1
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
2
|
Tsuji Y. Optimization of Biotinylated RNA or DNA Pull-Down Assays for Detection of Binding Proteins: Examples of IRP1, IRP2, HuR, AUF1, and Nrf2. Int J Mol Sci 2023; 24:3604. [PMID: 36835018 PMCID: PMC9965622 DOI: 10.3390/ijms24043604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Investigation of RNA- and DNA-binding proteins to a defined regulatory sequence, such as an AU-rich RNA and a DNA enhancer element, is important for understanding gene regulation through their interactions. For in vitro binding studies, an electrophoretic mobility shift assay (EMSA) was widely used in the past. In line with the trend toward using non-radioactive materials in various bioassays, end-labeled biotinylated RNA and DNA oligonucleotides can be more practical probes to study protein-RNA and protein-DNA interactions; thereby, the binding complexes can be pulled down with streptavidin-conjugated resins and identified by Western blotting. However, setting up RNA and DNA pull-down assays with biotinylated probes in optimum protein binding conditions remains challenging. Here, we demonstrate the step-by step optimization of pull-down for IRP (iron-responsive-element-binding protein) with a 5'-biotinylated stem-loop IRE (iron-responsive element) RNA, HuR, and AUF1 with an AU-rich RNA element and Nrf2 binding to an antioxidant-responsive element (ARE) enhancer in the human ferritin H gene. This study was designed to address key technical questions in RNA and DNA pull-down assays: (1) how much RNA and DNA probes we should use; (2) what binding buffer and cell lysis buffer we can use; (3) how to verify the specific interaction; (4) what streptavidin resin (agarose or magnetic beads) works; and (5) what Western blotting results we can expect from varying to optimum conditions. We anticipate that our optimized pull-down conditions can be applicable to other RNA- and DNA-binding proteins along with emerging non-coding small RNA-binding proteins for their in vitro characterization.
Collapse
Affiliation(s)
- Yoshiaki Tsuji
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA
| |
Collapse
|
3
|
Aversa I, Chirillo R, Chiarella E, Zolea F, Di Sanzo M, Biamonte F, Palmieri C, Costanzo F. Chemoresistance in H-Ferritin Silenced Cells: The Role of NF-κB. Int J Mol Sci 2018; 19:ijms19102969. [PMID: 30274235 PMCID: PMC6213748 DOI: 10.3390/ijms19102969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
Nuclear Factor-κB (NF-κB) is frequently activated in tumor cells contributing to aggressive tumor growth and resistance to chemotherapy. Here we demonstrate that Ferritin Heavy Chain (FHC) protein expression inversely correlates with NF-κB activation in cancer cell lines. In fact, FHC silencing in K562 and SKOV3 cancer cell lines induced p65 nuclear accumulation, whereas FHC overexpression correlated with p65 nuclear depletion in the same cell lines. In FHC-silenced cells, the p65 nuclear accumulation was reverted by treatment with the reactive oxygen species (ROS) scavenger, indicating that NF-κB activation was an indirect effect of FHC on redox metabolism. Finally, FHC knock-down in K562 and SKOV3 cancer cell lines resulted in an improved cell viability following doxorubicin or cisplatin treatment, being counteracted by the transient expression of inhibitory of NF-κB, IκBα. Our results provide an additional layer of information on the complex interplay of FHC with cellular metabolism, and highlight a novel scenario of NF-κB-mediated chemoresistance triggered by the downregulation of FHC with potential therapeutic implications.
Collapse
Affiliation(s)
- Ilenia Aversa
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Roberta Chirillo
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Fabiana Zolea
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Maddalena Di Sanzo
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Flavia Biamonte
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
- Interdepartmental Center of Services (CIS), University Magna Graecia of Catanzaro, Campus Salvatore Venuta-Viale Europa, 88100 Catanzaro, Italy.
| |
Collapse
|
4
|
Kubilus JK, Beazley KE, Talbot CJ, Linsenmayer TF. Nuclear ferritin mediated regulation of JNK signaling in corneal epithelial cells. Exp Eye Res 2016; 145:337-340. [PMID: 26880020 DOI: 10.1016/j.exer.2016.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 11/27/2022]
Abstract
Corneal epithelial (CE) cells are exposed to environmental insults (e.g., UV-irradiation), yet they suffer little damage. Our previous studies suggest that chicken CE cells have a novel form of protection involving having ferritin in a nuclear location where it can bind to DNA and sequester free iron. Here we describe another potential nuclear ferritin-mediated protective mechanism: the down-regulation of the JNK signaling pathway. The JNK pathway has been shown by others to promote apoptosis in response to cell damage and also to be activated in CE cell lines following exposure to UV radiation. Here we show in COS7 reporter cell lines that the expression of ferritin in a nuclear localization significantly down-regulates the JNK pathway (p = 5.7 × 10(-6)), but has no effect on the NFkB or the Erk pathways. In organ cultures of embryonic chicken corneas, we observed that inhibiting the synthesis of nuclear ferritin in CE cells, using the iron-chelating molecule deferoxamine, led to an increase in JNK signaling, as measured by phospho-JNK levels compared to CE cells with nuclear ferritin. Furthermore, the chemical inhibition of the JNK pathway using the molecule AS601245 decreased the production of nuclear ferritin. Taken together, these observations suggest that in CE cells a feedback-loop exists in which JNK signaling increases the production of nuclear ferritin and, in turn, nuclear ferritin decreases the activity of the JNK signaling pathway.
