1
|
Secchi M, Garbelli A, Riva V, Deidda G, Santonicola C, Formica T, Sabbioneda S, Crespan E, Maga G. Synergistic action of human RNaseH2 and the RNA helicase-nuclease DDX3X in processing R-loops. Nucleic Acids Res 2024; 52:11641-11658. [PMID: 39189461 PMCID: PMC11514492 DOI: 10.1093/nar/gkae731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
R-loops are three-stranded RNA-DNA hybrid structures that play important regulatory roles, but excessive or deregulated R-loops formation can trigger DNA damage and genome instability. Digestion of R-loops is mainly relying on the action of two specialized ribonucleases: RNaseH1 and RNaseH2. RNaseH2 is the main enzyme carrying out the removal of misincorporated rNMPs during DNA replication or repair, through the Ribonucleotide Excision Repair (RER) pathway. We have recently shown that the human RNA helicase DDX3X possessed RNaseH2-like activity, being able to substitute RNaseH2 in reconstituted RER reactions. Here, using synthetic R-loop mimicking substrates, we could show that human DDX3X alone was able to both displace and degrade the ssRNA strand hybridized to DNA. Moreover, DDX3X was found to physically interact with human RNaseH2. Such interaction suppressed the nuclease and helicase activities of DDX3X, but stimulated severalfold the catalytic activity of the trimeric RNaseH2, but not of RNaseH1. Finally, silencing of DDX3X in human cells caused accumulation of RNA-DNA hybrids and phosphorylated RPA foci. These results support a role of DDX3X as a scaffolding protein and auxiliary factor for RNaseH2 during R-loop degradation.
Collapse
Affiliation(s)
- Massimiliano Secchi
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Anna Garbelli
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Valentina Riva
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Graziano Deidda
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Carolina Santonicola
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Teresa Maria Formica
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Simone Sabbioneda
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
2
|
Lebedin M, de la Rosa K. Diversification of Antibodies: From V(D)J Recombination to Somatic Exon Shuffling. Annu Rev Cell Dev Biol 2024; 40:265-281. [PMID: 39356809 DOI: 10.1146/annurev-cellbio-112122-030835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Antibodies that gain specificity by a large insert encoding for an extra domain were described for the first time in 2016. In malaria-exposed individuals, an exon deriving from the leukocyte-associated immunoglobulin-like 1 (LAIR1) gene integrated via a copy-and-paste insertion into the immunoglobulin heavy chain encoding region. A few years later, a second example was identified, namely a dual exon integration from the leukocyte immunoglobulin-like receptor B1 (LILRB1) gene that is located in close proximity to LAIR1. A dedicated high-throughput characterization of chimeric immunoglobulin heavy chain transcripts unraveled, that insertions from distant genomic regions (including mitochondrial DNA) can contribute to human antibody diversity. This review describes the modalities of insert-containing antibodies. The role of known DNA mobility aspects, such as genomic translocation, gene conversion, and DNA fragility, is discussed in the context of insert-antibody generation. Finally, the review covers why insert antibodies were omitted from the past repertoire analyses and how insert antibodies can contribute to protective immunity or an autoreactive response.
Collapse
Affiliation(s)
- Mikhail Lebedin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kathrin de la Rosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Kodavati M, Maloji Rao VH, Provasek VE, Hegde ML. Regulation of DNA damage response by RNA/DNA-binding proteins: Implications for neurological disorders and aging. Ageing Res Rev 2024; 100:102413. [PMID: 39032612 PMCID: PMC11463832 DOI: 10.1016/j.arr.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
RNA-binding proteins (RBPs) are evolutionarily conserved across most forms of life, with an estimated 1500 RBPs in humans. Traditionally associated with post-transcriptional gene regulation, RBPs contribute to nearly every known aspect of RNA biology, including RNA splicing, transport, and decay. In recent years, an increasing subset of RBPs have been recognized for their DNA binding properties and involvement in DNA transactions. We refer to these RBPs with well-characterized DNA binding activity as RNA/DNA binding proteins (RDBPs), many of which are linked to neurological diseases. RDBPs are associated with both nuclear and mitochondrial DNA repair. Furthermore, the presence of intrinsically disordered domains in RDBPs appears to be critical for regulating their diverse interactions and plays a key role in controlling protein aggregation, which is implicated in neurodegeneration. In this review, we discuss the emerging roles of common RDBPs from the heterogeneous nuclear ribonucleoprotein (hnRNP) family, such as TAR DNA binding protein-43 (TDP43) and fused in sarcoma (FUS) in controlling DNA damage response (DDR). We also explore the implications of RDBP pathology in aging and neurodegenerative diseases and provide a prospective on the therapeutic potential of targeting RDBP pathology mediated DDR defects for motor neuron diseases and aging.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA.
| | - Vikas H Maloji Rao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA
| | - Vincent E Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA; Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA.
| |
Collapse
|
4
|
Su X, Feng Y, Chen R, Duan S. CircR-loop: a novel RNA:DNA interaction on genome instability. Cell Mol Biol Lett 2024; 29:89. [PMID: 38877420 PMCID: PMC11177446 DOI: 10.1186/s11658-024-00606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
CircR-loop, a recently unearthed regulatory mechanism situated at the crossroads of circular RNA and DNA interactions, constitute a subset of R-loop. This circR-loop have emerged as a crucial player in pivotal regulatory functions within both animal and plant systems. The journey into the realm of circR-loop commenced with their discovery within the human mitochondrial genome, where they serve as critical directors of mitochondrial DNA replication. In the plant kingdom, circR-loop wield influence over processes such as alternative splicing and centromere organization, impacting the intricacies of floral development and genome stability, respectively. Their significance extends to the animal domain, where circR-loop has captured attention for their roles in cancer-related phenomena, exerting control over transcription, chromatin architecture, and orchestrating responses to DNA damage. Moreover, their involvement in nuclear export anomalies further underscores their prominence in cellular regulation. This article summarizes the important regulatory mechanisms and physiological roles of circR-loop in plants and animals, and offers a comprehensive exploration of the methodologies employed for the identification, characterization, and functional analysis of circR-loop, underscoring the pressing need for innovative approaches that can effectively distinguish them from their linear RNA counterparts while elucidating their precise functions. Lastly, the article sheds light on the challenges and opportunities that lie ahead in the field of circR-loop research, emphasizing the vital importance of continued investigations to uncover their regulatory roles and potential applications in the realm of biology. In summary, circR-loop represents a captivating and novel regulatory mechanism with broad-reaching implications spanning the realms of genetics, epigenetics, and disease biology. Their exploration opens new avenues for comprehending gene regulation and holds significant promise for future therapeutic interventions.
Collapse
Affiliation(s)
- Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yaojie Feng
- Department of Nursing, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Ruixiu Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochem J 2024; 481:683-715. [PMID: 38804971 PMCID: PMC11346376 DOI: 10.1042/bcj20230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.
Collapse
Affiliation(s)
- Tiago M. Bernardino Gomes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- NHS England Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - James B. Stewart
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
6
|
Humayun A, Lin LYT, Li HH, Fornace AJ. FAILLA MEMORIAL LECTURE How We Got Here: One Laboratory's Odyssey in the Field of Radiation-Inducible Genes. Radiat Res 2024; 201:617-627. [PMID: 38573158 DOI: 10.1667/rade-23-00205.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
This review focuses on early discoveries that contributed to our understanding and the scope of transcriptional responses after radiation damage. Before the development of modern approaches to assess overall global transcriptomic responses, the idea that mammalian cells could respond to DNA-damaging agents in a manner analogous to bacteria was not generally accepted. To investigate this possibility, the development of technology to identify differentially expressed low-abundance transcripts substantially facilitated our appreciation that DNA damaging agents like UV radiation and subsequently ionizing radiation did in fact produce robust transcriptional responses. Here we focus on our identification and characterization of radiation-inducible genes, and how even early studies on stress gene signaling highlighted the broad scope of transcriptional responses to radiation damage. Since then, the central role of transcriptional responses to radiation injury in maintaining genome integrity has been highlighted in many processes, including cell cycle checkpoint control, resistance to cancer by p53 and other key factors, cell senescence, and metabolism.
