1
|
Gaul L, Svejstrup JQ. Transcription-coupled repair and the transcriptional response to UV-Irradiation. DNA Repair (Amst) 2021; 107:103208. [PMID: 34416541 DOI: 10.1016/j.dnarep.2021.103208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Lesions in genes that result in RNA polymerase II (RNAPII) stalling or arrest are particularly toxic as they are a focal point of genome instability and potently block further transcription of the affected gene. Thus, cells have evolved the transcription-coupled nucleotide excision repair (TC-NER) pathway to identify damage-stalled RNAPIIs, so that the lesion can be rapidly repaired and transcription can continue. However, despite the identification of several factors required for TC-NER, how RNAPII is remodelled, modified, removed, or whether this is even necessary for repair remains enigmatic, and theories are intensely contested. Recent studies have further detailed the cellular response to UV-induced ubiquitylation and degradation of RNAPII and its consequences for transcription and repair. These advances make it pertinent to revisit the TC-NER process in general and with specific discussion of the fate of RNAPII stalled at DNA lesions.
Collapse
Affiliation(s)
- Liam Gaul
- Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
2
|
Datta A, Pollock KJ, Kormuth KA, Brosh RM. G-Quadruplex Assembly by Ribosomal DNA: Emerging Roles in Disease Pathogenesis and Cancer Biology. Cytogenet Genome Res 2021; 161:285-296. [PMID: 34469893 DOI: 10.1159/000516394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Unique repetitive elements of the eukaryotic genome can be problematic for cellular DNA replication and transcription and pose a source of genomic instability. Human ribosomal DNA (rDNA) exists as repeating units clustered together on several chromosomes. Understanding the molecular mechanisms whereby rDNA interferes with normal genome homeostasis is the subject of this review. We discuss the instability of rDNA as a driver of senescence and the important roles of helicases to suppress its deleterious effects. The propensity of rDNA that is rich in guanine bases to form G-quadruplexes (G4) is discussed and evaluated in disease pathogenesis. Targeting G4 in the ribosomes and other chromosomal loci may represent a useful synthetic lethal approach to combating cancer.
Collapse
Affiliation(s)
- Arindam Datta
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Kevin J Pollock
- Department of Biology, Bethany College, Bethany, West Virginia, USA
| | - Karen A Kormuth
- Department of Biology, Bethany College, Bethany, West Virginia, USA
| | - Robert M Brosh
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Vessoni AT, Guerra CCC, Kajitani GS, Nascimento LLS, Garcia CCM. Cockayne Syndrome: The many challenges and approaches to understand a multifaceted disease. Genet Mol Biol 2020; 43:e20190085. [PMID: 32453336 PMCID: PMC7250278 DOI: 10.1590/1678-4685-gmb-2019-0085] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
The striking and complex phenotype of Cockayne syndrome (CS) patients combines progeria-like features with developmental deficits. Since the establishment of the in vitro culture of skin fibroblasts derived from patients with CS in the 1970s, significant progress has been made in the understanding of the genetic alterations associated with the disease and their impact on molecular, cellular, and organismal functions. In this review, we provide a historic perspective on the research into CS by revisiting seminal papers in this field. We highlighted the great contributions of several researchers in the last decades, ranging from the cloning and characterization of CS genes to the molecular dissection of their roles in DNA repair, transcription, redox processes and metabolism control. We also provide a detailed description of all pathological mutations in genes ERCC6 and ERCC8 reported to date and their impact on CS-related proteins. Finally, we review the contributions (and limitations) of many genetic animal models to the study of CS and how cutting-edge technologies, such as cell reprogramming and state-of-the-art genome editing, are helping us to address unanswered questions.
Collapse
Affiliation(s)
| | - Camila Chaves Coelho Guerra
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| | - Gustavo Satoru Kajitani
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Livia Luz Souza Nascimento
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Camila Carrião Machado Garcia
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| |
Collapse
|
4
|
van der Weegen Y, Golan-Berman H, Mevissen TET, Apelt K, González-Prieto R, Goedhart J, Heilbrun EE, Vertegaal ACO, van den Heuvel D, Walter JC, Adar S, Luijsterburg MS. The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II. Nat Commun 2020; 11:2104. [PMID: 32355176 PMCID: PMC7192910 DOI: 10.1038/s41467-020-15903-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
The response to DNA damage-stalled RNA polymerase II (RNAPIIo) involves the assembly of the transcription-coupled repair (TCR) complex on actively transcribed strands. The function of the TCR proteins CSB, CSA and UVSSA and the manner in which the core DNA repair complex, including transcription factor IIH (TFIIH), is recruited are largely unknown. Here, we define the assembly mechanism of the TCR complex in human isogenic knockout cells. We show that TCR is initiated by RNAPIIo-bound CSB, which recruits CSA through a newly identified CSA-interaction motif (CIM). Once recruited, CSA facilitates the association of UVSSA with stalled RNAPIIo. Importantly, we find that UVSSA is the key factor that recruits the TFIIH complex in a manner that is stimulated by CSB and CSA. Together these findings identify a sequential and highly cooperative assembly mechanism of TCR proteins and reveal the mechanism for TFIIH recruitment to DNA damage-stalled RNAPIIo to initiate repair. The response to DNA damage-stalled RNA polymerase II leads to the assembly of the transcription-coupled repair (TCR) complex on actively transcribed strands. Here, the authors reveal the complex assembly mechanism of the TCR complex in human cells.
Collapse
Affiliation(s)
- Yana van der Weegen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Hadar Golan-Berman
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - Tycho E T Mevissen
- Howard Hughes Medical Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Elisheva E Heilbrun
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Johannes C Walter
- Howard Hughes Medical Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands.
| |
Collapse
|
5
|
Ouyang J, Lan L, Zou L. Regulation of DNA break repair by transcription and RNA. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1081-1086. [PMID: 29075944 DOI: 10.1007/s11427-017-9164-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
Abstract
Repair of DNA double-strand breaks (DSBs) via the homologous recombination (HR) pathway is a highly regulated process. A number of proteins that participate in HR are intricately modulated by the cell cycle and chromatin environments of DSBs. Recent studies have revealed a clear impact of transcription on HR in transcribed regions of the genome. Several models have been put forth to explain how the process of transcription and/or its RNA products may influence HR. Here we discuss the results and models from these studies, presenting an emerging view of transcription-coupled DSB repair.
Collapse
Affiliation(s)
- Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Li Lan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Microbiology and Molecular Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA. .,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Abstract
Nucleotide excision repair (NER) is a highly versatile and efficient DNA repair process, which is responsible for the removal of a large number of structurally diverse DNA lesions. Its extreme broad substrate specificity ranges from DNA damages formed upon exposure to ultraviolet radiation to numerous bulky DNA adducts induced by mutagenic environmental chemicals and cytotoxic drugs used in chemotherapy. Defective NER leads to serious diseases, such as xeroderma pigmentosum (XP). Eight XP complementation groups are known of which seven (XPA-XPG) are caused by mutations in genes involved in the NER process. The eighth gene, XPV, codes for the DNA polymerase ɳ, which replicates through DNA lesions in a process called translesion synthesis (TLS). Over the past decade, detailed structural information of these DNA repair proteins involved in eukaryotic NER and TLS have emerged. These structures allow us now to understand the molecular mechanism of the NER and TLS processes in quite some detail and we have begun to understand the broad substrate specificity of NER. In this review, we aim to highlight recent advances in the process of damage recognition and repair as well as damage tolerance by the XP proteins.
Collapse
|
7
|
The cockayne syndrome B protein is essential for neuronal differentiation and neuritogenesis. Cell Death Dis 2014; 5:e1268. [PMID: 24874740 PMCID: PMC4047889 DOI: 10.1038/cddis.2014.228] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/28/2014] [Accepted: 04/14/2014] [Indexed: 01/03/2023]
Abstract
Cockayne syndrome (CS) is a progressive developmental and neurodegenerative disorder resulting in premature death at childhood and cells derived from CS patients display DNA repair and transcriptional defects. CS is caused by mutations in csa and csb genes, and patients with csb mutation are more prevalent. A hallmark feature of CSB patients is neurodegeneration but the precise molecular cause for this defect remains enigmatic. Further, it is not clear whether the neurodegenerative condition is due to loss of CSB-mediated functions in adult neurogenesis. In this study, we examined the role of CSB in neurogenesis by using the human neural progenitor cells that have self-renewal and differentiation capabilities. In this model system, stable CSB knockdown dramatically reduced the differentiation potential of human neural progenitor cells revealing a key role for CSB in neurogenesis. Neurite outgrowth, a characteristic feature of differentiated neurons, was also greatly abolished in CSB-suppressed cells. In corroboration with this, expression of MAP2 (microtubule-associated protein 2), a crucial player in neuritogenesis, was also impaired in CSB-suppressed cells. Consistent with reduced MAP2 expression in CSB-depleted neural cells, tandem affinity purification and chromatin immunoprecipitation studies revealed a potential role for CSB in the assembly of transcription complex on MAP2 promoter. Altogether, our data led us to conclude that CSB has a crucial role in coordinated regulation of transcription and chromatin remodeling activities that are required during neurogenesis.