Collapse
Affiliation(s)
- James K Kubilus
- Integrative Physiology and Pathobiology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States.
| | - Kelly E Beazley
- Integrative Physiology and Pathobiology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States
| | - Christopher J Talbot
- Integrative Physiology and Pathobiology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States
| | - Thomas F Linsenmayer
- Integrative Physiology and Pathobiology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States
| |
Collapse
|
5
|
Xie L, Collins JF. Transcription factors Sp1 and Hif2α mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia. J Biol Chem 2013; 288:23943-52. [PMID: 23814049 DOI: 10.1074/jbc.m113.489500] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genes with G/C-rich promoters were up-regulated in the duodenal epithelium of iron-deficient rats including those encoding iron (e.g. Dmt1 and Dcytb) and copper (e.g. Atp7a and Mt1) metabolism-related proteins. It was shown previously that an intestinal copper transporter (Atp7a) was co-regulated with iron transport-related genes by a hypoxia-inducible transcription factor, Hif2α. In the current study, we sought to test the role of Sp1 in transcriptional regulation of Atp7a expression during iron deprivation/hypoxia. Initial studies in IEC-6 cells showed that mithramycin, an Sp1 inhibitor, reduced expression of Atp7a and iron transport-related genes (Dmt1, Dcytb, and Fpn1) and blocked their induction by CoCl2, a hypoxia mimetic. Consistent with this, overexpression of Sp1 increased endogenous Atp7a mRNA and protein expression and stimulated Atp7a, Dmt1, and Dcytb promoter activity. Site-directed mutagenesis and functional analysis of a basal Atp7a promoter construct revealed four functional Sp1 binding sites that were necessary for Hif2α-mediated induction of promoter activity. Furthermore, chromatin immunoprecipitation (ChIP) assays confirmed that Sp1 specifically interacts with the Atp7a promoter in IEC-6 cells and in rat duodenal enterocytes. This investigation has thus revealed a novel aspect of Atp7a gene regulation in which Sp1 may be necessary for the HIF-mediated induction of gene transcription during iron deficiency/hypoxia. Understanding regulation of Atp7a expression may help further clarify the physiological role of copper in the maintenance of iron homeostasis. Furthermore, this Sp1/Hif2α regulatory mechanism may have broader implications for understanding the genetic response of the intestinal epithelium to maintain whole-body iron homeostasis during states of deficiency.
Collapse
Affiliation(s)
- Liwei Xie
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
6
|
Haase MG, Klawitter A, Bierhaus A, Yokoyama KK, Kasper M, Geyer P, Baumann M, Baretton GB. Inactivation of AP1 proteins by a nuclear serine protease precedes the onset of radiation-induced fibrosing alveolitis. Radiat Res 2008; 169:531-42. [PMID: 18439036 DOI: 10.1667/rr0946.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 12/10/2007] [Indexed: 11/03/2022]
Abstract
Radiation-induced lung damage comprises inflammation (alveolitis) as well as disturbed regulation of cell differentiation and proliferation (fibrosis). The transcriptional regulation of this process is poorly understood. One key transcription factor involved in the regulation of proliferation and differentiation is AP1 (activator protein 1). The present study examined changes in the DNA-binding activity of AP1 after irradiation and defined the underlying molecular mechanisms in an animal model. The right lungs of Fischer rats received a single radiation dose of 20 Gy. Lung tissue was tested for AP1 DNA-binding activity, AP1 mRNA, and levels of AP1 proteins as well as for c-Jun specific proteolytic activity. After an initial increase, the AP1 DNA-binding activity was completely lost starting at 5.5 weeks after irradiation, which is 2.5 weeks before the onset of fibrosing alveolitis. This was not caused by reduction of mRNA levels or size. Instead, a selective nuclear cleavage of c-Jun by a serine protease caused the loss of AP1 activity. Considering the central role of AP1 in cell proliferation and differentiation and the strict timely correlation to the onset of the disease, the complete loss of AP1 function is likely to play a critical role in radiation-induced fibrosing alveolitis.
Collapse
Affiliation(s)
- Michael G Haase
- Department of Pathology, Dresden University of Technology, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
MacKenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:997-1030. [PMID: 18327971 PMCID: PMC2932529 DOI: 10.1089/ars.2007.1893] [Citation(s) in RCA: 388] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 12/21/2022]
Abstract
Maintenance of proper "labile iron" levels is a critical component in preserving homeostasis. Iron is a vital element that is a constituent of a number of important macromolecules, including those involved in energy production, respiration, DNA synthesis, and metabolism; however, excess "labile iron" is potentially detrimental to the cell or organism or both because of its propensity to participate in oxidation-reduction reactions that generate harmful free radicals. Because of this dual nature, elaborate systems tightly control the concentration of available iron. Perturbation of normal physiologic iron concentrations may be both a cause and a consequence of cellular damage and disease states. This review highlights the molecular mechanisms responsible for regulation of iron absorption, transport, and storage through the roles of key regulatory proteins, including ferroportin, hepcidin, ferritin, and frataxin. In addition, we present an overview of the relation between iron regulation and oxidative stress and we discuss the role of functional iron overload in the pathogenesis of hemochromatosis, neurodegeneration, and inflammation.
