1
|
Wang Y, Wei J, Zhang P, Zhang X, Wang Y, Chen W, Zhao Y, Cui X. Neuregulin-1, a potential therapeutic target for cardiac repair. Front Pharmacol 2022; 13:945206. [PMID: 36120374 PMCID: PMC9471952 DOI: 10.3389/fphar.2022.945206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
NRG1 (Neuregulin-1) is an effective cardiomyocyte proliferator, secreted and released by endothelial vascular cells, and affects the cardiovascular system. It plays a major role in heart growth, proliferation, differentiation, apoptosis, and other cardiovascular processes. Numerous experiments have shown that NRG1 can repair the heart in the pathophysiology of atherosclerosis, myocardial infarction, ischemia reperfusion, heart failure, cardiomyopathy and other cardiovascular diseases. NRG1 can connect related signaling pathways through the NRG1/ErbB pathway, which form signal cascades to improve the myocardial microenvironment, such as regulating cardiac inflammation, oxidative stress, necrotic apoptosis. Here, we summarize recent research advances on the molecular mechanisms of NRG1, elucidate the contribution of NRG1 to cardiovascular disease, discuss therapeutic approaches targeting NRG1 associated with cardiovascular disease, and highlight areas for future research.
Collapse
Affiliation(s)
- Yan Wang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianliang Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanan Zhao
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| | - Xiangning Cui
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| |
Collapse
|
2
|
Brown KA, Anderson C, Reilly L, Sondhi K, Ge Y, Eckhardt LL. Proteomic Analysis of the Functional Inward Rectifier Potassium Channel (Kir) 2.1 Reveals Several Novel Phosphorylation Sites. Biochemistry 2021; 60:3292-3301. [PMID: 34676745 DOI: 10.1021/acs.biochem.1c00555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane proteins represent a large family of proteins that perform vital physiological roles and represent key drug targets. Despite their importance, bioanalytical methods aiming to comprehensively characterize the post-translational modification (PTM) of membrane proteins remain challenging compared to other classes of proteins in part because of their inherent low expression and hydrophobicity. The inward rectifier potassium channel (Kir) 2.1, an integral membrane protein, is critical for the maintenance of the resting membrane potential and phase-3 repolarization of the cardiac action potential in the heart. The importance of this channel to cardiac physiology is highlighted by the recognition of several sudden arrhythmic death syndromes, Andersen-Tawil and short QT syndromes, which are associated with loss or gain of function mutations in Kir2.1, often triggered by changes in the β-adrenergic tone. Therefore, understanding the PTMs of this channel (particularly β-adrenergic tone-driven phosphorylation) is important for arrhythmia prevention. Here, we developed a proteomic method, integrating both top-down (intact protein) and bottom-up (after enzymatic digestion) proteomic analyses, to characterize the PTMs of recombinant wild-type and mutant Kir2.1, successfully mapping five novel sites of phosphorylation and confirming a sixth site. Our study provides a framework for future work to assess the role of PTMs in regulating Kir2.1 functions.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Corey Anderson
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kunal Sondhi
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Park SS, Ponce-Balbuena D, Kuick R, Guerrero-Serna G, Yoon J, Mellacheruvu D, Conlon KP, Basrur V, Nesvizhskii AI, Jalife J, Rual JF. Kir2.1 Interactome Mapping Uncovers PKP4 as a Modulator of the Kir2.1-Regulated Inward Rectifier Potassium Currents. Mol Cell Proteomics 2020; 19:1436-1449. [PMID: 32541000 PMCID: PMC8143648 DOI: 10.1074/mcp.ra120.002071] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 12/27/2022] Open
Abstract
Kir2.1, a strong inward rectifier potassium channel encoded by the KCNJ2 gene, is a key regulator of the resting membrane potential of the cardiomyocyte and plays an important role in controlling ventricular excitation and action potential duration in the human heart. Mutations in KCNJ2 result in inheritable cardiac diseases in humans, e.g. the type-1 Andersen-Tawil syndrome (ATS1). Understanding the molecular mechanisms that govern the regulation of inward rectifier potassium currents by Kir2.1 in both normal and disease contexts should help uncover novel targets for therapeutic intervention in ATS1 and other Kir2.1-associated channelopathies. The information available to date on protein-protein interactions involving Kir2.1 channels remains limited. Additional efforts are necessary to provide a comprehensive map of the Kir2.1 interactome. Here we describe the generation of a comprehensive map of the Kir2.1 interactome using the proximity-labeling approach BioID. Most of the 218 high-confidence Kir2.1 channel interactions we identified are novel and encompass various molecular mechanisms of Kir2.1 function, ranging from intracellular trafficking to cross-talk with the insulin-like growth factor receptor signaling pathway, as well as lysosomal degradation. Our map also explores the variations in the interactome profiles of Kir2.1WTversus Kir2.1Δ314-315, a trafficking deficient ATS1 mutant, thus uncovering molecular mechanisms whose malfunctions may underlie ATS1 disease. Finally, using patch-clamp analysis, we validate the functional relevance of PKP4, one of our top BioID interactors, to the modulation of Kir2.1-controlled inward rectifier potassium currents. Our results validate the power of our BioID approach in identifying functionally relevant Kir2.1 interactors and underline the value of our Kir2.1 interactome as a repository for numerous novel biological hypotheses on Kir2.1 and Kir2.1-associated diseases.
Collapse
Affiliation(s)
- Sung-Soo Park
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniela Ponce-Balbuena
- Department of Internal Medicine and Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Rork Kuick
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Guadalupe Guerrero-Serna
- Department of Internal Medicine and Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Justin Yoon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Kevin P Conlon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - José Jalife
- Department of Internal Medicine and Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Jean-François Rual
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Sengupta S, Rothenberg KE, Li H, Hoffman BD, Bursac N. Altering integrin engagement regulates membrane localization of K ir2.1 channels. J Cell Sci 2019; 132:jcs225383. [PMID: 31391240 PMCID: PMC6771140 DOI: 10.1242/jcs.225383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
How ion channels localize and distribute on the cell membrane remains incompletely understood. We show that interventions that vary cell adhesion proteins and cell size also affect the membrane current density of inward-rectifier K+ channels (Kir2.1; encoded by KCNJ2) and profoundly alter the action potential shape of excitable cells. By using micropatterning to manipulate the localization and size of focal adhesions (FAs) in single HEK293 cells engineered to stably express Kir2.1 channels or in neonatal rat cardiomyocytes, we establish a robust linear correlation between FA coverage and the amplitude of Kir2.1 current at both the local and whole-cell levels. Confocal microscopy showed that Kir2.1 channels accumulate in membrane proximal to FAs. Selective pharmacological inhibition of key mediators of protein trafficking and the spatially dependent alterations in the dynamics of Kir2.1 fluorescent recovery after photobleaching revealed that the Kir2.1 channels are transported to the cell membrane uniformly, but are preferentially internalized by endocytosis at sites that are distal from FAs. Based on these results, we propose adhesion-regulated membrane localization of ion channels as a fundamental mechanism of controlling cellular electrophysiology via mechanochemical signals, independent of the direct ion channel mechanogating.
Collapse
Affiliation(s)
- Swarnali Sengupta
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Hanjun Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Abstract
Modern stem cell research has mainly focused on protein expression and transcriptional networks. However, transmembrane voltage gradients generated by ion channels and transporters have demonstrated to be powerful regulators of cellular processes. These physiological cues exert influence on cell behaviors ranging from differentiation and proliferation to migration and polarity. Bioelectric signaling is a fundamental element of living systems and an untapped reservoir for new discoveries. Dissecting these mechanisms will allow for novel methods of controlling cell fate and open up new opportunities in biomedicine. This review focuses on the role of ion channels and the resting membrane potential in the proliferation and differentiation of skeletal muscle progenitor cells. In addition, findings relevant to this topic are presented and potential implications for tissue engineering and regenerative medicine are discussed.
Collapse
Affiliation(s)
- Colin Fennelly
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
6
|
Engram Cell Excitability State Determines the Efficacy of Memory Retrieval. Neuron 2019; 101:274-284.e5. [DOI: 10.1016/j.neuron.2018.11.029] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/12/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
|
7
|
Jackson WF. Boosting the signal: Endothelial inward rectifier K + channels. Microcirculation 2018; 24. [PMID: 27652592 DOI: 10.1111/micc.12319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022]
Abstract
Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of KIR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K+ channel (KIR ) currents display a region of negative slope conductance at membrane potentials positive to the K+ equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting KIR to amplify hyperpolarization induced by other K+ channels and ion transporters. Increases in extracellular K+ concentration activate KIR allowing them to sense extracellular K+ concentration and transduce this change into membrane hyperpolarization. These properties position KIR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of KIR in capillaries in electrically active tissues may allow KIR to sense extracellular K+ , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial KIR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Fluid flow facilitates inward rectifier K + current by convectively restoring [K +] at the cell membrane surface. Sci Rep 2016; 6:39585. [PMID: 28004830 PMCID: PMC5177964 DOI: 10.1038/srep39585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 11/24/2016] [Indexed: 01/25/2023] Open
Abstract
The inward rectifier Kir2.1 current (IKir2.1) was reported to be facilitated by fluid flow. However, the mechanism underlying this facilitation remains uncertain. We hypothesized that during K+ influx or efflux, [K+] adjacent to the outer mouth of the Kir2.1 channel might decrease or increase, respectively, compared with the average [K+] of the bulk extracellular solution, and that fluid flow could restore the original [K+] and result in the apparent facilitation of IKir2.1. We recorded the IKir2.1 in RBL-2H3 cells and HEK293T cells that were ectopically over-expressed with Kir2.1 channels by using the whole-cell patch-clamp technique. Fluid-flow application immediately increased the IKir2.1, which was not prevented by either the pretreatment with inhibitors of various protein kinases or the modulation of the cytoskeleton and caveolae. The magnitudes of the increases of IKir2.1 by fluid flow were driving force-dependent. Simulations performed using the Nernst-Planck mass equation indicated that [K+] near the membrane surface fell markedly below the average [K+] of the bulk extracellular solution during K+ influx, and, notably, that fluid flow restored the decreased [K+] at the cell surface in a flow rate-dependent manner. These results support the “convection-regulation hypothesis” and define a novel interpretation of fluid flow-induced modulation of ion channels.