Collapse
|
8
|
Badjatia N, Nguyen TN, Lee JH, Günzl A. Trypanosoma brucei harbours a divergent XPB helicase paralogue that is specialized in nucleotide excision repair and conserved among kinetoplastid organisms. Mol Microbiol 2013; 90:1293-308. [PMID: 24134817 DOI: 10.1111/mmi.12435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2013] [Indexed: 12/21/2022]
Abstract
Conserved from yeast to humans, TFIIH is essential for RNA polymerase II transcription and nucleotide excision repair (NER). TFIIH consists of a core that includes the DNA helicase Xeroderma pigmentosum B (XPB) and a kinase subcomplex. Trypanosoma brucei TFIIH harbours all core complex components and is indispensable for RNA polymerase II transcription of spliced leader RNA genes (SLRNAs). Kinetoplastid organisms, however, possess two highly divergent XPB paralogues with only the larger being identified as a TFIIH subunit in T. brucei. Here we show that a knockout of the gene for the smaller paralogue, termed XPB-R (R for repair) resulted in viable cultured trypanosomes that grew slower than normal. XPB-R depletion did not affect transcription in vivo or in vitro and XPB-R was not found to occupy the SLRNA promoter which assembles a RNA polymerase II transcription pre-initiation complex including TFIIH. However, XPB-R(-/-) cells were much less tolerant than wild-type cells to UV light- and cisplatin-induced DNA damage, which require NER. Since XPB-R(-/-) cells were not impaired in DNA base excision repair, XPB-R appears to function specifically in NER. Interestingly, several other protists possess highly divergent XPB paralogues suggesting that XPBs specialized in transcription or NER exist beyond the Kinetoplastida.
Collapse
Affiliation(s)
- Nitika Badjatia
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT, 06030-6403, USA
| | | | | | | |
Collapse
|
9
|
Abstract
SIGNIFICANCE Oxidative DNA damage is repaired by multiple, overlapping DNA repair pathways. Accumulating evidence supports the hypothesis that nucleotide excision repair (NER), besides base excision repair (BER), is also involved in neutralizing oxidative DNA damage. RECENT ADVANCES NER includes two distinct sub-pathways: transcription-coupled NER (TC-NER) and global genome repair (GG-NER). The CSA and CSB proteins initiate the onset of TC-NER. Recent findings show that not only CSB, but also CSA is involved in the repair of oxidative DNA lesions, in the nucleus as well as in mitochondria. The XPG protein is also of importance for the removal of oxidative DNA lesions, as it may enhance the initial step of BER. Substantial evidence exists that support a role for XPC in NER and BER. XPC deficiency not only results in decreased repair of oxidative lesions, but has also been linked to disturbed redox homeostasis. CRITICAL ISSUES The role of NER proteins in the regulation of the cellular response to oxidative (mitochondrial and nuclear) DNA damage may be the underlying mechanism of the pathology of accelerated aging in Cockayne syndrome patients, a driving force for internal cancer development in XP-A and XP-C patients, and a contributor to the mixed exhibited phenotypes of XP-G patients. FUTURE DIRECTIONS Accumulating evidence indicates that DNA repair factors can be involved in multiple DNA repair pathways. However, the distinct detailed mechanism and consequences of these additional functions remain to be elucidated and can possibly shine a light on clinically related issues.
Collapse
Affiliation(s)
- Joost P M Melis
- Leiden University Medical Center, Department of Toxicogenetics, Leiden, The Netherlands
| | | | | |
Collapse
|
10
|
Aamann MD, Muftuoglu M, Bohr VA, Stevnsner T. Multiple interaction partners for Cockayne syndrome proteins: implications for genome and transcriptome maintenance. Mech Ageing Dev 2013; 134:212-24. [PMID: 23583689 DOI: 10.1016/j.mad.2013.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/17/2022]
Abstract
Cockayne syndrome (CS) is characterized by progressive multisystem degeneration and is classified as a segmental premature aging syndrome. The majority of CS cases are caused by defects in the CS complementation group B (CSB) protein and the rest are mainly caused by defects in the CS complementation group A (CSA) protein. Cells from CS patients are sensitive to UV light and a number of other DNA damaging agents including various types of oxidative stress. The cells also display transcription deficiencies, abnormal apoptotic response to DNA damage, and DNA repair deficiencies. Herein we have critically reviewed the current knowledge about known protein interactions of the CS proteins. The review focuses on the participation of the CSB and CSA proteins in many different protein interactions and complexes, and how these interactions inform us about pathways that are defective in the disease.
Collapse
Affiliation(s)
- Maria D Aamann
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | | |
Collapse
|
11
|
Vélez-Cruz R, Egly JM. Cockayne syndrome group B (CSB) protein: at the crossroads of transcriptional networks. Mech Ageing Dev 2013; 134:234-42. [PMID: 23562425 DOI: 10.1016/j.mad.2013.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/14/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
Cockayne syndrome (CS) is a rare genetic disorder characterized by a variety of growth and developmental defects, photosensitivity, cachectic dwarfism, hearing loss, skeletal abnormalities, progressive neurological degeneration, and premature aging. CS arises due to mutations in the CSA and CSB genes. Both gene products are required for the transcription-coupled (TC) branch of the nucleotide excision repair (NER) pathway, however, the severe phenotype of CS patients is hard to reconcile with a sole defect in TC-NER. Studies using cells from patients and mouse models have shown that the CSB protein is involved in a variety of cellular pathways and plays a major role in the cellular response to stress. CSB has been shown to regulate processes such as the transcriptional recovery after DNA damage, the p53 transcriptional response, the response to hypoxia, the response to insulin-like growth factor-1 (IGF-1), transactivation of nuclear receptors, transcription of housekeeping genes and the transcription of rDNA. Some of these processes are also affected in combined XP/CS patients. These new advances in the function(s) of CSB shed light onto the etiology of the clinical features observed in CS patients and could potentially open therapeutic avenues for these patients in the future. Moreover, the study of CS could further our knowledge of the aging process.
Collapse
Affiliation(s)
- Renier Vélez-Cruz
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université de Strasbourg, BP 163, 67404 Illkirch Cedex, C. U. Strasbourg, France.
| | | |
Collapse
|
12
|
McKay BC, Cabrita MA. Arresting transcription and sentencing the cell: the consequences of blocked transcription. Mech Ageing Dev 2013; 134:243-52. [PMID: 23542592 DOI: 10.1016/j.mad.2013.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/16/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
Abstract
Bulky DNA adducts induced by agents like ultraviolet light, cisplatin and oxidative metabolism pose a block to elongation by RNA polymerase II (RNAPII). The arrested RNAPII can initiate the repair of transcription-blocking DNA lesions by transcription-coupled nucleotide excision repair (TC-NER) to permit efficient recovery of mRNA synthesis while widespread sustained transcription blocks lead to apoptosis. Therefore, RNAPII serves as a processive DNA damage sensor that identifies transcription-blocking DNA lesions. Cockayne syndrome (CS) is an autosomal recessive disorder characterized by a complex phenotype that includes clinical photosensitivity, progressive neurological degeneration and premature-aging. CS is associated with defects in TC-NER and the recovery of mRNA synthesis, making CS cells exquisitely sensitive to a variety of DNA damaging agents. These defects in the coupling of repair and transcription appear to underlie some of the complex clinical features of CS. Recent insight into the consequences of blocked transcription and their relationship to CS will be discussed.
