1
|
Yuan F, Li J, Li X, Li H, Chen W, Yang M, Chen H, Sheng L, Liu C, Wu Y, Xu H. Pharmacokinetic Interaction of Chiglitazar with CYP3A4 Inducer or Inhibitor: An Open-Label, Sequential Crossover, Self-Control, 3-Period Study in Healthy Chinese Volunteers. Clin Pharmacol Drug Dev 2023; 12:168-174. [PMID: 36583526 DOI: 10.1002/cpdd.1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/09/2022] [Indexed: 12/31/2022]
Abstract
Chiglitazar, a pan agonist of non-thiazolidinedione peroxisome proliferator-activated receptor, has the potential to regulate blood sugar, improve lipid metabolism, and reduce cardiovascular complications. This study aimed to examine the effect of cytochrome P450 (CYP) 3A4 inhibitors/inducers on the in vivo metabolism of chiglitazar and provide a reference for the clinical combination use of chiglitazar. A single-center, open-label, sequential crossover, and self-control study was carried out in 24 healthy subjects to determine the pharmacokinetics of chiglitazar dosed with and without CYP3A4 inhibitors and inducers. The findings showed that the CYP3A4 inhibitor itraconazole had no apparent pharmacokinetic drug interaction with chiglitazar, whereas rifampicin did. When combined with rifampicin after continuous dosing, chiglitazar exposure was not theoretically reduced but increased compared to a single dose of chiglitazar. The possible explanation may be the transporters of bile salt export pump, but this needs to be confirmed. The safety of chiglitazar in single or combination doses was well tolerated. The findings of this study provide a basis for clinical combinations of chiglitazar with CYP3A4 inhibitors or inducers.
Collapse
Affiliation(s)
- Fei Yuan
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuening Li
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Li
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weili Chen
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengjie Yang
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanjing Chen
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Sheng
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Liu
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yujia Wu
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongrong Xu
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Kumar D, Kommalapati VK, Jerald MK, Tangutur AD. Fluorinated thiazolidinol drives autophagic cell death in pancreatic cancer cells via AMPK activation and perturbation of critical sentinels of oncogenic signaling. Chem Biol Interact 2021; 343:109433. [PMID: 33689707 DOI: 10.1016/j.cbi.2021.109433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Pancreatic cancer is one of the most malignant cancers around the world. The co-occurrence of mutation in KRAS and p53 makes it highly aggressive, proliferative, metastatic, and resistant to apoptotic cell death. Therefore, there is a need to trigger an alternate mechanism of cancer cell death in apoptosis-resistant pancreatic cancer. Autophagic cell death could be an alternate viable option for treatment in such cases. Thus, the identification of small molecules as autophagy modulators with potent anticancer efficacy would be of great importance in pancreatic cancer. The present study investigates fluorinated thiazolidionol (FTZ) driven autophagy modulation, underlying mechanism, and regulation of critical sentinels of oncogenic signaling in pancreatic cancer cells. We identified that FTZ triggered autophagic cell death in pancreatic cancer cells, independent of apoptosis evidenced by an increase in cytoplasmic vacuoles formation, autophagy flux, LC3-II expression, and p62 degradation. Further, the crucial events of apoptosis i.e., Caspase-3 activation and PARP cleavage, were not observed, indicating the non-occurrence of apoptotic cell death. Moreover, FTZ was able to activate AMPK and suppress PI3k/Akt/mTOR as well as MEK/ERK, the key oncogenic signaling pathways in cancer cells. Furthermore, treatment with FTZ suppressed migration, invasion, and angiogenesis in pancreatic cancer cells. Studies in vivo revealed significant regression of tumors by FTZ in nude mice model. Overall, our study demonstrates that FTZ induces autophagic cell death in pancreatic cancer cells independent of apoptosis, which is accompanied by AMPK activation and suppression of critical sentinels of oncogenic signaling in pancreatic cancer cells.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Applied Biology, CSIR- Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Vamsi Krishna Kommalapati
- Department of Applied Biology, CSIR- Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Mahesh Kumar Jerald
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR- Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
3
|
Trümper V, von Knethen A, Preuß A, Ermilov E, Hackbarth S, Kuchler L, Gunne S, Schäfer A, Bornhütter T, Vereb G, Ujlaky-Nagy L, Brüne B, Röder B, Schindler M, Parnham MJ, Knape T. Flow cytometry-based FRET identifies binding intensities in PPARγ1 protein-protein interactions in living cells. Theranostics 2019; 9:5444-5463. [PMID: 31534496 PMCID: PMC6735382 DOI: 10.7150/thno.29367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 05/01/2019] [Indexed: 01/10/2023] Open
Abstract
PPARγ is a pharmacological target in inflammatory and metabolic diseases. Upon agonistic treatment or following antagonism, binding of co-factors is altered, which consequently affects PPARγ-dependent transactivation as well as its DNA-independent properties. Therefore, establishing techniques to characterize these interactions is an important issue in living cells. Methods: Using the FRET pair Clover/mRuby2, we set up a flow cytometry-based FRET assay by analyzing PPARγ1 binding to its heterodimerization partner RXRα. Analyses of PPARγ-reporter and co-localization studies by laser-scanning microscopy validated this system. Refining the system, we created a new readout to distinguish strong from weak interactions, focusing on PPARγ-binding to the co-repressor N-CoR2. Results: We observed high FRET in cells expressing Clover-PPARγ1 and mRuby2-RXRα, but no FRET when cells express a mRuby2-RXRα deletion mutant, lacking the PPARγ interaction domain. Focusing on the co-repressor N-CoR2, we identified in HEK293T cells the new splice variant N-CoR2-ΔID1-exon. Overexpressing this isoform tagged with mRuby2, revealed no binding to Clover-PPARγ1, nor in murine J774A.1 macrophages. In HEK293T cells, binding was even lower in comparison to N-CoR2 constructs in which domains established to mediate interaction with PPARγ binding are deleted. These data suggest a possible role of N-CoR2-ΔID1-exon as a dominant negative variant. Because binding to N-CoR2-mRuby2 was not altered following activation or antagonism of Clover-PPARγ1, we determined the effect of pharmacological treatment on FRET intensity. Therefore, we calculated flow cytometry-based FRET efficiencies based on our flow cytometry data. As with PPARγ antagonism, PPARγ agonist treatment did not prevent binding of N-CoR2. Conclusion: Our system allows the close determination of protein-protein interactions with a special focus on binding intensity, allowing this system to characterize the role of protein domains as well as the effect of pharmacological agents on protein-protein interactions.
Collapse
Affiliation(s)
- Verena Trümper
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Annegret Preuß
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Eugeny Ermilov
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Steffen Hackbarth
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Laura Kuchler
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Sandra Gunne
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Anne Schäfer
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Tobias Bornhütter
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Lázló Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Bernhard Brüne
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Beate Röder
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Michael Schindler
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Karls University Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen
| | - Michael J. Parnham
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Tilo Knape
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| |
Collapse
|
4
|
Pharmacokinetics, Safety and Tolerability of Chiglitazar, A Novel Peroxisome Proliferator-Activated Receptor (PPAR) Pan-Agonist, in Healthy Chinese Volunteers: A Phase I Study. Clin Drug Investig 2019; 39:553-563. [DOI: 10.1007/s40261-019-00779-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Kryshchyshyn A, Roman O, Lozynskyi A, Lesyk R. Thiopyrano[2,3- d]Thiazoles as New Efficient Scaffolds in Medicinal Chemistry. Sci Pharm 2018; 86:scipharm86020026. [PMID: 29903979 PMCID: PMC6027677 DOI: 10.3390/scipharm86020026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022] Open
Abstract
This review presents the up to date development of fused thiopyranothiazoles that comprise one of the thiazolidine derivatives classes. Thiazolidine and thiazolidinone-related compounds belong to the widely studied heterocycles from a medicinal chemistry perspective. From the chemical point of view, they are perfect heterodienes to undergo hetero-Diels–Alder reaction with a variety of dienophiles, yielding regio- and diastereoselectively thiopyranothiazole scaffolds. The annealing of thiazole and thiopyran cycles in condensed heterosystem is a precondition for the “centers conservative” creation of the ligand-target binding complex and can promote a potential selectivity to biotargets. The review covers possible therapeutic applications of thiopyrano[2,3-d]thiazoles, such as anti-inflammatory, antibacterial, anticancer as well as aniparasitic activities. Thus, thiopyrano[2,3-d]thiazoles may be used as powerful tools in the development of biologically active agents and drug-like molecules.
Collapse
Affiliation(s)
- Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Olexandra Roman
- Department of General, Inorganic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| |
Collapse
|
6
|
Abstract
Thiazolidinediones (TZDs) are the only antidiabetic drugs that reverse insulin resistance. They have been a valuable asset in the treatment of type 2 diabetes, but their side effects have curtailed widespread use in the clinic. In this issue of the JCI, Kraakman and colleagues provide evidence that deacetylation of the nuclear receptor PPARγ improves the therapeutic index of TZDs. These findings should revitalize the quest to employ insulin sensitization as a first-line approach to managing type 2 diabetes.