Collapse
Affiliation(s)
- Arslon Humayun
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC
| | | | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
7
|
Tan BG, Gustafsson CM, Falkenberg M. Mechanisms and regulation of human mitochondrial transcription. Nat Rev Mol Cell Biol 2024; 25:119-132. [PMID: 37783784 DOI: 10.1038/s41580-023-00661-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The expression of mitochondrial genes is regulated in response to the metabolic needs of different cell types, but the basic mechanisms underlying this process are still poorly understood. In this Review, we describe how different layers of regulation cooperate to fine tune initiation of both mitochondrial DNA (mtDNA) transcription and replication in human cells. We discuss our current understanding of the molecular mechanisms that drive and regulate transcription initiation from mtDNA promoters, and how the packaging of mtDNA into nucleoids can control the number of mtDNA molecules available for both transcription and replication. Indeed, a unique aspect of the mitochondrial transcription machinery is that it is coupled to mtDNA replication, such that mitochondrial RNA polymerase is additionally required for primer synthesis at mtDNA origins of replication. We discuss how the choice between replication-primer formation and genome-length RNA synthesis is controlled at the main origin of replication (OriH) and how the recent discovery of an additional mitochondrial promoter (LSP2) in humans may change this long-standing model.
Collapse
Affiliation(s)
- Benedict G Tan
- Institute for Mitochondrial Diseases and Ageing, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
8
|
Mitochondrial Control Region Variants Related to Breast Cancer. Genes (Basel) 2022; 13:genes13111962. [DOI: 10.3390/genes13111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has an important incidence in the worldwide female population. Although alterations in the mitochondrial genome probably play an important role in carcinogenesis, the actual evidence is ambiguous and inconclusive. Our purpose was to explore differences in mitochondrial sequences of cases with breast cancer compared with control samples from different origins. We identified 124 mtDNA sequences associated with breast cancer cases, of which 86 were complete and 38 were partial sequences. Of these 86 complete sequences, 52 belonged to patients with a confirmed diagnosis of breast cancer, and 34 sequences were obtained from healthy mammary tissue of the same patients used as controls. From the mtDNA analysis, two polymorphisms with significant statistical differences were found: m.310del (rs869289246) in 34.6% (27/78) of breast cancer cases and 61.7% (21/34) in the controls; and m.315dup (rs369786048) in 60.2% (47/78) of breast cancer cases and 38.2% (13/34) in the controls. In addition, the variant m.16519T>C (rs3937033) was found in 59% of the control sequences and 52% of the breast cancer sequences with a significant statistical difference. Polymorphic changes are evolutionarily related to the haplogroup H of Indo-European and Euro-Asiatic origins; however, they were found in all non-European breast cancers.
Collapse
|
9
|
Lim J, Laffleur B, Basu U, Yu K. Identification of RNA-DNA Hybrids Associated with R-Loops at the IgH Switch Sequence in Activated B Cells. Methods Mol Biol 2022; 2528:55-66. [PMID: 35704185 PMCID: PMC9261291 DOI: 10.1007/978-1-0716-2477-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
During transcription and replication, R-loops that contain RNA-DNA hybrids are generated across numerous genomic loci and contribute to many biological events. Using S9.6, a monoclonal antibody against RNA-DNA hybrids, accelerated the study of R-loop biology. An outpouring of recent studies has implicated various contributions of R-loop in physiological cellular functions. Earlier studies using nondenaturing sodium bisulfite probing also supported existence of DNA-RNA hybrids formation in mammalian cells. In activated B cells, RNA-DNA hybrids formation at IgH gene locus of B cells is crucial for class switch recombination that ensure the proper effector function of the antibody. Here, we describe the identification of R-loops associated with the IgH locus using RNA-DNA hybrid immunoprecipitation sequencing and nondenaturing sodium bisulfite probing. This will be helpful for future studies of R-loops status on whole genome as well as on IgH locus in B cells.
Collapse
Affiliation(s)
- Junghyun Lim
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pharmacy, School of Pharmacy, Jeonbuk National University, Jeonju, South Korea
| | - Brice Laffleur
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- INSERM U1236, University of Rennes, Etablissement Français du Sang, Rennes, France
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
10
|
Castillo-Guzman D, Chédin F. Defining R-loop classes and their contributions to genome instability. DNA Repair (Amst) 2021; 106:103182. [PMID: 34303066 PMCID: PMC8691176 DOI: 10.1016/j.dnarep.2021.103182] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/20/2023]
Abstract
R-loops are non-B DNA structures that form during transcription when the nascent RNA anneals to the template DNA strand forming a RNA:DNA hybrid. Understanding the genomic distribution and function of R-loops is an important goal, since R-loops have been implicated in a number of adaptive and maladaptive processes under physiological and pathological conditions. Based on R-loop mapping datasets, we propose the existence of two main classes of R-loops, each associated with unique characteristics. Promoter-paused R-loops (Class I) are short R-loops that form at high frequency during promoter-proximal pausing by RNA polymerase II. Elongation-associated R-loops (Class II) are long structures that occur throughout gene bodies at modest frequencies. We further discuss the relationships between each R-loop class with instances of genome instability and suggest that increased class I R-loops, resulting from enhanced promoter-proximal pausing, represent the main culprits for R-loop mediated genome instability under pathological conditions.
Collapse
Affiliation(s)
- Daisy Castillo-Guzman
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, Davis, CA, 95616, United States
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, Davis, CA, 95616, United States.
| |
Collapse
|
11
|
Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE, Patel SS. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J Biol Chem 2020; 295:18406-18425. [PMID: 33127643 PMCID: PMC7939475 DOI: 10.1074/jbc.rev120.011202] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are specialized compartments that produce requisite ATP to fuel cellular functions and serve as centers of metabolite processing, cellular signaling, and apoptosis. To accomplish these roles, mitochondria rely on the genetic information in their small genome (mitochondrial DNA) and the nucleus. A growing appreciation for mitochondria's role in a myriad of human diseases, including inherited genetic disorders, degenerative diseases, inflammation, and cancer, has fueled the study of biochemical mechanisms that control mitochondrial function. The mitochondrial transcriptional machinery is different from nuclear machinery. The in vitro re-constituted transcriptional complexes of Saccharomyces cerevisiae (yeast) and humans, aided with high-resolution structures and biochemical characterizations, have provided a deeper understanding of the mechanism and regulation of mitochondrial DNA transcription. In this review, we will discuss recent advances in the structure and mechanism of mitochondrial transcription initiation. We will follow up with recent discoveries and formative findings regarding the regulatory events that control mitochondrial DNA transcription, focusing on those involved in cross-talk between the mitochondria and nucleus.
Collapse
Affiliation(s)
- Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | - Kalyan Das
- Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
| |
Collapse
|
12
|
Falkenberg M, Gustafsson CM. Mammalian mitochondrial DNA replication and mechanisms of deletion formation. Crit Rev Biochem Mol Biol 2020; 55:509-524. [DOI: 10.1080/10409238.2020.1818684] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Claes M. Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Tai-Schmiedel J, Karniely S, Lau B, Ezra A, Eliyahu E, Nachshon A, Kerr K, Suárez N, Schwartz M, Davison AJ, Stern-Ginossar N. Human cytomegalovirus long noncoding RNA4.9 regulates viral DNA replication. PLoS Pathog 2020; 16:e1008390. [PMID: 32294138 PMCID: PMC7185721 DOI: 10.1371/journal.ppat.1008390] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/27/2020] [Accepted: 02/07/2020] [Indexed: 01/25/2023] Open
Abstract
Viruses are known for their extremely compact genomes composed almost entirely of protein-coding genes. Nonetheless, four long noncoding RNAs (lncRNAs) are encoded by human cytomegalovirus (HCMV). Although these RNAs accumulate to high levels during lytic infection, their functions remain largely unknown. Here, we show that HCMV-encoded lncRNA4.9 localizes to the viral nuclear replication compartment, and that its depletion restricts viral DNA replication and viral growth. RNA4.9 is transcribed from the HCMV origin of replication (oriLyt) and forms an RNA-DNA hybrid (R-loop) through its G+C-rich 5' end, which may be important for the initiation of viral DNA replication. Furthermore, targeting the RNA4.9 promoter with CRISPR-Cas9 or genetic relocalization of oriLyt leads to reduced levels of the viral single-stranded DNA-binding protein (ssDBP), suggesting that the levels of ssDBP are coupled to the oriLyt activity. We further identified a similar, oriLyt-embedded, G+C-rich lncRNA in murine cytomegalovirus (MCMV). These results indicate that HCMV RNA4.9 plays an important role in regulating viral DNA replication, that the levels of ssDBP are coupled to the oriLyt activity, and that these regulatory features may be conserved among betaherpesviruses.
