [PMID: 21742792 DOI: 10.1152/physrev.00016.2010] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Factor XIII (FXIII) is unique among clotting factors for a number of reasons: 1) it is a protransglutaminase, which becomes activated in the last stage of coagulation; 2) it works on an insoluble substrate; 3) its potentially active subunit is also present in the cytoplasm of platelets, monocytes, monocyte-derived macrophages, dendritic cells, chondrocytes, osteoblasts, and osteocytes; and 4) in addition to its contribution to hemostasis, it has multiple extra- and intracellular functions. This review gives a general overview on the structure and activation of FXIII as well as on the biochemical function and downregulation of activated FXIII with emphasis on new developments in the last decade. New aspects of the traditional functions of FXIII, stabilization of fibrin clot, and protection of fibrin against fibrinolysis are summarized. The role of FXIII in maintaining pregnancy, its contribution to the wound healing process, and its proangiogenic function are reviewed in details. Special attention is given to new, less explored, but promising fields of FXIII research that include inhibition of vascular permeability, cardioprotection, and its role in cartilage and bone development. FXIII is also considered as an intracellular enzyme; a separate section is devoted to its intracellular activation, intracellular action, and involvement in platelet, monocyte/macrophage, and dendritic cell functions.
Collapse
Affiliation(s)
- László Muszbek
- Clinical Research Center and Thrombosis, Haemostasis and Vascular Biology Research Group of the Hungarian Academy of Sciences, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary.
| | | | | | | | | |
Collapse
|
43
|
Undas A, Ariëns RAS. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol 2011; 31:e88-99. [PMID: 21836064 DOI: 10.1161/atvbaha.111.230631] [Citation(s) in RCA: 385] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The formation of fibrin clots that are relatively resistant to lysis represents the final step in blood coagulation. We discuss the genetic and environmental regulators of fibrin structure in relation to thrombotic disease. In addition, we discuss the implications of fibrin structure for treatment of thrombosis. Fibrin clots composed of compact, highly branched networks with thin fibers are resistant to lysis. Altered fibrin structure has consistently been reported in patients with several diseases complicated by thromboembolic events, including patients with acute or prior myocardial infarction, ischemic stroke, and venous thromboembolism. Relatives of patients with myocardial infarction or venous thromboembolism display similar fibrin abnormalities. Low-dose aspirin, statins, lowering of homocysteine, better diabetes control, smoking cessation, and suppression of inflammatory response increase clot permeability and susceptibility to lysis. Growing evidence indicates that abnormal fibrin properties represent a novel risk factor for arterial and venous thrombotic events, particularly of unknown etiology in young and middle-aged patients.
Collapse
Affiliation(s)
- Anetta Undas
- Institute of Cardiology, Jagiellonian University School of Medicine, Krakow, Poland
| | | |
Collapse
|
44
|
The antifibrinolytic function of factor XIII is exclusively expressed through α₂-antiplasmin cross-linking. Blood 2011; 117:6371-4. [PMID: 21471521 DOI: 10.1182/blood-2011-02-333203] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Factor XIII (FXIII) generates fibrin-fibrin and fibrin-inhibitor cross-links. Our flow model, which is sensitive to cross-linking, was used to assess the effects of FXIII and the fibrinolytic inhibitor, α₂-antiplasmin (α₂AP) on fibrinolysis. Plasma model thrombi formed from FXIII or α₂AP depleted plasma lysed at strikingly similar rates, 9-fold faster than pooled normal plasma (PNP). In contrast, no change was observed on depletion of PAI-1 or thrombin activatable fibrinolysis inhibitor (TAFI). Inhibition of FXIII did not further enhance lysis of α₂AP depleted thrombi. Addition of PNP to FXIII or α₂AP depleted plasmas normalized lysis. Lysis rate was strongly inversely correlated with total cross-linked α₂AP in plasma thrombi. Reconstitution of FXIII into depleted plasma stabilized plasma thrombi and normalized γ-dimers and α-polymers formation. However, the presence of a neutralizing antibody to α₂AP abolished this stabilization. Our data show that the antifibrinolytic function of FXIII is independent of fibrin-fibrin cross-linking and is expressed exclusively through α₂AP.