Collapse
|
7
|
Lin DPL, Dass CR. Weak bones in diabetes mellitus – an update on pharmaceutical treatment options. J Pharm Pharmacol 2017; 70:1-17. [DOI: 10.1111/jphp.12808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Diabetes mellitus is often associated with a number of complications such as nephropathy, neuropathy, retinopathy and foot ulcers. However, weak bone is a diabetic complication that is often overlooked. Although the exact mechanism for weak bones within diabetes mellitus is unclear, studies have shown that the mechanism does differ in both type I (T1DM) and type II diabetes (T2DM). This review, however, investigates the application of mesenchymal stem cells, recombinant human bone morphogenetic protein-2, teriparatide, insulin administration and the effectiveness of a peroxisome proliferator-activated receptor-ϒ modulator, netoglitazone in the context of diabetic weak bones.
Key findings
In T1DM, weak bones may be the result of defective osteoblast activity, the absence of insulin's anabolic effects on bone, the deregulation of the bone–pancreas negative feedback loop and advanced glycation end product (AGE) aggregation within the bone matrix as a result of hyperglycaemia. Interestingly, T2DM patients placed on insulin administration, thiazolidinediones, SGLT2 inhibitors and sulfonylureas have an associated increased fracture risk. T2DM patients are also observed to have high sclerostin levels that impair osteoblast gene transcription, AGE aggregation within bone, which compromises bone strength and a decrease in esRAGE concentration resulting in a negative association with vertebral fractures.
Summary
Effective treatment options for weak bones in the context of diabetes are currently lacking. There is certainly scope for discovery and development of novel agents that could alleviate this complication in diabetes patients.
Collapse
Affiliation(s)
- Daphne P L Lin
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Bentley, WA 6102, Australia
| | - Crispin R Dass
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Bentley, WA 6102, Australia
| |
Collapse
|
8
|
Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Crit Rev Toxicol 2017; 48:52-108. [PMID: 28816105 DOI: 10.1080/10408444.2017.1351420] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thiazolidinedione (TZD) drugs used in the treatment of type 2 diabetes mellitus (T2DM) have proven effective in improving insulin sensitivity, hyperglycemia, and lipid metabolism. Though well tolerated by some patients, their mechanism of action as ligands of peroxisome proliferator-activated receptors (PPARs) results in the activation of several pathways in addition to those responsible for glycemic control and lipid homeostasis. These pathways, which include those related to inflammation, bone formation, and cell proliferation, may lead to adverse health outcomes. As treatment with TZDs has been associated with adverse hepatic, cardiovascular, osteological, and carcinogenic events in some studies, the role of TZDs in the treatment of T2DM continues to be debated. At the same time, new therapeutic roles for TZDs are being investigated, with new forms and isoforms currently in the pre-clinical phase for use in the prevention and treatment of some cancers, inflammatory diseases, and other conditions. The aims of this review are to provide an overview of the mechanism(s) of action of TZDs, a review of their safety for use in the treatment of T2DM, and a perspective on their current and future therapeutic roles.
Collapse
Affiliation(s)
- Melissa A Davidson
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada
| | - Donald R Mattison
- b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada
| | - Laurent Azoulay
- d Center for Clinical Epidemiology , Lady Davis Research Institute, Jewish General Hospital , Montreal , Canada.,e Department of Oncology , McGill University , Montreal , Canada
| | - Daniel Krewski
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada.,f Faculty of Medicine , University of Ottawa , Ottawa , Canada
| |
Collapse
|
9
|
Kryshchyshyn AP, Atamanyuk DV, Kaminskyy DV, Grellier P, Lesyk RB. Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety. ACTA ACUST UNITED AC 2017. [DOI: 10.7124/bc.00094f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Ph. Grellier
- National Museum of Natural History, UMR 7245 CNRS MCAM, Sorbonne UniversitГ©s
| | - R. B. Lesyk
- Danylo Halytsky Lviv National Medical University
| |
Collapse
|
10
|
Yasmin S, Jayaprakash V. Thiazolidinediones and PPAR orchestra as antidiabetic agents: From past to present. Eur J Med Chem 2016; 126:879-893. [PMID: 27988463 DOI: 10.1016/j.ejmech.2016.12.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/28/2016] [Accepted: 12/09/2016] [Indexed: 12/21/2022]
Abstract
Thiazolidinediones a class of drug, that provided a major breakthrough in the management of type 2 diabetes since 1990. Following the discovery of PPARs, TZDs were the first class to be reported as PPARγ modulators. This review is an attempt to summarize the chemical modifications around TZDs in past two decades to obtain a potent antidiabetic molecule. TZDs literature were initially dominated by their hypoglycemic & hypolipidemic activities, later PPARγ activity was also been incorporated. Moreover, in some cases, both benzyl and benzylidene derivatives were reported in the same manuscript for the sake of comparison. We thought of presenting the review on the basis of the variation in the linker region. Optimal linker at the time of discovery of the Ciglitazone was oxymethyl and it went on to evolve as oxyethyl (Pioglitazone) and oxyethylamino (Rosiglitazone). Few attempts were made to restrict the flexibility of the linker by introducing the cyclic structures and were summarized immediately after the respective linker class.
Collapse
Affiliation(s)
- Sabina Yasmin
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835 215, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835 215, India.
| |
Collapse
|
11
|
Siddiqui IR, Srivastava A, Shamim S, Srivastava A, Shireen, Waseem MA. An Efficient One-Pot Regioselective Approach Towards the Synthesis of Thiopyrano[2,3-d]thiazole-2-thiones Catalyzed by Basic Ionic Liquid under Microwave Irradiation. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- I. R. Siddiqui
- Laboratory of Green Synthesis, Department of Chemistry; University of Allahabad; Allahabad Uttar Pradesh India
| | - Arjita Srivastava
- Laboratory of Green Synthesis, Department of Chemistry; University of Allahabad; Allahabad Uttar Pradesh India
| | - Shayna Shamim
- Laboratory of Green Synthesis, Department of Chemistry; University of Allahabad; Allahabad Uttar Pradesh India
| | - Anjali Srivastava
- Laboratory of Green Synthesis, Department of Chemistry; University of Allahabad; Allahabad Uttar Pradesh India
| | - Shireen
- Laboratory of Green Synthesis, Department of Chemistry; University of Allahabad; Allahabad Uttar Pradesh India
| | - Malik A. Waseem
- Laboratory of Green Synthesis, Department of Chemistry; University of Allahabad; Allahabad Uttar Pradesh India
| |
Collapse
|
12
|
Liu HJ, Zhang CY, Song F, Xiao T, Meng J, Zhang Q, Liang CL, Li S, Wang J, Zhang B, Liu YR, Sun T, Zhou HG. A Novel Partial Agonist of Peroxisome Proliferator-Activated Receptor γ with Excellent Effect on Insulin Resistance and Type 2 Diabetes. J Pharmacol Exp Ther 2015; 353:573-81. [PMID: 25876909 DOI: 10.1124/jpet.115.223107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/13/2015] [Indexed: 02/01/2023] Open
Abstract
Partial agonists of peroxisome proliferator-activated receptor γ (PPARγ) reportedly reverse insulin resistance in patients with type 2 diabetes mellitus. In this work, a novel non-thiazolidinedione-partial PPARγ ligand, MDCCCL1636 [N-(4-hydroxyphenethyl)-3-mercapto-2-methylpropanamide], was investigated. The compound displayed partial agonist activity in biochemical and cell-based transactivation assays and reversed insulin resistance. MDCCCL1636 showed a potential antidiabetic effect on an insulin-resistance model of human hepatocarcinoma cells (HepG2). High-fat diet-fed streptozotocin-induced diabetic rats treated with MDCCCL1636 for 56 days displayed reduced fasting serum glucose and reversed dyslipidemia and pancreatic damage without significant weight gain. Furthermore, MDCCCL1636 had lower toxicity in vivo and in vitro than pioglitazone. MDCCCL1636 also potentiated glucose consumption and inhibited the impairment in insulin signaling targets, such as AKT, glycogen synthase kinase 3β, and glycogen synthase, in HepG2 human hepatoma cells. Overall, our results suggest that MDCCCL1636 is a promising candidate for the prevention and treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hui-juan Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Cheng-yu Zhang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Fei Song
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Ting Xiao
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Jing Meng
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Qiang Zhang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Cai-li Liang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Shan Li
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Jing Wang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Bo Zhang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Yan-rong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Tao Sun
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.)
| | - Hong-gang Zhou
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, People's Republic of China (H.L., C.Z., F.S., T.X., J.M., Q.Z., C.L., S.L., J.W., B.Z., Y.L.); and The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China (T.S., H.Z.).