Collapse
Affiliation(s)
- Julie Tai-Schmiedel
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | | | - Betty Lau
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Adi Ezra
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Erez Eliyahu
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Aharon Nachshon
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Karen Kerr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicolás Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Michal Schwartz
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Noam Stern-Ginossar
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| |
Collapse
|
14
|
Mahalaxmi I, Santhy K. An overview about mitochondrial DNA mutations in ovarian cancer. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2017.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Iyer Mahalaxmi
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, India
| | | |
Collapse
|
15
|
High-resolution, strand-specific R-loop mapping via S9.6-based DNA-RNA immunoprecipitation and high-throughput sequencing. Nat Protoc 2019; 14:1734-1755. [PMID: 31053798 DOI: 10.1038/s41596-019-0159-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/28/2019] [Indexed: 11/08/2022]
Abstract
R-loops are prevalent three-stranded non-B DNA structures composed of an RNA-DNA hybrid and a single strand of DNA. R-loops are implicated in various basic nuclear processes, such as class-switch recombination, transcription termination and chromatin patterning. Perturbations in R-loop metabolism have been linked to genomic instability and have been implicated in human disorders, including cancer. As a consequence, the accurate mapping of these structures has been of increasing interest in recent years. Here, we describe two related immunoprecipitation-based methods for mapping R-loop structures: basic DRIP-seq (DNA-RNA immunoprecipitation followed by high-throughput DNA sequencing), an easy, robust, but resolution-limited technique; and DRIPc-seq (DNA-RNA immunoprecipitation followed by cDNA conversion coupled to high-throughput sequencing), a high-resolution and strand-specific iteration of the method that permits accurate R-loop mapping genome wide. Briefly, after gentle DNA extraction and restriction digestion with a cocktail of enzymes, R-loop structures are immunoprecipitated with the anti-RNA-DNA hybrid S9.6 antibody. Compared with DRIP-seq, in which the immunoprecipitated DNA is directly sequenced, DRIPc-seq permits the recovery of the RNA moiety of R-loops, and these RNA strands are subjected to strand-specific RNA sequencing (RNA-seq) analysis. DRIPc-seq can be performed in 5 d and can be applied to any cell type, provided sufficient starting material can be collected. Accurately mapping R-loop distribution in various cell lines and under varied conditions is essential to understanding the formation, roles and dynamic resolution of these important structures.
Collapse
|
16
|
Nissanka N, Minczuk M, Moraes CT. Mechanisms of Mitochondrial DNA Deletion Formation. Trends Genet 2019; 35:235-244. [PMID: 30691869 DOI: 10.1016/j.tig.2019.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes a subset of genes which are essential for oxidative phosphorylation. Deletions in the mtDNA can ablate a number of these genes and result in mitochondrial dysfunction, which is associated with bona fide mitochondrial disorders. Although mtDNA deletions are thought to occur as a result of replication errors or following double-strand breaks, the exact mechanism(s) behind deletion formation have yet to be determined. In this review we discuss the current knowledge about the fate of mtDNA following double-strand breaks, including the molecular players which mediate the degradation of linear mtDNA fragments and possible mechanisms of recircularization. We propose that mtDNA deletions formed from replication errors versus following double-strand breaks can be mediated by separate pathways.
Collapse
Affiliation(s)
- Nadee Nissanka
- Department of Neurology, University of Miami, Miller School of Medicine, FL 33136, USA
| | - Michal Minczuk
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Carlos T Moraes
- Department of Neurology, University of Miami, Miller School of Medicine, FL 33136, USA.
| |
Collapse
|
17
|
Posse V, Al-Behadili A, Uhler JP, Clausen AR, Reyes A, Zeviani M, Falkenberg M, Gustafsson CM. RNase H1 directs origin-specific initiation of DNA replication in human mitochondria. PLoS Genet 2019; 15:e1007781. [PMID: 30605451 PMCID: PMC6317783 DOI: 10.1371/journal.pgen.1007781] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/23/2018] [Indexed: 11/21/2022] Open
Abstract
Human mitochondrial DNA (mtDNA) replication is first initiated at the origin of H-strand replication. The initiation depends on RNA primers generated by transcription from an upstream promoter (LSP). Here we reconstitute this process in vitro using purified transcription and replication factors. The majority of all transcription events from LSP are prematurely terminated after ~120 nucleotides, forming stable R-loops. These nascent R-loops cannot directly prime mtDNA synthesis, but must first be processed by RNase H1 to generate 3'-ends that can be used by DNA polymerase γ to initiate DNA synthesis. Our findings are consistent with recent studies of a knockout mouse model, which demonstrated that RNase H1 is required for R-loop processing and mtDNA maintenance in vivo. Both R-loop formation and DNA replication initiation are stimulated by the mitochondrial single-stranded DNA binding protein. In an RNase H1 deficient patient cell line, the precise initiation of mtDNA replication is lost and DNA synthesis is initiated from multiple sites throughout the mitochondrial control region. In combination with previously published in vivo data, the findings presented here suggest a model, in which R-loop processing by RNase H1 directs origin-specific initiation of DNA replication in human mitochondria.
Collapse
Affiliation(s)
- Viktor Posse
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ali Al-Behadili
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jay P. Uhler
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anders R. Clausen
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Claes M. Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Douglas AGL. Non-coding RNA in C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia: A perfect storm of dysfunction. Noncoding RNA Res 2018; 3:178-187. [PMID: 30533567 PMCID: PMC6260478 DOI: 10.1016/j.ncrna.2018.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/15/2022] Open
Abstract
A hexanucleotide repeat expansion in the first intron/promoter region of C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both sense and antisense transcripts exist at the C9orf72 locus but the function of the antisense lncRNA is unknown. RNA toxicity of the transcribed repeat expansion has been implicated in the pathogenesis of C9orf72-related ALS/FTD, not only through direct sequestration of important RNA binding proteins but also indirectly through non-ATG dependent translation into dipeptide repeats. Formation of RNA/DNA hybrid R-loops may also play a key role in the pathogenesis of this condition and this mechanism could provide a link between the repeat expansion, DNA damage, repeat instability and deficiency of RNA binding proteins. Non-coding C9orf72 antisense transcripts could also act to epigenetically regulate gene expression at the locus. The potential effects of such non-coding RNAs should be considered in the design of antisense oligonucleotide therapeutics for C9orf72-related ALS/FTD. Furthermore, the mechanisms of RNA dysregulation exemplified by C9orf72-related disease may help illustrate more broadly how a “perfect storm” of dysfunction occurs in ALS/FTD and how targeting these factors could lead to corrective or preventative therapies.
Collapse
Affiliation(s)
- Andrew G L Douglas
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
19
|
Manzo SG, Hartono SR, Sanz LA, Marinello J, De Biasi S, Cossarizza A, Capranico G, Chedin F. DNA Topoisomerase I differentially modulates R-loops across the human genome. Genome Biol 2018; 19:100. [PMID: 30060749 PMCID: PMC6066927 DOI: 10.1186/s13059-018-1478-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Co-transcriptional R-loops are abundant non-B DNA structures in mammalian genomes. DNA Topoisomerase I (Top1) is often thought to regulate R-loop formation owing to its ability to resolve both positive and negative supercoils. How Top1 regulates R-loop structures at a global level is unknown. RESULTS Here, we perform high-resolution strand-specific R-loop mapping in human cells depleted for Top1 and find that Top1 depletion results in both R-loop gains and losses at thousands of transcribed loci, delineating two distinct gene classes. R-loop gains are characteristic for long, highly transcribed, genes located in gene-poor regions anchored to Lamin B1 domains and in proximity to H3K9me3-marked heterochromatic patches. R-loop losses, by contrast, occur in gene-rich regions overlapping H3K27me3-marked active replication initiation regions. Interestingly, Top1 depletion coincides with a block of the cell cycle in G0/G1 phase and a trend towards replication delay. CONCLUSIONS Our findings reveal new properties of Top1 in regulating R-loop homeostasis in a context-dependent manner and suggest a potential role for Top1 in modulating the replication process via R-loop formation.
Collapse
Affiliation(s)
- Stefano G Manzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Present address: Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, USA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, USA
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Frederic Chedin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, USA.
| |
Collapse
|
20
|
Strengths and Weaknesses of the Current Strategies to Map and Characterize R-Loops. Noncoding RNA 2018; 4:ncrna4020009. [PMID: 29657305 PMCID: PMC6027298 DOI: 10.3390/ncrna4020009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/26/2022] Open
Abstract
R-loops are evolutionarily conserved three-stranded structures that result from the formation of stable DNA:RNA hybrids in the genome. R-loops have attracted increasing interest in recent years as potent regulators of gene expression and genome stability. In particular, their strong association with severe replication stress makes them potential oncogenic structures. Despite their importance, the rules that govern their formation and their dynamics are still controversial and an in-depth description of their direct impact on chromatin organization and DNA transactions is still lacking. To better understand the diversity of R-loop functions, reliable, accurate, and quantitative mapping techniques, as well as functional assays are required. Here, I review the different approaches that are currently used to do so and to highlight their individual strengths and weaknesses. In particular, I review the advantages and disadvantages of using the S9.6 antibody to map R-loops in vivo in an attempt to propose guidelines for best practices.