Collapse
Affiliation(s)
- Elizabeth L MacKenzie
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
8
|
Lagan AL, Melley DD, Evans TW, Quinlan GJ. Pathogenesis of the systemic inflammatory syndrome and acute lung injury: role of iron mobilization and decompartmentalization. Am J Physiol Lung Cell Mol Physiol 2008; 294:L161-74. [DOI: 10.1152/ajplung.00169.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Changes in iron homeostatic responses routinely accompany infectious or proinflammatory insults. The systemic inflammatory response syndrome (SIRS) and the development of acute lung injury (ALI) feature pronounced systemic and lung-specific alterations in iron/heme mobilization and decompartmentalization; such responses may be of pathological significance for both the onset and progression of acute inflammation. The potential for excessive iron-catalyzed oxidative stress, altered proinflammatory redox signaling, and provision of iron as a microbial growth factor represent obvious adverse aspects of altered in vivo iron handling. The release of hemoglobin during hemolytic disease or surgical procedures such as those utilizing cardiopulmonary bypass procedures further impacts on iron mobilization, turnover, and storage with associated implications. Genetic predisposition may ultimately determine the extent to which SIRS and related syndromes develop in response to such changes. The design of specific therapeutic interventions based on endogenous stratagems to limit adverse aspects of altered iron handling may prove of therapeutic benefit for the treatment of SIRS and ALI.
Collapse
|
9
|
Iwasaki K, Hailemariam K, Tsuji Y. PIAS3 interacts with ATF1 and regulates the human ferritin H gene through an antioxidant-responsive element. J Biol Chem 2007; 282:22335-43. [PMID: 17565989 PMCID: PMC2409283 DOI: 10.1074/jbc.m701477200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gene transcription is coordinately regulated by the balance between activation and repression mechanisms in response to various external stimuli. Ferritin, composed of H and L subunits, is the major intracellular iron storage protein involved in iron homeostasis. We previously identified an enhancer, termed antioxidant-responsive element (ARE), in the human ferritin H gene and its respective transcriptional activators including Nrf2 and JunD. Here we found that ATF1 (activating transcription factor 1) is a transcriptional repressor of the ferritin H ARE. Subsequent yeast two-hybrid screening identified PIAS3 (protein inhibitor of activated STAT3) as an ATF1-binding protein. Further investigation of the human ferritin H ARE regulation showed that 1) PIAS3 reversed ATF1-mediated repression of the ferritin H ARE; 2) ATF1 was sumoylated, but PIAS3, a SUMO E3 ligase, did not appear to play a major role in SUMO1-mediated ATF1 sumoylation or ATF1 transcription activating function; 3) PIAS3 decreased ATF1 binding to the ARE; and 4) ATF1 knockdown with siRNA increased ferritin H expression, whereas PIAS3 knockdown decreased basal expression and oxidative stress-mediated induction of ferritin H. These results suggest that PIAS3 antagonizes the repressor function of ATF1, at least in part by blocking its DNA binding, and ultimately activates the ARE. Collectively our results suggest that PIAS3 is a new regulator of ATF1 that regulates the ARE-mediated transcription of the ferritin H gene.
Collapse
Affiliation(s)
- Kenta Iwasaki
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
10
|
Laftah A, Sharma N, Brookes M, McKie A, Simpson R, Iqbal T, Tselepis C. Tumour necrosis factor alpha causes hypoferraemia and reduced intestinal iron absorption in mice. Biochem J 2006; 397:61-7. [PMID: 16566752 PMCID: PMC1479761 DOI: 10.1042/bj20060215] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytokines are implicated in the anaemia of chronic disease by reducing erythropoiesis and increasing iron sequestration in the reticuloendotheial system. However, the effect of cytokines, in particular TNFalpha (tumour necrosis factor alpha), on small bowel iron uptake and iron-transporter expression remains unclear. In the present study, we subjected CD1 male mice to intraperitoneal injection with TNFalpha (10 ng/mouse) and then examined the expression and localization of DMT1 (divalent metal transporter 1), IREG1 (iron-regulated protein 1) and ferritin in duodenum. Liver and spleen samples were used to determine hepcidin mRNA expression. Changes in serum iron and iron loading of duodenum, spleen and liver were also determined. We found a significant (P<0.05) fall in serum iron 3 h post-TNFalpha exposure. This was coincident with increased iron deposition in the spleen. After 24 h of exposure, there was a significant decrease in duodenal iron transfer (P<0.05) coincident with increased enterocyte ferritin expression (P<0.05) and re-localization of IREG1 from the basolateral enterocyte membrane. Hepatic hepcidin mRNA levels remained unchanged, whereas splenic hepcidin mRNA expression was reduced at 24 h. In conclusion, we provide evidence that TNFalpha may contribute to anaemia of chronic disease by iron sequestration in the spleen and by reduced duodenal iron transfer, which seems to be due to increased enterocyte iron binding by ferritin and a loss of IREG1 function. These observations were independent of hepcidin mRNA levels.