Collapse
Affiliation(s)
- Bruce C McKay
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Canada.
| | | |
Collapse
|
13
|
Lafrance-Vanasse J, Arseneault G, Cappadocia L, Chen HT, Legault P, Omichinski JG. Structural and functional characterization of interactions involving the Tfb1 subunit of TFIIH and the NER factor Rad2. Nucleic Acids Res 2012; 40:5739-50. [PMID: 22373916 PMCID: PMC3384317 DOI: 10.1093/nar/gks194] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The general transcription factor IIH (TFIIH) plays crucial roles in transcription as part of the pre-initiation complex (PIC) and in DNA repair as part of the nucleotide excision repair (NER) machinery. During NER, TFIIH recruits the 3′-endonuclease Rad2 to damaged DNA. In this manuscript, we functionally and structurally characterized the interaction between the Tfb1 subunit of TFIIH and Rad2. We show that deletion of either the PH domain of Tfb1 (Tfb1PH) or several segments of the Rad2 spacer region yield yeast with enhanced sensitivity to UV irradiation. Isothermal titration calorimetry studies demonstrate that two acidic segments of the Rad2 spacer bind to Tfb1PH with nanomolar affinity. Structure determination of a Rad2–Tfb1PH complex indicates that Rad2 binds to TFIIH using a similar motif as TFIIEα uses to bind TFIIH in the PIC. Together, these results provide a mechanistic bridge between the role of TFIIH in transcription and DNA repair.
Collapse
Affiliation(s)
- Julien Lafrance-Vanasse
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
14
|
The role of XPC: implications in cancer and oxidative DNA damage. Mutat Res 2011; 728:107-17. [PMID: 21763452 DOI: 10.1016/j.mrrev.2011.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 01/14/2023]
Abstract
The accumulation of DNA damage is a slow but hazardous phenomenon that may lead to cell death, accelerated aging features and cancer. One of the most versatile and important defense mechanisms against the accumulation of DNA damage is nucleotide excision repair (NER), in which the Xeroderma pigmentosum group C (XPC) protein plays a prominent role. NER can be divided into global genome repair (GG-NER) and transcription coupled repair (TC-NER). XPC is a key factor in GG-NER where it functions in DNA damage recognition and after which the repair machinery is recruited to eliminate the DNA damage. Defective XPC functioning has been shown to result in a cancer prone phenotype, in human as well as in mice. Mutation accumulation in XPC deficient mice is accelerated and increased, resulting in an increased tumor incidence. More recently XPC has also been linked to functions outside of NER since XPC deficient mice show a divergent tumor spectrum compared to other NER deficient mouse models. Multiple in vivo and in vitro experiments indicate that XPC appears to be involved in the initiation of several DNA damage-induced cellular responses. XPC seems to function in the removal of oxidative DNA damage, redox homeostasis and cell cycle control. We hypothesize that this combination of increased oxidative DNA damage sensitivity, disturbed redox homeostasis together with inefficient cell cycle control mechanisms are causes of the observed increased cancer susceptibility in oxygen exposed tissues. Such a phenotype is absent in other NER-deficient mice, including Xpa.
Collapse
|
15
|
Xeroderma Pigmentosum: Its Overlap with Trichothiodystrophy, Cockayne Syndrome and Other Progeroid Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 637:128-37. [DOI: 10.1007/978-0-387-09599-8_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Escargueil AE, Poindessous V, Soares DG, Sarasin A, Cook PR, Larsen AK. Influence of irofulven, a transcription-coupled repair-specific antitumor agent, on RNA polymerase activity, stability and dynamics in living mammalian cells. J Cell Sci 2008; 121:1275-83. [PMID: 18388315 DOI: 10.1242/jcs.023259] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Transcription-coupled repair (TCR) plays a key role in the repair of DNA lesions induced by bulky adducts and is initiated when the elongating RNA polymerase II (Pol II) stalls at DNA lesions. This is accompanied by alterations in Pol II activity and stability. We have previously shown that the monofunctional adducts formed by irofulven (6-hydroxymethylacylfulvene) are exclusively recognized by TCR, without involvement of global genome repair (GGR), making irofulven a unique tool to characterize TCR-associated processes in vivo. Here, we characterize the influence of irofulven on Pol II activity, stability and mobility in living mammalian cells. Our results demonstrate that irofulven induces specific inhibition of nucleoplasmic RNA synthesis, an important decrease of Pol II mobility, coupled to the accumulation of initiating polymerase and a time-dependent loss of the engaged enzyme, associated with its polyubiquitylation. Both proteasome-mediated degradation of the stalled polymerase and new protein synthesis are necessary to allow Pol II recycling into preinitiating complexes. Together, our findings provide novel insights into the subsequent fate of the stalled RNA polymerase II and demonstrate the essential role of the recycling process for transcriptional reinitiation and viability of mammalian cells.
Collapse
Affiliation(s)
- Alexandre E Escargueil
- Laboratory of Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France
| | | | | | | | | | | |
Collapse
|
17
|
Wong HK, Muftuoglu M, Beck G, Imam SZ, Bohr VA, Wilson DM. Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates. Nucleic Acids Res 2007; 35:4103-13. [PMID: 17567611 PMCID: PMC1919475 DOI: 10.1093/nar/gkm404] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Cockayne syndrome B (CSB) protein--defective in a majority of patients suffering from the rare autosomal disorder CS--is a member of the SWI2/SNF2 family with roles in DNA repair and transcription. We demonstrate herein that purified recombinant CSB and the major human apurinic/apyrimidinic (AP) endonuclease, APE1, physically and functionally interact. CSB stimulates the AP site incision activity of APE1 on normal (i.e. fully paired) and bubble AP-DNA substrates, with the latter being more pronounced (up to 6-fold). This activation is ATP-independent, and specific for the human CSB and full-length APE1 protein, as no CSB-dependent stimulation was observed with Escherichia coli endonuclease IV or an N-terminal truncated APE1 fragment. CSB and APE1 were also found in a common protein complex in human cell extracts, and recombinant CSB, when added back to CSB-deficient whole cell extracts, resulted in increased total AP site incision capacity. Moreover, human fibroblasts defective in CSB were found to be hypersensitive to both methyl methanesulfonate (MMS) and 5-hydroxymethyl-2'-deoxyuridine, agents that introduce base excision repair (BER) DNA substrates/intermediates.
Collapse
Affiliation(s)
- Heng-Kuan Wong
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Meltem Muftuoglu
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Gad Beck
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Syed Z. Imam
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 and South Texas Veterans Health Care System and Departments of Medicine and Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
- *To whom correspondence should be addressed. 410 558 8153410 558 8157
| |
Collapse
|
18
|
Kleppa L, Kanavin ØJ, Klungland A, Strømme P. A novel splice site mutation in the Cockayne syndrome group A gene in two siblings with Cockayne syndrome. Neuroscience 2007; 145:1397-406. [PMID: 17084038 DOI: 10.1016/j.neuroscience.2006.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 01/26/2023]
Abstract
Cockayne syndrome (CS) is mainly caused by mutations in the Cockayne syndrome group A or B (CSA or CSB) genes which are required for a sub-pathway of nucleotide excision repair entitled transcription coupled repair. Approximately 20% of the CS patients have mutations in CSA, which encodes a 44 kDa tryptophane (Trp, W) and aspartic acid (Asp, D) amino acids (WD) repeat protein. Up to now, nine different CSA mutations have been identified. We examined two Somali siblings 9 and 12 years old with clinical features typical of CS including skin photosensitivity, progressive ataxia, spasticity, hearing loss, central and peripheral demyelination and intracranial calcifications. Molecular analysis showed a novel splice acceptor site mutation, a G to A transition in the -1 position of intervening sequence 6 (g.IVS6-1G>A), in the CSA (excision repair cross-complementing 8 (ERCC8)) gene. IVS6-1G>A results in a new 28 amino acid C-terminus and premature termination of the CSA protein (G184DFs28X). A review of the CSA protein and the 10 known CSA mutations is also presented.