Collapse
|
10
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
11
|
Leem YE, Jeong HJ, Kim HJ, Koh J, Kang K, Bae GU, Cho H, Kang JS. Cdo Regulates Surface Expression of Kir2.1 K+ Channel in Myoblast Differentiation. PLoS One 2016; 11:e0158707. [PMID: 27380411 PMCID: PMC4933383 DOI: 10.1371/journal.pone.0158707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/21/2016] [Indexed: 01/28/2023] Open
Abstract
A potassium channel Kir2.1-associated membrane hyperpolarization is required for myogenic differentiation. However the molecular regulatory mechanisms modulating Kir2.1 channel activities in early stage of myogenesis are largely unknown. A cell surface protein, Cdo functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that Cdo forms a complex with Kir2.1 during myogenic differentiation, and is required for the channel activity by enhancing the surface expression of Kir2.1 in the early stage of differentiation. The expression of a constitutively active form of the upstream kinase for p38MAPK, MKK6(EE) can restore Kir2.1 activities in Cdo-depleted C2C12 cells, while the treatment with a p38MAPK inhibitor, SB203580 exhibits a similar effect of Cdo depletion on Kir2.1 surface expression. Furthermore, Cdo-/- primary myoblasts, which display a defective differentiation program, exhibit a defective Kir2.1 activity. Taken together, our results suggest that a promyogenic Cdo signaling is critical for Kir2.1 activities in the induction of myogenic differentiation.
Collapse
Affiliation(s)
- Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Hyeon-Ju Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Hyun-Ji Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Jewoo Koh
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - KyeongJin Kang
- Department of Anatomy, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
- * E-mail: (JSK); (HC)
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
- * E-mail: (JSK); (HC)
| |
Collapse
|
12
|
Kim KS, Jang JH, Lin H, Choi SW, Kim HR, Shin DH, Nam JH, Zhang YH, Kim SJ. Rise and Fall of Kir2.2 Current by TLR4 Signaling in Human Monocytes: PKC-Dependent Trafficking and PI3K-Mediated PIP2 Decrease. THE JOURNAL OF IMMUNOLOGY 2015; 195:3345-54. [PMID: 26324774 DOI: 10.4049/jimmunol.1500056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/22/2015] [Indexed: 12/24/2022]
Abstract
LPSs are widely used to stimulate TLR4, but their effects on ion channels in immune cells are poorly known. In THP-1 cells and human blood monocytes treated with LPS, inwardly rectifying K(+) channel current (IKir,LPS) newly emerged at 1 h, peaked at 4 h (-119 ± 8.6 pA/pF), and decayed afterward (-32 ± 6.7 pA/pF at 24 h). Whereas both the Kir2.1 and Kir2.2 mRNAs and proteins were observed, single-channel conductance (38 pS) of IKir,LPS and small interfering RNA-induced knockdown commonly indicated Kir2.2 than Kir2.1. LPS-induced cytokine release and store-operated Ca(2+) entry were commonly decreased by ML-133, a Kir2 inhibitor. Immunoblot, confocal microscopy, and the effects of vesicular trafficking inhibitors commonly suggested plasma membrane translocation of Kir2.2 by LPS. Both IKir,LPS and membrane translocation of Kir2.2 were inhibited by GF109203X (protein kinase C [PKC] inhibitor) or by transfection with small interfering RNA-specific PKCε. Interestingly, pharmacological activation of PKC by PMA induced both Kir2.1 and Kir2.2 currents. The spontaneously decayed IKir,LPS at 24 h was recovered by PI3K inhibitors but further suppressed by an inhibitor of phosphatidylinositol(3,4,5)-trisphosphate (PIP3) phosphatase (phosphatase and tensin homolog). However, IKir,LPS at 24 h was not affected by Akt inhibitors, suggesting that the decreased phosphatidylinositol(4,5)-bisphosphate availability, that is, conversion into PIP3 by PI3K, per se accounts for the decay of IKir,LPS. Taken together, to our knowledge these data are the first demonstrations that IKir is newly induced by TLR4 stimulation via PKC-dependent membrane trafficking of Kir2.2, and that conversion of phosphatidylinositol(4,5)-bisphosphate to PIP3 modulates Kir2.2. The augmentation of Ca(2+) influx and cytokine release suggests a physiological role for Kir2.2 in TLR4-stimulated monocytes.
Collapse
Affiliation(s)
- Kyung Soo Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Ji Hyun Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Haiyue Lin
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Seong Woo Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Hang Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Dong Hoon Shin
- Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju 501-759, Republic of Korea; and
| | - Joo Hyun Nam
- Channelopathy Research Center, Dongguk University College of Medicine, Goyang 410-773, Republic of Korea
| | - Yin Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Channelopathy Research Center, Dongguk University College of Medicine, Goyang 410-773, Republic of Korea
| |
Collapse
|
13
|
Stival C, La Spina FA, Baró Graf C, Arcelay E, Arranz SE, Ferreira JJ, Le Grand S, Dzikunu VA, Santi CM, Visconti PE, Buffone MG, Krapf D. Src Kinase Is the Connecting Player between Protein Kinase A (PKA) Activation and Hyperpolarization through SLO3 Potassium Channel Regulation in Mouse Sperm. J Biol Chem 2015; 290:18855-64. [PMID: 26060254 DOI: 10.1074/jbc.m115.640326] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
Plasma membrane hyperpolarization is crucial for mammalian sperm to acquire acrosomal responsiveness during capacitation. Among the signaling events leading to mammalian sperm capacitation, the immediate activation of protein kinase A plays a pivotal role, promoting the subsequent stimulation of protein tyrosine phosphorylation that associates with fertilizing capacity. We have shown previously that mice deficient in the tyrosine kinase cSrc are infertile and exhibit improper cauda epididymis development. It is therefore not clear whether lack of sperm functionality is due to problems in epididymal maturation or to the absence of cSrc in sperm. To further address this problem, we investigated the kinetics of cSrc activation using anti-Tyr(P)-416-cSrc antibodies that only recognize active cSrc. Our results provide evidence that cSrc is activated downstream of PKA and that inhibition of its activity blocks the capacitation-induced hyperpolarization of the sperm plasma membrane without blocking the increase in tyrosine phosphorylation that accompanies capacitation. In addition, we show that cSrc inhibition also blocks the agonist-induced acrosome reaction and that this inhibition is overcome by pharmacological hyperpolarization. Considering that capacitation-induced hyperpolarization is mediated by SLO3, we evaluated the action of cSrc inhibitors on the heterologously expressed SLO3 channel. Our results indicate that, similar to SLO1 K(+) channels, cSrc blockers significantly decreased SLO3-mediated currents. Together, these results are consistent with findings showing that hyperpolarization of the sperm plasma membrane is necessary and sufficient to prepare the sperm for the acrosome reaction and suggest that changes in sperm membrane potential are mediated by cSrc activation.
Collapse
Affiliation(s)
- Cintia Stival
- From the Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Especialidades Reproductivas, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina
| | - Florenza A La Spina
- the Instituto de Biología y Medicina Experimental, CONICET, Ciudad Autónoma de Buenos Aires C1428ADN, Argentina
| | - Carolina Baró Graf
- From the Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Especialidades Reproductivas, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina
| | - Enid Arcelay
- the Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, Massachusetts 01003
| | - Silvia E Arranz
- From the Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Especialidades Reproductivas, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina
| | - Juan J Ferreira
- the Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis Missouri 63110, and
| | - Sibylle Le Grand
- the Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis Missouri 63110, and
| | - Victor A Dzikunu
- the Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis Missouri 63110, and
| | - Celia M Santi
- the Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis Missouri 63110, and
| | - Pablo E Visconti
- the Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, Massachusetts 01003
| | - Mariano G Buffone
- the Instituto de Biología y Medicina Experimental, CONICET, Ciudad Autónoma de Buenos Aires C1428ADN, Argentina
| | - Dario Krapf
- From the Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Especialidades Reproductivas, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina,
| |
Collapse
|
14
|
Liu H, Huang J, Peng J, Wu X, Zhang Y, Zhu W, Guo L. Upregulation of the inwardly rectifying potassium channel Kir2.1 (KCNJ2) modulates multidrug resistance of small-cell lung cancer under the regulation of miR-7 and the Ras/MAPK pathway. Mol Cancer 2015; 14:59. [PMID: 25880778 PMCID: PMC4373128 DOI: 10.1186/s12943-015-0298-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 01/15/2015] [Indexed: 11/21/2022] Open
Abstract
Background KCNJ2/Kir2.1, a member of the classical inwardly rectifying potassium channel family, is commonly expressed in a wide range of tissues and cell types. Previous studies indicated that Kir2.1 may be associated with SCLC multidrug resistance (MDR). However, whether Kir2.1 can regulate MDR and its underlying mechanisms remain poorly understood in SCLC. Methods KCNJ2/Kir2.1 expression was examined in tissues from fifty-two SCLC cases by immunohistochemistry. Overexpression or knockdown of KCNJ2/Kir21 was performed in multidrug-resistant SCLC cell lines (H69AR and H446AR) and their parental cell lines (H69 and H446) to assess its influence on cell growth, apoptosis, the cell cycle and chemoresistance. Results KCNJ2/Kir2.1 was expressed in 44.23% (23/52) of SCLC tissues. Overexpression of KCNJ2/Kir2.1 was correlated with the clinical stage and chemotherapy response in SCLC patients. Knockdown of KCNJ2/Kir2.1 expression using KCNJ2/Kir2.1 shRNA in H69AR and H446AR cells inhibited cell growth and sensitized the cancer cells to chemotherapeutic drugs by increasing cell apoptosis and cell cycle arrest. Forced KCNJ2/Kir2.1 expression in H69 and H446 cells promoted cell growth and enhanced multidrug resistance via reduced drug-induced apoptosis accompanied by cell cycle arrest. KCNJ2/Kir2.1 expression was also influenced by PKC and MEK inhibitors. In addition, multidrug resistance protein 1 (MRP1/ABCC1) was confirmed to interact with KCNJ2/Kir2.1 by Co-IP assays. Conclusions KCNJ2/Kir2.1 modulates cell growth and drug resistance by regulating MRP1/ABCC1 expression and is simultaneously regulated by the Ras/MAPK pathway and miR-7. KCNJ2/Kir2.1 may be a prognostic predictor and a potentially novel target for interfering with chemoresistance in SCLC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0298-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huanxin Liu
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China. .,Department of Pathology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical College, Guangzhou, China.