Collapse
Affiliation(s)
- Abas H. Laftah
- *Division of Medical Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Naveen Sharma
- *Division of Medical Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Matthew J. Brookes
- *Division of Medical Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew T. McKie
- †Nutrition Research Division, King's College London, London SE1 9NH, U.K
| | - Robert J. Simpson
- †Nutrition Research Division, King's College London, London SE1 9NH, U.K
| | - Tariq H. Iqbal
- ‡Gastroenterology Unit, Walsgrave Hospital, Clifford Bridge Road, Coventry CV2 2DX, U.K
| | - Chris Tselepis
- *Division of Medical Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
11
|
Iwasaki K, Mackenzie EL, Hailemariam K, Sakamoto K, Tsuji Y. Hemin-mediated regulation of an antioxidant-responsive element of the human ferritin H gene and role of Ref-1 during erythroid differentiation of K562 cells. Mol Cell Biol 2006; 26:2845-56. [PMID: 16537925 PMCID: PMC1430308 DOI: 10.1128/mcb.26.7.2845-2856.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An effective utilization of intracellular iron is a prerequisite for erythroid differentiation and hemoglobinization. Ferritin, consisting of 24 subunits of H and L, plays a crucial role in iron homeostasis. Here, we have found that the H subunit of the ferritin gene is activated at the transcriptional level during hemin-induced differentiation of K562 human erythroleukemic cells. Transfection of various 5' regions of the human ferritin H gene fused to a luciferase reporter into K562 cells demonstrated that hemin activates ferritin H transcription through an antioxidant-responsive element (ARE) that is responsible for induction of a battery of phase II detoxification genes by oxidative stress. Gel retardation and chromatin immunoprecipitation assays demonstrated that hemin induced binding of cJun, JunD, FosB, and Nrf2 b-zip transcription factors to AP1 motifs of the ferritin H ARE, despite no significant change in expression levels or nuclear localization of these transcription factors. A Gal4-luciferase reporter assay did not show activation of these b-zip transcription factors after hemin treatment; however, redox factor 1 (Ref-1), which increases DNA binding of Jun/Fos family members via reduction of a conserved cysteine in their DNA binding domains, showed induced nuclear translocation after hemin treatment in K562 cells. Consistently, Ref-1 enhanced Nrf2 binding to the ARE and ferritin H transcription. Hemin also activated ARE sequences of other phase II genes, such as GSTpi and NQO1. Collectively, these results suggest that hemin activates the transcription of the ferritin H gene during K562 erythroid differentiation by Ref-1-mediated activation of these b-zip transcription factors to the ARE.
Collapse
Affiliation(s)
- Kenta Iwasaki
- Department of Environmental and Molecular Toxicology, North Carolina State University, Campus Box 7633, Raleigh, North Carolina 27695, USA
| | | | | | | | | |
Collapse
|
12
|
Qiang M, Ticku MK. Role of AP-1 in ethanol-induced N-methyl-d-aspartate receptor 2B subunit gene up-regulation in mouse cortical neurons. J Neurochem 2005; 95:1332-41. [PMID: 16313514 DOI: 10.1111/j.1471-4159.2005.03464.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activator protein 1 (AP-1) has been reported to regulate the gene expression in a wide variety of cellular processes in response to stimuli. In this study, we investigated the DNA-protein binding activities and promoter activity in the N-methyl-D-aspartate R2B (NR2B) gene AP-1 site in normal and ethanol-treated cultured neurons. The identity of the AP-1 site as the functional binding factor is suggested by the specific binding of nuclear extract derived from cultured cortical neurons to the labeled probes and the specific antibody-induced supershift. Mutations in the core sequence resulted in a significantly reduced promoter activity and the ability to compete for the binding. Moreover, treatment of the cultured neuron with 75 mm ethanol for 5 days caused a significant increase in the AP-1 binding activity and promoter activity. The AP-1 DNA-binding complex in control and ethanol-treated nuclear extract was composed of c-Fos, FosB, c-Jun, JunD, and phosphorylated CREB (p-CREB). Western blot analysis showed that p-CREB and FosB significantly increased, whereas c-Jun decreased. The DNA affinity precipitation assay indicated that FosB, p-CREB, and c-Jun increased in the AP-1 complex following ethanol treatment. These results suggest that AP-1 is an active regulator of the NR2B transcription and ethanol-induced changes may result at multiple levels in the regulation including AP-1 proteins expression, CREB phosphorylation and perhaps reorganization of dimmers.
Collapse
Affiliation(s)
- Mei Qiang
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | |
Collapse
|
13
|
Wang X, Garrick MD, Yang F, Dailey LA, Piantadosi CA, Ghio AJ. TNF, IFN-γ, and endotoxin increase expression of DMT1 in bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2005; 289:L24-33. [PMID: 15749739 DOI: 10.1152/ajplung.00428.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulation of the metal transport protein divalent metal transporter-1 (DMT1) may contribute to the uptake and detoxification of iron by cells resident in the respiratory tract. Inflammation has been associated with an increased availability of this metal resulting in an oxidative stress. Because proinflammatory cytokines and LPS have been demonstrated to affect an elevated expression of DMT1 in a macrophage cell line, we tested the hypothesis that tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and LPS increase DMT1 expression in airway epithelial cells. We used RT-PCR to detect mRNA for both −IRE DMT1 and +IRE DMT1 in BEAS-2B cells. Treatment with TNF-α, IFN-γ, or LPS increased both forms. Western blot analysis also demonstrated an increase in the expression of both isoforms of DMT1 after these treatments. Twenty-four hours after exposure of an animal model to TNF-α, IFN-γ, or LPS, a significant increase in pulmonary expression of −IRE DMT1 was seen by immunohistochemistry; the level of +IRE DMT1 was too low in the lung to be visualized using this methodology. Finally, iron transport into BEAS-2B cells was increased after inclusion of TNF-α, IFN-γ, or LPS in the media. We conclude that proinflammatory cytokines and LPS increase mRNA and protein expression of DMT1 in airway cells in vitro and in vivo. Furthermore, both −IRE and +IRE isoforms are elevated after exposures. Increased expression of this protein appears to be included in a coordinated response of the cell and tissue where the function might be to diminish availability of metal.