Collapse
Affiliation(s)
- L Kleppa
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet HF, University of Oslo, N-0027 Oslo, Norway.
| | | | | | | |
Collapse
|
19
|
Saijo M, Hirai T, Ogawa A, Kobayashi A, Kamiuchi S, Tanaka K. Functional TFIIH is required for UV-induced translocation of CSA to the nuclear matrix. Mol Cell Biol 2007; 27:2538-47. [PMID: 17242193 PMCID: PMC1899911 DOI: 10.1128/mcb.01288-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transcription-coupled repair (TCR) efficiently removes a variety of lesions from the transcribed strand of active genes. Mutations in Cockayne syndrome group A and B genes (CSA and CSB) result in defective TCR, but the molecular mechanism of TCR in mammalian cells is not clear. We have found that CSA protein is translocated to the nuclear matrix after UV irradiation and colocalized with the hyperphosphorylated form of RNA polymerase II and that the translocation is dependent on CSB. We developed a cell-free system for the UV-induced translocation of CSA. A cytoskeleton (CSK) buffer-soluble fraction containing CSA and a CSK buffer-insoluble fraction prepared from UV-irradiated CS-A cells were mixed. After incubation, the insoluble fraction was treated with DNase I. CSA protein was detected in the DNase I-insoluble fraction, indicating that it was translocated to the nuclear matrix. In this cell-free system, the translocation was dependent on UV irradiation, CSB function, and TCR-competent CSA. Moreover, the translocation was dependent on functional TFIIH, as well as chromatin structure and transcription elongation. These results suggest that alterations of chromatin at the RNA polymerase II stall site, which depend on CSB and TFIIH at least, are necessary for the UV-induced translocation of CSA to the nuclear matrix.
Collapse
Affiliation(s)
- Masafumi Saijo
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Lainé JP, Egly JM. When transcription and repair meet: a complex system. Trends Genet 2006; 22:430-6. [PMID: 16797777 DOI: 10.1016/j.tig.2006.06.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 04/11/2006] [Accepted: 06/06/2006] [Indexed: 01/03/2023]
Abstract
Transcription-coupled repair (TCR) is a mechanism that removes DNA lesions so that genes can be transcribed correctly. However, the sequence of events that results in a DNA lesion being repaired remains elusive. In this review, we illustrate the potential chain of events leading to the elimination of the damaged DNA and the proper resumption of transcription. We focus on the roles of CSA and CSB proteins, which, when mutated, impair TCR. Defective TCR is one of the features of Cockayne syndrome, a DNA-repair disorder.
Collapse
Affiliation(s)
- Jean-Philippe Lainé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, C. U. Strasbourg, France
| | | |
Collapse
|
21
|
|
22
|
Saxowsky TT, Doetsch PW. RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? Chem Rev 2006; 106:474-88. [PMID: 16464015 DOI: 10.1021/cr040466q] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tina T Saxowsky
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
23
|
Sarker AH, Tsutakawa SE, Kostek S, Ng C, Shin DS, Peris M, Campeau E, Tainer JA, Nogales E, Cooper PK. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol Cell 2006; 20:187-98. [PMID: 16246722 DOI: 10.1016/j.molcel.2005.09.022] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 08/08/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
Loss of a nonenzymatic function of XPG results in defective transcription-coupled repair (TCR), Cockayne syndrome (CS), and early death, but the molecular basis for these phenotypes is unknown. Mutation of CSB, CSA, or the TFIIH helicases XPB and XPD can also cause defective TCR and CS. We show that XPG interacts with elongating RNA polymerase II (RNAPII) in the cell and binds stalled RNAPII ternary complexes in vitro both independently and cooperatively with CSB. XPG binds transcription-sized DNA bubbles through two domains not required for incision and functionally interacts with CSB on these bubbles to stimulate its ATPase activity. Bound RNAPII blocks bubble incision by XPG, but an ATP hydrolysis-dependent process involving TFIIH creates access to the junction, allowing incision. Together, these results implicate coordinated recognition of stalled transcription by XPG and CSB in TCR initiation and suggest that TFIIH-dependent remodeling of stalled RNAPII without release may be sufficient to allow repair.
Collapse
Affiliation(s)
- Altaf H Sarker
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mail Stop 74R157, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lainé JP, Egly JM. Initiation of DNA repair mediated by a stalled RNA polymerase IIO. EMBO J 2006; 25:387-97. [PMID: 16407975 PMCID: PMC1383516 DOI: 10.1038/sj.emboj.7600933] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 12/02/2005] [Indexed: 11/09/2022] Open
Abstract
The transcription-coupled repair (TCR) pathway preferentially repairs DNA damage located in the transcribed strand of an active gene. To gain insight into the coupling mechanism between transcription and repair, we have set up an in vitro system in which we isolate an elongating RNA pol IIO, which is stalled in front of a cisplatin adduct. This immobilized RNA pol IIO is used as 'bait' to sequentially recruit TFIIH, XPA, RPA, XPG and XPF repair factors in an ATP-dependent manner. This RNA pol IIO/repair complex allows the ATP-dependent removal of the lesion only in the presence of CSB, while the latter does not promote dual incision in an XPC-dependent nucleotide excision repair reaction. In parallel to the dual incision, the repair factors also allow the partial release of RNA pol IIO. In this 'minimal TCR system', the RNA pol IIO can effectively act as a loading point for all the repair factors required to eliminate a transcription-blocking lesion.
Collapse
Affiliation(s)
- Jean-Philippe Lainé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch Cedex, CU Strasbourg, France
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch Cedex, CU Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, CU Strasbourg, France. Tel.: +33 388 65 34 47; Fax: +33 388 65 32 01; E-mail:
| |
Collapse
|
25
|
Kunz BA, Cahill DM, Mohr PG, Osmond MJ, Vonarx EJ. Plant responses to UV radiation and links to pathogen resistance. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:1-40. [PMID: 17178464 DOI: 10.1016/s0074-7696(06)55001-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased incident ultraviolet (UV) radiation due to ozone depletion has heightened interest in plant responses to UV because solar UV wavelengths can reduce plant genome stability, growth, and productivity. These detrimental effects result from damage to cell components including nucleic acids, proteins, and membrane lipids. As obligate phototrophs, plants must counter the onslaught of cellular damage due to prolonged exposure to sunlight. They do so by attenuating the UV dose received through accumulation of UV-absorbing secondary metabolites, neutralizing reactive oxygen species produced by UV, monomerizing UV-induced pyrimidine dimers by photoreactivation, extracting UV photoproducts from DNA via nucleotide excision repair, and perhaps transiently tolerating the presence of DNA lesions via replicative bypass of the damage. The signaling mechanisms controlling these responses suggest that UV exposure also may be beneficial to plants by increasing cellular immunity to pathogens. Indeed, pathogen resistance can be enhanced by UV treatment, and recent experiments suggest DNA damage and its processing may have a role.
Collapse
Affiliation(s)
- Bernard A Kunz
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | | | | | | | | |
Collapse
|
26
|
Fujimoto M, Leech SN, Theron T, Mori M, Fawcett H, Botta E, Nozaki Y, Yamagata T, Moriwaki SI, Stefanini M, Momoi MY, Nakagawa H, Shuster S, Moss C, Lehmann AR. Two new XPD patients compound heterozygous for the same mutation demonstrate diverse clinical features. J Invest Dermatol 2005; 125:86-92. [PMID: 15982307 DOI: 10.1111/j.0022-202x.2005.23745.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are both rare autosomal recessive disorders with defects in DNA repair. They are usually distinct both clinically and genetically but in rare cases, patients exhibit the clinical characteristics of both diseases concurrently. We report two new phenotypically distinct cases of XP with additional features of CS (xeroderma pigmentosum and Cockayne syndrome crossover syndrome (XP/CS)) carrying an identical mutation (G47R) in the XPD gene within the N terminus of the protein. Both patients had clinical features of XP and CS but only one fulfilled most criteria for diagnosing CS. Unusually, patient 1 developed early skin cancer, in contrast to patient 2, who never developed any malignancies. Cells from both these patients have repair defects typical of xeroderma pigmentosum complementation group D (XPD) cells, but also had the phenotype of uncontrolled DNA breakage found specifically in XPD/CS cells and similarly reduced levels of TFIIH. Despite these similarities between our two patients, their clinical features are quite different and the clinical severity correlates with other cellular responses to ultraviolet irradiation.