Collapse
|
21
|
Nishida K, Kuwano Y, Nishikawa T, Masuda K, Rokutan K. RNA Binding Proteins and Genome Integrity. Int J Mol Sci 2017; 18:E1341. [PMID: 28644387 PMCID: PMC5535834 DOI: 10.3390/ijms18071341] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023] Open
Abstract
Genome integrity can be threatened by various endogenous or exogenous events. To counteract these stressors, the DNA damage response network contributes to the prevention and/or repair of genomic DNA damage and serves an essential function in cellular survival. DNA binding proteins are involved in this network. Recently, several RNA-binding proteins (RBPs) that are recruited to DNA damage sites have been shown to be direct players in the prevention or repair of DNA damage. In addition, non-coding RNAs, themselves, are involved in the RNA-mediated DNA repair system. Furthermore, RNA modification such as m6A methylation might also contribute to the ultraviolet-responsive DNA damage response. Accumulating evidence suggests that RNA metabolism is more deeply involved in diverse cellular functions than previously expected, and is also intricately associated with the maintenance of genome integrity. In this review, we highlight the roles of RBPs in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Kensei Nishida
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.
| | - Tatsuya Nishikawa
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.
| | - Kiyoshi Masuda
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.
| |
Collapse
|
22
|
Kirches E. MtDNA As a Cancer Marker: A Finally Closed Chapter? Curr Genomics 2017; 18:255-267. [PMID: 28659721 PMCID: PMC5476953 DOI: 10.2174/1389202918666170105093635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/10/2016] [Accepted: 12/13/2016] [Indexed: 12/03/2022] Open
Abstract
Sequence alterations of the mitochondrial DNA (mtDNA) have been identified in many tu-mor types. Their nature is not entirely clear. Somatic mutation or shifts of heteroplasmic mtDNA vari-ants may play a role. These sequence alterations exhibit a sufficient frequency in all tumor types investi-gated thus far to justify their use as a tumor marker. This statement is supported by the high copy num-ber of mtDNA, which facilitates the detection of aberrant tumor-derived DNA in bodily fluids. This will be of special interest in tumors, which release a relatively high number of cells into bodily fluids, which are easily accessible, most strikingly in urinary bladder carcinoma. Due to the wide distribution of the observed base substitutions, deletions or insertions within the mitochondrial genome, high efforts for whole mtDNA sequencing (16.5 kb) from bodily fluids would be required, if the method would be in-tended for initial tumor screening. However, the usage of mtDNA for sensitive surveillance of known tumor diseases is a meaningful option, which may allow an improved non-invasive follow-up for the urinary bladder carcinoma, as compared to the currently existing cytological or molecular methods. Fol-lowing a short general introduction into mtDNA, this review demonstrates that the scenario of a sensi-tive cancer follow-up by mtDNA-analysis deserves more attention. It would be most important to inves-tigate precisely in the most relevant tumor types, if sequencing approaches in combination with simple PCR-assays for deletions/insertions in homopolymeric tracts has sufficient sensitivity to find most tu-mor-derived mtDNAs in bodily fluids.
Collapse
|
23
|
Ancient Out-of-Africa Mitochondrial DNA Variants Associate with Distinct Mitochondrial Gene Expression Patterns. PLoS Genet 2016; 12:e1006407. [PMID: 27812116 PMCID: PMC5094714 DOI: 10.1371/journal.pgen.1006407] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/06/2016] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial DNA (mtDNA) variants have been traditionally used as markers to trace ancient population migrations. Although experiments relying on model organisms and cytoplasmic hybrids, as well as disease association studies, have served to underline the functionality of certain mtDNA SNPs, only little is known of the regulatory impact of ancient mtDNA variants, especially in terms of gene expression. By analyzing RNA-seq data of 454 lymphoblast cell lines from the 1000 Genomes Project, we found that mtDNA variants defining the most common African genetic background, the L haplogroup, exhibit a distinct overall mtDNA gene expression pattern, which was independent of mtDNA copy numbers. Secondly, intra-population analysis revealed subtle, yet significant, expression differences in four tRNA genes. Strikingly, the more prominent African mtDNA gene expression pattern best correlated with the expression of nuclear DNA-encoded RNA-binding proteins, and with SNPs within the mitochondrial RNA-binding proteins PTCD1 and MRPS7. Our results thus support the concept of an ancient regulatory transition of mtDNA-encoded genes as humans left Africa to populate the rest of the world. The mitochondrion is an organelle found in all cells of our body and plays a significant role in the energy and heat production. This is the only organelle in animal cells harboring its own genome outside of the nucleus. Mitochondrial DNA (mtDNA) variants have been traditionally used as neutral markers to trace ancient population migrations. As a result, the functional impact of human mtDNA population variants on gene regulation is poorly understood. To address this question, we analyzed available data of mtDNA gene expression pattern in a large group of individuals (454) from diverse human populations. Here, we show for the first time that the ancient migration of humans out of Africa correlated with differences in mitochondrial gene expression patterns, and could be explained by the activity of certain RNA-binding proteins. These findings suggest a major mitochondrial regulatory transition, as humans left Africa to populate the rest of the world.
Collapse
|
24
|
Doynova M, Berretta A, Jones M, Jasoni C, Vickers M, O'Sullivan J. Interactions between mitochondrial and nuclear DNA in mammalian cells are non-random. Mitochondrion 2016; 30:187-96. [DOI: 10.1016/j.mito.2016.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/29/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022]
|
25
|
Cole LW. The Evolution of Per-cell Organelle Number. Front Cell Dev Biol 2016; 4:85. [PMID: 27588285 PMCID: PMC4988970 DOI: 10.3389/fcell.2016.00085] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/04/2016] [Indexed: 11/13/2022] Open
Abstract
Organelles with their own distinct genomes, such as plastids and mitochondria, are found in most eukaryotic cells. As these organelles and their host cells have evolved, the partitioning of metabolic processes and the encoding of interacting gene products have created an obligate codependence. This relationship has played a role in shaping the number of organelles in cells through evolution. Factors such as stochastic evolutionary forces acting on genes involved in organelle biogenesis, organelle-nuclear gene interactions, and physical limitations may, to varying degrees, dictate the selective constraint that per-cell organelle number is under. In particular, coordination between nuclear and organellar gene expression may be important in maintaining gene product stoichiometry, which may have a significant role in constraining the evolution of this trait.
Collapse
Affiliation(s)
- Logan W Cole
- Department of Biology, Indiana University Bloomington, IN, USA
| |
Collapse
|
26
|
Ramachandran A, Nandakumar D, Deshpande AP, Lucas TP, R-Bhojappa R, Tang GQ, Raney K, Yin YW, Patel SS. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA. J Biol Chem 2016; 291:16828-39. [PMID: 27311715 DOI: 10.1074/jbc.m116.740282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 01/12/2023] Open
Abstract
Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA.
Collapse
Affiliation(s)
- Aparna Ramachandran
- From the Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Divya Nandakumar
- From the Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Aishwarya P Deshpande
- From the Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Thomas P Lucas
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555, and
| | - Ramanagouda R-Bhojappa
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Guo-Qing Tang
- From the Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Kevin Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Y Whitney Yin
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555, and
| | - Smita S Patel
- From the Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854,
| |
Collapse
|
27
|
Zhou X, Wang Y, Si J, Zhou R, Gan L, Di C, Xie Y, Zhang H. Laser controlled singlet oxygen generation in mitochondria to promote mitochondrial DNA replication in vitro. Sci Rep 2015; 5:16925. [PMID: 26577055 PMCID: PMC4649627 DOI: 10.1038/srep16925] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/21/2015] [Indexed: 01/26/2023] Open
Abstract
Reports have shown that a certain level of reactive oxygen species (ROS) can promote mitochondrial DNA (mtDNA) replication. However, it is unclear whether it is the mitochondrial ROS that stimulate mtDNA replication and this requires further investigation. Here we employed a photodynamic system to achieve controlled mitochondrial singlet oxygen (1O2) generation. HeLa cells incubated with 5-aminolevulinic acid (ALA) were exposed to laser irradiation to induce 1O2 generation within mitochondria. Increased mtDNA copy number was detected after low doses of 630 nm laser light in ALA-treated cells. The stimulated mtDNA replication was directly linked to mitochondrial 1O2 generation, as verified using specific ROS scavengers. The stimulated mtDNA replication was regulated by mitochondrial transcription factor A (TFAM) and mtDNA polymerase γ. MtDNA control region modifications were induced by 1O2 generation in mitochondria. A marked increase in 8-Oxoguanine (8-oxoG) level was detected in ALA-treated cells after irradiation. HeLa cell growth stimulation and G1-S cell cycle transition were also observed after laser irradiation in ALA-treated cells. These cellular responses could be due to a second wave of ROS generation detected in mitochondria. In summary, we describe a controllable method of inducing mtDNA replication in vitro.