Collapse
|
45
|
Rea CJ, Foley JH, Ingerslev J, Sørensen B. Factor XIII combined with recombinant factor VIIa: a new means of treating severe hemophilia A. J Thromb Haemost 2011; 9:510-6. [PMID: 21155966 DOI: 10.1111/j.1538-7836.2010.04171.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Abnormal thrombin generation is considered the key defect in hemophilia. Conventional treatment seeks to correct this using coagulation factor replacement or bypassing agents, for example recombinant factor VIIa (rFVIIa). Previous studies demonstrate abnormal FXIII activation in patients with hemophilia. FXIII activation is essential for formation of structurally normal, stable clots. OBJECTIVES The present study challenges the hypothesis that in hemophilia the use of plasma-derived FXIII (pdFXIII) in combination with rFVIIa will produce a greater improvement in clot stability than promotion of thrombin generation alone. METHODS Fourteen individuals with severe hemophila A were enrolled. Whole blood was spiked ex vivo with buffer, rFVIIa (2 μg mL(-1)) or rFVIIa (2 μg mL(-1)) plus pdFXIII (10 μg mL(-1)). Whole blood thromboelastometry assessed clot stability, after activation with tissue factor (TF) (0.15 pm) plus tissue-type plasminogen activator (tPa) (2 nm). The primary outcome measure of clot stability was area under the elasticity curve (AUEC). RESULTS The combination of pdFXIII and rFVIIa significantly improved clot stability as measured by AUEC (P < 0.05) compared with rFVIIa alone. CONCLUSION The use of pdFXIII resulted in superior clot stability compared with solely enhancing thrombin generation and we suggest that increasing thrombin generation alone fails to fully correct dysregulation of clot-stabilizing mechanisms associated with bleeding disorders. Hemorrhage control in hemophilia may be improved using clot stabilizing drugs. FXIII shows potential as a novel agent.
Collapse
Affiliation(s)
- C J Rea
- Haemostasis Research Unit, Guy's & St Thomas' NHS Foundation Trust and King's College London School of Medicine, London, UK
| | | | | | | |
Collapse
|
46
|
Nafría C, Fernández-Cadenas I, Mendioroz M, Domingues-Montanari S, Hernández-Guillamón M, Fernández-Morales J, del Río-Espínola A, Giralt D, Deu L, Delgado P, Rosell A, Montaner J. Update on the Serum Biomarkers and Genetic Factors Associated with Safety and Efficacy of rt-PA Treatment in Acute Stroke Patients. Stroke Res Treat 2011; 2011:182783. [PMID: 21772966 PMCID: PMC3137952 DOI: 10.4061/2011/182783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 11/08/2010] [Accepted: 01/31/2011] [Indexed: 11/20/2022] Open
Abstract
An accurate understanding of the mechanisms underlying an individual's response to rt-PA treatment is critical to improve stroke patients' management. We thus reviewed the literature in order to identify biochemical and genetic factors that have been associated with safety and efficacy of rt-PA administration after stroke.