Collapse
Affiliation(s)
- Xinchao Wang
- Center for Environmental Medicine and Lung Biology, University of North Carolina, Chapel Hill, USA
| | | | | | | | | | | |
Collapse
|
14
|
Ghio AJ, Piantadosi CA, Wang X, Dailey LA, Stonehuerner JD, Madden MC, Yang F, Dolan KG, Garrick MD, Garrick LM. Divalent metal transporter-1 decreases metal-related injury in the lung. Am J Physiol Lung Cell Mol Physiol 2005; 289:L460-7. [PMID: 15908475 DOI: 10.1152/ajplung.00154.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to airborne particulates makes the detoxification of metals a continuous challenge for the lungs. Based on the fate of iron in airway epithelial cells, we postulated that divalent metal transporter-1 (DMT1) participates in detoxification of metal associated with air pollution particles. Homozygous Belgrade rats, which are functionally deficient in DMT1, exhibited diminished metal transport from the lower respiratory tract and greater lung injury than control littermates when exposed to oil fly ash. Preexposure of normal rats to iron in vivo increased expression of the isoform of DMT1 protein that lacked an iron-response element (-IRE), accelerated metal transport out of the lung, and decreased injury after particle exposure. In contrast, normal rats preexposed to vanadium showed less expression of the -IRE isoform of DMT1, decreased metal transport, and greater pulmonary injury after particle instillation. Respiratory epithelial cells in culture gave similar results. Also, DMT1 mRNA and protein expression for the -IRE isoform increased or decreased in these cells when exposed to iron or vanadium, respectively. These results thus demonstrate for the first time a primary role for DMT1 in lung metal transport and detoxification.
Collapse
Affiliation(s)
- Andrew J Ghio
- National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yoon-yub P, Hybertson B, Wright R, Fini M, Elkins N, Repine J. Serum ferritin elevation and acute lung injury in rats subjected to hemorrhage: reduction by mepacrine treatment. Exp Lung Res 2005; 30:571-84. [PMID: 15371093 DOI: 10.1080/01902140490489207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ferritin regulates iron levels and, for unknown reasons, serum ferritin concentrations are increased in patients at risk for and with acute lung injury (ALI) and multiple organ failure. Uncomplexed iron could exacerbate the toxicity of the increased oxidative stress that occurs in patients with ALI and multiple organ failure and thereby contribute to disease. In the present investigation, the authors found that serum and lung lavage ferritin concentrations increased in hemorrhaged rats that develop ALI as manifested by increased lung inflammation (increased lung lavage leukocyte counts and lung myeloperoxidase activities) and increased lung leak (increased lung lavage protein concentrations). Treatment with mepacrine, a phospholipase A2 inhibitor, attenuated the increases in serum and lung lavage ferritin concentrations, lung inflammation, and lung leak that occur in rats subjected to hemorrhage. The findings show that serum and lung ferritin levels increase and may play a role in the development of acute lung injury caused by hemorrhage.
Collapse
Affiliation(s)
- Park Yoon-yub
- The Webb-Waring Institute for Cancer, Aging and Antioxidant Research, Denver, Colorado, USA
| | | | | | | | | | | |
Collapse
|
16
|
Wilkinson J, Pietsch EC, Torti SV, Torti FM. Ferritin regulation by oxidants and chemopreventive xenobiotics. ADVANCES IN ENZYME REGULATION 2004; 43:135-51. [PMID: 12791388 DOI: 10.1016/s0065-2571(02)00037-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- John Wilkinson
- Departments of Cancer Biology and Biochemistry and the Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
17
|
Wang MC, Bohmann D, Jasper H. JNK Signaling Confers Tolerance to Oxidative Stress and Extends Lifespan in Drosophila. Dev Cell 2003; 5:811-6. [PMID: 14602080 DOI: 10.1016/s1534-5807(03)00323-x] [Citation(s) in RCA: 305] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Changes in the genetic makeup of an organism can extend lifespan significantly if they promote tolerance to environmental insults and thus prevent the general deterioration of cellular function that is associated with aging. Here, we introduce the Jun N-terminal kinase (JNK) signaling pathway as a genetic determinant of aging in Drosophila melanogaster. Based on expression profiling experiments, we demonstrate that JNK functions at the center of a signal transduction network that coordinates the induction of protective genes in response to oxidative challenge. JNK signaling activity thus alleviates the toxic effects of reactive oxygen species (ROS). In addition, we show that flies with mutations that augment JNK signaling accumulate less oxidative damage and live dramatically longer than wild-type flies. Our work thus identifies the evolutionarily conserved JNK signaling pathway as a major genetic factor in the control of longevity.