Collapse
Affiliation(s)
- Xin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Yupei Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China.,Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Rong Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
28
|
Becherel OJ, Sun J, Yeo AJ, Nayler S, Fogel BL, Gao F, Coppola G, Criscuolo C, De Michele G, Wolvetang E, Lavin MF. A new model to study neurodegeneration in ataxia oculomotor apraxia type 2. Hum Mol Genet 2015; 24:5759-74. [PMID: 26231220 PMCID: PMC4581605 DOI: 10.1093/hmg/ddv296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/12/2015] [Accepted: 07/20/2015] [Indexed: 12/18/2022] Open
Abstract
Ataxia oculomotor apraxia type 2 (AOA2) is a rare autosomal recessive cerebellar ataxia. Recent evidence suggests that the protein defective in this syndrome, senataxin (SETX), functions in RNA processing to protect the integrity of the genome. To date, only patient-derived lymphoblastoid cells, fibroblasts and SETX knockdown cells were available to investigate AOA2. Recent disruption of the Setx gene in mice did not lead to neurobehavioral defects or neurodegeneration, making it difficult to study the etiology of AOA2. To develop a more relevant neuronal model to study neurodegeneration in AOA2, we derived neural progenitors from a patient with AOA2 and a control by induced pluripotent stem cell (iPSC) reprogramming of fibroblasts. AOA2 iPSC and neural progenitors exhibit increased levels of oxidative damage, DNA double-strand breaks, increased DNA damage-induced cell death and R-loop accumulation. Genome-wide expression and weighted gene co-expression network analysis in these neural progenitors identified both previously reported and novel affected genes and cellular pathways associated with senataxin dysfunction and the pathophysiology of AOA2, providing further insight into the role of senataxin in regulating gene expression on a genome-wide scale. These data show that iPSCs can be generated from patients with the autosomal recessive ataxia, AOA2, differentiated into neurons, and that both cell types recapitulate the AOA2 cellular phenotype. This represents a novel and appropriate model system to investigate neurodegeneration in this syndrome.
Collapse
Affiliation(s)
- Olivier J Becherel
- UQ Centre for Clinical Research (UQCCR), School of Chemistry and Molecular Biosciences and
| | - Jane Sun
- Australian Institute for Bioengineering and Nanotechnology
| | - Abrey J Yeo
- UQ Centre for Clinical Research (UQCCR), School of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Sam Nayler
- Australian Institute for Bioengineering and Nanotechnology
| | | | - Fuying Gao
- Department of Psychiatry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA and
| | - Giovanni Coppola
- Department of Neurology and Department of Psychiatry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA and
| | - Chiara Criscuolo
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, Napoli, Italy
| | - Giuseppe De Michele
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, Napoli, Italy
| | | | | |
Collapse
|
29
|
Seligmann H. Systematic exchanges between nucleotides: Genomic swinger repeats and swinger transcription in human mitochondria. J Theor Biol 2015; 384:70-7. [PMID: 26297891 DOI: 10.1016/j.jtbi.2015.07.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 07/11/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
Chargaff׳s second parity rule, quasi-equal single strand frequencies for complementary nucleotides, presumably results from insertion of repeats and inverted repeats during sequence genesis. Vertebrate mitogenomes escape this rule because repeats are counterselected: their hybridization produces loop bulges whose deletion is deleterious. Some DNA/RNA sequences match mitogenomes only after assuming one among 23 systematic nucleotide exchanges (swinger DNA/RNA: nine symmetric, e.g. A ↔ C; and 14 asymmetric, e.g. A → C → G → A). Swinger-transformed repeats do not hybridize, escaping selection against deletions due to bulge formation. Blast analyses of the human mitogenome detect swinger repeats for all 23 swinger types, more than in randomized sequences with identical length and nucleotide contents. Mean genomic swinger repeat lengths increase with observed human swinger RNA frequencies: swinger repeat and swinger RNA productions appear linked, perhaps by swinger RNA retrotranscription. Mean swinger repeat lengths are proportional to reading frame retrievability, post-swinger transformation, by the natural circular code. Genomic swinger repeats confirm at genomic level, independently of swinger RNA detection, occurrence of swinger polymerizations. They suggest that repeats, and swinger repeats in particular, contribute to genome genesis.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMER 6236, Université Aix-Marseille, Marseille, France.
| |
Collapse
|
30
|
Sanchez-Sandoval E, Diaz-Quezada C, Velazquez G, Arroyo-Navarro LF, Almanza-Martinez N, Trasviña-Arenas CH, Brieba LG. Yeast mitochondrial RNA polymerase primes mitochondrial DNA polymerase at origins of replication and promoter sequences. Mitochondrion 2015; 24:22-31. [PMID: 26184436 DOI: 10.1016/j.mito.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/15/2022]
Abstract
Three proteins phylogenetically grouped with proteins from the T7 replisome localize to yeast mitochondria: DNA polymerase γ (Mip1), mitochondrial RNA polymerase (Rpo41), and a single-stranded binding protein (Rim1). Human and T7 bacteriophage RNA polymerases synthesize primers for their corresponding DNA polymerases. In contrast, DNA replication in yeast mitochondria is explained by two models: a transcription-dependent model in which Rpo41 primes Mip1 and a model in which double stranded breaks create free 3' OHs that are extended by Mip1. Herein we found that Rpo41 transcribes RNAs that can be extended by Mip1 on single and double-stranded DNA. In contrast to human mitochondrial RNA polymerase, which primes DNA polymerase γ using transcripts from the light-strand and heavy-strand origins of replication, Rpo41 primes Mip1 at replication origins and promoter sequences in vitro. Our results suggest that in ori1, short transcripts serve as primers, whereas in ori5 an RNA transcript longer than 29 nucleotides is used as primer.
Collapse
Affiliation(s)
- Eugenia Sanchez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Corina Diaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Gilberto Velazquez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Luis F Arroyo-Navarro
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Norineli Almanza-Martinez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Carlos H Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
31
|
Minias AE, Brzostek AM, Korycka- Machala M, Dziadek B, Minias P, Rajagopalan M, Madiraju M, Dziadek J. RNase HI Is Essential for Survival of Mycobacterium smegmatis. PLoS One 2015; 10:e0126260. [PMID: 25965344 PMCID: PMC4429107 DOI: 10.1371/journal.pone.0126260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/31/2015] [Indexed: 12/21/2022] Open
Abstract
RNases H are involved in the removal of RNA from RNA/DNA hybrids. Type I RNases H are thought to recognize and cleave the RNA/DNA duplex when at least four ribonucleotides are present. Here we investigated the importance of RNase H type I encoding genes for model organism Mycobacterium smegmatis. By performing gene replacement through homologous recombination, we demonstrate that each of the two presumable RNase H type I encoding genes, rnhA and MSMEG4305, can be removed from M. smegmatis genome without affecting the growth rate of the mutant. Further, we demonstrate that deletion of both RNases H type I encoding genes in M. smegmatis leads to synthetic lethality. Finally, we question the possibility of existence of RNase HI related alternative mode of initiation of DNA replication in M. smegmatis, the process initially discovered in Escherichia coli. We suspect that synthetic lethality of double mutant lacking RNases H type I is caused by formation of R-loops leading to collapse of replication forks. We report Mycobacterium smegmatis as the first bacterial species, where function of RNase H type I has been found essential.