| | - Jie Huang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Juan Peng
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China. .,Department of Pathology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xiaoxia Wu
- Department of Pathology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical College, Guangzhou, China.
| | - Yan Zhang
- Department of Pathology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical College, Guangzhou, China.
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
SRC tyrosine kinases regulate neuronal differentiation of mouse embryonic stem cells via modulation of voltage-gated sodium channel activity. Neurochem Res 2015; 40:674-87. [PMID: 25577147 DOI: 10.1007/s11064-015-1514-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/10/2014] [Accepted: 01/07/2015] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na(+) channel activity is vital for the proper function of excitable cells and has been indicated in nervous system development. Meanwhile, the Src family of non-receptor tyrosine kinases (SFKs) has been implicated in the regulation of Na(+) channel activity. The present investigation tests the hypothesis that Src family kinases influence neuronal differentiation via a chronic regulation of Na(+) channel functionality. In cultured mouse embryonic stem (ES) cells undergoing neural induction and terminal neuronal differentiation, SFKs showed distinct stage-specific expression patterns during the differentiation process. ES cell-derived neuronal cells expressed multiple voltage-gated Na(+) channel proteins (Nav) and underwent a gradual increase in Na(+) channel activity. While acute inhibition of SFKs using the Src family inhibitor PP2 suppressed the Na(+) current, chronic inhibition of SFKs during early neuronal differentiation of ES cells did not change Nav expression. However, a long-lasting block of SFK significantly altered electrophysiological properties of the Na(+) channels, shown as a right shift of the current-voltage relationship of the Na(+) channels, and reduced the amplitude of Na(+) currents recorded in drug-free solutions. Immunocytochemical staining of differentiated cells subjected to the chronic exposure of a SFK inhibitor, or the Na(+) channel blocker tetrodotoxin, showed no changes in the number of NeuN-positive cells; however, both treatments significantly hindered neurite outgrowth. These findings suggest that SFKs not only modulate the Na(+) channel activation acutely, but the tonic activity of SFKs is also critical for normal development of functional Na(+) channels and neuronal differentiation or maturation of ES cells.
Collapse
|
16
|
Masia R, Krause DS, Yellen G. The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver. Am J Physiol Cell Physiol 2014; 308:C264-76. [PMID: 25472961 DOI: 10.1152/ajpcell.00176.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but some evidence suggests a role in growth factor-dependent proliferation and development. Expression of functional Kir2 channels has not been definitively demonstrated in mammalian neutrophils. Here, we show by RT-PCR that neutrophils from mouse bone marrow and liver express mRNA for the Kir2 subunit Kir2.1 but not for other subunits (Kir2.2, Kir2.3, and Kir2.4). In electrophysiological experiments, resting (unstimulated) neutrophils from mouse bone marrow and liver exhibit a constitutively active, external K(+)-dependent, strong inwardly rectifying current that constitutes the dominant current. The reversal potential is dependent on the external K(+) concentration in a Nernstian fashion, as expected for a K(+)-selective current. The current is not altered by changes in external or internal pH, and it is blocked by Ba(2+), Cs(+), and the Kir2-selective inhibitor ML133. The single-channel conductance is in agreement with previously reported values for Kir2.1 channels. These properties are characteristic of homomeric Kir2.1 channels. Current density in short-term cultures of bone marrow neutrophils is decreased in the absence of growth factors that are important for neutrophil proliferation [granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF)]. These results demonstrate that mouse neutrophils express functional Kir2.1 channels and suggest that these channels may be important for neutrophil function, possibly in a growth factor-dependent manner.
Collapse
Affiliation(s)
- Ricard Masia
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Daniela S Krause
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Boston, Massachusetts; and
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Baronas VA, Kurata HT. Inward rectifiers and their regulation by endogenous polyamines. Front Physiol 2014; 5:325. [PMID: 25221519 PMCID: PMC4145359 DOI: 10.3389/fphys.2014.00325] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/06/2014] [Indexed: 12/02/2022] Open
Abstract
Inwardly-rectifying potassium (Kir) channels contribute to maintenance of the resting membrane potential and regulation of electrical excitation in many cell types. Strongly rectifying Kir channels exhibit a very steep voltage dependence resulting in silencing of their activity at depolarized membrane voltages. The mechanism underlying this steep voltage dependence is blockade by endogenous polyamines. These small multifunctional, polyvalent metabolites enter the long Kir channel pore from the intracellular side, displacing multiple occupant ions as they migrate to a stable binding site in the transmembrane region of the channel. Numerous structure-function studies have revealed structural elements of Kir channels that determine their susceptibility to polyamine block, and enable the steep voltage dependence of this process. In addition, various channelopathies have been described that result from alteration of the polyamine sensitivity or activity of strongly rectifying channels. The primary focus of this article is to summarize current knowledge of the molecular mechanisms of polyamine block, and provide some perspective on lingering uncertainties related to this physiologically important mechanism of ion channel blockade. We also briefly review some of the important and well understood physiological roles of polyamine sensitive, strongly rectifying Kir channels, primarily of the Kir2 family.
Collapse
Affiliation(s)
- Victoria A Baronas
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia Vancouver, BC, Canada
| | - Harley T Kurata
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
18
|
Brunt VE, Fujii N, Minson CT. No independent, but an interactive, role of calcium-activated potassium channels in human cutaneous active vasodilation. J Appl Physiol (1985) 2013; 115:1290-6. [PMID: 23970531 DOI: 10.1152/japplphysiol.00358.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In human cutaneous microvasculature, endothelium-derived hyperpolarizing factors (EDHFs) account for a large portion of vasodilation associated with local stimuli. Thus we sought to determine the role of EDHFs in active vasodilation (AVD) to passive heating in two protocols. Whole body heating was achieved using water-perfused suits (core temperature increase of 0.8-1.0°C), and skin blood flow was measured using laser-Doppler flowmetry. In the first protocol, four sites were perfused continuously via microdialysis with: 1) control; 2) tetraethylammonium (TEA) to block calcium-activated potassium (KCa) channels, and thus the actions of EDHFs; 3) N-nitro-l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase (NOS); and 4) TEA + l-NAME (n = 8). Data are presented as percent maximal cutaneous vascular conductance (CVC). TEA had no effect on AVD (CVC during heated plateau: control 57.4 ± 4.9% vs. TEA 63.2 ± 5.2%, P = 0.27), indicating EDHFs are not obligatory. l-NAME attenuated plateau CVC to 33.7 ± 5.4% (P < 0.01 vs. control); while TEA + l-NAME augmented plateau CVC compared with l-NAME alone (49.7 ± 5.3%, P = 0.02). From these data, it appears combined blockade of EDHFs and NOS necessitates dilation through other means, possibly through inward rectifier (KIR) and/or ATP-sensitive (KATP) potassium channels. To test this second hypothesis, we measured AVD at the following sites (n = 8): 1) control, 2) l-NAME, 3) l-NAME + TEA, and 4) l-NAME + TEA + barium chloride (BaCl2; KIR and KATP blocker). The addition of BaCl2 to l-NAME + TEA reduced plateau CVC to 32.7 ± 6.6% (P = 0.02 vs. l-NAME + TEA), which did not differ from the l-NAME site. These data combined demonstrate a complex interplay between vasodilatory pathways, with cross-talk between NO, KCa channels, and KIR and/or KATP channels.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | | |
Collapse
|
19
|
Leroy MC, Perroud J, Darbellay B, Bernheim L, Konig S. Epidermal growth factor receptor down-regulation triggers human myoblast differentiation. PLoS One 2013; 8:e71770. [PMID: 23967242 PMCID: PMC3744467 DOI: 10.1371/journal.pone.0071770] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/09/2013] [Indexed: 12/02/2022] Open
Abstract
Initiation of human myoblast differentiation requires a negative shift (hyperpolarization) of the resting potential of myoblasts that depends on the activation of Kir2.1 potassium channels. These channels are regulated by a tyrosine phosphorylation. Using human primary myoblast culture, we investigated a possible role of various receptor tyrosine kinases in the induction of the differentiation process. We found that Epidermal Growth Factor Receptor (EGFR) is a key regulator of myoblast differentiation. EGFR activity is down-regulated during early human myoblast differentiation, and this event is required for normal differentiation to take place. Furthermore, EGFR silencing in proliferation conditions was able to trigger the differentiation program. This occurs through an increase of Kir2.1 channel activity that, via a rise of store-operated Ca2+ entry, leads to the expression of myogenic transcription factors and muscle specific proteins (Myogenin, Myocyte Enhancer Factor 2 (MEF2), Myosin Heavy Chain (MyHC)). Finally, blocking myoblast cell cycle in proliferation conditions using a cdk4 inhibitor greatly decreased myoblast proliferation but was not able, on its own, to promote myoblast differentiation. Taken together, these results show that EGFR down-regulation is an early event that is required for the induction of myoblast differentiation.