Collapse
Affiliation(s)
- Meng C Wang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | | | | |
Collapse
|
18
|
Sasahara RM, Brochado SM, Takahashi C, Oh J, Maria-Engler SS, Granjeiro JM, Noda M, Sogayar MC. Transcriptional control of the RECK metastasis/angiogenesis suppressor gene. CANCER DETECTION AND PREVENTION 2003; 26:435-43. [PMID: 12507228 DOI: 10.1016/s0361-090x(02)00123-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RECK gene is widely expressed in normal human tissues but is downregulated in tumor cell lines and oncogenically transformed fibroblasts. RECK encodes a membrane-anchored glycoprotein that suppresses tumor invasion and angiogenesis by regulating matrix-metalloproteinases (MMP-2, MMP-9 and MT1-MMP). Understanding of the transcriptional regulation of tumor/metastasis suppressor genes constitutes a potent approach to the molecular basis of malignant transformation. In order to uncover the mechanisms of control of RECK gene expression, the RECK promoter has been cloned and characterized. One of the elements responsible for the Ras-mediated downregulation of mouse RECK gene is the Sp1 site, to which Sp1 and Sp3 factors bind. Other regulatory events, such as DNA methylation of the RECK promoter and histone acetylation/deacetylation have been studied to understand the underlying mechanisms of RECK expression. Understanding of the mechanisms which control RECK gene transcription may lead to the development of new strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Regina Maki Sasahara
- Instituto de Química, Universidade de São Paulo, CP 26077, São Paulo 05513-970, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Iron and oxygen are central to terrestrial life. Aqueous iron and oxygen chemistry will produce a ferric ion trillions of times less soluble than cell iron concentrations, along with radical forms of oxygen that are toxic. In the physiological environment, many proteins have evolved to transport iron or modulate the redox chemistry of iron that transforms oxygen in useful biochemical reactions. Only one protein, ferritin, evolved to concentrate iron to levels needed in aerobic metabolism. Reversible formation and dissolution of a solid nanomineral-hydrated, iron oxide is the main function of ferritin, which additionally detoxifies excess iron and possibly dioxygen and reactive oxygen. Ferritin is a large multifunctional, multisubunit protein with eight Fe transport pores, 12 mineral nucleation sites and up to 24 oxidase sites that produce mineral precursors from ferrous iron and oxygen. Regulation of ferritin synthesis in animals uses both DNA and mRNA controls and genes encoding two types of related subunits with: 1) catalytically active (H) or 2) inactive (L) oxidase sites. Ferritin with varying H/L ratios is related to cell-specific iron and oxygen homeostasis. H-ferritin oxidase activity accelerates rates of iron mineralization in ferritins and, in animals, ferritin produces H(2)O(2) as a byproduct. Properties of ferritin mRNA and ferritin protein pore structure are new targets for manipulating iron homeostasis. Recent observations of the high bioavailability of iron in soybean ferritin and efficient utilization of soybean and ferritin iron by iron-deficient animals, and of soybean iron by humans with borderline deficiency, indicate a role for ferritin in managing global iron deficiency in humans.
Collapse
Affiliation(s)
- Elizabeth C Theil
- Children's Hospital and Research Center at Oakland, Oakland, CA 94609, USA.
| |
Collapse
|
20
|
Pietsch EC, Chan JY, Torti FM, Torti SV. Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones. J Biol Chem 2003; 278:2361-9. [PMID: 12435735 DOI: 10.1074/jbc.m210664200] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ferritin is a ubiquitous intracellular iron storage protein that consists of 24 subunits of the H and L type. The ability to sequester iron from participation in oxygen free radical formation is consistent with a cytoprotective role for ferritin. Here we demonstrate that ferritins H and L are induced in cells treated with beta-napthoflavone (beta-NF) and chemopreventive dithiolethiones. Induction of ferritin H by beta-NF and the dithiolethiones oltipraz and 1,2-dithiole-3-thione (D3T) occurs via a transcriptional mechanism that is mediated by the ferritin H electrophile/antioxidant-responsive element (EpRE/ARE). The murine ferritin H gene contains five potential xenobiotic-responsive element (XRE) sequences in its 5'-promoter region. However, deletion analysis demonstrates that these XRE sequences are not functional in inducing ferritin H in response to beta-NF. Electrophoretic mobility shift assays demonstrate that the ferritin H EpRE/ARE binds Nrf2. Transfection of chimeric ferritin H reporter genes with Nrf2 expression vectors and Nrf2 dominant-negative mutants indicate that Nrf2 functions at the EpRE/ARE to mediate transcriptional activation of ferritin H. Induction of ferritin H and L was not seen in Nrf2 knockout cells, demonstrating that this transcription factor is required for the induction of ferritin in response to polycyclic aromatic xenobiotics and chemopreventive agents. Nrf2 may also play a role in basal transcription of both ferritin H and L. These results provide a mechanistic link between regulation of the iron storage protein ferritin and the cancer chemopreventive response.