Collapse
Affiliation(s)
- Alina E. Minias
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- * E-mail: (AM); (JD)
| | - Anna M. Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | - Bozena Dziadek
- Department of Immunoparasitology, University of Lodz, Lodz, Poland
| | - Piotr Minias
- Department of Teacher Training and Biodiversity Studies, University of Lodz, Lodz, Poland
| | - Malini Rajagopalan
- Department of Microbiology, University of Texas Health Center at Tyler, Tyler, Texas, United States of America
| | - Murty Madiraju
- Department of Microbiology, University of Texas Health Center at Tyler, Tyler, Texas, United States of America
| | - Jaroslaw Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- * E-mail: (AM); (JD)
| |
Collapse
|
32
|
Jalilvand S, Shoja Z, Marashi SM, Shahmahmoodi S, Safaie-Naraghi Z, Nourijelyani K, Nesheli AB, Mokhtari-Azad T. Mitochondrial haplogroups and control region polymorphisms in Kaposi's sarcoma patients. J Med Virol 2015; 87:1608-15. [DOI: 10.1002/jmv.24197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Somayeh Jalilvand
- Virology Department; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | | | - Sayed Mahdi Marashi
- Virology Department; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Shohreh Shahmahmoodi
- Virology Department; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | | | - Keramat Nourijelyani
- Biostatistics Department; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | | | - Talat Mokhtari-Azad
- Virology Department; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
33
|
Fonseca MM, Harris DJ, Posada D. The inversion of the Control Region in three mitogenomes provides further evidence for an asymmetric model of vertebrate mtDNA replication. PLoS One 2014; 9:e106654. [PMID: 25268704 PMCID: PMC4182315 DOI: 10.1371/journal.pone.0106654] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial genomes are known to have a strong strand-specific compositional bias that is more pronounced at fourfold redundant sites of mtDNA protein-coding genes. This observation suggests that strand asymmetries, to a large extent, are caused by mutational asymmetric mechanisms. In vertebrate mitogenomes, replication and not transcription seems to play a major role in shaping compositional bias. Hence, one can better understand how mtDNA is replicated – a debated issue – through a detailed picture of mitochondrial genome evolution. Here, we analyzed the compositional bias (AT and GC skews) in protein-coding genes of almost 2,500 complete vertebrate mitogenomes. We were able to identify three fish mitogenomes with inverted AT/GC skew coupled with an inversion of the Control Region. These findings suggest that the vertebrate mitochondrial replication mechanism is asymmetric and may invert its polarity, with the leading-strand becoming the lagging-strand and vice-versa, without compromising mtDNA maintenance and expression. The inversion of the strand-specific compositional bias through the inversion of the Control Region is in agreement with the strand-displacement model but it is also compatible with the RITOLS model of mtDNA replication.
Collapse
Affiliation(s)
- Miguel M. Fonseca
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- * E-mail:
| | - D. James Harris
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| |
Collapse
|
34
|
Drakulic S, Wang L, Cuéllar J, Guo Q, Velázquez G, Martín-Benito J, Sousa R, Valpuesta JM. Yeast mitochondrial RNAP conformational changes are regulated by interactions with the mitochondrial transcription factor. Nucleic Acids Res 2014; 42:11246-60. [PMID: 25183523 PMCID: PMC4176174 DOI: 10.1093/nar/gku795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mitochondrial RNA polymerases (MtRNAPs) are members of the single-subunit RNAP family, the most well-characterized member being the RNAP from T7 bacteriophage. MtRNAPs are, however, functionally distinct in that they depend on one or more transcription factors to recognize and open the promoter and initiate transcription, while the phage RNAPs are capable of performing these tasks alone. Since the transcriptional mechanisms that are conserved in phage and mitochondrial RNAPs have been so effectively characterized in the phage enzymes, outstanding structure-mechanism questions concern those aspects that are distinct in the MtRNAPs, particularly the role of the mitochondrial transcription factor(s). To address these questions we have used both negative staining and cryo-EM to generate three-dimensional reconstructions of yeast MtRNAP initiation complexes with and without the mitochondrial transcription factor (MTF1), and of the elongation complex. Together with biochemical experiments, these data indicate that MTF1 uses multiple mechanisms to drive promoter opening, and that its interactions with the MtRNAP regulate the conformational changes undergone by the latter enzyme as it traverses the template strand.
Collapse
Affiliation(s)
- Srdja Drakulic
- Department for Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Liping Wang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, TX 78229-3900, USA
| | - Jorge Cuéllar
- Department for Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Qing Guo
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, TX 78229-3900, USA
| | - Gilberto Velázquez
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, TX 78229-3900, USA
| | - Jaime Martín-Benito
- Department for Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, TX 78229-3900, USA
| | - José M Valpuesta
- Department for Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
35
|
Zheng KW, Wu RY, He YD, Xiao S, Zhang JY, Liu JQ, Hao YH, Tan Z. A competitive formation of DNA:RNA hybrid G-quadruplex is responsible to the mitochondrial transcription termination at the DNA replication priming site. Nucleic Acids Res 2014; 42:10832-44. [PMID: 25140009 PMCID: PMC4176368 DOI: 10.1093/nar/gku764] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human mitochondrial DNA contains a distinctive guanine-rich motif denoted conserved sequence block II (CSB II) that stops RNA transcription, producing prematurely terminated transcripts to prime mitochondrial DNA replication. Recently, we reported a general phenomenon that DNA:RNA hybrid G-quadruplexes (HQs) readily form during transcription when the non-template DNA strand is guanine-rich and such HQs in turn regulate transcription. In this work, we show that transcription of mitochondrial DNA leads to the formation of a stable HQ or alternatively an unstable intramolecular DNA G-quadruplex (DQ) at the CSB II. The HQ is the dominant species and contributes to the majority of the premature transcription termination. Manipulating the stability of the DQ has little effect on the termination even in the absence of HQ; however, abolishing the formation of HQs by preventing the participation of either DNA or RNA abolishes the vast majority of the termination. These results demonstrate that the type of G-quadruplexes (HQ or DQ) is a crucial determinant in directing the transcription termination at the CSB II and suggest a potential functionality of the co-transcriptionally formed HQ in DNA replication initiation. They also suggest that the competition/conversion between an HQ and a DQ may regulate the function of a G-quadruplex-forming sequence.
Collapse
Affiliation(s)
- Ke-wei Zheng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Ren-yi Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yi-de He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Shan Xiao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jia-yu Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jia-quan Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yu-hua Hao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zheng Tan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
36
|
Huang XY, Li H, Xu XM, Wang LX. Mitochondrial DNA mutation screening of male patients with obstructive sleep apnea-hypopnea syndrome. Exp Ther Med 2014; 8:519-524. [PMID: 25009612 PMCID: PMC4079429 DOI: 10.3892/etm.2014.1748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 05/01/2014] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to analyze the differences between the genes of the mitochondrial DNA (mtDNA) displacement loop (D-loop) region and the Cambridge Reference sequence, in order to screen the mutation sites and investigate the correlation between mutations, clinical parameters and complications associated with obstructive sleep apnea-hypopnea syndrome (OSAHS). mtDNA was obtained from male patients with OSAHS in the Zhejiang Province. In total, 60 male patients with OSAHS and 102 healthy adults were assessed to determine the levels of fasting blood glucose, total cholesterol, triglyceride (TG) and high-density and low-density lipoproteins (LDL). Furthermore, peripheral mtDNA was extracted and bidirectional sequencing was conducted to enable mutation screening. In the mtDNA D-loop region, 178 mutation sites were identified, of which 115 sites were present in the two groups. The number of non-common sites in the OSAHS group was significantly higher compared with the control group (P<0.05). No statistically significant difference was observed in the mutations among the mild, moderate and severe OSAHS groups (P>0.05). A total of 21 cases in the severe OSAHS group exhibited mutation rates of >10%. In the control group, there were 24 cases where the np73A-G and np263A-G mutations were predominant. The np303–np315 region was identified to be the highly variable region and various mutation forms were observed. Statistically significant differences were observed in the neck perimeter, TG and LDL levels among the OSAHS-no-mutation subgroups (P<0.05) and LDL was shown to be associated with an mtDNA mutation in the OSAHS group. Numerous polymorphic mutation sites were identified in the mtDNA D-loop region of the OSAHS group. Therefore, mtDNA mutation sites may be closely associated with the clinical manifestations and complications of OSAHS.
Collapse
Affiliation(s)
- Xiao-Ying Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| | - Hong Li
- Department of Respiratory Disease, Hospital of Huabei Petroleum Administration Bureau, Renqiu, Hebei 062552, P.R. China
| | - Xiao-Mei Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| | - Liang-Xing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| |
Collapse
|
37
|
Zhang JY, Zheng KW, Xiao S, Hao YH, Tan Z. Mechanism and manipulation of DNA:RNA hybrid G-quadruplex formation in transcription of G-rich DNA. J Am Chem Soc 2014; 136:1381-90. [PMID: 24392825 DOI: 10.1021/ja4085572] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We recently reported that a DNA:RNA hybrid G-quadruplex (HQ) forms during transcription of DNA that bears two or more tandem guanine tracts (G-tract) on the nontemplate strand. Putative HQ-forming sequences are enriched in the nearby 1000 nt region right downstream of transcription start sites in the nontemplate strand of warm-blooded animals, and HQ regulates transcription under both in vitro and in vivo conditions. Therefore, knowledge of the mechanism of HQ formation is important for understanding the biological function of HQ as well as for manipulating gene expression by targeting HQ. In this work, we studied the mechanism of HQ formation using an in vitro T7 transcription model. We show that RNA synthesis initially produces an R-loop, a DNA:RNA heteroduplex formed by a nascent RNA transcript and the template DNA strand. In the following round of transcription, the RNA in the R-loop is displaced, releasing the RNA in single-stranded form (ssRNA). Then the G-tracts in the RNA can jointly form HQ with those in the nontemplate DNA strand. We demonstrate that the structural cascade R-loop → ssRNA → HQ offers opportunities to intercept HQ formation, which may provide a potential method to manipulate gene expression.