| |
Collapse
|
13
|
Knape T, Flesch D, Kuchler L, Sha LK, Giegerich AK, Labocha S, Ferreirós N, Schmid T, Wurglics M, Schubert-Zsilavecz M, Proschak E, Brüne B, Parnham MJ, von Knethen A. Identification and characterisation of a prototype for a new class of competitive PPARγ antagonists. Eur J Pharmacol 2015; 755:16-26. [DOI: 10.1016/j.ejphar.2015.02.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/12/2023]
|
14
|
Wright MB, Bortolini M, Tadayyon M, Bopst M. Minireview: Challenges and opportunities in development of PPAR agonists. Mol Endocrinol 2014; 28:1756-68. [PMID: 25148456 PMCID: PMC5414793 DOI: 10.1210/me.2013-1427] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 08/08/2014] [Indexed: 01/06/2023] Open
Abstract
The clinical impact of the fibrate and thiazolidinedione drugs on dyslipidemia and diabetes is driven mainly through activation of two transcription factors, peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ. However, substantial differences exist in the therapeutic and side-effect profiles of specific drugs. This has been attributed primarily to the complexity of drug-target complexes that involve many coregulatory proteins in the context of specific target gene promoters. Recent data have revealed that some PPAR ligands interact with other non-PPAR targets. Here we review concepts used to develop new agents that preferentially modulate transcriptional complex assembly, target more than one PPAR receptor simultaneously, or act as partial agonists. We highlight newly described on-target mechanisms of PPAR regulation including phosphorylation and nongenomic regulation. We briefly describe the recently discovered non-PPAR protein targets of thiazolidinediones, mitoNEET, and mTOT. Finally, we summarize the contributions of on- and off-target actions to select therapeutic and side effects of PPAR ligands including insulin sensitivity, cardiovascular actions, inflammation, and carcinogenicity.
Collapse
Affiliation(s)
- Matthew B Wright
- F. Hoffmann-La Roche Pharmaceuticals (M.B.W., M.Bor., M.Bop.), CH-4070 Basel, Switzerland; and MediTech Media (M.T.), London EC1V 9AZ, United Kingdom
| | | | | | | |
Collapse
|
15
|
van de Vyver M, Andrag E, Cockburn IL, Ferris WF. Thiazolidinedione-induced lipid droplet formation during osteogenic differentiation. J Endocrinol 2014; 223:119-32. [PMID: 25210048 DOI: 10.1530/joe-14-0425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic administration of the insulin-sensitising drugs, thiazolidinediones (TZDs), results in low bone mineral density and 'fatty bones'. This is thought to be due, at least in part, to aberrant differentiation of progenitor mesenchymal stem cells (MSCs) away from osteogenesis towards adipogenesis. This study directly compared the effects of rosiglitazone, pioglitazone, and netoglitazone treatment on osteogenesis and adipogenesis in MSCs derived from subcutaneous (SC) or visceral (PV) white adipose tissue. MSCs were isolated from adipose tissue depots of male Wistar rats and characterised using flow cytometry. The effects of TZD treatment on osteogenic and adipogenic differentiation were assessed histologically (day 14) and by quantitative PCR analysis (Pparγ2 (Pparg2), Ap2 (Fabp4), Adipsin (Adps), Msx2, Collagen I (Col1a1), and Alp) on days 0, 7, and 10. Uniquely, lipid droplet formation and mineralisation were found to occur concurrently in response to TZD treatment during osteogenesis. Compared with SC MSCs, PV MSCs were more prone to lipid accumulation under controlled osteogenic and adipogenic differentiation conditions. This study demonstrated that the extent of lipid accumulation is dependent on the nature of the Ppar ligand and that SC and PV MSCs respond differently to in vitro TZD treatment, suggesting that metabolic status can contribute to the adverse effects associated with TZD treatment.
Collapse
Affiliation(s)
- M van de Vyver
- Division of EndocrinologyDepartment of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa
| | - E Andrag
- Division of EndocrinologyDepartment of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa
| | - I L Cockburn
- Division of EndocrinologyDepartment of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa
| | - W F Ferris
- Division of EndocrinologyDepartment of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa
| |
Collapse
|
16
|
Chen X, Feng Y, Yang WJ, Shu G, Jiang QY, Wang XQ. Effects of dietary thiazolidinedione supplementation on growth performance, intramuscular fat and related genes mRNA abundance in the longissimus dorsi muscle of finishing pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1012-20. [PMID: 25049880 PMCID: PMC4093500 DOI: 10.5713/ajas.2012.12722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/26/2013] [Accepted: 02/01/2013] [Indexed: 02/08/2023]
Abstract
The objective of this study was to investigate the effect of dietary supplementation with thiazolidinedione (TZD) on growth performance and meat quality of finishing pigs. In Experiment 1, 80 castrated finishing pigs (Large White×Landrace, BW = 54.34 kg) were randomly assigned to 2 treatments with 5 replicates of 8 pigs each. The experimental pigs in the 2 groups were respectively fed with a diet with or without a TZD supplementation (15 mg/kg). In Experiment 2, 80 castrated finishing pigs (Large White×Landrace, BW = 71.46 kg) were divided into 2 treatments as designed in Experiment 1, moreover, carcass evaluations were performed. The results from Experiment 1 showed that TZD supplementation could significantly decreased the average daily feed intake (ADFI) (p<0.05) during 0 to 28 d, without impairing the average daily gain (ADG) (p>0.05). In Experiment 2, the ADG was significantly increased by TZD supplementation during 14 to 28 d and 0 to 28 d (p<0.05) and the feed:gain ratio (F:G) was significantly decreased by TZD supplementation during 0 to 28 d (p<0.05). Compared with the control group, TZD group had significantly higher serum triglyceride (TG) concentration at 28h and serum high-density lipoprotein (HDL) levels at 14 d (p<0.05). Moreover, there was an apparent improvement in the marbling score (p<0.10) and intramuscular fat (IMF) content (p<0.10) of the longissimus dorsi muscle in pigs treated by TZD supplementation. Real-time RT-PCR analyses demonstrated that pigs of TZD group had higher mRNA abundance of PPARγ coactivator 1 (PGC-1) (p<0.05) and fatty acid-binding protein 3 (FABP3) (p<0.05) than pigs of control group. Taken together, these results suggested that dietary TZD supplementation could improve growth performance and increase the IMF content of finishing pigs through regulating the serum parameters and genes mRNA abundance involved in fat metabolism.
Collapse
Affiliation(s)
- X Chen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Y Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - W J Yang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - G Shu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Q Y Jiang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - X Q Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Department of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
17
|
Cignarelli A, Giorgino F, Vettor R. Pharmacologic agents for type 2 diabetes therapy and regulation of adipogenesis. Arch Physiol Biochem 2013; 119:139-50. [PMID: 23724947 DOI: 10.3109/13813455.2013.796996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The close link between type 2 diabetes and excess body weight highlights the need to consider the effects on weight of different treatments used for correction of hyperglycaemia. Indeed, specific currently available diabetes therapies can cause weight gain, including insulin and its analogues, sulphonylureas, and thiazolidinediones, while others, such as metformin and the GLP-1 receptor agonists, can promote weight loss. Excess body weight in patients with diabetes is largely due to expansion of adipose tissue, and these drugs could interfere with the mechanisms underlying the expansion and differentiation of adipocyte precursors. Almost all anti-diabetes drugs could also potentially affect adipocyte metabolism directly, by modulating lipogenesis, lipolysis, and fat oxidation. This review will examine the available evidence for specific effects of various anti-diabetes drugs on adipose tissue development and function with the ultimate goal of increasing our understanding of how pharmacological agents can modulate energy balance and body fat.
Collapse
Affiliation(s)
- A Cignarelli
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari "Aldo Moro" , Bari , Italy and
| | | | | |
Collapse
|
18
|
Bhatti RS, Shah S, Suresh, Krishan P, Sandhu JS. Recent pharmacological developments on rhodanines and 2,4-thiazolidinediones. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2013; 2013:793260. [PMID: 25379289 PMCID: PMC4207445 DOI: 10.1155/2013/793260] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/12/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022]
Abstract
Thiazolidines are five-member heterocyclic having sulfur, nitrogen, and oxygen atoms in their ring structure and exhibiting potent as well as wide range of pharmacological activities. In this minireview, recent updates on synthesis and pharmacological evaluations of molecules based on 2,4-thiazolidine and rhodanine are discussed.
Collapse
Affiliation(s)
- Ravinder Singh Bhatti
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147 002, India
| | - Sakshi Shah
- Department of Chemistry, Punjabi University, Punjab, Patiala 147 002, India
| | - Suresh
- Department of Chemistry, Punjabi University, Punjab, Patiala 147 002, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147 002, India
| | - Jagir S. Sandhu
- Department of Chemistry, Punjabi University, Punjab, Patiala 147 002, India
| |
Collapse
|
19
|
Imchen T, Manasse J, Min KW, Baek SJ. Characterization of PPAR dual ligand MCC-555 in AOM-induced colorectal tumorigenesis. ACTA ACUST UNITED AC 2013; 65:919-24. [PMID: 23369238 DOI: 10.1016/j.etp.2013.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/03/2012] [Accepted: 01/04/2013] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers. Peroxisome proliferator-activated receptor γ (PPARγ) agonists represent a potentially important family of chemopreventive/therapeutic compounds for cancer treatment by affecting cell proliferation, differentiation, and apoptosis. Dual ligands for PPARα and PPARγ, such as netoglitazone (MCC-555), have been developed to improve treatment of metabolic syndromes, including hyperglycemia and hyperlipidemia. Interestingly, these dual ligands also possess anti-proliferative activities against a variety of cancer cell lines with a greater potency than conventional PPARγ specific ligands. In this study, chemopreventive properties of MCC-555 in colorectal tumorigenesis were evaluated using azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in A/J mice. We found that MCC-555 suppressed AOM-induced ACF in A/J mice, compared to the control group. Administration of MCC-555 resulted in decreased mitoses and increased apoptotic cells in the colon. Furthermore, expression of tumor suppressor protein MUC2 was increased in MCC-555 treated mice. Our data clearly suggest that MCC-555 has an effect on the early events of colon carcinogenesis, thus providing evidence that MCC-555 could be a potential preventive compound for CRC.