Collapse
Affiliation(s)
- E Christine Pietsch
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
21
|
Strube YNJ, Beard JL, Ross AC. Iron deficiency and marginal vitamin A deficiency affect growth, hematological indices and the regulation of iron metabolism genes in rats. J Nutr 2002; 132:3607-15. [PMID: 12468596 DOI: 10.1093/jn/132.12.3607] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Iron deficiency and marginal vitamin A (VA) deficiency frequently coexist and affect billions of people, mostly children and women, worldwide. The effects of these micronutrient deficiencies alone and in combination on hematologic, biochemical and molecular indices of iron and VA status were investigated in a 2 x 2 randomized blocked study conducted in growing male Sprague-Dawley rats. From 3-8 wk of age, rats were fed one of four purified diets that were either adequate or restricted in iron (Fe) and adequate or marginal in VA: (+)Fe(+)VA, 20.3 and 0.367 micro g/g, respectively, denoted control diet; (-)Fe(+)VA, 3.34 and 0.405 micro g/g; (+)FeVA(m), 22.2 and 0.051 micro g/g; or (-)FeVA(m), 3.03 and 0.055 micro g/g. Weight-matched rats fed adequate micronutrients were included to control for possible confounding effects of Fe deficiency on growth and feed efficiency. Iron restriction reduced (P < 0.05) weight gain, feed efficiency, blood hemoglobin and hematocrit. Plasma and liver iron and plasma transferrin saturation were reduced by approximately 50%, whereas liver transferrin mRNA and protein and transferrin receptor mRNA were elevated, as was liver ferritin light-chain protein and light-chain mRNA. Liver heavy-chain ferritin mRNA, hemopexin, ceruloplasmin and cellular retinol-binding protein mRNA were not affected by iron or VA restriction. Although marginal VA deficiency did not exacerbate indices of poor iron status during iron deficiency, iron deficiency was associated with lower plasma retinol and elevated liver VA concentrations. These results are consistent with an impaired mobilization of liver retinol during iron deficiency as well as multiple alterations in iron metabolism.
Collapse
Affiliation(s)
- Yi Ning J Strube
- The Graduate Program in Nutrition and the Department of Nutritional Sciences, The Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|
22
|
Fang D, Tsuji Y, Setaluri V. Selective down-regulation of tyrosinase family gene TYRP1 by inhibition of the activity of melanocyte transcription factor, MITF. Nucleic Acids Res 2002; 30:3096-106. [PMID: 12136092 PMCID: PMC135745 DOI: 10.1093/nar/gkf424] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tyrosinase (TYR), tyrosinase-related protein-1 (TYRP1/gp75) and dopachrome tautomerase (DCT/TYRP2) belong to a family of melanocyte-specific gene products involved in melanin pigmentation. During melanocyte development expression of tyrosinase family genes is thought to be orchestrated in part by the binding of a shared basic helix-loop-helix transcription factor MITF to the M box, a regulatory element conserved among these genes. In transformed melanocytes, expression of tyrosinase and TYRPs is highly variable. Whereas TYR expression in melanoma cells is regulated by both transcriptional and post-translational mechanisms, TYRP1/gp75 transcription is often completely extinguished during melanoma tumor progression. In this study, we investigated the mechanisms of selective repression of TYRP1 transcription. Interestingly, in early stage melanoma cells TYRP1 mRNA could be induced by inhibition of protein synthesis. Transient transfection experiments with a minimal TYRP1 promoter showed that the promoter activity correlates with expression of the endogenous TYRP1 gene. Nucleotide deletion analysis revealed novel regulatory sequences that attenuate the M box-dependent MITF activity, but which are not involved in the repression of TYRP1. Gel mobility shift analysis showed that binding of the transcription factor MITF to the TYRP1 M box is selectively inhibited in TYRP1(-) cells. These data suggest that protein factors that modulate the activity of MITF in melanoma cells repress TYRP1 and presumably other MITF target genes.
Collapse
Affiliation(s)
- Dong Fang
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
23
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Tsuji Y, Ayaki H, Whitman SP, Morrow CS, Torti SV, Torti FM. Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress. Mol Cell Biol 2000; 20:5818-27. [PMID: 10913165 PMCID: PMC86059 DOI: 10.1128/mcb.20.16.5818-5827.2000] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The global increase in transcription of cytoprotective genes induced in response to oxidative challenge has been termed the antioxidant response. Ferritin serves as the major iron-binding protein in nonhematopoietic tissues, limiting the catalytic availability of iron for participation in oxygen radical generation. Here we demonstrate that ferritin is a participant in the antioxidant response through a genetically defined electrophile response element (EpRE). The EpRE of ferritin H identified in this report exhibits sequence similarity to EpRE motifs found in antioxidant response genes such as those encoding NAD(P)H:quinone reductase, glutathione S-transferase, and heme oxygenase. However, the EpRE of ferritin H is unusual in structure, comprising two bidirectional motifs arranged in opposing directions on complementary DNA strands. In addition to EpRE-mediated transcriptional activation, we demonstrate that ferritin is subject to time-dependent translational control through regulation of iron-regulatory proteins (IRP). Although IRP-1 is initially activated to its RNA binding (ferritin-repressing) state by oxidants, it rapidly returns to its basal state. This permits the translation of newly synthesized ferritin transcripts and ultimately leads to increased levels of ferritin protein synthesis following oxidant exposure. Taken together, these results clarify the complex transcriptional and translational regulatory mechanisms that contribute to ferritin regulation in response to prooxidant stress and establish a role for ferritin in the antioxidant response.