Collapse
Affiliation(s)
- Marina C. Leroy
- Department of Basic Neurosciences, University Medical Center, Geneva, Switzerland
| | - Julie Perroud
- Department of Basic Neurosciences, University Medical Center, Geneva, Switzerland
| | - Basile Darbellay
- Department of Clinical Neurosciences, University Hospital, Geneva, Switzerland
| | - Laurent Bernheim
- Department of Basic Neurosciences, University Medical Center, Geneva, Switzerland
| | - Stephane Konig
- Department of Basic Neurosciences, University Medical Center, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
20
|
EGFR tyrosine kinase regulates human small-conductance Ca2+-activated K+ (hSKCa1) channels expressed in HEK-293 cells. Biochem J 2013; 452:121-9. [PMID: 23496660 DOI: 10.1042/bj20121324] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SKCa (small-conductance Ca(2+)-activated K(+)) channels are widely distributed in different tissues, including the brain, pancreatic islets and myocardium and play an important role in controlling electrical activity and cellular functions. However, intracellular signal modulation of SKCa channels is not fully understood. The present study was designed to investigate the potential regulation of hSKCa1 (human SKCa1) channels by PTKs (protein tyrosine kinases) in HEK (human embryonic kidney)-293 cells expressing the hSKCa1 (KCNN1) gene using approaches of whole-cell patch voltage-clamp, immunoprecipitation, Western blotting and mutagenesis. We found that the hSKCa1 current was inhibited by the broad-spectrum PTK inhibitor genistein, the selective EGFR (epidermal growth factor receptor) kinase inhibitors T25 (tyrphostin 25) and AG556 (tyrphostin AG 556), but not by the Src-family kinases inhibitor PP2. The inhibitory effect of these PTK inhibitors was significantly antagonized by the PTP (protein tyrosine phosphatase) inhibitor orthovanadate. The tyrosine phosphorylation level of hSKCa1 channels was reduced by genistein, T25 or AG556. The reduced tyrosine phosphorylation was countered by orthovanadate. Interestingly, the Y109F mutant hSKCa1 channel lost the inhibitory response to T25 or AG556, and showed a dramatic reduction in tyrosine phosphorylation levels and a reduced current density. These results demonstrate the novel information that hSKCa1 channels are inhibited by genistein, T25 and AG556 via EGFR tyrosine kinase inhibition, which is related to the phosphorylation of Tyr(109) in the N-terminus. This effect may affect electrical activity and cellular functions in brain, pancreatic islets and myocardium.
Collapse
|
21
|
Up-Regulation of the Inwardly Rectifying K+ Channel Kir2.1 (KCNJ2) by Protein Kinase B (PKB/Akt) and PIKfyve. J Membr Biol 2012. [DOI: 10.1007/s00232-012-9520-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Zhang DY, Zhang YH, Sun HY, Lau CP, Li GR. Epidermal growth factor receptor tyrosine kinase regulates the human inward rectifier potassium K(IR)2.3 channel, stably expressed in HEK 293 cells. Br J Pharmacol 2011; 164:1469-78. [PMID: 21486282 PMCID: PMC3221101 DOI: 10.1111/j.1476-5381.2011.01424.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 03/05/2011] [Accepted: 04/04/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The detailed molecular modulation of inward rectifier potassium channels (including the K(IR) 2.3 channel) is not fully understood. The present study was designed to determine whether human K(IR) 2.3 (K(IR) 2.3) channels were regulated by protein tyrosine kinases (PTKs). EXPERIMENTAL APPROACH Whole-cell patch voltage-clamp, immunoprecipitation, Western blot analysis and site-directed mutagenesis were employed to determine the potential PTK phosphorylation of Kir2.3 current in HEK 293 cells stably expressing Kir2.3 gene. KEY RESULTS The broad-spectrum PTK inhibitor genistein (10 µM) and the selective epidermal growth factor (EGF) kinase inhibitor AG556 (10 µM) reversibly decreased K(IR) 2.3 current and the effect was reversed by the protein tyrosine phosphatase inhibitor, orthovanadate (1 mM). Although EGF (100 ng·mL(-1) ) and orthovanadate enhanced K(IR) 2.3 current, this effect was antagonized by AG556. However, the Src-family tyrosine kinase inhibitor PP2 (10 µM) did not inhibit K(IR) 2.3 current. Tyrosine phosphorylation of K(IR) 2.3 channels was decreased by genistein or AG556, and was increased by EGF or orthovanadate. The decrease of tyrosine phosphorylation of K(IR) 2.3 channels by genistein or AG556 was reversed by orthovanadate or EGF. Interestingly, the response of K(IR) 2.3 channels to EGF or AG556 was lost in the K(IR) 2.3 Y234A mutant channel. CONCLUSION AND IMPLICATIONS These results demonstrate that the EGF receptor tyrosine kinase up-regulates the K(IR) 2.3 channel via phosphorylation of the Y234 residue of the WT protein. This effect may be involved in the endogenous regulation of cellular electrical activity.
Collapse
Affiliation(s)
- De-Yong Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong KongPokfulam, Hong Kong SAR, China
| | - Yan-Hui Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong KongPokfulam, Hong Kong SAR, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong KongPokfulam, Hong Kong SAR, China
| | - Chu-Pak Lau
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong KongPokfulam, Hong Kong SAR, China
| | - Gui-Rong Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong KongPokfulam, Hong Kong SAR, China
- Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong KongPokfulam, Hong Kong SAR, China
| |
Collapse
|
23
|
Seebohm G, Strutz-Seebohm N, Ursu ON, Preisig-Müller R, Zuzarte M, Hill EV, Kienitz MC, Bendahhou S, Fauler M, Tapken D, Decher N, Collins A, Jurkat-Rott K, Steinmeyer K, Lehmann-Horn F, Daut J, Tavaré JM, Pott L, Bloch W, Lang F. Altered stress stimulation of inward rectifier potassium channels in Andersen-Tawil syndrome. FASEB J 2011; 26:513-22. [PMID: 22002906 DOI: 10.1096/fj.11-189126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inward rectifier potassium channels of the Kir2 subfamily are important determinants of the electrical activity of brain and muscle cells. Genetic mutations in Kir2.1 associate with Andersen-Tawil syndrome (ATS), a familial disorder leading to stress-triggered periodic paralysis and ventricular arrhythmia. To identify the molecular mechanisms of this stress trigger, we analyze Kir channel function and localization electrophysiologically and by time-resolved confocal microscopy. Furthermore, we employ a mathematical model of muscular membrane potential. We identify a novel corticoid signaling pathway that, when activated by glucocorticoids, leads to enrichment of Kir2 channels in the plasma membranes of mammalian cell lines and isolated cardiac and skeletal muscle cells. We further demonstrate that activation of this pathway can either partly restore (40% of cases) or further impair (20% of cases) the function of mutant ATS channels, depending on the particular Kir2.1 mutation. This means that glucocorticoid treatment might either alleviate or deteriorate symptoms of ATS depending on the patient's individual Kir2.1 genotype. Thus, our findings provide a possible explanation for the contradictory effects of glucocorticoid treatment on symptoms in patients with ATS and may open new pathways for the design of personalized medicines in ATS therapy.
Collapse
Affiliation(s)
- Guiscard Seebohm
- Department of Biochemistry I-Cation Channel Group, Ruhr University Bochum, Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang DY, Wu W, Deng XL, Lau CP, Li GR. Genistein and tyrphostin AG556 inhibit inwardly-rectifying Kir2.1 channels expressed in HEK 293 cells via protein tyrosine kinase inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1993-9. [DOI: 10.1016/j.bbamem.2011.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 04/13/2011] [Accepted: 04/29/2011] [Indexed: 11/28/2022]
|
25
|
Kito H, Yamazaki D, Ohya S, Yamamura H, Asai K, Imaizumi Y. Up-regulation of Kir2.1 by ER stress facilitates cell death of brain capillary endothelial cells. Biochem Biophys Res Commun 2011; 411:293-8. [DOI: 10.1016/j.bbrc.2011.06.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 06/20/2011] [Indexed: 12/20/2022]
|
26
|
Yamazaki D, Kito H, Yamamoto S, Ohya S, Yamamura H, Asai K, Imaizumi Y. Contribution of K(ir)2 potassium channels to ATP-induced cell death in brain capillary endothelial cells and reconstructed HEK293 cell model. Am J Physiol Cell Physiol 2010; 300:C75-86. [PMID: 20980552 DOI: 10.1152/ajpcell.00135.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular turnover of brain capillary endothelial cells (BCECs) by the balance of cell proliferation and death is essential for maintaining the homeostasis of the blood-brain barrier. Stimulation of metabotropic ATP receptors (P2Y) transiently increased intracellular Ca²(+) concentration ([Ca²(+)](i)) in t-BBEC 117, a cell line derived from bovine BCECs. The [Ca²(+)](i) rise induced membrane hyperpolarization via the activation of apamin-sensitive small-conductance Ca²(+)-activated K(+) channels (SK2) and enhanced cell proliferation in t-BBEC 117. Here, we found anomalous membrane hyperpolarization lasting for over 10 min in response to ATP in ∼15% of t-BBEC 117, in which inward rectifier K(+) channel (K(ir)2.1) was extensively expressed. Once anomalous hyperpolarization was triggered by ATP, it was removed by Ba²(+) but not by apamin. Prolonged exposure to ATPγS increased the relative population of t-BBEC 117, in which the expression of K(ir)2.1 mRNAs was significantly higher and Ba²(+)-sensitive anomalous hyperpolarization was observed. The cultivation of t-BBEC 117 in serum-free medium also increased this population and reduced the cell number. The reduction of cell number was enhanced by the addition of ATPγS and the enhancement was antagonized by Ba²(+). In the human embryonic kidney 293 cell model, where SK2 and K(ir)2.1 were heterologously coexpressed, [Ca²(+)](i) rise by P2Y stimulation triggered anomalous hyperpolarization and cell death. In conclusion, P2Y stimulation in BCECs enhances cell proliferation by SK2 activation in the majority of cells but also triggers cell death in a certain population showing a substantial expression of K(ir)2.1. This dual action of P2Y stimulation may effectively facilitate BCEC turnover.