Collapse
|
27
|
Thoma BS, Wakasugi M, Christensen J, Reddy MC, Vasquez KM. Human XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks. Nucleic Acids Res 2005; 33:2993-3001. [PMID: 15914671 PMCID: PMC1140082 DOI: 10.1093/nar/gki610] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) represent a severe form of damage that blocks DNA metabolic processes and can lead to cell death or carcinogenesis. The repair of DNA ICLs in mammals is not well characterized. We have reported previously that a key protein complex of nucleotide excision repair (NER), XPA-RPA, recognizes DNA ICLs. We now report the use of triplex technology to direct a site-specific psoralen ICL to a target DNA substrate to determine whether the human global genome NER damage recognition complex, XPC-hHR23B, recognizes this lesion. Our results demonstrate that XPC-hHR23B recognizes psoralen ICLs, which have a structure fundamentally different from other lesions that XPC-hHR23B is known to bind, with high affinity and specificity. XPC-hHR23B and XPA-RPA protein complexes were also observed to bind psoralen ICLs simultaneously, demonstrating not only that psoralen ICLs are recognized by XPC-hHR23B alone, but also that XPA-RPA may interact cooperatively with XPC-hHR23B on damaged DNA, forming a multimeric complex. Since XPC-hHR23B and XPA-RPA participate in the recognition and verification of DNA damage, these results support the hypothesis that interplay between components of the global genome repair sub-pathway of NER is critical for the recognition of psoralen DNA ICLs in the mammalian genome.
Collapse
Affiliation(s)
| | - Mitsuo Wakasugi
- Faculty of Pharmaceutical Sciences, Kanazawa UniversityTakara-machi, Kanazawa 920-0934, Japan
| | - Jesper Christensen
- Biotech Research and Innovation CentreFruebjergvej 3, 2100 Copenhagen, Denmark
| | | | - Karen M. Vasquez
- To whom correspondence should be addressed. Tel: +512 237 9324; Fax: +512 237 2475;
| |
Collapse
|
28
|
Differential Role of Transcription-Coupled Repair in UVB–Induced Response of Human Fibroblasts and Keratinocytes. Cancer Res 2005. [DOI: 10.1158/0008-5472.432.65.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Most solar radiation–induced skin cancers arise in keratinocytes. In the human epidermis, protection against cancer is thought to be mediated mainly by nucleotide excision repair (NER) of UVB-induced cyclobutane pyrimidine dimers, and by elimination of the damaged cells by apoptosis. NER consists of two subpathways: global genome repair (GGR) and transcription-coupled repair (TCR). Here, we investigate the impact of defects in NER subpathways on the cellular response to UVB-induced damage by comparing primary human keratinocytes and fibroblasts from normal, XP-C (GGR-defective), and CS-A (TCR-defective) individuals. We show that human keratinocytes are more resistant to UVB killing than fibroblasts and present higher levels of UVB-induced DNA repair synthesis due to a more efficient GGR. The CS-A defect is associated with a strong apoptotic response in fibroblasts but not in keratinocytes. Following an UVB dose of 1,000 J/m2, no p53-mediated transactivation of mdm2 is observed in CS-A fibroblasts, whereas the p53-mdm2 circuit is fully activated in CS-A keratinocytes. Thus, in fibroblasts, the signal for apoptosis originates from DNA photoproducts in the transcribed strand of active genes, whereas in keratinocytes, it is largely TCR-independent. This study shows that the response to UVB radiation is cell type–specific in humans and provides the first evidence that a deficiency in TCR has a different impact depending on the cell type. These findings have important implications for the mechanism of skin cancer protection after UVB damage and may explain the lack of skin cancer in patients with Cockayne syndrome.
Collapse
|
29
|
Bucheli M, Sweder K. In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand. Mol Microbiol 2004; 52:1653-63. [PMID: 15186415 DOI: 10.1111/j.1365-2958.2004.04081.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleotide excision repair (NER) in eukaryotes is a pathway conserved from yeast to humans that removes many bulky chemical adducts and UV-induced photoproducts from DNA in a relatively error-free manner. In addition to the recognition and excision of DNA damage throughout the genome (GGR), there exists a mechanism, transcription-coupled nucleotide excision repair (TCR), for recognizing some types of DNA damage in the transcribed strand of genes in Escherichia coli, yeast and mammalian cells. An obstacle in the repair of the transcribed strand of active genes is the RNA polymerase complex stalled at sites of DNA damage. The stalled RNA polymerase complex may then mediate recruitment of repair proteins to damage in the transcribed strand. Proteins enabling TCR are the Cockayne syndrome B (CSB) protein in humans and its yeast homologue Rad26. Both CSB and Rad26 belong to the Swi2/Snf2 family of DNA-dependent ATPases, which change DNA accessibility to proteins by altering chromatin structure. To address how Rad26 functions in yeast repair, we used the genetic approach of overexpressing Rad26 and examined phenotypic changes, i.e. changes in NER. We found that repair of both the transcribed and the non-transcribed strands is increased. In addition, overexpression of Rad26 partially bypasses the requirement for Rad7 in GGR, specifically in the repair of non-transcribed sequences. As TCR takes place in very localized regions of DNA (i.e. within genes) in wild-type cells, we propose that overexpression of recombinant Rad26 increases accessibility of the damaged DNA in chromatin for interaction with repair proteins.
Collapse
Affiliation(s)
- Miriam Bucheli
- Program in Microbiology and Molecular Genetics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, NJ, USA
| | | |
Collapse
|
30
|
Licht CL, Stevnsner T, Bohr VA. Cockayne syndrome group B cellular and biochemical functions. Am J Hum Genet 2003; 73:1217-39. [PMID: 14639525 PMCID: PMC1180389 DOI: 10.1086/380399] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 10/01/2003] [Indexed: 01/17/2023] Open
Abstract
The devastating genetic disorder Cockayne syndrome (CS) arises from mutations in the CSA and CSB genes. CS is characterized by progressive multisystem degeneration and is classified as a segmental premature-aging syndrome. The CS complementation group B (CSB) protein is at the interface of transcription and DNA repair and is involved in transcription-coupled and global genome-DNA repair, as well as in general transcription. Recent structure-function studies indicate a process-dependent variation in the molecular mechanism employed by CSB and provide a starting ground for a description of the mechanisms and their interplay.
Collapse
Affiliation(s)
- Cecilie Löe Licht
- Laboratory of DNA Repair, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark; and Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore
| | - Tinna Stevnsner
- Laboratory of DNA Repair, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark; and Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore
| | - Vilhelm A. Bohr
- Laboratory of DNA Repair, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark; and Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore
| |
Collapse
|
31
|
Thoma BS, Vasquez KM. Critical DNA damage recognition functions of XPC-hHR23B and XPA-RPA in nucleotide excision repair. Mol Carcinog 2003; 38:1-13. [PMID: 12949838 DOI: 10.1002/mc.10143] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been reported that 80-90% of human cancers may result, in part, from DNA damage. Cell survival depends critically on the stability of our DNA and exquisitely sensitive DNA repair mechanisms have developed as a result. In humans, nucleotide excision repair (NER) protects the DNA against the mutagenic effects of carcinogens and ultraviolet (UV) radiation from sun exposure. By preventing mutations from forming in the DNA, the repair machinery ultimately protects us from developing cancers. DNA damage recognition is the rate-limiting step in repair, and although many details of NER have been elucidated, the mechanisms by which DNA damage is recognized remain to be fully determined. Two primary protein complexes have been proposed as the damaged DNA recognition factor in NER: xeroderma pigmentosum protein A-replication protein A (XPA-RPA) and xeroderma pigmentosum protein C-human homolog of RAD23B (XPC-hHR23B). Here we compare the evidence that supports damage detection by these protein complexes and propose a model for DNA damage recognition in NER based on the current understanding of the roles these proteins may play in the processing of DNA lesions.