Collapse
Affiliation(s)
- Jia-yu Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Cheng M, Guo Z, Li H, Li Z, Li C, Geng C. Identification of sequence polymorphisms in the mitochondrial displacement loop as risk factors for sporadic and familial breast cancer. Tumour Biol 2014; 35:4773-7. [PMID: 24430364 DOI: 10.1007/s13277-014-1626-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/05/2014] [Indexed: 02/03/2023] Open
Abstract
The accumulation of single nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) has been described for different types of cancers, and the association of these SNPs with cancer risk and disease outcome has been exhaustively studied. We sequenced a region of approximately 1 kb flanking the majority of the D-Loop in the DNA from the blood of breast cancer patients and the controls to identify cancer risk-associated D-loop SNPs. The D-loop region of mtDNA was sequenced from 92 sporadic breast cancer patients, 60 familial breast cancer patients and 41 relatives, and 93 healthy controls. Paired and unpaired Student's t tests were used as appropriate to determine the differences in SNP distribution within the D-loop region and in the number of SNPs per patient among the groups. The χ (2) test was used to analyze dichotomous values, such as the presence or absence of an individual SNP among each group, and the clinical characteristics between every two groups. The distribution frequencies of 315C/Cinsert, 524C/del, 16247A/del, 16248C/del, 16249T/C, 16257C/A, 16258A/del, 16259C/del, 16262C/del, 16268C/del, 16279C/del, 16280A/del, 16297T/C, and 16300A/del were significantly different between sporadic breast cancer patients and the normal controls. The SNP sites at nucleotides 310, 315, and 16362 were identified as cancer risk-associated SNPs specific for familial breast cancer. The N haplogroup, defined as 489T, was identified as a specific risk-associated SNP for families of breast cancer patients by comparing familial breast cancer patients with their relatives. The analysis of genetic polymorphisms in the D-loop may help to predict cancer risk for familial breast cancer and thereby help to detect and refine therapeutic decisions earlier.
Collapse
Affiliation(s)
- Meng Cheng
- Hebei Breast Cancer, The Fourth Hospital of Hebei Medical University, 169 Tianshan Street, Shijiazhuang, 050011, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
39
|
Glycogen synthase kinase-3 (GSK3) controls deoxyglucose-induced mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells. Mitochondrion 2013; 14:54-63. [PMID: 24316184 DOI: 10.1016/j.mito.2013.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/27/2013] [Accepted: 11/25/2013] [Indexed: 11/21/2022]
Abstract
Mitochondrial biogenesis, a mitochondrial growth and division process, is crucial for adaptation to metabolic stress. The present study demonstrated that treatment with a specific inhibitor of GSK3, SB216763, attenuated induction of mitochondrial biogenesis by a glycolysis inhibitor, 2-deoxyglucose (2-DG), without affecting this biogenesis at basal condition. Additionally, overexpression of WT-GSK3β promoted whereas GSK3β-KD attenuated 2-DG-induced mitochondrial protein expression. The mitochondrial biogenesis attenuation by GSK3 inhibitor was not due to inhibition of protein degradation. Furthermore, GSK3 inhibition further reduced transcription of mitochondrial (COXII), but not nuclear (VDAC) gene by 2-DG suggesting its participation in 2-DG-induced mitochondrial transcription. Together, our results show that GSK3 regulates mitochondrial biogenesis induced by glycolysis inhibition.
Collapse
|
40
|
Xiao S, Zhang JY, Zheng KW, Hao YH, Tan Z. Bioinformatic analysis reveals an evolutional selection for DNA:RNA hybrid G-quadruplex structures as putative transcription regulatory elements in warm-blooded animals. Nucleic Acids Res 2013; 41:10379-90. [PMID: 23999096 PMCID: PMC3905843 DOI: 10.1093/nar/gkt781] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recently, we reported the co-transcriptional formation of DNA:RNA hybrid G-quadruplex (HQ) structure by the non-template DNA strand and nascent RNA transcript, which in turn modulates transcription under both in vitro and in vivo conditions. Here we present bioinformatic analysis on putative HQ-forming sequences (PHQS) in the genomes of eukaryotic organisms. Starting from amphibian, PHQS motifs are concentrated in the immediate 1000-nt region downstream of transcription start sites, implying their potential role in transcription regulation. Moreover, their occurrence shows a strong bias toward the non-template versus the template strand. PHQS has become constitutional in genes in warm-blooded animals, and the magnitude of the strand bias correlates with the ability of PHQS to form HQ, suggesting a selection based on HQ formation. This strand bias is reversed in lower species, implying that the selection of PHQS/HQ depended on the living temperature of the organisms. In comparison with the putative intramolecular G-quadruplex-forming sequences (PQS), PHQS motifs are far more prevalent and abundant in the transcribed regions, making them the dominant candidates in the formation of G-quadruplexes in transcription. Collectively, these results suggest that the HQ structures are evolutionally selected to function in transcription and other transcription-mediated processes that involve guanine-rich non-template strand.
Collapse
Affiliation(s)
- Shan Xiao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | | | | | | | | |
Collapse
|
41
|
GC skew at the 5' and 3' ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res 2013; 23:1590-600. [PMID: 23868195 PMCID: PMC3787257 DOI: 10.1101/gr.158436.113] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Strand asymmetry in the distribution of guanines and cytosines, measured by GC skew, predisposes DNA sequences toward R-loop formation upon transcription. Previous work revealed that GC skew and R-loop formation associate with a core set of unmethylated CpG island (CGI) promoters in the human genome. Here, we show that GC skew can distinguish four classes of promoters, including three types of CGI promoters, each associated with unique epigenetic and gene ontology signatures. In particular, we identify a strong and a weak class of CGI promoters and show that these loci are enriched in distinct chromosomal territories reflecting the intrinsic strength of their protection against DNA methylation. Interestingly, we show that strong CGI promoters are depleted from the X chromosome while weak CGIs are enriched, a property consistent with the acquisition of DNA methylation during dosage compensation. Furthermore, we identify a third class of CGI promoters based on its unique GC skew profile and show that this gene set is enriched for Polycomb group targets. Lastly, we show that nearly 2000 genes harbor GC skew at their 3′ ends and that these genes are preferentially located in gene-dense regions and tend to be closely arranged. Genomic profiling of R-loops accordingly showed that a large proportion of genes with terminal GC skew form R-loops at their 3′ ends, consistent with a role for these structures in permitting efficient transcription termination. Altogether, we show that GC skew and R-loop formation offer significant insights into the epigenetic regulation, genomic organization, and function of human genes.
Collapse
|
42
|
Oliveira PH, da Silva CL, Cabral JMS. An appraisal of human mitochondrial DNA instability: new insights into the role of non-canonical DNA structures and sequence motifs. PLoS One 2013; 8:e59907. [PMID: 23555828 PMCID: PMC3612095 DOI: 10.1371/journal.pone.0059907] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/20/2013] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deletion mutations are frequently observed in aged postmitotic tissues and are the cause of a wide range of human disorders. Presently, the molecular bases underlying mtDNA deletion formation remain a matter of intense debate, and it is commonly accepted that several mechanisms contribute to the spectra of mutations in the mitochondrial genome. In this work we performed an extensive screening of human mtDNA deletions and evaluated the association between breakpoint density and presence of non-canonical DNA elements and over-represented sequence motifs. Our observations support the involvement of helix-distorting intrinsically curved regions and long G-tetrads in eliciting instability events. In addition, higher breakpoint densities were consistently observed within GC-skewed regions and in the close vicinity of the degenerate sequence motif YMMYMNNMMHM. A parallelism is also established with hot spot motifs previously identified in the nuclear genome, as well as with the minimal binding site for the mitochondrial transcription termination factor mTERF. This study extends the current knowledge on the mechanisms driving mitochondrial rearrangements and opens up exciting avenues for further research.