Collapse
Affiliation(s)
- Daiju Yamazaki
- Department of Molecular and Cellular Pharmacology, Nagoya City University, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Sun Y, Keay S, Lehrfeld TJ, Chai TC. Changes in adenosine triphosphate-stimulated ATP release suggest association between cytokine and purinergic signaling in bladder urothelial cells. Urology 2009; 74:1163-8. [PMID: 19628257 PMCID: PMC2777753 DOI: 10.1016/j.urology.2009.02.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 01/21/2009] [Accepted: 02/21/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To determine whether antiproliferative factor (APF) or epidermal growth factor (EGF) can induce changes in purinergic signaling in normal bladder urothelial cells (BUCs) and/or whether antagonizing EGF activity or blocking adenosine triphosphate (ATP)-purinergic receptors can induce changes in purinergic signaling in interstitial cystitis (IC) cells. METHODS IC and normal BUCs were obtained from patients' bladder biopsy specimens. IC BUCs were treated with genistein, which antagonizes EGF's activity, and normal BUCs were treated with EGF, mock APF, or APF. Suramin, which antagonizes ATP activity, was used to treat the APF-treated normal BUCs. ATP release was determined by stimulating the BUCs with 30 microM ATP and then collecting the supernatant for a 3-hour period. ATP quantification was measured by luciferin-luciferase assay. Purinergic receptor P2X, ligand-gated ion channel, 3 (P2X3) expression on BUCs was determined by fluorescence-activated cell sorting. RESULTS Genistein treatment of IC BUCs resulted in significantly decreased ATP release, thus reverting IC cells to a normal purinergic signaling phenotype. Conversely, normal BUCs treated with EGF or APF resulted in significantly increased ATP release and P2X3 expression, converting normal BUCs to an IC phenotype. Also, suramin treatment of APF-treated normal BUCs significantly reduced ATP release. CONCLUSIONS Genistein and suramin reversed the augmented ATP release in IC BUCs and APF-treated normal BUCs, respectively, suggesting the possibility of intravesical use of these agents in IC treatment. EGF and APF induced augmented purinergic signaling in normal BUCs, as determined by increased ATP release and increased P2X3 expression. These data suggest an association between cytokines and purinergic signaling in human BUCs that should be explored further.
Collapse
Affiliation(s)
- Yan Sun
- Department of Surgery, Division of Urology, Veterans Affairs Maryland Healthcare System, University of Maryland School of Medicine, Baltimore, Maryland 2120, USA.
| | | | | | | |
Collapse
|
28
|
Tartaglione C, Ritta M. On the presence of 3H-GABA uptake mechanism in bovine spermatozoa. Anim Reprod Sci 2008; 108:247-58. [DOI: 10.1016/j.anireprosci.2007.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
|
29
|
Keay S. Cell signaling in interstitial cystitis/painful bladder syndrome. Cell Signal 2008; 20:2174-9. [PMID: 18602988 DOI: 10.1016/j.cellsig.2008.06.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Accepted: 06/13/2008] [Indexed: 01/08/2023]
Abstract
Evidence for several types of cell signaling abnormalities has been presented for patients with interstitial cystitis/painful bladder syndrome (IC/PBS), a poorly understood chronic painful bladder disorder for which currently there is no reliable effective therapy. Increases or decreases in various urine cytokines and growth factors have been found in patient specimens, along with abnormal expression of epithelial differentiation markers, growth factors, cell membrane proteins, neurotransmitters, and other cytokines in tissue biopsies and/or explanted bladder cells from IC/PBS patients. Some of the abnormalities found in bladder epithelial cells from IC/PBS patients have been shown to be induced in normal cells by an antiproliferative factor from IC/PBS bladder epithelial cells that binds to a functional cell membrane receptor (CKAP4/p63). Greater understanding of cell signaling events associated with this debilitating disorder may lead to the development of more effective therapies.
Collapse
Affiliation(s)
- Susan Keay
- Department of Medicine, University of Maryland School of Medicine and Veterans Administration Maryland Health Care System, Baltimore, Maryland, United States.
| |
Collapse
|
30
|
Regulation of two-pore-domain (K2P) potassium leak channels by the tyrosine kinase inhibitor genistein. Br J Pharmacol 2008; 154:1680-90. [PMID: 18516069 DOI: 10.1038/bjp.2008.213] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Two-pore-domain potassium (K2P) channels mediate potassium background (or 'leak') currents, controlling excitability by stabilizing membrane potential below firing threshold and expediting repolarization. Inhibition of K2P currents permits membrane potential depolarization and excitation. As expected for key regulators of excitability, leak channels are under tight control from a plethora of stimuli. Recently, signalling via protein tyrosine kinases (TKs) has been implicated in ion channel modulation. The objective of this study was to investigate TK regulation of K2P channels. EXPERIMENTAL APPROACH The two-electrode voltage clamp technique was used to record K2P currents in Xenopus oocytes. In addition, K2P channels were studied in Chinese hamster ovary (CHO) cells using the whole-cell patch clamp technique. KEY RESULTS Here, we report inhibition of human K2P3.1 (TASK-1) currents by the TK antagonist, genistein, in Xenopus oocytes (IC50=10.7 microM) and in CHO cells (IC50=12.3 microM). The underlying molecular mechanism was studied in detail. hK2P3.1 was not affected by genistin, an inactive analogue of genistein. Perorthovanadate, an inhibitor of tyrosine phosphatase activity, reduced the inhibitory effect of genistein. Current reduction was voltage independent and did not require channel protonation at position H98 or phosphorylation at the single TK phosphorylation site, Y323. Among functional hK2P family members, genistein also reduced K2P6.1 (TWIK-2), K2P9.1 (TASK-3) and K2P13.1 (THIK-1) currents, respectively. CONCLUSIONS AND IMPLICATIONS Modulation of K2P channels by the TK inhibitor, genistein, represents a novel molecular mechanism to alter background K+ currents.
Collapse
|
31
|
Zitron E, Günth M, Scherer D, Kiesecker C, Kulzer M, Bloehs R, Scholz EP, Thomas D, Weidenhammer C, Kathöfer S, Bauer A, Katus HA, Karle CA. Kir2.x inward rectifier potassium channels are differentially regulated by adrenergic α1A receptors. J Mol Cell Cardiol 2008; 44:84-94. [DOI: 10.1016/j.yjmcc.2007.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 09/21/2007] [Accepted: 10/01/2007] [Indexed: 11/30/2022]
|
32
|
Ahn M, Beacham D, Westenbroek RE, Scheuer T, Catterall WA. Regulation of Na(v)1.2 channels by brain-derived neurotrophic factor, TrkB, and associated Fyn kinase. J Neurosci 2007; 27:11533-42. [PMID: 17959796 PMCID: PMC6673213 DOI: 10.1523/jneurosci.5005-06.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 07/16/2007] [Accepted: 07/17/2007] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels are responsible for action potential initiation and propagation in neurons, and modulation of their function has an important impact on neuronal excitability. Sodium channels are regulated by a Src-family tyrosine kinase pathway, and this modulation can be reversed by specifically bound receptor phosphoprotein tyrosine phosphatase-beta. However, the specific tyrosine kinase and signaling pathway are unknown. We found that the sodium channels in rat brain interact with Fyn, one of four Src-family tyrosine kinases expressed in the brain. Na(V)1.2 channels and Fyn are localized together in the axons of cultured hippocampal neurons, the mossy fibers of the hippocampus, and cell bodies, dendrites, and axons of neurons in many other brain areas, and they coimmunoprecipitate with Fyn from cotransfected tsA-201 cells. Coexpression of Fyn with Na(V)1.2 channels decreases sodium currents by increasing the rate of inactivation and causing a negative shift in the voltage dependence of inactivation. Reconstitution of a signaling pathway from brain-derived neurotrophic factor (BDNF) to sodium channels via the tyrosine receptor kinase B (TrkB)/p75 neurotrophin receptor and Fyn kinase in transfected cells resulted in an increased rate of inactivation of sodium channels and a negative shift in the voltage dependence of inactivation after treatment with BDNF. These results indicate that Fyn kinase is associated with sodium channels in brain neurons and can modulate Na(V)1.2 channels by tyrosine phosphorylation after activation of TrkB/p75 signaling by BDNF.