Collapse
Affiliation(s)
- Temjenmongla Imchen
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
20
|
Synthesis of novel β-amino ketones containing a p-aminobenzoic acid moiety and evaluation of their antidiabetic activities. Sci China Chem 2013. [DOI: 10.1007/s11426-012-4816-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Targeting PPARγ Signaling Cascade for the Prevention and Treatment of Prostate Cancer. PPAR Res 2012; 2012:968040. [PMID: 23213321 PMCID: PMC3504464 DOI: 10.1155/2012/968040] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptor-gamma (PPARγ) is a member of the hormone-activated nuclear receptor superfamily. PPARγ can be activated by a diverse group of agents, such as endogenous polyunsaturated fatty acids, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), and thiazolidinedione (TZD) drugs. PPARγ induces antiproliferative, antiangiogenic, and prodifferentiation pathways in several tissue types, thus making it a highly useful target for downregulation of carcinogenesis. These TZD-derived novel therapeutic agents, alone or in combination with other anticancer drugs, have translational relevance in fostering effective strategies for cancer treatment. TZDs have been proven for antitumor activity in a wide variety of experimental cancer models, both in vitro and in vivo, by affecting the cell cycle, inducing cell differentiation and apoptosis, as well as by inhibiting tumor angiogenesis. Angiogenesis inhibition mechanisms of TZDs include direct inhibition of endothelial cell proliferation and migration, as well as reduction in tumor cell vascular endothelial growth factor production. In prostate cancer, PPARγ ligands such as troglitazone and 15d-PGJ2 have also shown to inhibit tumor growth. This paper will focus on current discoveries in PPARγ activation, targeting prostate carcinogenesis as well as the role of PPARγ as a possible anticancer therapeutic option. Here, we review PPARγ as an antitumor agent and summarize the antineoplastic effects of PPARγ agonists in prostate cancer.
Collapse
|
22
|
Min KW, Zhang X, Imchen T, Baek SJ. A peroxisome proliferator-activated receptor ligand MCC-555 imparts anti-proliferative response in pancreatic cancer cells by PPARgamma-independent up-regulation of KLF4. Toxicol Appl Pharmacol 2012; 263:225-32. [PMID: 22750490 DOI: 10.1016/j.taap.2012.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/19/2012] [Accepted: 06/22/2012] [Indexed: 12/20/2022]
Abstract
MCC-555 is a novel PPARα/γ dual ligand of the thiazolidinedione class and was recently developed as an anti-diabetic drug with unique properties. MCC-555 also has anti-proliferative activity through growth inhibition and apoptosis induction in several cancer cell types. Our group has shown that MCC-555 targets several proteins in colorectal tumorigenesis including nonsteroidal anti-inflammatory drug (NSAID)-activated gene (NAG-1) which plays an important role in chemoprevention responsible for chemopreventive compounds. NAG-1 is a member of the TGF-β superfamily and is involved in tumor progression and development; however, NAG-1's roles in pancreatic cancer have not been studied. In this report, we found that MCC-555 alters not only NAG-1 expression, but also p21 and cyclin D1 expression. NAG-1 and p21 expression was not blocked by PPARγ-specific antagonist GW9662, suggesting that MCC-555-induced NAG-1 and p21 expression is independent of PPARγ activation. However, decreasing cyclin D1 by MCC-555 seems to be affected by PPARγ activation. Further, we found that the GC box located in the NAG-1 promoter play an important role in NAG-1 transactivation by MCC-555. Subsequently, we screened several transcription factors that may bind to the GC box region in the NAG-1 promoter and found that KLF4 potentially binds to this region. Expression of KLF4 precedes NAG-1 and p21 expression in the presence of MCC-555, whereas blocking KLF4 expression using specific KLF4 siRNA showed that both NAG-1 and p21 expression by MCC-555 was blocked. In conclusion, MCC-555's actions on anti-proliferation involve both PPARγ-dependent and -independent pathways, thereby enhancing anti-tumorigenesis in pancreatic cancer cells.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
23
|
Inoue M, Tanabe H, Matsumoto A, Takagi M, Umegaki K, Amagaya S, Takahashi J. Astaxanthin functions differently as a selective peroxisome proliferator-activated receptor γ modulator in adipocytes and macrophages. Biochem Pharmacol 2012; 84:692-700. [PMID: 22732454 DOI: 10.1016/j.bcp.2012.05.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/22/2012] [Accepted: 05/31/2012] [Indexed: 11/26/2022]
Abstract
Astaxanthin (ASX), an oxygenated carotenoid (xanthophyll), has previously been shown to exert ameliorative effects on obesity and insulin resistance, but the underlying mechanisms were not clearly elucidated. In the present study, we investigated whether ASX serves as a novel selective peroxisome proliferator-activated receptor (PPAR) γ modulator. Analyses of PPARγ binding by CoA-BAP assays revealed that ASX bound to PPARγ in a dose-dependent manner. However, ASX was unable to activate transcription in PPARγ reporter assays, although it antagonized transcriptional activation by the PPARγ agonist rosiglitazone (RGZ). When the molecular interactions between PPARγ and three coactivators were examined, ASX increased the interactions of PPARγ with transcriptional intermediary factor 2 (TIF2) and steroid receptor coactivator-1 (SRC-1), but not cAMP responsive element-binding protein (CREB)-binding protein (CBP). In addition, ASX effectively blocked the increase in CBP recruitment to PPARγ mediated by RGZ. ASX alone did not stimulate 3T3-L1 cell differentiation, although it antagonized 3T3-L1 cell differentiation and lipid accumulation induced by RGZ, similar to the PPARγ antagonist GW9662. When the effects of cotreatment of 3T3-L1 cells with ASX and RGZ were determined based on the mRNA levels of PPARγ target genes, ASX effectively reduced the mRNA levels of aP2 and lipoprotein lipase, but not CD36. Intriguingly, ASX was capable of inducing PPARγ target genes such as liver X receptor, CD36 and ABCA1 in thioglycollate-elicited peritoneal macrophages. Collectively, the present findings indicate that ASX is a novel selective PPARγ modulator that acts as an antagonist or agonist depending on the cell context.
Collapse
Affiliation(s)
- Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Nagoya 464-8650, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Chaudhary S, Dube A, Kothari V, Sachan N, Upasani CD. NS-1: A novel partial peroxisome proliferator-activated receptor γ agonist to improve insulin sensitivity and metabolic profile. Eur J Pharmacol 2012; 684:154-60. [DOI: 10.1016/j.ejphar.2012.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/27/2022]
|
25
|
Zhang H, Xu X, Chen L, Chen J, Hu L, Jiang H, Shen X. Molecular determinants of magnolol targeting both RXRα and PPARγ. PLoS One 2011; 6:e28253. [PMID: 22140563 PMCID: PMC3226690 DOI: 10.1371/journal.pone.0028253] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/04/2011] [Indexed: 01/10/2023] Open
Abstract
Nuclear receptors retinoic X receptor α (RXRα) and peroxisome proliferator activated receptor γ (PPARγ) function potently in metabolic diseases, and are both important targets for anti-diabetic drugs. Coactivation of RXRα and PPARγ is believed to synergize their effects on glucose and lipid metabolism. Here we identify the natural product magnolol as a dual agonist targeting both RXRα and PPARγ. Magnolol was previously reported to enhance adipocyte differentiation and glucose uptake, ameliorate blood glucose level and prevent development of diabetic nephropathy. Although magnolol can bind and activate both of these two nuclear receptors, the transactivation assays indicate that magnolol exhibits biased agonism on the transcription of PPAR-response element (PPRE) mediated by RXRα:PPARγ heterodimer, instead of RXR-response element (RXRE) mediated by RXRα:RXRα homodimer. To further elucidate the molecular basis for magnolol agonism, we determine both the co-crystal structures of RXRα and PPARγ ligand-binding domains (LBDs) with magnolol. Structural analyses reveal that magnolol adopts its two 5-allyl-2-hydroxyphenyl moieties occupying the acidic and hydrophobic cavities of RXRα L-shaped ligand-binding pocket, respectively. While, two magnolol molecules cooperatively accommodate into PPARγ Y-shaped ligand-binding pocket. Based on these two complex structures, the key interactions for magnolol activating RXRα and PPARγ are determined. As the first report on the dual agonist targeting RXRα and PPARγ with receptor-ligand complex structures, our results are thus expected to help inspect the potential pharmacological mechanism for magnolol functions, and supply useful hits for nuclear receptor multi-target ligand design.