Collapse
Affiliation(s)
- Pedro H Oliveira
- Department of Bioengineering and Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Lisbon, Portugal.
| | | | | |
Collapse
|
43
|
Kiethega GN, Yan Y, Turcotte M, Burger G. RNA-level unscrambling of fragmented genes in Diplonema mitochondria. RNA Biol 2013; 10:301-13. [PMID: 23324603 DOI: 10.4161/rna.23340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We previously reported a unique genome with systematically fragmented genes and gene pieces dispersed across numerous circular chromosomes, occurring in mitochondria of diplonemids. Genes are split into up to 12 short fragments (modules), which are separately transcribed and joined in a way that differs from known trans-splicing. Further, cox1 mRNA includes six non-encoded uridines indicating RNA editing. In the absence of recognizable cis-elements, we postulated that trans-splicing and RNA editing are directed by trans-acting molecules. Here, we provide insight into the post-transcriptional processes by investigating transcription, RNA processing, trans-splicing and RNA editing in cox1 and at a newly discovered site in cob. We show that module precursor transcripts are up to several thousand nt long and processed accurately at their 5' and 3' termini to yield the short coding-only regions. Processing at 5' and 3' ends occurs independently, and a processed terminus engages in trans-splicing even if the module's other terminus is yet unprocessed. Moreover, only cognate module transcripts join, though without directionality. In contrast, module transcripts requiring RNA editing only trans-splice when editing is completed. Finally, experimental and computational analyses suggest the existence of RNA trans-factors with the potential for guiding both trans-splicing and RNA editing.
Collapse
|
44
|
Abstract
The perinucleolar compartment (PNC) is a nuclear substructure associated with, but structurally distinct from, the nucleolus. The PNC contains several RNA processing proteins and several RNA pol III transcripts, which form novel complexes. As determined by cell culture experiments and human tumor samples, the PNC forms exclusively in cancer cells and the percentage of cancer cells in a population that have one or more PNCs directly correlates with the malignancy of that population of cells. Therefore, the PNC is being developed as a prognostic marker for several malignancies. PNC elimination in cancer cells has proven to be a useful as screening method to discover probe compounds used to elucidate PNC biology and to discover compounds with the potential to be developed as minimally toxic anti-cancer drugs.
Collapse
Affiliation(s)
- John T Norton
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
45
|
Schirtzinger EE, Tavares ES, Gonzales LA, Eberhard JR, Miyaki CY, Sanchez JJ, Hernandez A, Müeller H, Graves GR, Fleischer RC, Wright TF. Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes. Mol Phylogenet Evol 2012; 64:342-56. [PMID: 22543055 DOI: 10.1016/j.ympev.2012.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 04/08/2012] [Accepted: 04/10/2012] [Indexed: 01/06/2023]
Abstract
Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome.
Collapse
Affiliation(s)
- Erin E Schirtzinger
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mitochondrial D-loop polymorphisms and mitochondrial DNA content in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2011; 33:e239-44. [PMID: 21646920 DOI: 10.1097/mph.0b013e31820a5ece] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mitochondrial displacement loop (D-loop) controls mitochondrial expression, with mutations and mitochondrial DNA (mtDNA) content linked to oncogenesis. We investigated D-loop polymorphisms and mtDNA content in childhood acute lymphoblastic leukemia (ALL). The D-loop was sequenced in 251 children: precursor B ALL (n=114), with 76 paired remission/relapse samples; T-ALL (n=24); cord blood controls (n=113). The mtDNA copy number was analyzed using real-time quantitative polymerase chain reaction for 92 controls and 54 ALL patients at diagnosis and remission. Polymorphisms around H-strand replication origin (nucleotides 150 to 199) and conserved sequence block II (nucleotides 299 to 317) were associated with leukemia biology and treatment response. T-ALL patients were more likely to have longer nt303 poly-C tract. T199C polymorphism was associated with increased risk of ALL in Malays; T152C was more frequent in good responders. There was no difference in mtDNA content between diagnostic ALL samples and controls; however, there was significant decrease in mtDNA content after treatment, especially in samples with OH polymorphisms. Somatic mutations were found in 13% (9 of 76) of patients, suggesting a link to leukemogenesis. Our results suggest that polymorphisms impacting transcriptional control could affect mtDNA replication. Decrease in mtDNA content after treatment may confer susceptibility to chemotherapy and be a clue to the good prognosis of childhood ALL.
Collapse
|
47
|
Marvin MC, Walker SC, Fierke CA, Engelke DR. Binding and cleavage of unstructured RNA by nuclear RNase P. RNA (NEW YORK, N.Y.) 2011; 17:1429-40. [PMID: 21665997 PMCID: PMC3153968 DOI: 10.1261/rna.2633611] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 04/28/2011] [Indexed: 05/25/2023]
Abstract
Ribonuclease P (RNase P) is an essential endoribonuclease for which the best-characterized function is processing the 5' leader of pre-tRNAs. Compared to bacterial RNase P, which contains a single small protein subunit and a large catalytic RNA subunit, eukaryotic nuclear RNase P is more complex, containing nine proteins and an RNA subunit in Saccharomyces cerevisiae. Consistent with this, nuclear RNase P has been shown to possess unique RNA binding capabilities. To understand the unique molecular recognition of nuclear RNase P, the interaction of S. cerevisiae RNase P with single-stranded RNA was characterized. Unstructured, single-stranded RNA inhibits RNase P in a size-dependent manner, suggesting that multiple interactions are required for high affinity binding. Mixed-sequence RNAs from protein-coding regions also bind strongly to the RNase P holoenzyme. However, in contrast to poly(U) homopolymer RNA that is not cleaved, a variety of mixed-sequence RNAs have multiple preferential cleavage sites that do not correspond to identifiable consensus structures or sequences. In addition, pre-tRNA(Tyr), poly(U)(50) RNA, and mixed-sequence RNA cross-link with purified RNase P in the RNA subunit Rpr1 near the active site in "Conserved Region I," although the exact positions vary. Additional contacts between poly(U)(50) and the RNase P proteins Rpr2p and Pop4p were identified. We conclude that unstructured RNAs interact with multiple protein and RNA contacts near the RNase P RNA active site, but that cleavage depends on the nature of interaction with the active site.
Collapse
Affiliation(s)
- Michael C. Marvin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | - Scott C. Walker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | - Carol A. Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | - David R. Engelke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| |
Collapse
|
48
|
Anchoring nascent RNA to the DNA template could interfere with transcription. Biophys J 2011; 100:675-684. [PMID: 21281582 DOI: 10.1016/j.bpj.2010.12.3709] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022] Open
Abstract
During normal transcription, the nascent RNA product is released from the DNA template. However, in some cases, the RNA remains bound or can become reattached to the template DNA duplex (for example, through R-loop formation). We have analyzed the effect on transcription elongation of nascent RNA anchoring to the template DNA duplex. Because the RNA polymerase follows a helical path along DNA duplex during transcription, the anchoring would result in wrapping the nascent RNA around the DNA in the region between the anchoring point and the translocating polymerase. This wrapping would cause an unfavorable loss of conformation entropy of the nascent RNA. It consequently would create an apparent force to unwrap the RNA by disrupting either the transcription complex or the anchoring structure. We have estimated that this force would be comparable to those required to melt nucleic acid duplexes or to arrest transcription elongation in single-molecule experiments. We predict that this force would create negative supercoiling in the DNA duplex region between the anchoring point and the transcribing RNA polymerase: this can promote the formation of unusual DNA structures and facilitate RNA invasion into the DNA duplex. Potential biological consequences of these effects are discussed.
Collapse
|
49
|
Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer MR, Barendregt A, Zhou K, Snijders APL, Dickman MJ, Doudna JA, Boekema EJ, Heck AJR, van der Oost J, Brouns SJJ. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 2011; 18:529-36. [PMID: 21460843 DOI: 10.1038/nsmb.2019] [Citation(s) in RCA: 440] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 01/24/2011] [Indexed: 12/17/2022]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA(1)B(2)C(6)D(1)E(1)) and a 61-nucleotide CRISPR RNA (crRNA) with 5'-hydroxyl and 2',3'-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.
Collapse
Affiliation(s)
- Matthijs M Jore
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pohjoismäki JLO, Goffart S. Of circles, forks and humanity: Topological organisation and replication of mammalian mitochondrial DNA. Bioessays 2011; 33:290-9. [PMID: 21290399 DOI: 10.1002/bies.201000137] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The organisation of mammalian mitochondrial DNA (mtDNA) is more complex than usually assumed. Despite often being depicted as a simple circle, the topology of mtDNA can vary from supercoiled monomeric circles over catenanes and oligomers to complex multimeric networks. Replication of mtDNA is also not clear cut. Two different mechanisms of replication have been found in cultured cells and in most tissues: a strand-asynchronous mode involving temporary RNA coverage of one strand, and a strand-coupled mode rather resembling conventional nuclear DNA replication. In addition, a recombination-initiated replication mechanism is likely to be associated with the multimeric mtDNA networks found in human heart. Although an insight into the general principles and key factors of mtDNA organisation and maintenance has been gained over the last few years, there are many open questions regarding replication initiation, termination and physiological factors determining mtDNA organisation and replication mode. However, common themes in mtDNA maintenance across eukaryotic kingdoms can provide valuable lessons for future work.
Collapse
Affiliation(s)
- Jaakko L O Pohjoismäki
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | | |
Collapse
|