Collapse
Affiliation(s)
- Brian S Thoma
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
| | | |
Collapse
|
32
|
Leadon SA. Transcription-coupled repair: a multifunctional signaling pathway. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:561-6. [PMID: 12760074 DOI: 10.1101/sqb.2000.65.561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- S A Leadon
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599-7512, USA
| |
Collapse
|
33
|
Tsutakawa SE, Cooper PK. Transcription-coupled repair of oxidative DNA damage in human cells: mechanisms and consequences. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:201-15. [PMID: 12760034 DOI: 10.1101/sqb.2000.65.201] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- S E Tsutakawa
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
34
|
Ren Y, Saijo M, Nakatsu Y, Nakai H, Yamaizumi M, Tanaka K. Three novel mutations responsible for Cockayne syndrome group A. Genes Genet Syst 2003; 78:93-102. [PMID: 12655141 DOI: 10.1266/ggs.78.93] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cockayne syndrome (CS) is a rare autosomal recessive disease, which shows diverse clinical symptoms such as photosensitivity, severe mental retardation and developmental defects. CS cells are hypersensitive to killing by UV-irradiation and defective in transcription-coupled repair. Two genetic complementation groups in CS (CS-A and CS-B) have been identified. We analyzed mutations of the CSA gene in 5 CS-A patients and identified 3 types of mutations. Four unrelated CS-A patients (CS2OS, CS2AW, Nps2 and CS2SE) had a deletion including exon 4, suggesting that there is a founder effect on the CSA mutation in Japanese CS-A patients. Patient CS2SE was a compound heterozygote for this deletion and an amino acid substitution at the 106th glutamine to proline (Q106P) in the WD-40 repeat motif of the CSA protein, which resulted in a defective nucleotide excision repair. Patient Mps1 had a large deletion in the upstream region including exon 1 of the CSA gene. Our results indicate that a rapid and reliable diagnosis of CSA mutations could be achieved in CS-A patients by PCR or PCR-RFLP and that the Q106P mutation could alter the propeller structure of the CSA protein which is important for the formation of the CSA protein complex.
Collapse
Affiliation(s)
- Yan Ren
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
In the past few months, several discoveries relating to the mechanism underlying transcription-coupled DNA repair (TCR) have been reported. These results make it timely to propose a hypothesis for how eukaryotic cells might deal with arrested RNA polymerase II (Pol II) complexes. In this model, the transcription-repair coupling factor Cockayne Syndrome B (or the yeast equivalent Rad26) uses DNA translocase activity to remodel the Pol II-DNA interface, possibly to push the polymerase past the obstruction or to remove it from the DNA so that repair can take place if the obstacle is a DNA lesion. However, when this action is not possible and Pol II is left irreversibly trapped on DNA, the polymerase is instead ubiquitylated and eventually removed by proteolysis.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
36
|
de Waard H, de Wit J, Gorgels TGMF, van den Aardweg G, Andressoo JO, Vermeij M, van Steeg H, Hoeijmakers JHJ, van der Horst GTJ. Cell type-specific hypersensitivity to oxidative damage in CSB and XPA mice. DNA Repair (Amst) 2003; 2:13-25. [PMID: 12509265 DOI: 10.1016/s1568-7864(02)00188-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mutations in the CSB gene cause Cockayne syndrome (CS), a rare inherited disorder, characterized by UV-sensitivity, severe neurodevelopmental and progeroid symptoms. CSB functions in the transcription-coupled repair (TCR) sub-pathway of nucleotide excision repair (NER), responsible for the removal of UV-induced and other helix-distorting lesions from the transcribed strand of active genes. Several lines of evidence support the notion that the CSB TCR defect extends to other non-NER type transcription-blocking lesions, notably various kinds of oxidative damage, which may provide an explanation for part of the severe CS phenotype. We used genetically defined mouse models to examine the relationship between the CSB defect and sensitivity to oxidative damage in different cell types and at the level of the intact organism. The main conclusions are: (1) CSB(-/-) mouse embryo fibroblasts (MEFs) exhibit a clear hypersensitivity to ionizing radiation, extending the findings in genetically heterogeneous human CSB fibroblasts to another species. (2) CSB(-/-) MEFs are highly sensitive to paraquat, strongly indicating that the increased cytotoxicity is due to oxidative damage. (3) The hypersenstivity is independent of genetic background and directly related to the CSB defect and is not observed in totally NER-deficient XPA MEFs. (4) Wild type embryonic stem (ES) cells display an increased sensitivity to ionizing radiation compared to fibroblasts. Surprisingly, the CSB deficiency has only a very minor additional effect on ES cell sensitivity to oxidative damage and is comparable to that of an XPA defect, indicating cell type-specific differences in the contribution of TCR and NER to cellular survival. (5) Similar to ES cells, CSB and XPA mice both display a minor sensitivity to whole-body X-ray exposure. This suggests that the response of an intact organism to radiation is largely determined by the sensitivity of stem cells, rather than differentiated cells. These findings establish the role of transcription-coupled repair in resistance to oxidative damage and reveal a cell- and organ-specific impact of this repair pathway to the clinical phenotype of CS and XP.
Collapse
Affiliation(s)
- Harm de Waard
- MGC, Department of Cell Biology and Genetics, Erasmus Mc, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bradsher J, Auriol J, Proietti de Santis L, Iben S, Vonesch JL, Grummt I, Egly JM. CSB is a component of RNA pol I transcription. Mol Cell 2002; 10:819-29. [PMID: 12419226 DOI: 10.1016/s1097-2765(02)00678-0] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutation in the CSB gene results in the human Cockayne's syndrome (CS). Here, we provide evidence that CSB is found not only in the nucleoplasm but also in the nucleolus within a complex (CSB IP/150) that contains RNA pol I, TFIIH, and XPG and promotes efficient rRNA synthesis. CSB is active in in vitro RNA pol I transcription and restores rRNA synthesis when transfected in CSB-deficient cells. We also show that mutations in CSB, as well as in XPB and XPD genes, all of which confer CS, disturb the RNA pol I/TFIIH interaction within the CSB IP/150. In addition to revealing an unanticipated function for CSB in rRNA synthesis, we show that the fragility of this complex could be one factor contributing to the CS phenotype.
Collapse
Affiliation(s)
- John Bradsher
- Institut de Genetique et de Biologie Moleculaire et Cellulaire (CNRS/INSERM/ULP), F-67404, Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Chiganças V, Batista LFZ, Brumatti G, Amarante-Mendes GP, Yasui A, Menck CFM. Photorepair of RNA polymerase arrest and apoptosis after ultraviolet irradiation in normal and XPB deficient rodent cells. Cell Death Differ 2002; 9:1099-107. [PMID: 12232798 DOI: 10.1038/sj.cdd.4401072] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2002] [Revised: 03/01/2002] [Accepted: 05/03/2002] [Indexed: 11/08/2022] Open
Abstract
Cyclobutane pyrimidine dimers (CPDs) are directly involved in signaling for UV-induced apoptosis in mammalian cells. Failure to remove these lesions, specially those located at actively expressing genes, is critical, as cells defective in transcription coupled repair have increased apoptotic levels. Thus, the blockage of RNA synthesis by lesions is an important candidate event triggering off active cell death. In this work, wild-type and XPB mutated Chinese hamster ovary (CHO) cells expressing a marsupial photolyase, that removes specifically CPDs from the damaged DNA, were generated, in order to investigate the importance of this lesion in both RNA transcription blockage and apoptotic induction. Photorepair strongly recovers RNA synthesis in wild-type CHO cell line, although the resumption of transcription is decreased in XPB deficient cells. This recovery is accompanied by the prevention of cells entering into apoptosis. These results demonstrate that marsupial photolyase has access to CPDs blocking RNA synthesis in vivo, and this may be affected by the presence of a mutated XPB protein.
Collapse
Affiliation(s)
- V Chiganças
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo 05508-900, SP, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
van den Boom V, Jaspers NGJ, Vermeulen W. When machines get stuck--obstructed RNA polymerase II: displacement, degradation or suicide. Bioessays 2002; 24:780-4. [PMID: 12210513 DOI: 10.1002/bies.10150] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The severe hereditary progeroid disorder Cockayne syndrome is a consequence of a defective transcription-coupled repair (TCR) pathway. This special mode of DNA repair aids a RNA polymerase that is stalled by a DNA lesion in the template and ensures efficient DNA repair to permit resumption of transcription and prevent cell death. Although some key players in TCR, such as the Cockayne syndrome A (CSA) and B (CSB) proteins have been identified, the exact molecular mechanism still remains illusive. A recent report provides new unexpected insights into TCR in yeast. The identification and characterisation of a novel protein co-purifying with the yeast homologue of CSB (Rad26) imposes reassessment of our current understanding of TCR in yeast. What about humans?