Collapse
Affiliation(s)
- C. Nafría
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - I. Fernández-Cadenas
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - M. Mendioroz
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - S. Domingues-Montanari
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - M. Hernández-Guillamón
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - J. Fernández-Morales
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - A. del Río-Espínola
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - D. Giralt
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - L. Deu
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - P. Delgado
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - A. Rosell
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - J. Montaner
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
- *J. Montaner:
| |
Collapse
|
47
|
Cilia La Corte AL, Philippou H, Ariëns RAS. Role of fibrin structure in thrombosis and vascular disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 83:75-127. [PMID: 21570666 DOI: 10.1016/b978-0-12-381262-9.00003-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibrin clot formation is a key event in the development of thrombotic disease and is the final step in a multifactor coagulation cascade. Fibrinogen is a large glycoprotein that forms the basis of a fibrin clot. Each fibrinogen molecule is comprised of two sets of Aα, Bβ, and γ polypeptide chains that form a protein containing two distal D regions connected to a central E region by a coiled-coil segment. Fibrin is produced upon cleavage of the fibrinopeptides by thrombin, which can then form double-stranded half staggered oligomers that lengthen into protofibrils. The protofibrils then aggregate and branch, yielding a three-dimensional clot network. Factor XIII, a transglutaminase, cross-links the fibrin stabilizing the clot protecting it from mechanical stress and proteolytic attack. The mechanical properties of the fibrin clot are essential for its function as it must prevent bleeding but still allow the penetration of cells. This viscoelastic property is generated at the level of each individual fiber up to the complete clot. Fibrinolysis is the mechanism of clot removal, and involves a cascade of interacting zymogens and enzymes that act in concert with clot formation to maintain blood flow. Clots vary significantly in structure between individuals due to both genetic and environmental factors and this has an effect on clot stability and susceptibility to lysis. There is increasing evidence that clot structure is a determinant for the development of disease and this review will discuss the determinants for clot structure and the association with thrombosis and vascular disease.
Collapse
Affiliation(s)
- Amy L Cilia La Corte
- Division of Cardiovascular and Diabetes Research, Section on Mechanisms of Thrombosis, Leeds Institute for Genetics Health and Therapeutics, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | | | | |
Collapse
|
48
|
Valnickova Z, Sanglas L, Arolas JL, Petersen SV, Schar C, Otzen D, Aviles FX, Gomis-Rüth FX, Enghild JJ. Flexibility of the thrombin-activatable fibrinolysis inhibitor pro-domain enables productive binding of protein substrates. J Biol Chem 2010; 285:38243-50. [PMID: 20880845 DOI: 10.1074/jbc.m110.150342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that thrombin-activatable fibrinolysis inhibitor (TAFI) exhibits intrinsic proteolytic activity toward large peptides. The structural basis for this observation was clarified by the crystal structures of human and bovine TAFI. These structures evinced a significant rotation of the pro-domain away from the catalytic moiety when compared with other pro-carboxypeptidases, thus enabling access of large peptide substrates to the active site cleft. Here, we further investigated the flexible nature of the pro-domain and demonstrated that TAFI forms productive complexes with protein carboxypeptidase inhibitors from potato, leech, and tick (PCI, LCI, and TCI, respectively). We determined the crystal structure of the bovine TAFI-TCI complex, revealing that the pro-domain was completely displaced from the position observed in the TAFI structure. It protruded into the bulk solvent and was disordered, whereas TCI occupied the position previously held by the pro-domain. The authentic nature of the presently studied TAFI-inhibitor complexes was supported by the trimming of the C-terminal residues from the three inhibitors upon complex formation. This finding suggests that the inhibitors interact with the active site of TAFI in a substrate-like manner. Taken together, these data show for the first time that TAFI is able to form a bona fide complex with protein carboxypeptidase inhibitors. This underlines the unusually flexible nature of the pro-domain and implies a possible mechanism for regulation of TAFI intrinsic proteolytic activity in vivo.