Collapse
Affiliation(s)
- Y Tsuji
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Yeh KY, Yeh M, Glass J, Granger DN. Rapid activation of NF-kappaB and AP-1 and target gene expression in postischemic rat intestine. Gastroenterology 2000; 118:525-34. [PMID: 10702203 DOI: 10.1016/s0016-5085(00)70258-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The molecular mechanisms underlying intestinal mucosal damage-repair processes induced by ischemia-reperfusion (IR) remain unknown. We determined nuclear factor-kappaB (NF-kappaB) and activator protein 1 (AP-1) activities and the expression of potential target genes relevant to damage-repair events. METHODS Rat jejunal segment was subjected to ischemia for 30 minutes followed by reperfusion for defined times. NF-kappaB and AP-1 activities; mucosal p105, p50, and inhibitor kappaB-alpha (IkappaB-alpha) levels; and c-fos, neurotensin, and ferritin H expression were determined by electrophoretic mobility shift assay and Western and Northern analyses, respectively. RESULTS NF-kappaB and AP-1 activities were significantly elevated from 1 to 12 hours after reperfusion. The activated NF-kappaB in the nuclear extract consisted of solely p50 homodimers. Activation of p50 was associated with a decrease of p105, generation of p50, and increased phosphorylation and degradation of IkappaB-alpha. The activated AP-1 contained c-fos but not c-jun, fosB, and Fra-1. Reperfusion induced a transient elevation of c-fos, prolonged increase of neurotensin, and early reduction followed by recovery of ferritin H messenger RNA. CONCLUSIONS The intestine shows organ-specific responses to IR, characterized by prolonged NF-kappaB and AP-1 activation involving NF-kappaB p50 dimers and excluding AP-1 c-jun protein. Degradation of the IkappaB-gamma component of p105 and partial reduction IkappaB-alpha selectively activate p50/p50 dimers. Temporal patterns of target gene expression reflect functional relevance to mucosal damage-repair processes after IR.
Collapse
Affiliation(s)
- K Y Yeh
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | |
Collapse
|
26
|
Ferreira C, Bucchini D, Martin ME, Levi S, Arosio P, Grandchamp B, Beaumont C. Early embryonic lethality of H ferritin gene deletion in mice. J Biol Chem 2000; 275:3021-4. [PMID: 10652280 DOI: 10.1074/jbc.275.5.3021] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ferritin molecules play an important role in the control of intracellular iron distribution and in the constitution of long term iron stores. In vitro studies on recombinant ferritin subunits have shown that the ferroxidase activity associated with the H subunit is necessary for iron uptake by the ferritin molecule, whereas the L subunit facilitates iron core formation inside the protein shell. However, plant and bacterial ferritins have only a single type of subunit which probably fulfills both functions. To assess the biological significance of the ferroxidase activity associated with the H subunit, we disrupted the H ferritin gene (Fth) in mice by homologous recombination. Fth(+/-) mice are healthy, fertile, and do not differ significantly from their control littermates. However, Fth(-/-) embryos die between 3.5 and 9.5 days of development, suggesting that there is no functional redundancy between the two ferritin subunits and that, in the absence of H subunits, L ferritin homopolymers are not able to maintain iron in a bioavailable and nontoxic form. The pattern of expression of the wild type Fth gene in 9.5-day embryos is suggestive of an important function of the H ferritin gene in the heart.
Collapse
Affiliation(s)
- C Ferreira
- INSERM U409, Faculté X. Bichat, 16 Rue Henri Huchard, 75018 Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Tsuji Y, Moran E, Torti SV, Torti FM. Transcriptional regulation of the mouse ferritin H gene. Involvement of p300/CBP adaptor proteins in FER-1 enhancer activity. J Biol Chem 1999; 274:7501-7. [PMID: 10066817 DOI: 10.1074/jbc.274.11.7501] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified a major enhancer of the mouse ferritin H gene (FER-1) that is central to repression of the ferritin H gene by the adenovirus E1A oncogene (Tsuji, Y., Akebi, N., Lam, T. K., Nakabeppu, Y., Torti, S. V., and Torti, F. M. (1995) Mol. Cell. Biol. 15, 5152-5164). To dissect the molecular mechanism of transcriptional regulation of ferritin H, E1A mutants were tested for their ability to repress FER-1 enhancer activity using cotransfection with ferritin H-chloramphenicol acetyltransferase (CAT) reporter constructs. Here we report that p300/CBP transcriptional adaptor proteins are involved in the regulation of ferritin H transcription through the FER-1 enhancer element. Thus, E1A mutants that failed to bind p300/CBP lost the ability to repress FER-1, whereas mutants of E1A that abrogated its interaction with Rb, p107, or p130 were fully functional in transcriptional repression. Transfection with E1A did not affect endogenous p300/CBP levels, suggesting that repression of FER-1 by E1A is not due to repression of p300/CBP synthesis, but to E1A and p300/CBP interaction. In addition, we have demonstrated that transfection of a p300 expression plasmid significantly activated ferritin H-CAT containing the FER-1 enhancer, but had a marginal effect on ferritin H-CAT with FER-1 deleted. Furthermore, both wild-type p300 and a p300 mutant that failed to bind E1A but retained an adaptor function restored FER-1 enhancer activity repressed by E1A. Sodium butyrate, an inhibitor of histone deacetylase, mimicked p300/CBP function in activation of ferritin H-CAT and elevation of endogenous ferritin H mRNA, suggesting that the histone acetyltransferase activity of p300/CBP or its associated proteins may contribute to the activation of ferritin H transcription. Recruitment of these broadly active transcriptional adaptor proteins for ferritin H synthesis may represent an important mechanism by which changes in iron metabolism are coordinated with other cellular responses mediated by p300/CBP.
Collapse
Affiliation(s)
- Y Tsuji
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|