Collapse
Affiliation(s)
- Haitao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xing Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lili Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lihong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
26
|
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPARγ agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPARγ target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPARγ ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPARγ ligands in the treatment of insulin resistance.
Collapse
|
27
|
Zhang F, Lavan BE, Gregoire FM. Selective Modulators of PPAR-gamma Activity: Molecular Aspects Related to Obesity and Side-Effects. PPAR Res 2011; 2007:32696. [PMID: 17389769 PMCID: PMC1783742 DOI: 10.1155/2007/32696] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/21/2006] [Accepted: 11/22/2006] [Indexed: 01/23/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a key regulator of lipid metabolism and energy balance implicated in the development of insulin resistance and obesity. The identification of putative natural and synthetic ligands and activators of PPAR-gamma has helped to unravel the molecular basis of its function, including molecular details regarding ligand binding, conformational changes of the receptor, and cofactor binding, leading to the emergence of the concept of selective PPAR-gamma modulators (SPPARgammaMs). SPPARgammaMs bind in distinct manners to the ligand-binding pocket of PPAR-gamma, leading to alternative receptor conformations, differential cofactor recruitment/displacement, differential gene expression, and ultimately differential biological responses. Based on this concept, new and improved antidiabetic agents for the treatment of diabetes are in development. This review summarizes the current knowledge on the mechanism of action and biological effects of recently characterized SPPARgammaMs, including metaglidasen/halofenate, PA-082, and the angiotensin receptor antagonists, recently characterized as a new class of SPPARgammaMs.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Biology, Metabolex Inc., 3876 Bay Center Place, Hayward, CA 94545, USA
| | - Brian E. Lavan
- Department of Biology, Metabolex Inc., 3876 Bay Center Place, Hayward, CA 94545, USA
| | - Francine M. Gregoire
- Department of Biology, Metabolex Inc., 3876 Bay Center Place, Hayward, CA 94545, USA
- *Francine M. Gregoire:
| |
Collapse
|
28
|
Peroxisome proliferator-activated receptors in lung cancer. PPAR Res 2011; 2007:90289. [PMID: 18274632 PMCID: PMC2220082 DOI: 10.1155/2007/90289] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 07/03/2007] [Indexed: 01/11/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. Their discovery in the 1990s provided insights into the cellular mechanisms involved in the control of energy homeostasis; the regulation of cell differentiation, proliferation, and apoptosis; and the modulation of important biological and pathological processes related to inflammation, among others. Since then, PPARs have become an exciting therapeutic target for several diseases. PPARs are expressed by many tumors including lung carcinoma cells, and their function has been linked to the process of carcinogenesis in lung. Consequently, intense research is being conducted in this area with the hope of discovering new PPAR-related therapeutic targets for the treatment of lung cancer. This review summarizes the research being conducted in this area and focuses on the mechanisms by which PPARs are believed to affect lung tumor cell biology.
Collapse
|
29
|
Gurnell M. 'Striking the Right Balance' in Targeting PPARgamma in the Metabolic Syndrome: Novel Insights from Human Genetic Studies. PPAR Res 2011; 2007:83593. [PMID: 17389771 PMCID: PMC1847466 DOI: 10.1155/2007/83593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Revised: 12/13/2006] [Accepted: 12/13/2006] [Indexed: 12/03/2022] Open
Abstract
At a time when the twin epidemics of obesity and type 2 diabetes threaten to engulf even the most well-resourced Western healthcare systems, the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) has emerged as a
bona fide therapeutic target for treating human metabolic disease. The novel insulin-sensitizing antidiabetic thiazolidinediones (TZDs, e.g., rosiglitazone, pioglitazone), which are licensed for use in the treatment of type 2 diabetes, are high-affinity PPARγ ligands, whose beneficial effects extend beyond improvement in glycaemic control to include amelioration of dyslipidaemia, lowering of blood pressure, and favourable modulation of macrophage lipid handling and inflammatory responses. However, a major drawback to the clinical use of exisiting TZDs is weight gain, reflecting both enhanced adipogenesis and fluid retention, neither of which is desirable in a population that is already overweight and prone to cardiovascular disease. Accordingly, the “search is on” to identify the next generation of PPARγ modulators that will promote maximal clinical benefit by targeting specific facets of the metabolic syndrome (glucose intolerance/diabetes, dyslipidaemia, and hypertension), while simultaneously avoiding undesirable side effects of PPARγ activation (e.g., weight gain). This paper outlines the important clinical and laboratory observations made in human subjects harboring genetic variations in PPARγ that support such a therapeutic strategy.
Collapse
Affiliation(s)
- Mark Gurnell
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
- *Mark Gurnell:
| |
Collapse
|
30
|
CXCR4 in Cancer and Its Regulation by PPARgamma. PPAR Res 2011; 2008:769413. [PMID: 18779872 PMCID: PMC2528256 DOI: 10.1155/2008/769413] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/25/2008] [Accepted: 07/10/2008] [Indexed: 12/20/2022] Open
Abstract
Chemokines are peptide mediators involved in normal development,
hematopoietic and immune regulation, wound healing, and
inflammation. Among the chemokines is CXCL12, which binds
principally to its receptor CXCR4 and regulates leukocyte
precursor homing to bone marrow and other sites. This role of
CXCL12/CXCR4 is “commandeered” by cancer cells to facilitate the
spread of CXCR4-bearing tumor cells to tissues with high CXCL12
concentrations. High CXCR4 expression by cancer cells predisposes
to aggressive spread and metastasis and ultimately to poor patient
outcomes. As well as being useful as a marker for disease
progression, CXCR4 is a potential target for anticancer therapies.
It is possible to interfere directly with the CXCL12:CXCR4 axis
using peptide or small-molecular-weight antagonists. A further
opportunity is offered by promoting strategies that downregulate
CXCR4 pathways: CXCR4 expression in the tumor microenvironment is
modulated by factors such as hypoxia, nucleosides, and
eicosanoids. Another promising approach is through targeting PPAR
to suppress CXCR4 expression. Endogenous PPARγ such as 15-deoxy-Δ12,14-PGJ2 and synthetic agonists such as the
thiazolidinediones both cause downregulation of CXCR4 mRNA and
receptor. Adjuvant therapy using PPARγ agonists may, by
stimulating PPARγ-dependent downregulation of CXCR4 on cancer cells, slow the rate of metastasis and impact beneficially on
disease progression.
Collapse
|
31
|
Activated PPARgamma Targets Surface and Intracellular Signals That Inhibit the Proliferation of Lung Carcinoma Cells. PPAR Res 2011; 2008:254108. [PMID: 18704200 PMCID: PMC2515882 DOI: 10.1155/2008/254108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 06/24/2008] [Indexed: 11/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. Their discovery in the 1990s provided insights into the cellular mechanisms involved in the control of energy homeostasis, the regulation of cell differentiation, proliferation, and apoptosis, and the modulation of important biological and pathological processes related to inflammation and cancer biology, among others. Since then, PPARs have become an exciting target for the development of therapies directed at many disorders including cancer. PPARs are expressed in many tumors including lung cancer, and their function has been linked to the process of carcinogenesis. Consequently, intense research is being conducted in this area with the hope of discovering new PPAR-related therapeutic targets for the treatment of lung cancer. This review summarizes the research being conducted in this area, and focuses on the mechanisms by which a member of this family (PPARγ) is believed to affect lung tumor cell biology.
Collapse
|
32
|
Novel PPARγ partial agonists with weak activity and no cytotoxicity; identified by a simple PPARγ ligand screening system. Mol Cell Biochem 2011; 358:75-83. [DOI: 10.1007/s11010-011-0923-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
33
|
Lesyk RB, Zimenkovsky BS, Kaminskyy DV, Kryshchyshyn AP, Havryluk DY, Atamanyuk DV, Subtel'na IY, Khyluk DV. Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group. ACTA ACUST UNITED AC 2011. [DOI: 10.7124/bc.000089] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- R. B. Lesyk
- Danylo Halytsky Lviv National Medical University
| | | | | | | | | | | | | | - D. V. Khyluk
- Danylo Halytsky Lviv National Medical University
| |
Collapse
|
34
|
Stable reporter cell lines for peroxisome proliferator-activated receptor γ (PPARγ)-mediated modulation of gene expression. Anal Biochem 2011; 414:77-83. [PMID: 21354099 DOI: 10.1016/j.ab.2011.02.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/18/2011] [Indexed: 12/12/2022]
Abstract
Activation of peroxisome proliferator-activated receptor γ (PPARγ) by ligands is associated with beneficial health effects, including anti-inflammatory and insulin-sensitizing effects. The aim of the current study was to develop luciferase reporter gene assays to enable fast and low-cost measurement of PPARγ agonist and antagonist activity. Two reporter gene assays, PPARγ1 CALUX and PPARγ2 CALUX, were developed by stable transfection of U2OS cells with an expression vector for PPARγ1 or PPARγ2 and a pGL3-3xPPRE-tata-luc or pGL4-3xPPRE-tata-luc reporter construct, respectively. PPARγ1 CALUX and PPARγ2 CALUX cells showed similar concentration-dependent luciferase induction upon exposure to the PPARγ agonists rosiglitazone, troglitazone, pioglitazone, ciglitazone, netoglitazone, and 15-deoxy-Δ(12,14)-prostaglandin J(2). The potency to induce luciferase decreased in the following order: rosiglitazone>troglitazone=pioglitazone>netoglitazone>ciglitazone. A concentration-dependent decrease in the response to 50nM rosiglitazone was observed on the addition of PPARγ antagonist GW9662 or T0070907 in both PPARγ1 CALUX and PPARγ2 CALUX cells. The PPARα agonists WY14643 and fenofibrate failed to induce luciferase activity, confirming the specificity of these cell lines for PPARγ agonists. In conclusion, PPARγ1 CALUX and PPARγ2 CALUX cells provide a reliable and useful tool to screen (bio)chemicals for PPARγ agonist or antagonist activity.