Collapse
Affiliation(s)
- Vincent van den Boom
- Department of Cell Biology and Genetics, Medical Genetic Center, Erasmus University Rotterdam, The Netherlands
| | | | | |
Collapse
|
40
|
Liu L, Rice MC, Drury M, Cheng S, Gamper H, Kmiec EB. Strand bias in targeted gene repair is influenced by transcriptional activity. Mol Cell Biol 2002; 22:3852-63. [PMID: 11997519 PMCID: PMC133839 DOI: 10.1128/mcb.22.11.3852-3863.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Modified single-stranded DNA oligonucleotides can direct nucleotide exchange in Saccharomyces cerevisiae. Point and frameshift mutations are corrected in a reaction catalyzed by cellular enzymes involved in various DNA repair processes. The present model centers on the annealing of the vector to one strand of the helix, followed by the correction of the designated base. The choice of which strand to target is a reaction parameter that can be controlled, so here we investigate the properties of strand bias in targeted gene repair. An in vivo system has been established in which a plasmid containing an actively transcribed, but mutated, hygromycin-enhanced green fluorescent protein fusion gene is targeted for repair and upon conversion will confer hygromycin resistance on the cell. Overall transcriptional activity has a positive influence on the reaction, elevating the frequency. If the targeting vector is synthesized so that it directs nucleotide repair on the nontranscribed strand, the level of gene repair is higher than if the template strand is targeted. We provide data showing that the targeting vector can be displaced from the template strand by an active T7 phage RNA polymerase. The strand bias is not influenced by which strand serves as the leading or lagging strand during DNA synthesis. These results may provide an explanation for the enhancement of gene repair observed when the non-template strand is targeted.
Collapse
Affiliation(s)
- Li Liu
- Department of Biology and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | | | |
Collapse
|
41
|
Harrison L, Malyarchuk S. Can DNA repair cause enhanced cell killing following treatment with ionizing radiation? PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2002; 8:149-159. [PMID: 12039646 DOI: 10.1016/s0928-4680(01)00079-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Production of DNA damage is the basis of cancer treatments, such as chemotherapy and radiotherapy. The limitation of the treatment dose tends to be how well the normal cells within the body can tolerate the therapy. Although it is possible, to some extent, to localize the treatment area during radiotherapy by targeting the beam of ionizing radiation, chemotherapy usually involves a whole body treatment. In order to improve the effectiveness of treatments, it is important to understand how cells repair the DNA damage. This review will attempt to explain how DNA repair, which would be expected to always enhance cell survival, actually may result in increased cell killing following certain types of cancer treatments, such as ionizing radiation and bleomycin sulfate. Work is underway in many laboratories to unravel how the repair systems handle specific types of DNA damage. Such information will pave the way in designing adjuvant therapies that alter a tumor cell's DNA repair capacity and increase tumor cell killing.
Collapse
Affiliation(s)
- Lynn Harrison
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Center, 1501 Kings Highway, 71130, Shreveport, LA, USA
| | | |
Collapse
|
42
|
Sunesen M, Stevnsner T, Brosh RM, Dianov GL, Bohr VA. Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product. Oncogene 2002; 21:3571-8. [PMID: 12032859 DOI: 10.1038/sj.onc.1205443] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2001] [Revised: 02/11/2002] [Accepted: 02/21/2002] [Indexed: 11/09/2022]
Abstract
Cockayne syndrome (CS) is an autosomal recessive human disease characterized by UV-sensitivity as well as neurological and developmental abnormalities. Two complementation groups have been established, designated CS-A and CS-B. Traditionally, CSA and CSB have been ascribed a function in the transcription-coupled repair (TCR) pathway of nucleotide excision repair (NER) that efficiently removes bulky lesions from the transcribed strand of RNA polymerase II transcribed genes. To assess the role of the CSB protein in the repair of the highly mutagenic base lesion 7,8-dihydro-8-oxoguanine (8-oxoG), we have investigated the removal of this lesion using an in vitro incision approach with cell extracts as well as an in vivo approach with a modified protocol of the gene-specific repair assay, which allows the measurement of base lesion repair in intragenomic sequences. Our results demonstrate that the integrity of the CSB protein is pivotal for processes leading to incision at the site of 8-oxoG and that the global genome repair (GGR) of this lesion requires a functional CSB gene product in vivo.
Collapse
Affiliation(s)
- Morten Sunesen
- Department of Molecular and Structural Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
43
|
Selzer RR, Nyaga S, Tuo J, May A, Muftuoglu M, Christiansen M, Citterio E, Brosh RM, Bohr VA. Differential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV-induced DNA damage and 8-oxoguanine lesions in human cells. Nucleic Acids Res 2002; 30:782-93. [PMID: 11809892 PMCID: PMC100288 DOI: 10.1093/nar/30.3.782] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Revised: 11/10/2001] [Accepted: 11/27/2001] [Indexed: 11/13/2022] Open
Abstract
Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, developmental abnormalities and premature aging. The cellular and molecular phenotypes of CS include increased sensitivity to oxidative and UV-induced DNA lesions. The CSB protein is thought to play a pivotal role in transcription-coupled repair and CS-B cells are defective in the repair of the transcribed strand of active genes, both after exposure to UV and in the presence of oxidative DNA lesions. A previous study has indicated that a conserved helicase ATPase motif II residue is essential for the function of the CSB protein in responding to UV-induced DNA damage in a hamster cell line. Due to the limitations in studying a complex human disorder in another species, this study introduced the site-directed mutation of the ATPase motif II in the human CSB gene in an isogenic human cell line. The CSB mutant allele was tested for genetic complementation of UV-sensitive phenotypes in the human CS-B cell line CS1AN.S3.G2. In addition, the incision of an 8-oxoguanine lesion by extracts of the CS-B cell lines stably transfected with the wild-type or ATPase mutant CSB gene has been investigated. The ATPase motif II point mutation (E646Q) abolished the function of the CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery and apoptosis. Interestingly, whole-cell extract prepared from these mutant cells retained wild-type incision activity on an oligonucleotide containing a single 8-oxoguanine lesion, whereas the absence of the CSB gene altogether resulted in reduced incision activity relative to wild-type. These results suggest damage-specific functional requirements for CSB in the repair of UV-induced and oxidative lesions in human cells. The transfection of the mutant or wild-type CSB gene into the CS1AN.S3.G2 cells did not alter the expression of the subset of genes examined by cDNA array analysis.
Collapse
Affiliation(s)
- Rebecca R Selzer
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kamiuchi S, Saijo M, Citterio E, de Jager M, Hoeijmakers JHJ, Tanaka K. Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair. Proc Natl Acad Sci U S A 2002; 99:201-6. [PMID: 11782547 PMCID: PMC117539 DOI: 10.1073/pnas.012473199] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription-coupled repair (TCR) efficiently removes a variety of lesions from the transcribed strand of active genes. By allowing rapid resumption of RNA synthesis, the process is of major importance for cellular resistance to transcription-blocking genotoxic damage. Mutations in the Cockayne syndrome group A or B (CSA or CSB) gene result in defective TCR. However, the exact mechanism of TCR in mammalian cells remains to be elucidated. We found that CSA protein is rapidly translocated to the nuclear matrix after UV irradiation. The translocation of CSA was independent of Xeroderma pigmentosum group C, which is specific to the global genome repair subpathway of nucleotide excision repair (NER) and of the core NER factor Xeroderma pigmentosum group A but required the CSB protein. In UV-irradiated cells, CSA protein colocalized with the hyperphosphorylated form of RNA polymerase II, engaged in transcription elongation. The translocation of CSA was also induced by treatment of the cells with cisplatin or hydrogen peroxide, both of which produce damage that is subjected to TCR but not induced by treatment with dimethyl sulfate, which produces damage that is not subjected to TCR. The hydrogen peroxide-induced translocation of CSA was also CSB dependent. These findings establish a link between TCR and the nuclear matrix mediated by CSA.