Collapse
Affiliation(s)
- Misol Ahn
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| | - Daniel Beacham
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| | - Ruth E. Westenbroek
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| | - Todd Scheuer
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| | - William A. Catterall
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| |
Collapse
|
33
|
Jia Q, Jia Z, Zhao Z, Liu B, Liang H, Zhang H. Activation of epidermal growth factor receptor inhibits KCNQ2/3 current through two distinct pathways: membrane PtdIns(4,5)P2 hydrolysis and channel phosphorylation. J Neurosci 2007; 27:2503-12. [PMID: 17344388 PMCID: PMC6672518 DOI: 10.1523/jneurosci.2911-06.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
KCNQ2/3 currents are the molecular basis of the neuronal M currents that play a critical role in neuron excitability. Many neurotransmitters modulate M/KCNQ currents through their G-protein-coupled receptors. Membrane PtdIns(4,5)P2 hydrolysis and channel phosphorylation are two mechanisms that have been proposed for modulation of KCNQ2/3 currents. In this study, we studied regulation of KCNQ2/3 currents by the epidermal growth factor (EGF) receptor, a member of another family of membrane receptors, receptor tyrosine kinases. We demonstrate here that EGF induces biphasic inhibition of KCNQ2/3 currents in human embryonic kidney 293 cells and in rat superior cervical ganglia neurons, an initial fast inhibition and a later slow inhibition. Additional studies indicate that the early and late inhibitions resulted from PtdIns(4,5)P2 hydrolysis and tyrosine phosphorylation, respectively. We further demonstrate that these two processes are mutually dependent. This study indicates that EGF is a potent modulator of M/KCNQ currents and provides a new dimension to the understanding of the modulation of these channels.
Collapse
Affiliation(s)
- Qingzhong Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhiying Zhao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Boyi Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Huiling Liang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
34
|
Sun Y, Chen M, Lowentritt BH, Van Zijl PS, Koch KR, Keay S, Simard JM, Chai TC. EGF and HB-EGF modulate inward potassium current in human bladder urothelial cells from normal and interstitial cystitis patients. Am J Physiol Cell Physiol 2006; 292:C106-14. [PMID: 16837648 DOI: 10.1152/ajpcell.00209.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interstitial cystitis (IC) is an idiopathic condition characterized by bladder hyperalgesia. Studies have shown cytokine and purinergic signaling abnormalities in cultured bladder urothelial cells (BUC) from IC patients. We performed single-cell electrophysiological studies in both normal and IC BUC. A strongly inward rectifying potassium current with conductance of the Kir2.1 channel was identified in normal BUC. This current was significantly reduced in IC BUC. Kir2.1 protein and mRNA were detected in both IC and normal BUC. Epidermal growth factor (EGF) caused a dose-dependent decrease in the inward potassium current in normal BUC. EGF is secreted in higher amounts by IC BUC and is known to decrease Kir2.1 conductance by phosphorylation of Kir2.1. Genistein, a nonspecific phosphorylation inhibitor, increased the inward potassium current in IC BUC and blocked the effect of EGF on normal BUC. Treatment of IC BUC with heparin-binding epidermal growth factor-like growth factor (HB-EGF), previously shown to be secreted in lower amounts by IC BUC, significantly increased inward potassium current. These data show that the inward potassium current in BUC can be modulated by EGF and HB-EGF. Changes in BUC membrane potassium conductance caused by altered levels of EGF and HB-EGF may therefore play a role in the pathophysiology of IC.
Collapse
Affiliation(s)
- Yan Sun
- Division of Urology, University of Maryland, 22 S. Greene Street, S8D18, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The epidermal growth factor (EGF)-ErbB signaling network is composed of multiple ligands of the EGF family and four tyrosine kinase receptors of the ErbB family. In higher vertebrates, these four receptors bind a multitude of ligands. Ligand binding induces the formation of various homo- and heterodimers of ErbB, potentially providing for a high degree of signal diversity. ErbB receptors and their ligands are expressed in a variety of tissues throughout development. Recent advances in gene targeting strategies in mice have revealed that the EGF-ErbB signaling network has fundamental roles in development, proliferation, differentiation, and homeostasis in mammals. The heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that binds to and activates the EGF receptor (EGFR/ErbB1) and ErbB4. Recent studies using several mutant mice lacking HB-EGF expression have revealed that HB-EGF has a critical role in normal heart function and in normal cardiac valve formation in conjunction with ErbB receptors. HB-EGF signaling through ErbB2 is essential for the maintenance of homeostasis in the adult heart, whereas HB-EGF signaling through EGFR is required during cardiac valve development. In this review, we introduce and discuss the role of ErbB receptors in heart function and development, focusing on the physiological function of HB-EGF in these processes.
Collapse
Affiliation(s)
- Ryo Iwamoto
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | | |
Collapse
|
36
|
Rossignol TM, Jones SVP. Regulation of a family of inwardly rectifying potassium channels (Kir2) by the m1 muscarinic receptor and the small GTPase Rho. Pflugers Arch 2005; 452:164-74. [PMID: 16328454 DOI: 10.1007/s00424-005-0014-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 10/18/2005] [Indexed: 11/26/2022]
Abstract
Inwardly rectifying potassium channels Kir2.1-Kir2.3 are important regulators of membrane potential and, thus, control cellular excitability. However, little is known about the regulation of these channels. Therefore, we studied the mechanisms mediating the regulation of Kir2.1-Kir2.3 by the G-protein-coupled m1 muscarinic receptor using the whole-cell patch-clamp technique and recombinant expression in the tsA201 mammalian cell line. Stimulation of the m1 muscarinic receptor inhibited all subtypes of inward rectifier tested, Kir2.1-Kir2.3. The inhibition of each channel subtype was reversible and was attenuated by the muscarinic receptor antagonist, atropine. The protein kinase C activator phorbol 12-myristate 13-acetate (PMA) mimicked the effects of m1 receptor activation by inhibiting Kir2.1 currents. However, PMA had no effect on Kir2.2 or Kir2.3. Inclusion of 200-microM guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS) in the patch pipette solution prevented the effects of m1 muscarinic receptor stimulation on all three of the channel subtypes tested, confirming the mediation of the responses by G-proteins. Cotransfection with the activated mutant of the small GTPase Rho reduced current density, while C3 exoenzyme, a selective inhibitor of Rho, attenuated the m1 muscarinic receptor-induced inhibition of Kir2.1-Kir2.3. Also, buffering the intracellular calcium concentration with a high concentration of EGTA abolished the m1 receptor-induced inhibition of Kir2.1-Kir2.3, implicating a role for calcium in these responses. These results indicate that all three of the Kir2 channels are similarly inhibited by m1 muscarinic receptor stimulation through calcium-dependent activation of the small GTPase Rho.
Collapse
Affiliation(s)
- Todd M Rossignol
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
37
|
Abstract
Vascular smooth muscle (VSM) cells, endothelial cells (EC), and pericytes that form the walls of vessels in the microcirculation express a diverse array of ion channels that play an important role in the function of these cells and the microcirculation in both health and disease. This brief review focuses on the K+ channels expressed in smooth muscle and endothelial cells in arterioles. Microvascular VSM cells express at least four different classes of K+ channels, including inward-rectifier K+ channels (Kin), ATP-sensitive K+ channels (KATP), voltage-gated K+ channels (Kv), and large conductance Ca2+-activated K+ channels (BKCa). VSM KIR participate in dilation induced by elevated extracellular K+ and may also be activated by C-type natriuretic peptide, a putative endothelium-derived hyperpolarizing factor (EDHF). Vasodilators acting through cAMP or cGMP signaling pathways in VSM may open KATP, Kv, and BKCa, causing membrane hyperpolarization and vasodilation. VSMBKc. may also be activated by epoxides of arachidonic acid (EETs) identified as EDHF in some systems. Conversely, vasoconstrictors may close KATP, Kv, and BKCa through protein kinase C, Rho-kinase, or c-Src pathways and contribute to VSM depolarization and vasoconstriction. At the same time Kv and BKCa act in a negative feedback manner to limit depolarization and prevent vasospasm. Microvascular EC express at least 5 classes of K+ channels, including small (sKCa) and intermediate(IKCa) conductance Ca2+-activated K+ channels, Kin, KATP, and Kv. Both sK and IK are opened by endothelium-dependent vasodilators that increase EC intracellular Ca2+ to cause membrane hyper-polarization that may be conducted through myoendothelial gap junctions to hyperpolarize and relax arteriolar VSM. KIR may serve to amplify sKCa- and IKCa-induced hyperpolarization and allow active transmission of hyperpolarization along EC through gap junctions. EC KIR channels may also be opened by elevated extracellular K+ and participate in K+-induced vasodilation. EC KATP channels may be activated by vasodilators as in VSM. Kv channels may provide a negative feedback mechanism to limit depolarization in some endothelial cells.
Collapse
Affiliation(s)
- William F Jackson
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA.
| |
Collapse
|
38
|
Bacci A, Huguenard JR, Prince DA. Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 2004; 431:312-6. [PMID: 15372034 DOI: 10.1038/nature02913] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 08/11/2004] [Indexed: 11/08/2022]
Abstract
Neocortical GABA-containing interneurons form complex functional networks responsible for feedforward and feedback inhibition and for the generation of cortical oscillations associated with several behavioural functions. We previously reported that fast-spiking (FS), but not low-threshold-spiking (LTS), neocortical interneurons from rats generate a fast and precise self-inhibition mediated by inhibitory autaptic transmission. Here we show that LTS cells possess a different form of self-inhibition. LTS, but not FS, interneurons undergo a prominent hyperpolarization mediated by an increased K+-channel conductance. This self-induced inhibition lasts for many minutes, is dependent on an increase in intracellular [Ca2+] and is blocked by the cannabinoid receptor antagonist AM251, indicating that it is mediated by the autocrine release of endogenous cannabinoids. Endocannabinoid-mediated slow self-inhibition represents a powerful and long-lasting mechanism that alters the intrinsic excitability of LTS neurons, which selectively target the major site of excitatory connections onto pyramidal neurons; that is, their dendrites. Thus, modulation of LTS networks after their sustained firing will lead to long-lasting changes of glutamate-mediated synaptic strength in pyramidal neurons, with consequences during normal and pathophysiological cortical network activities.