Collapse
|
35
|
Hartig SM, He B, Long W, Buehrer BM, Mancini MA. Homeostatic levels of SRC-2 and SRC-3 promote early human adipogenesis. ACTA ACUST UNITED AC 2011; 192:55-67. [PMID: 21220509 PMCID: PMC3019557 DOI: 10.1083/jcb.201004026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The related coactivators SRC-2 and SRC-3 interact with peroxisome proliferator activated receptor γ (PPARγ) to coordinate transcriptional circuits to promote adipogenesis. To identify potential coactivator redundancy during human adipogenesis at single cell resolution, we used high content analysis to quantify links between PPARγ, SRC-2, SRC-3, and lipogenesis. Because we detected robust increases and significant cell-cell heterogeneity in PPARγ and lipogenesis, without changes in SRC-2 or SRC-3, we hypothesized that permissive coregulator levels comprise a necessary adipogenic equilibrium. We probed this equilibrium by down-regulating SRC-2 and SRC-3 while simultaneously quantifying PPARγ. Individual or joint knockdown equally inhibits lipid accumulation by preventing lipogenic gene engagement, without affecting PPARγ protein levels. Supporting dominant, pro-adipogenic roles for SRC-2 and SRC-3, SRC-1 knockdown does not affect adipogenesis. SRC-2 and SRC-3 knockdown increases the proportion of cells in a PPARγ(hi)/lipid(lo) state while increasing phospho-PPARγ-S114, an inhibitor of PPARγ transcriptional activity and adipogenesis. Together, we demonstrate that SRC-2 and SRC-3 concomitantly promote human adipocyte differentiation by attenuating phospho-PPARγ-S114 and modulating PPARγ cellular heterogeneity.
Collapse
Affiliation(s)
- Sean M Hartig
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
36
|
Leonardi R, Zhang YM, Yun MK, Zhou R, Zeng FY, Lin W, Cui J, Chen T, Rock CO, White SW, Jackowski S. Modulation of pantothenate kinase 3 activity by small molecules that interact with the substrate/allosteric regulatory domain. ACTA ACUST UNITED AC 2011; 17:892-902. [PMID: 20797618 DOI: 10.1016/j.chembiol.2010.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 11/30/2022]
Abstract
Pantothenate kinase (PanK) catalyzes the rate-controlling step in coenzyme A (CoA) biosynthesis. PanK3 is stringently regulated by acetyl-CoA and uses an ordered kinetic mechanism with ATP as the leading substrate. Biochemical analysis of site-directed mutants indicates that pantothenate binds in a tunnel adjacent to the active site that is occupied by the pantothenate moiety of the acetyl-CoA regulator in the PanK3acetyl-CoA binary complex. A high-throughput screen for PanK3 inhibitors and activators was applied to a bioactive compound library. Thiazolidinediones, sulfonylureas and steroids were inhibitors, and fatty acyl-amides and tamoxifen were activators. The PanK3 activators and inhibitors either stimulated or repressed CoA biosynthesis in HepG2/C3A cells. The flexible allosteric acetyl-CoA regulatory domain of PanK3 also binds the substrates, pantothenate and pantetheine, and small molecule inhibitors and activators to modulate PanK3 activity.
Collapse
Affiliation(s)
- Roberta Leonardi
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim MK, Chae YN, Choi SH, Moon HS, Son MH, Bae MH, Choi HH, Hur Y, Kim E, Park YH, Park CS, Kim JG, Lim JI, Shin CY. PAM-1616, a selective peroxisome proliferator-activated receptor γ modulator with preserved anti-diabetic efficacy and reduced adverse effects. Eur J Pharmacol 2011; 650:673-81. [DOI: 10.1016/j.ejphar.2010.10.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 09/20/2010] [Accepted: 10/04/2010] [Indexed: 01/25/2023]
|
38
|
Doshi LS, Brahma MK, Bahirat UA, Dixit AV, Nemmani KVS. Discovery and development of selective PPAR gamma modulators as safe and effective antidiabetic agents. Expert Opin Investig Drugs 2010; 19:489-512. [PMID: 20367191 DOI: 10.1517/13543781003640169] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE OF THE FIELD PPARgamma full agonists (pioglitazone and rosiglitazone) are the mainstay drugs for the treatment of type 2 diabetes; however, mechanism-based side effects have limited their full therapeutic potential. In recent years, much progress has been achieved in the discovery and development of selective PPARgamma modulators (SPPARgammaMs) as safer alternatives to PPARgamma full agonists. AREAS COVERED IN THIS REVIEW This review focuses on the preclinical and clinical data of all the SPPARgammaMs discovered so far, retrieved by searching PubMed, Prous Integrity database and company news updates from 1999 to date. WHAT THE READER WILL GAIN Here we thoroughly discuss SPPARgammaMs' mode of action, briefly examine new ways to identify superior SPPARgammaMs, and finally, compare and contrast the pharmacological and safety profile of various agents. TAKE HOME MESSAGE The preclinical and clinical findings clearly suggest that selective PPARgamma modulators have the potential to become the next generation of PPARgamma agonists: effective insulin sensitizers with a superior safety profile to that of PPARgamma full agonists.
Collapse
Affiliation(s)
- Lalit S Doshi
- Department of Pharmacology, Piramal Life Sciences Limited, 1 Nirlon Complex, Goregaon (E), Mumbai - 400 063, India
| | | | | | | | | |
Collapse
|
39
|
Jin D, Guo H, Bu SY, Zhang Y, Hannaford J, Mashek DG, Chen X. Lipocalin 2 is a selective modulator of peroxisome proliferator-activated receptor-gamma activation and function in lipid homeostasis and energy expenditure. FASEB J 2010; 25:754-64. [PMID: 20974668 DOI: 10.1096/fj.10-165175] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have previously identified lipocalin 2 (Lcn2) as a cytokine playing a critical role in the regulation of body fat mass, lipid metabolism, and insulin resistance. Lcn2 deficiency reduces PPARγ gene expression in adipocytes. In this study, we investigated the role of Lcn2 in PPARγ activation and function via assessing the insulin sensitization and fatty acid (FA) homeostasis of PPARγ agonist in high-fat diet (HFD)-induced obesity in Lcn2(-/-) mice. We found that rosiglitazone (Rosi) significantly improved insulin sensitivity in Lcn2(-/-) mice as effectively as in wild-type (WT) mice; unfed-state levels of blood glucose, free FAs, and triglycerides (TGs) were significantly reduced after a 25-d treatment of Rosi in Lcn2(-/-) mice. However, Rosi action on fat deposition and FA homeostasis was altered; Rosi-induced body weight and subcutaneous fat gain and liver lipid accumulation were markedly lessened in Lcn2(-/-) mice. The results of in vivo metabolic labeling showed that Rosi markedly reduced de novo lipogenesis in adipose tissue of Lcn2(-/-) mice. In brown adipose tissue (BAT), the expression of the genes functioning in TG hydrolysis and mitochondrial oxidation was up-regulated more in Lcn2(-/-) than in WT mice. Most strikingly, Rosi stimulated significantly higher levels of uncoupling protein-1 expression in BAT, and completely rescued cold intolerance in Lcn2(-/-) mice. We demonstrate that Lcn2 is a critical selective modulator of PPARγ activation and function in lipid homeostasis and energy expenditure.