Collapse
Affiliation(s)
- Zuzana Valnickova
- Center for Insoluble Protein Structure (inSPIN), Department of Molecular Biology, Science Park, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mutch NJ, Koikkalainen JS, Fraser SR, Duthie KM, Griffin M, Mitchell J, Watson HG, Booth NA. Model thrombi formed under flow reveal the role of factor XIII-mediated cross-linking in resistance to fibrinolysis. J Thromb Haemost 2010; 8:2017-24. [PMID: 20586921 PMCID: PMC3071935 DOI: 10.1111/j.1538-7836.2010.03963.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 06/07/2010] [Indexed: 12/01/2022]
Abstract
BACKGROUND Activated factor XIII (FXIIIa), a transglutaminase, introduces fibrin-fibrin and fibrin-inhibitor cross-links, resulting in more mechanically stable clots. The impact of cross-linking on resistance to fibrinolysis has proved challenging to evaluate quantitatively. METHODS We used a whole blood model thrombus system to characterize the role of cross-linking in resistance to fibrinolytic degradation. Model thrombi, which mimic arterial thrombi formed in vivo, were prepared with incorporated fluorescently labeled fibrinogen, in order to allow quantification of fibrinolysis as released fluorescence units per minute. RESULTS A site-specific inhibitor of transglutaminases, added to blood from normal donors, yielded model thrombi that lysed more easily, either spontaneously or by plasminogen activators. This was observed both in the cell/platelet-rich head and fibrin-rich tail. Model thrombi from an FXIII-deficient patient lysed more quickly than normal thrombi; replacement therapy with FXIII concentrate normalized lysis. In vitro addition of purified FXIII to the patient's preprophylaxis blood, but not to normal control blood, resulted in more stable thrombi, indicating no further efficacy of supraphysiologic FXIII. However, addition of tissue transglutaminase, which is synthesized by endothelial cells, generated thrombi that were more resistant to fibrinolysis; this may stabilize mural thrombi in vivo. CONCLUSIONS Model thrombi formed under flow, even those prepared as plasma 'thrombi', reveal the effect of FXIII on fibrinolysis. Although very low levels of FXIII are known to produce mechanical clot stability, and to achieve γ-dimerization, they appear to be suboptimal in conferring full resistance to fibrinolysis.
Collapse
Affiliation(s)
- N J Mutch
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bolliger D, Szlam F, Molinaro RJ, Escobar MA, Levy JH, Tanaka KA. Thrombin generation and fibrinolysis in anti-factor IX treated blood and plasma spiked with factor VIII inhibitor bypassing activity or recombinant factor VIIa. Haemophilia 2010; 16:510-7. [PMID: 20050927 DOI: 10.1111/j.1365-2516.2009.02164.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activated prothrombin complex concentrates (aPCC) and recombinant activated factor VIIa (rFVIIa) are two important therapies in haemophilia patients with inhibitors and improve clot stability. We hypothesized that potential differences in procoagulant and fibrinolytic actions of aPCC and rFVIIa may lie in the clot stability against fibrinolytic activation. We used thrombin generation, fluorescence detection and thromboelastometry in anti-factor IXa (FIXa) aptamer-treated whole blood (WB) and plasma to evaluate: (i) generation of thrombin and activated factor X (FXa) and (ii) viscoelastic properties of blood clots in the presence of tissue plasminogen activator (tPA) after addition of aPCC (0.4 U mL(-1)) or rFVIIa (60 nm). Peak thrombin generation increased from 85 +/- 19 nm in aptamer-treated plasma to 276 +/- 83 nm and 119 +/- 22 nm after addition of aPCC and rFVIIa respectively (P < 0.001). FXa activity increased within 20 min by 87 +/- 6% and by 660 +/- 97% after addition of aPCC and rFVIIa respectively (P < 0.001). TPA-induced lysis time increased from 458 +/- 378 s in aptamer-treated WB to 1597 +/- 366 s (P = 0.001) and 1132 +/- 214 s (P = 0.075), after addition of aPCC and rFVIIa respectively. In this haemophilia model using the anti-FIXa aptamer, the larger amount of thrombin was generated with aPCC compared with rFVIIa, while FXa generation was more rapidly increased in the presence of rFVIIa. Furthermore, clot formation in anti-FIXa aptamer-treated WB was less susceptible to tPA-induced fibrinolysis after adding aPCC compared with rFVIIa.
Collapse
Affiliation(s)
- D Bolliger
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|