Collapse
Affiliation(s)
- Alberto Bacci
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
39
|
Romanenko VG, Fang Y, Byfield F, Travis AJ, Vandenberg CA, Rothblat GH, Levitan I. Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J 2004; 87:3850-61. [PMID: 15465867 PMCID: PMC1304896 DOI: 10.1529/biophysj.104.043273] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study investigates how changes in the level of cellular cholesterol affect inwardly rectifying K+ channels belonging to a family of strong rectifiers (Kir2). In an earlier study we showed that an increase in cellular cholesterol suppresses endogenous K+ current in vascular endothelial cells, presumably due to effects on underlying Kir2.1 channels. Here we show that, indeed, cholesterol increase strongly suppressed whole-cell Kir2.1 current when the channels were expressed in a null cell line. However, cholesterol level had no effect on the unitary conductance and only little effect on the open probability of the channels. Moreover, no cholesterol effect was observed either on the total level of Kir2.1 protein or on its surface expression. We suggest, therefore, that cholesterol modulates not the total number of Kir2.1 channels in the plasma membrane but rather the transition of the channels between active and silent states. Comparing the effects of cholesterol on members of the Kir2.x family shows that Kir2.1 and Kir2.2 have similar high sensitivity to cholesterol, Kir2.3 is much less sensitive, and Kir2.4 has an intermediate sensitivity. Finally, we show that Kir2.x channels partition virtually exclusively into Triton-insoluble membrane fractions indicating that the channels are targeted into cholesterol-rich lipid rafts.
Collapse
Affiliation(s)
- Victor G Romanenko
- Institute for Medicine and Engineering, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Correia MJ, Wood TG, Prusak D, Weng T, Rennie KJ, Wang HQ. Molecular characterization of an inward rectifier channel (IKir) found in avian vestibular hair cells: cloning and expression of pKir2.1. Physiol Genomics 2004; 19:155-69. [PMID: 15316115 DOI: 10.1152/physiolgenomics.00096.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fast inwardly rectifying current has been observed in some of the sensory cells (hair cells) of the inner ear of several species. While the current was presumed to be an IKir current, contradictory evidence existed as to whether the cloned channel actually belonged to the Kir2.0 subfamily of potassium inward rectifiers. In this paper, we report for the first time converging evidence from electrophysiological, biochemical, immunohistochemical, and genetic studies that show that the Kir2.1 channel carries the fast inwardly rectifying currents found in pigeon vestibular hair cells. Following cytoplasm extraction from single type II and multiple pigeon vestibular hair cells, mRNA was reverse transcribed, amplified, and sequenced. The open reading frame (ORF), consisting of a 1,284-bp nucleotide sequence, showed 94, 85, and 83% identity with Kir2.1 subunit sequences from chick lens, Kir2 sequences from human heart, and a mouse macrophage cell line, respectively. Phylogenetic analyses revealed that pKir2.1 formed an immediate node with hKir2.1 but not with hKir2.2-2.4. Hair cells (type I and type II) and supporting cells in the sensory epithelium reacted positively with a Kir2.1 antibody. The whole cell current recorded in oocytes and CHO cells, transfected with pigeon hair cell Kir2.1 (pKir2.1), demonstrated blockage by Ba2+ and sensitivity to changing K+ concentration. The mean single-channel linear slope conductance in transfected CHO cells was 29 pS. The open dwell time was long (approximately 300 ms at -100 mV), and the closed dwell time was short (approximately 34 ms at -100 mV). Multistates ranging from 3-6 were noted in some single-channel responses. All of the above features have been described for other Kir2.1 channels. Current clamp studies of native pigeon vestibular hair cells illustrated possible physiological roles of the channel and showed that blockage of the channel by Ba2+ depolarized the resting membrane potential by approximately 30 mV. Negative currents hyperpolarized the membrane approximately 20 mV before block but approximately 60 mV following block. RT-PCR studies revealed that the pKir2.1 channels found in pigeon vestibular hair cells were also present in pigeon vestibular nerve, vestibular ganglion, lens, neck muscle, brain (brain stem, cerebellum and optic tectum), liver, and heart.
Collapse
Affiliation(s)
- Manning J Correia
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas 77555-1063, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Konig S, Hinard V, Arnaudeau S, Holzer N, Potter G, Bader CR, Bernheim L. Membrane hyperpolarization triggers myogenin and myocyte enhancer factor-2 expression during human myoblast differentiation. J Biol Chem 2004; 279:28187-96. [PMID: 15084602 DOI: 10.1074/jbc.m313932200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is widely thought that myogenin is one of the earliest detectable markers of skeletal muscle differentiation. Here we show that, during human myoblast differentiation, an inward rectifier K(+) channel (Kir2.1) and its associated hyperpolarization trigger expression and activity of the myogenic transcription factors, myogenin and myocyte enhancer factor-2 (MEF2). Furthermore, Kir2.1 current precedes and is required for the developmental increase in expression/activity of myogenin and MEF2. Drugs or antisense reducing Kir2.1 current diminished or suppressed fusion as well as expression/activity of myogenin and MEF2. In contrast, LY294002, an inhibitor of phosphatidylinositol 3-kinase (a pathway controlling initiation of the myogenic program) that inhibited both myogenin/MEF2 expression and fusion, did not affect Kir2.1 current. This non-blockade by LY294002 indicates that Kir2.1 acts upstream of myogenin and MEF2. We propose that Kir2.1 channel activation is a required key early event that initiates myogenesis by turning on myogenin and MEF2 transcription factors via a hyperpolarization-activated Ca(2+)-dependent pathway.
Collapse
Affiliation(s)
- Stéphane Konig
- Département de Physiologie, Centre Médical Universitaire, Hôpital Cantonal Universitaire, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
42
|
Schubert R, Krien U, Wulfsen I, Schiemann D, Lehmann G, Ulfig N, Veh RW, Schwarz JR, Gago H. Nitric oxide donor sodium nitroprusside dilates rat small arteries by activation of inward rectifier potassium channels. Hypertension 2004; 43:891-6. [PMID: 14993195 DOI: 10.1161/01.hyp.0000121882.42731.6b] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of vascular smooth muscle inward rectifier K+ (K(IR)) channels in the mechanisms underlying vasodilation is still unclear. The hypothesis that K(IR) channels are involved in sodium nitroprusside (SNP)-induced dilation of rat-tail small arteries was tested. SNP relaxed tail small arteries with an EC50 of 2.6x10(-8) mol/L. Endothelium removal did not attenuate this effect. Vessel pretreatment with hydroxocobalamin, a nitric oxide (NO) scavenger, but not with rhodanese and sodium thiosulfate, inactivators of cyanide (CN), abolished the SNP effect. Vessel pretreatment with 10(-5) mol/L Ba2+, a specific blocker of K(IR) channels at micromolar concentrations, reduced the SNP effect. Low concentrations of K+ dilated the vessels; this effect was attenuated largely after pretreatment with 3x10(-5) mol/L Ba2+. In freshly isolated smooth muscle cells, a barium-sensitive current was observed at potentials negative to the potassium equilibrium potential. Application of 10(-4) mol/L SNP increased the barium-sensitive current 1.79+/-0.23-fold at -100 mV and hyperpolarized the membrane potential by 8.6+/-0.5 mV. In tissue from freshly dissected vessels, transcripts for K(IR) 2.1 and 2.2, but not for K(IR) 2.3 and 2.4, were found. However, only K(IR) 2.1 antibodies immunostained the tunica media of the vessel. These data suggest that vascular smooth muscle K(IR) 2.1 channels are involved in the SNP-induced dilation of rat-tail small arteries.
Collapse
Affiliation(s)
- Rudolf Schubert
- Institute of Physiology, University Rostock, Rostock, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jones SVP. Role of the small GTPase Rho in modulation of the inwardly rectifying potassium channel Kir2.1. Mol Pharmacol 2003; 64:987-93. [PMID: 14500755 DOI: 10.1124/mol.64.4.987] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inwardly rectifying potassium channel Kir2.1 is inhibited by a variety of G-protein-coupled receptors (GPCRs). However, the mechanisms underlying the inhibition have not been fully elucidated. In this study the role of the small GTPase, Rho, in mediating this inhibition was determined. Stimulation of the m1 muscarinic receptor inhibited Kir2.1, when both receptor and channel were coexpressed in tsA201 cells. The inhibition of Kir2.1 by carbachol was reversible and atropine-sensitive. Cotransfection with a dominant-negative mutant of the small GTPase Rho abolished the inhibition of Kir2.1 with current amplitudes remaining at control levels in the presence of carbachol. Conversely, cotransfection with the constitutively activated mutant of Rho resulted in a reduction in basal Kir2.1 current amplitudes, suggesting that Rho inhibits Kir2.1. To further confirm the involvement of Rho in the signal transduction pathway, cotransfection with C3 transferase (EFC3), a selective inhibitor of Rho, abolished the reduction in Kir2.1 currents noted upon application of carbachol under control conditions. Preincubation with the phosphatidylinositol 3-kinase inhibitor wortmannin or the Rho kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2 HCl (Y-27632) had no effect on agonist-induced inhibition of Kir2.1, precluding these kinases as downstream effectors of Rho in mediation of the signal. In addition, 2'-amino-3'-methoxyflavone (PD98059), an inhibitor of mitogen-activated protein (MAP) kinase kinase (MEK), had no effect on the m1 receptor-induced inhibition of Kir2.1, suggesting that MAP kinases are not involved in the signaling pathway. In conclusion, these data indicate that the small GTPase, Rho, transduces the m1 muscarinic receptor-induced inhibition of Kir2.1 via an unidentified mechanism.