Collapse
Affiliation(s)
- Daozhong Jin
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN 55108-1038, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Waku T, Shiraki T, Oyama T, Maebara K, Nakamori R, Morikawa K. The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites. EMBO J 2010; 29:3395-407. [PMID: 20717101 DOI: 10.1038/emboj.2010.197] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 07/19/2010] [Indexed: 12/29/2022] Open
Abstract
The nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ), recognizes various synthetic and endogenous ligands by the ligand-binding domain. Fatty-acid metabolites reportedly activate PPARγ through conformational changes of the Ω loop. Here, we report that serotonin metabolites act as endogenous agonists for PPARγ to regulate macrophage function and adipogenesis by directly binding to helix H12. A cyclooxygenase inhibitor, indomethacin, is a mimetic agonist of these metabolites. Crystallographic analyses revealed that an indole acetate functions as a common moiety for the recognition by the sub-pocket near helix H12. Intriguingly, a serotonin metabolite and a fatty-acid metabolite each bind to distinct sub-pockets, and the PPARγ antagonist, T0070907, blocked the fatty-acid agonism, but not that of the serotonin metabolites. Mutational analyses on receptor-mediated transcription and coactivator binding revealed that each metabolite individually uses coregulator and/or heterodimer interfaces in a ligand-type-specific manner. Furthermore, the inhibition of the serotonin metabolism reduced the expression of the endogenous PPARγ-target gene. Collectively, these results suggest a novel agonism, in which PPARγ functions as a multiple sensor in response to distinct metabolites.
Collapse
Affiliation(s)
- Tsuyoshi Waku
- The Takara Bio Endowed Division, Department of Biomolecular Recognition, Institute for Protein Research, Osaka University, Open Laboratories of Advanced Bioscience and Biotechnology, Furuedai, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Synthesis and anti-inflammatory activity of new arylidene-thiazolidine-2,4-diones as PPARgamma ligands. Bioorg Med Chem 2010; 18:3805-11. [PMID: 20471839 DOI: 10.1016/j.bmc.2010.04.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/14/2010] [Accepted: 04/16/2010] [Indexed: 11/24/2022]
Abstract
Eight new 5-arylidene-3-benzyl-thiazolidine-2,4-diones with halide groups on their benzyl rings were synthesized and assayed in vivo to investigate their anti-inflammatory activities. These compounds showed considerable biological efficacy when compared to rosiglitazone, a potent and well-known agonist of PPARgamma, which was used as a reference drug. This suggests that the substituted 5-arylidene and 3-benzylidene groups play important roles in the anti-inflammatory properties of this class of compounds. Docking studies with these compounds indicated that they exhibit specific interactions with key residues located in the site of the PPARgamma structure, which corroborates the hypothesis that these molecules are potential ligands of PPARgamma. In addition, competition binding assays showed that four of these compounds bound directly to the ligand-binding domain of PPARgamma, with reduced affinity when compared to rosiglitazone. An important trend was observed between the docking scores and the anti-inflammatory activities of this set of molecules. The analysis of the docking results, which takes into account the hydrophilic and hydrophobic interactions between the ligands and the target, explained why the 3-(2-bromo-benzyl)-5-(4-methanesulfonyl-benzylidene)-thiazolidine-2,4-dione compound had the best activity and the best docking score. Almost all of the stronger hydrophilic interactions occurred between the substituted 5-arylidene group of this compound and the residues of the binding site.
Collapse
|
42
|
Lefebvre B, Benomar Y, Guédin A, Langlois A, Hennuyer N, Dumont J, Bouchaert E, Dacquet C, Pénicaud L, Casteilla L, Pattou F, Ktorza A, Staels B, Lefebvre P. Proteasomal degradation of retinoid X receptor alpha reprograms transcriptional activity of PPARgamma in obese mice and humans. J Clin Invest 2010; 120:1454-68. [PMID: 20364085 DOI: 10.1172/jci38606] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/27/2010] [Indexed: 12/14/2022] Open
Abstract
Obese patients have chronic, low-grade inflammation that predisposes to type 2 diabetes and results, in part, from dysregulated visceral white adipose tissue (WAT) functions. The specific signaling pathways underlying WAT dysregulation, however, remain unclear. Here we report that the PPARgamma signaling pathway operates differently in the visceral WAT of lean and obese mice. PPARgamma in visceral, but not subcutaneous, WAT from obese mice displayed increased sensitivity to activation by its agonist rosiglitazone. This increased sensitivity correlated with increased expression of the gene encoding the ubiquitin hydrolase/ligase ubiquitin carboxyterminal esterase L1 (UCH-L1) and with increased degradation of the PPARgamma heterodimerization partner retinoid X receptor alpha (RXRalpha), but not RXRbeta, in visceral WAT from obese humans and mice. Interestingly, increased UCH-L1 expression and RXRalpha proteasomal degradation was induced in vitro by conditions mimicking hypoxia, a condition that occurs in obese visceral WAT. Finally, PPARgamma-RXRbeta heterodimers, but not PPARgamma-RXRalpha complexes, were able to efficiently dismiss the transcriptional corepressor silencing mediator for retinoid and thyroid hormone receptors (SMRT) upon agonist binding. Increasing the RXRalpha/RXRbeta ratio resulted in increased PPARgamma responsiveness following agonist stimulation. Thus, the selective proteasomal degradation of RXRalpha initiated by UCH-L1 upregulation modulates the relative affinity of PPARgamma heterodimers for SMRT and their responsiveness to PPARgamma agonists, ultimately activating the PPARgamma-controlled gene network in visceral WAT of obese animals and humans.
Collapse
|
43
|
Han SW, Roman J. Anticancer actions of PPARγ ligands: Current state and future perspectives in human lung cancer. World J Biol Chem 2010; 1:31-40. [PMID: 21537367 PMCID: PMC3083946 DOI: 10.4331/wjbc.v1.i3.31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 02/05/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent nuclear transcription factors and members of the nuclear receptor superfamily. Of the three PPARs identified to date (PPARγ, PPARβ/δ, and PPARα), PPARγ has been studied the most, in part because of the availability of PPARγ agonists (also known as PPARγ ligands) and its significant effects on the management of several human diseases including type 2 diabetes, metabolic syndrome, cardiovascular disease and cancers. PPARγ is expressed in many tumors including lung cancer, and its function has been linked to the process of lung cancer development, progression and metastasis. Studies performed in gynogenic and xenograft models of lung cancer showed decreased tumor growth and metastasis in animals treated with PPARγ ligands. Furthermore, data are emerging from retrospective clinical studies that suggest a protective role for PPARγ ligands on the incidence of lung cancer. This review summarizes the research being conducted in this area and focuses on the mechanisms and potential therapeutic effects of PPARγ ligands as a novel anti-lung cancer treatment strategy.
Collapse
Affiliation(s)
- Shou Wei Han
- Shou Wei Han, Jesse Roman, Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | | |
Collapse
|
44
|
Cellai I, Petrangolini G, Tortoreto M, Pratesi G, Luciani P, Deledda C, Benvenuti S, Ricordati C, Gelmini S, Ceni E, Galli A, Balzi M, Faraoni P, Serio M, Peri A. In vivo effects of rosiglitazone in a human neuroblastoma xenograft. Br J Cancer 2010; 102:685-92. [PMID: 20068562 PMCID: PMC2837558 DOI: 10.1038/sj.bjc.6605506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extra-cranial solid tumour in infants. Unfortunately, most children present with advanced disease and have a poor prognosis. There is in vitro evidence that the peroxisome proliferator-activated receptor gamma (PPARgamma) might be a target for pharmacological intervention in NB. We have previously demonstrated that the PPARgamma agonist rosiglitazone (RGZ) exerts strong anti-tumoural effects in the human NB cell line, SK-N-AS. The aim of this study was to evaluate whether RGZ maintains its anti-tumoural effects against SK-N-AS NB cells in vivo. METHODS AND RESULTS For this purpose, tumour cells were subcutaneously implanted in nude mice, and RGZ (150 mg kg(-1)) was administered by gavage daily for 4 weeks. At the end of treatment, a significant tumour weight inhibition (70%) was observed in RGZ-treated mice compared with control mice. The inhibition of tumour growth was supported by a strong anti-angiogenic activity, as assessed by CD-31 immunostaining in tumour samples. The number of apoptotic cells, as determined by cleaved caspase-3 immunostaining, seemed lower in RGZ-treated animals at the end of the treatment period than in control mice, likely because of the large tumour size observed in the latter group. CONCLUSIONS To our knowledge, this is the first demonstration that RGZ effectively inhibits tumour growth in a human NB xenograft and our results suggest that PPARgamma agonists may have a role in anti-tumoural strategies against NB.