Collapse
Affiliation(s)
- Shinya Kamiuchi
- Division of Cellular Genetics, Institute for Molecular and Cellular Biology, Osaka University and Core Research for Evolutional Science and Technology (CREST), Japan
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Several types of helix-distorting DNA lesions block the passage of elongating RNA polymerase II. Surprisingly, such transcription-blocking lesions are usually repaired considerably faster than non-obstructive lesions in the non-transcribed strand or in the genome overall. In this review, our knowledge of eukaryotic transcription-coupled repair (TCR) will be considered from the point of view of transcription, and current models for the mechanism of TCR will be discussed.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Imperial Cancer Research Fund, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
46
|
Tanaka K, Kamiuchi S, Ren Y, Yonemasu R, Ichikawa M, Murai H, Yoshino M, Takeuchi S, Saijo M, Nakatsu Y, Miyauchi-Hashimoto H, Horio T. UV-induced skin carcinogenesis in xeroderma pigmentosum group A (XPA) gene-knockout mice with nucleotide excision repair-deficiency. Mutat Res 2001; 477:31-40. [PMID: 11376684 DOI: 10.1016/s0027-5107(01)00093-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleotide excision repair (NER) removes a wide variety of lesions from the genome and is deficient in the genetic disorder, xeroderma pigmentosum (XP). In this paper, an in vitro analysis of the XP group A gene product (XPA protein) is reported. Results of an analysis on the pathogenesis of ultraviolet (UV)-B-induced skin cancer in the XPA gene-knockout mouse are also described: (1) contrary to wild type mice, significant bias of p53 mutations to the transcribed strand and no evident p53 mutational hot spots were detected in the skin tumors of XPA-knockout mice. (2) Skin cancer cell lines from UVB-irradiated XPA-knockout mice had a decreased mismatch repair activity and an abnormal cell cycle checkpoint, suggesting that the downregulation of mismatch repair helps cells escape killing by UVB and that mismatch repair-deficient clones are selected for during the tumorigenic transformation of XPA (-/-) cells. (3) The XPA-knockout mice showed a higher frequency of UVB-induced mutation in the rpsL transgene at a low dose of UVB-irradiation than the wild type mice. CC-->TT tandem transition, a hallmark of UV-induced mutation, was detected at higher frequency in the rpsL transgene in the XPA-knockout mice than the wild type mice. This rpsL/XPA mouse system will be useful for further analysing the role of NER in the mutagenesis induced by various carcinogens. (4) The UVB-induced immunosuppression was greatly enhanced in the XPA-knockout mice. It is possible that an enhanced impairment of the immune system by UVB irradiation is involved in the high incidence of skin cancer in XP.
Collapse
Affiliation(s)
- K Tanaka
- Institute for Molecular and Cellular Biology, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Proietti De Santis L, Garcia CL, Balajee AS, Brea Calvo GT, Bassi L, Palitti F. Transcription coupled repair deficiency results in increased chromosomal aberrations and apoptotic death in the UV61 cell line, the Chinese hamster homologue of Cockayne's syndrome B. Mutat Res 2001; 485:121-32. [PMID: 11182543 DOI: 10.1016/s0921-8777(00)00065-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcription coupled repair (TCR), a special sub-pathway of nucleotide excision repair (NER), removes transcription blocking lesions rapidly from the transcribing strand of active genes. In this study, we have evaluated the importance of the TCR pathway in the induction of chromosomal aberrations and apoptosis in isogenic Chinese hamster cell lines, which differ in TCR efficiency. AA8 is the parental cell line, which is proficient in the genome overall repair of UV-C radiation induced 6-4 photoproducts (6-4 PP) and the repair of cyclobutane pyrimidine dimer (CPD) from the transcribing strand of active genes. UV61 cells (hamster homologue of human Cockayne's syndrome (CS) group B cells) originally isolated from AA8, exhibit proficient repair of 6-4 PP but are deficient in CPD removal by the TCR pathway. Upon UV-C irradiation of cells in G1-phase, UV61 showed a dramatic increase in apoptotic response as compared to AA8 cells. Abolition of TCR by treatment with alpha-amanitin (an inhibitor of RNA polymerase II) in AA8 cells also resulted in an elevated apoptotic response like that observed in UV61 cells treated with UV alone. This suggests that the lack of TCR is largely responsible for increased apoptotic response in UV61 cells. Furthermore, the chromosomal aberrations and sister chromatid exchange (SCE) induced by UV were also found to be higher in UV61 cells than in TCR proficient AA8 cells. This study shows that the increased chromosomal aberrations and apoptotic death in UV61 cells is due to their inability to remove CPD from the transcribing strand of active genes and suggests a protective role for TCR in the prevention of both chromosomal aberrations and apoptosis induced by DNA damage. Furthermore, flow cytometry analysis and time-course appearance of apoptotic cells suggest that the conversion of UV-DNA damage into chromosomal aberrations precedes and determines the apoptotic process.
Collapse
Affiliation(s)
- L Proietti De Santis
- Laboratory of Molecular Cytogenetic and Mutagenesis, DABAC, Università degli Studi della Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Berneburg M, Lehmann AR. Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. ADVANCES IN GENETICS 2001; 43:71-102. [PMID: 11037299 DOI: 10.1016/s0065-2660(01)43004-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genetic disorders xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD) are all associated with defects in nucleotide excision repair (NER) of DNA damage. Their clinical features are very different, however, XP being a highly cancer-prone skin disorder, whereas CS and TTD are cancer-free multisystem disorders. All three are genetically complex, with at least eight complementation groups for XP (XP-A to -G and variant), five for CS (CS-A, CS-B, XP-B, XP-D, and XP-G), and three for TTD (XP-B, XP-D, and TTD-A). With the exception of the variant, the products of the XP genes are proteins involved in the different steps of NER, and comprise three damage-recognition proteins, two helicases, and two nucleases. The two helicases, XPB and XPD, are components of the basal transcription factor TFIIH, which has a dual role in NER and initiation of transcription. Different mutations in these genes can affect NER and transcription differentially, and this accounts for the different clinical phenotypes. Mutations resulting in defective repair without affecting transcription result in XP, whereas if transcription is also affected, TTD is the outcome. CS proteins are only involved in transcription-coupled repair, a subpathway of NER in which damage in the transcribed strands of active genes is rapidly and preferentially repaired. Current evidence suggests that they also have an important but not essential role in transcription. The variant form of XP is defective in a novel DNA polymerase, which is able to synthesise DNA past UV-damaged sites.
Collapse
Affiliation(s)
- M Berneburg
- MRC Cell Mutation Unit, University of Sussex, Falmer, Brighton, United Kingdom
| | | |
Collapse
|
49
|
Ronen A, Glickman BW. Human DNA repair genes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 37:241-283. [PMID: 11317342 DOI: 10.1002/em.1033] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA repair systems are essential for the maintenance of genome integrity. Consequently, the disregulation of repair genes can be expected to be associated with significant, detrimental health effects, which can include an increased prevalence of birth defects, an enhancement of cancer risk, and an accelerated rate of aging. Although original insights into DNA repair and the genes responsible were largely derived from studies in bacteria and yeast, well over 125 genes directly involved in DNA repair have now been identified in humans, and their cDNA sequence established. These genes function in a diverse set of pathways that involve the recognition and removal of DNA lesions, tolerance to DNA damage, and protection from errors of incorporation made during DNA replication or DNA repair. Additional genes indirectly affect DNA repair, by regulating the cell cycle, ostensibly to provide an opportunity for repair or to direct the cell to apoptosis. For about 70 of the DNA repair genes listed in Table I, both the genomic DNA sequence and the cDNA sequence and chromosomal location have been elucidated. In 45 cases single-nucleotide polymorphisms have been identified and, in some cases, genetic variants have been associated with specific disorders. With the accelerating rate of gene discovery, the number of identified DNA repair genes and sequence variants is quickly rising. This report tabulates the current status of what is known about these genes. The report is limited to genes whose function is directly related to DNA repair.
Collapse
Affiliation(s)
- A Ronen
- Centre for Environmental Health, University of Victoria, Victoria, British Columbia, Canada.
| | | |
Collapse
|
50
|
Jansen LE, den Dulk H, Brouns RM, de Ruijter M, Brandsma JA, Brouwer J. Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair. EMBO J 2000; 19:6498-507. [PMID: 11101522 PMCID: PMC305866 DOI: 10.1093/emboj/19.23.6498] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nucleotide excision repair machinery can be targeted preferentially to lesions in transcribed sequences. This mode of DNA repair is referred to as transcription-coupled repair (TCR). In yeast, the Rad26 protein, which is the counterpart of the human Cockayne syndrome B protein, is implicated specifically in TCR. In a yeast strain genetically deprived of global genome repair, a deletion of RAD26 renders cells UV sensitive and displays a defect in TCR. Using a genome-wide mutagenesis approach, we found that deletion of the SPT4 gene suppresses the rad26 defect. We show that suppression by the absence of Spt4 is specific for a rad26 defect and is caused by reactivation of TCR in a Rad26-independent manner. Spt4 is involved in the regulation of transcription elongation. The absence of this regulation leads to transcription that is intrinsically competent for TCR. Our findings suggest that Rad26 acts as an elongation factor rendering transcription TCR competent and that its requirement can be modulated by Spt4.
Collapse
Affiliation(s)
- L E Jansen
- MGC Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|