Collapse
Affiliation(s)
- S V Penelope Jones
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA.
| |
Collapse
|
44
|
Buresi MC, MacNaughton WK. Intestinal epithelial secretory function: Role of proteinase-activated receptors. Drug Dev Res 2003. [DOI: 10.1002/ddr.10308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Abdullaev IF, Sabirov RZ, Okada Y. Upregulation of swelling-activated Cl- channel sensitivity to cell volume by activation of EGF receptors in murine mammary cells. J Physiol 2003; 549:749-58. [PMID: 12702740 PMCID: PMC2343000 DOI: 10.1113/jphysiol.2003.039784] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Whole-cell recordings showed that, in mouse mammary C127 cells transfected with the full genome of the bovine papilloma virus (BPV), a hypotonic challenge induced the activation of outwardly rectifying Cl- currents with a peak amplitude 2.7 times greater than that in control C127 cells. Cell-attached single-channel recordings showed that BPV-induced augmentation of the peak amplitude of the whole-cell current could not chiefly be explained by a small increase (1.2 times) in unitary conductance. There was no difference between control and BPV-transfected cells in the osmotic cell swelling rate, and hence, osmotic water permeability. However, a plot of the whole-cell current density as a function of cell volume, which was measured simultaneously, showed that the BPV-transfected cells had a strikingly greater volume sensitivity than control cells. Since the E5 protein of BPV has been reported to induce constitutive activation of the epidermal growth factor (EGF) receptor and platelet-derived growth factor (PDGF) receptor in a variety of cell lines including C127 cells, effects of the growth factors on volume-sensitive outwardly rectifying (VSOR) Cl- currents were examined in C127 cells. Application of PDGF peptides failed to affect the Cl- currents in control and BPV-transfected cells, although C127 cells are known to endogenously express PDGF receptors. In contrast, EGF peptides significantly increased the VSOR Cl- current in control cells. However, they failed to induce further augmentation of the current in BPV-transfected cells. VSOR Cl- currents were inhibited by tyrphostin B46, an inhibitor of the EGF receptor tyrosine kinase, in both control and BPV-transfected cells. The IC50 value in BPV-transfected cells (12 micro M) was lower than that in control cells (31 micro M). However, the VSOR Cl- currents in both cell types were insensitive to tyrphostin AG1296, an inhibitor of the PDGF receptor tyrosine kinase. The rate of regulatory volume decrease (RVD) was markedly diminished by tyrphostin B46 but not significantly affected by tyrphostin AG1296. We thus conclude that the EGF receptor tyrosine kinase upregulates the activity of the VSOR Cl- channel, mainly by enhancing the volume sensitivity.
Collapse
Affiliation(s)
- Iskandar F Abdullaev
- Department of Cell Physiology, National Institute for Physiological Sciences, CREST of Japan Science and Technology Corporation, Okazaki 444-8585, Japan
| | | | | |
Collapse
|
46
|
Bradding P, Okayama Y, Kambe N, Saito H. Ion channel gene expression in human lung, skin, and cord blood-derived mast cells. J Leukoc Biol 2003; 73:614-20. [PMID: 12714576 DOI: 10.1189/jlb.1202602] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Immunoglobulin E (IgE)-dependent activation of human mast cells (HMC) is characterized by an influx of extracellular calcium (Ca(2+)), which is essential for subsequent release of preformed (granule-derived) mediators and newly generated autacoids and cytokines. In addition, flow of ions such as K(+) and Cl(-) is likely to play an important role in mast cell activation, proliferation, and chemotaxis through their effect on membrane potential and thus Ca(2+) influx. It is therefore important to identify these critical molecular effectors of HMC function. In this study, we have used high-density oligonucleotide probe arrays to characterize for the first time the profile of ion channel gene expression in human lung, skin, and cord blood-derived mast cells. These cells express mRNA for inwardly rectifying and Ca(2+)-activated K(+) channels, voltage-dependent Na(+) and Ca(2+) channels, purinergic P2X channels, transient receptor potential channels, and voltage-dependent and intracellular Cl(-) channels. IgE-dependent activation had little effect on ion channel expression, but distinct differences for some channels were observed between the different mast cell phenotypes, which may contribute to the mechanism of functional mast cell heterogeneity.
Collapse
Affiliation(s)
- Peter Bradding
- Division of Respiratory Medicine, Institute for Lung Health, University of Leicester Medical School, United Kingdom.
| | | | | | | |
Collapse
|
47
|
Lin DH, Sterling H, Lerea KM, Welling P, Jin L, Giebisch G, Wang WH. K depletion increases protein tyrosine kinase-mediated phosphorylation of ROMK. Am J Physiol Renal Physiol 2002; 283:F671-7. [PMID: 12217858 PMCID: PMC2843414 DOI: 10.1152/ajprenal.00160.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We purified His-tagged ROMK1 and carried out in vitro phosphorylation assays with (32)P-radiolabeled ATP to determine whether ROMK1 protein is a substrate for PTK. Addition of active c-Src and [(32)P]ATP to the purified ROMK1 protein resulted in the phosphorylation of the ROMK1 protein. However, c-Src did not phosphorylate R1Y337A in which tyrosine residue 337 was mutated to alanine. Furthermore, phosphopeptide mapping identified two phosphopeptides from the trypsin-digested ROMK1 protein. In contrast, no phosphorylated peptide has been found in the trypsin-digested R1Y337A protein. This suggested that two phosphorylated peptides might contain the same tyrosine residue. Also, addition of c-Src and [(32)P]ATP phosphorylated the synthesized peptide corresponding to amino acid sequence 333-362 of the COOH terminus of ROMK1. We then examined the effect of dietary K intake on the tyrosine-phosphorylated ROMK level. Although the ROMK channels pulled down by immunoprecipitation with ROMK antibody were the same from rats on a K-deficient diet or on a high-K diet, more ROMK channels were phosphorylated by PTK in rats on a K-deficient diet than those on a high-K diet. We conclude that ROMK1 can be phosphorylated by PTK and that tyrosine residue 337 is the key site for the phosphorylation. Also, the tyrosine phosphorylation of ROMK is modulated by dietary K intake. This strongly suggests that PTK is an important member of the aldosterone-independent signal transduction pathway for regulating renal K secretion.
Collapse
Affiliation(s)
- Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla 10595, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 2002; 145:47-179. [PMID: 12224528 DOI: 10.1007/bfb0116431] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Peter R Stanfield
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
49
|
Dewson G, Conley EC, Bradding P. Multigene family isoform profiling from blood cell lineages. BMC Genomics 2002; 3:22. [PMID: 12167175 PMCID: PMC122081 DOI: 10.1186/1471-2164-3-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Accepted: 08/07/2002] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Analysis of cell-selective gene expression for families of proteins of therapeutic interest is crucial when deducing the influence of genes upon complex traits and disease susceptibility. Presently, there is no convenient tool for examining isoform-selective expression for large gene families. A multigene isoform profiling strategy was developed and used to investigate the inwardly rectifying K+ (Kir) channel family in human leukocytes. Comprised of seven subfamilies, Kir channels have important roles in setting the resting membrane potential in excitable and non-excitable cells. RESULTS Gene sequence alignment allowed determination of "islands" of amino acid homology, and sub-family "centred" priming permitted simultaneous co-amplification of each family member. Validation and cross-priming analysis was performed against a panel of cognate Kir channel clones. Radiolabelling and diagnostic restriction digestion of pooled PCR products enabled determination of distinct Kir gene expression profiles in pure populations of human neutrophils, eosinophils and lung mast cells, with conservation of Kir2.0 isoforms amongst the leukocyte subsets. We also identified a Kir2.0 channel product, which may potentially represent a novel family member. CONCLUSIONS We have developed a novel, rapid and flexible strategy for the determination of gene family isoform composition in any cell type with the additional capacity to detect hitherto unidentified family members and verified its application in a study of Kir channel isoform expression in human leukocytes.
Collapse
Affiliation(s)
- Grant Dewson
- Biochem. Toxicol., CMHT, Leicester University, Lancaster Road, Leicester, LE1 9HN, UK
| | - Edward C Conley
- APBiotech Inc. R&D Unit, Forest Farm Laboratories, Whitchurch, Cardiff, CF14 7YT, UK
| | - Peter Bradding
- Division of Respiratory Medicine, Institute for Lung Health, University of Leicester Medical School, Glenfield Hospital, Leicester, LE3 9QP, UK
| |
Collapse
|
50
|
Ozcelik C, Erdmann B, Pilz B, Wettschureck N, Britsch S, Hübner N, Chien KR, Birchmeier C, Garratt AN. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci U S A 2002; 99:8880-5. [PMID: 12072561 PMCID: PMC124392 DOI: 10.1073/pnas.122249299] [Citation(s) in RCA: 346] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The ErbB2 (Her2) proto-oncogene encodes a receptor tyrosine kinase, which is frequently amplified and overexpressed in human tumors. ErbB2 provides the target for a novel and effective antibody-based therapy (Trastuzumab/Herceptin) used for the treatment of mammary carcinomas. However, cardiomyopathies develop in a proportion of patients treated with Trastuzumab, and the incidence of such complications is increased by combination with standard chemotherapy. Gene ablation studies have previously demonstrated that the ErbB2 receptor, together with its coreceptor ErbB4 and the ligand Neuregulin-1, are essential for normal development of the heart ventricle. We use here Cre-loxP technology to mutate ErbB2 specifically in ventricular cardiomyocytes. Conditional mutant mice develop a severe dilated cardiomyopathy, with signs of cardiac dysfunction generally appearing by the second postnatal month. We infer that signaling from the ErbB2 receptor, which is enriched in T-tubules in cardiomyocytes, is crucial for adult heart function. Conditional ErbB2 mutant mice provide a model of dilated cardiomyopathy. In particular, they will allow a rigorous assessment of the role of ErbB2 in the heart and provide insight into the molecular mechanisms that underlie the adverse effects of anti-ErbB2 antibodies.
Collapse
Affiliation(s)
- Cemil Ozcelik
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|