Collapse
Affiliation(s)
- I Cellai
- Department of Clinical Physiopathology, Center for Research, University of Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Acton JJ, Akiyama TE, Chang CH, Colwell L, Debenham S, Doebber T, Einstein M, Liu K, McCann ME, Moller DE, Muise ES, Tan Y, Thompson JR, Wong KK, Wu M, Xu L, Meinke PT, Berger JP, Wood HB. Discovery of (2R)-2-(3-{3-[(4-Methoxyphenyl)carbonyl]-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl}phenoxy)butanoic Acid (MK-0533): A Novel Selective Peroxisome Proliferator-Activated Receptor γ Modulator for the Treatment of Type 2 Diabetes Mellitus with a Reduced Potential to Increase Plasma and Extracellular Fluid Volume. J Med Chem 2009; 52:3846-54. [DOI: 10.1021/jm900097m] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John J. Acton
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Taro E. Akiyama
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Ching H. Chang
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Lawrence Colwell
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Sheryl Debenham
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Thomas Doebber
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Monica Einstein
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Kun Liu
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Margaret E. McCann
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - David E. Moller
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Eric S. Muise
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Yugen Tan
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - John R. Thompson
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Kenny K. Wong
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Margaret Wu
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Libo Xu
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Peter T. Meinke
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Joel P. Berger
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| | - Harold B. Wood
- Merck Research Laboratories, Merck & Co., Inc., RY800-C114, P.O. Box 2000, Rahway, New Jersey 07065
| |
Collapse
|
46
|
Gregoire FM, Zhang F, Clarke HJ, Gustafson TA, Sears DD, Favelyukis S, Lenhard J, Rentzeperis D, Clemens LE, Mu Y, Lavan BE. MBX-102/JNJ39659100, a novel peroxisome proliferator-activated receptor-ligand with weak transactivation activity retains antidiabetic properties in the absence of weight gain and edema. Mol Endocrinol 2009; 23:975-88. [PMID: 19389808 DOI: 10.1210/me.2008-0473] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
MBX-102/JNJ39659100 (MBX-102) is in clinical development as an oral glucose-lowering agent for the treatment of type 2 diabetes. MBX-102 is a nonthiazolidinedione (TZD) selective partial agonist of peroxisome proliferator-activated receptor (PPAR)-gamma that is differentiated from the TZDs structurally, mechanistically, preclinically and clinically. In diabetic rodent models, MBX-102 has insulin-sensitizing and glucose-lowering properties comparable to TZDs without dose-dependent increases in body weight. In vitro, in contrast with full PPAR-gamma agonist treatment, MBX-102 fails to drive human and murine adipocyte differentiation and selectively modulates the expression of a subset of PPAR-gamma target genes in mature adipocytes. Moreover, MBX-102 does not inhibit osteoblastogenesis of murine mesenchymal cells. Compared with full PPAR-gamma agonists, MBX-102 displays differential interactions with the PPAR-gamma ligand binding domain and possesses reduced ability to recruit coactivators. Interestingly, in primary mouse macrophages, MBX-102 displays enhanced antiinflammatory properties compared with other PPAR-gamma or alpha/gamma agonists, suggesting that MBX-102 has more potent transrepression activity. In summary, MBX-102 is a selective PPAR-gamma modulator with weak transactivation but robust transrepression activity. MBX-102 exhibits full therapeutic activity without the classical PPAR-gamma side effects and may represent the next generation insulin sensitizer.
Collapse
|
47
|
Toth B, Bastug M, Mylonas I, Scholz C, Makovitzky J, Kunze S, Thaler C, Friese K, Jeschke U. Peroxisome proliferator-activated receptor-gamma in normal human pregnancy and miscarriage. Acta Histochem 2009; 111:372-8. [PMID: 19342081 DOI: 10.1016/j.acthis.2008.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peroxisome proliferator-activated receptors (PPAR) belong to the superfamily of nuclear hormone receptors. Recent investigations emphasize a possible involvement of PPAR in obstetric and gynaecologic disorders like polycystic ovarian syndrome, endometriosis and preeclampsia. The aim of this study was to determine the frequency and distribution of peroxisome proliferator-activated receptor-gamma (PPARgamma) in normal human pregnancy and miscarriage. Placental tissue was obtained from normal human pregnancy and miscarriage during the first trimester of pregnancy. PPARgamma localisation was investigated by immunohistochemical methods. Immediate immunoreactivity of PPARgamma was observed in villous and extravillous trophoblast nuclei in normal first trimester pregnancy. A significantly enhanced labelling of PPARgamma was identified in extravillous trophoblast of miscarriage patients. This enhanced immunopositivity was also found in nuclei of villous trophoblast cells of miscarriage patients but without statistical significance. Because trophoblast invasion is negatively correlated to PPARgamma stimulation and blocking of PPARgamma leads to increased trophoblast invasion, our findings may suggest that enhanced expression of PPARgamma in abortive extravillous trophoblasts may be one factor linked to miscarriage.
Collapse
Affiliation(s)
- Bettina Toth
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sun N, Lu G, Lin M, Fan G, Wu Y. Subchronic toxicity and toxicokinetics of MCC-555, a novel thiazolidinedione, after 270-day repeated oral administration in dogs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 27:237-246. [PMID: 21783946 DOI: 10.1016/j.etap.2008.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/18/2008] [Accepted: 10/21/2008] [Indexed: 05/31/2023]
Abstract
MCC-555, a treatment candidate for type 2 diabetes, is a novel thiazolidinedione which has comparatively high anti-diabetic efficacy. The present study was conducted to evaluate its toxicity and toxicokinetics in beagle dogs by oral administration at doses of 0, 6.67, 20 or 40mg/kg/day for 270 days. A 30-day recovery period was included at the end of the study to evaluate the reversibility of the toxic effects. During the treatment and recovery periods, the effects of the test agent on mortality, body weight, food consumption, hematology, serum biochemistry, urinalysis, electrocardiogram (ECG), organ weights, bone marrow and histopathology were examined. There were no treatment-related mortalities. Vomiting was observed in dogs receiving 40mg/kg/day during administration, but the dogs recovered within 1h after oral administration. Significant increases in total bilirubin and alkaline phosphatase were observed in dogs receiving the 40mg/kg/day dose during the treatment period, but the levels returned toward normal during the 30-day recovery period. Mild hydropic or fatty degeneration in the liver and inflammatory cell infiltration in the hepatic lobule or portal area was also observed sporadically without a dose-dependent relationship at the end of treatment and recovery periods. The most apparent toxicity in dogs was in the digestive system. However, these toxic effects of MCC-555 were transient and reversible. The accumulation of MCC-555 after 270-day oral administration was not notable at the toxic dose of 40mg/kg/day and the no-observed-adverse-effect level (NOAEL) was 20mg/kg/day. No differences in toxicokinetics of MCC-555 were observed between male and female dogs and no significant accumulation of MCC-555 was observed in tissues after 270 days of repeated treatments. MCC-555 distribution into different organs showed a higher penetration in the liver, kidneys and testes, followed by the ovaries and uterus. Metabolites and the metabolic style of MCC-555 are to be approved.
Collapse
Affiliation(s)
- Ning Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, No. 325 Guohe Road, Shanghai 200433, PR China; Shanghai Research Centre for Drug (Chinese Materia Medica) Metabolism, No. 325 Guohe Road, Shanghai 200433, PR China
| | | | | | | | | |
Collapse
|
49
|
Yamaguchi K, Cekanova M, McEntee MF, Yoon JH, Fischer SM, Renes IB, Van Seuningen I, Baek SJ. Peroxisome proliferator-activated receptor ligand MCC-555 suppresses intestinal polyps in ApcMin/+ mice via extracellular signal-regulated kinase and peroxisome proliferator-activated receptor-dependent pathways. Mol Cancer Ther 2008; 7:2779-87. [PMID: 18790758 DOI: 10.1158/1535-7163.mct-08-0173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A large body of studies has suggested that peroxisome proliferator-activated receptor gamma (PPARgamma) ligands, such as thiazolidinedione, are potent candidates for chemopreventive agents. MCC-555 is a PPARgamma/alpha dual agonist and has been shown previously to induce apoptosis in vitro; however, the molecular mechanisms by which MCC-555 affects antitumorigenesis in vivo are poorly understood. In this study, we explored the antitumorigenic effects of MCC-555 both in cell culture and in Apc-deficient mice, an animal model for human familial adenomatous polyposis. MCC-555 increased MUC2 expression in colorectal and lung cancer cells, and treatment with the PPARgamma antagonist GW9662 revealed that MUC2 induction by MCC-555 was mediated in a PPARgamma-dependent manner. Moreover, MCC-555 increased transcriptional activity of human and mouse MUC2 promoters. Subsequently, treatment with MCC-555 (30 mg/kg/d) for 4 weeks reduced the number of small intestinal polyps to 54.8% of that in control mice. In agreement with in vitro studies, enhanced Muc2 expression was observed in the small intestinal tumors of Min mice treated with MCC-555, suggesting that MUC2 expression may be associated at least in part with the antitumorigenic action of MCC-555. In addition, highly phosphorylated extracellular signal-regulated kinase (ERK) was found in the intestinal tumors of MCC-555-treated Min mice, and inhibition of the ERK pathway by a specific inhibitor markedly suppressed MCC-555-induced Muc2 expression in vitro. Overall, these results indicate that MCC-555 has a potent tumor suppressor activity in intestinal tumorigenesis, likely involving MUC2 up-regulation by ERK and PPARgamma pathways.
Collapse
Affiliation(s)
- Kiyoshi Yamaguchi
- Department of Pathobiology, College of Veterinary Medicine, The University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Larsen PJ, Lykkegaard K, Larsen LK, Fleckner J, Sauerberg P, Wassermann K, Wulff EM. Dissociation of antihyperglycaemic and adverse effects of partial perioxisome proliferator-activated receptor (PPAR-γ) agonist balaglitazone. Eur J Pharmacol 2008; 596:173-9. [DOI: 10.1016/j.ejphar.2008.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 07/29/2008] [Accepted: 08/08/2008] [Indexed: 10/21/2022]
|