1
|
Cheng J, McMahon SM, Piston DW, Jackson MB. Comparing confocal and two-photon Ca 2+ imaging of thin low-scattering preparations. BIOPHYSICAL REPORTS 2023; 3:100109. [PMID: 37213258 PMCID: PMC10192416 DOI: 10.1016/j.bpr.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ca2+ imaging provides insight into biological processes ranging from subcellular dynamics to neural network activity. Two-photon microscopy has assumed a dominant role in Ca2+ imaging. The longer wavelength infra-red illumination undergoes less scattering, and absorption is confined to the focal plane. Two-photon imaging can thus penetrate thick tissue ∼10-fold more deeply than single-photon visible imaging to make two-photon microscopy an exceptionally powerful method for probing function in intact brain. However, two-photon excitation produces photobleaching and photodamage that increase very steeply with light intensity, limiting how strongly one can illuminate. In thin samples, illumination intensity can assume a dominant role in determining signal quality, raising the possibility that single-photon microscopy may be preferable. We therefore tested laser scanning single-photon and two-photon microscopy side by side with Ca2+ imaging in neuronal compartments at the surface of a brain slice. We optimized illumination intensity for each light source to obtain the brightest signal without photobleaching. Intracellular Ca2+ rises elicited by one action potential had twice the signal/noise ratio with confocal as with two-photon imaging in axons, were 31% higher in dendrites, and about the same in cell bodies. The superior performance of confocal imaging in finer neuronal processes likely reflects the dominance of shot noise when fluorescence is dim. Thus, when out-of-focus absorption and scattering are not issues, single-photon confocal imaging can yield better quality signals than two-photon microscopy.
Collapse
Affiliation(s)
- Jinbo Cheng
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin
| | - Shane M McMahon
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
2
|
Tinning PW, Franssen AJPM, Hridi SU, Bushell TJ, McConnell G. A 340/380 nm light-emitting diode illuminator for Fura-2 AM ratiometric Ca 2+ imaging of live cells with better than 5 nM precision. J Microsc 2017; 269:212-220. [PMID: 28837217 PMCID: PMC5836901 DOI: 10.1111/jmi.12616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 01/17/2023]
Abstract
We report the first demonstration of a fast wavelength‐switchable 340/380 nm light‐emitting diode (LED) illuminator for Fura‐2 ratiometric Ca2+ imaging of live cells. The LEDs closely match the excitation peaks of bound and free Fura‐2 and enables the precise detection of cytosolic Ca2+ concentrations, which is only limited by the Ca2+ response of Fura‐2. Using this illuminator, we have shown that Fura‐2 acetoxymethyl ester (AM) concentrations as low as 250 nM can be used to detect induced Ca2+ events in tsA‐201 cells and while utilising the 150 μs switching speeds available, it was possible to image spontaneous Ca2+ transients in hippocampal neurons at a rate of 24.39 Hz that were blunted or absent at typical 0.5 Hz acquisition rates. Overall, the sensitivity and acquisition speeds available using this LED illuminator significantly improves the temporal resolution that can be obtained in comparison to current systems and supports optical imaging of fast Ca2+ events using Fura‐2.
Collapse
Affiliation(s)
- P W Tinning
- Department of Physics, SUPA University of Strathclyde, Glasgow, U.K
| | - A J P M Franssen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - S U Hridi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - T J Bushell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - G McConnell
- Centre for Biophotonics, University of Strathclyde, Glasgow, U.K
| |
Collapse
|
3
|
Horobin R, Stockert J, Rashid-Doubell F. Uptake and localization mechanisms of fluorescent and colored lipid probes. Part 2. QSAR models that predict localization of fluorescent probes used to identify (“specifically stain”) various biomembranes and membranous organelles. Biotech Histochem 2015; 90:241-54. [DOI: 10.3109/10520295.2015.1005129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
4
|
Abstract
Mitochondria not only govern energy production, but are also involved in crucial cellular signalling processes. They are one of the most important organelles determining the Ca(2+) regulatory pathway in the cell. Several mathematical models explaining these mechanisms were constructed, but only few of them describe interplay between calcium concentrations in endoplasmic reticulum (ER), cytoplasm and mitochondria. Experiments measuring calcium concentrations in mitochondria and ER suggested the existence of cytosolic microdomains with locally elevated calcium concentration in the nearest vicinity of the outer mitochondrial membrane. These intermediate physical connections between ER and mitochondria are called MAM (mitochondria-associated ER membrane) complexes. We propose a model with a direct calcium flow from ER to mitochondria, which may be justified by the existence of MAMs, and perform detailed numerical analysis of the effect of this flow on the type and shape of calcium oscillations. The model is partially based on the Marhl et al model. We have numerically found that the stable oscillations exist for a considerable set of parameter values. However, for some parameter sets the oscillations disappear and the trajectories of the model tend to a steady state with very high calcium level in mitochondria. This can be interpreted as an early step in an apoptotic pathway.
Collapse
Affiliation(s)
- Piotr Szopa
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
5
|
Abstract
Calcium is an important signaling molecule involved in the regulation of many cellular functions. The large free energy in the Ca(2+) ion membrane gradients makes Ca(2+) signaling inherently sensitive to the available cellular free energy, primarily in the form of ATP. In addition, Ca(2+) regulates many cellular ATP-consuming reactions such as muscle contraction, exocytosis, biosynthesis, and neuronal signaling. Thus, Ca(2+) becomes a logical candidate as a signaling molecule for modulating ATP hydrolysis and synthesis during changes in numerous forms of cellular work. Mitochondria are the primary source of aerobic energy production in mammalian cells and also maintain a large Ca(2+) gradient across their inner membrane, providing a signaling potential for this molecule. The demonstrated link between cytosolic and mitochondrial Ca(2+) concentrations, identification of transport mechanisms, and the proximity of mitochondria to Ca(2+) release sites further supports the notion that Ca(2+) can be an important signaling molecule in the energy metabolism interplay of the cytosol with the mitochondria. Here we review sites within the mitochondria where Ca(2+) plays a role in the regulation of ATP generation and potentially contributes to the orchestration of cellular metabolic homeostasis. Early work on isolated enzymes pointed to several matrix dehydrogenases that are stimulated by Ca(2+), which were confirmed in the intact mitochondrion as well as cellular and in vivo systems. However, studies in these intact systems suggested a more expansive influence of Ca(2+) on mitochondrial energy conversion. Numerous noninvasive approaches monitoring NADH, mitochondrial membrane potential, oxygen consumption, and workloads suggest significant effects of Ca(2+) on other elements of NADH generation as well as downstream elements of oxidative phosphorylation, including the F(1)F(O)-ATPase and the cytochrome chain. These other potential elements of Ca(2+) modification of mitochondrial energy conversion will be the focus of this review. Though most specific molecular mechanisms have yet to be elucidated, it is clear that Ca(2+) provides a balanced activation of mitochondrial energy metabolism that exceeds the alteration of dehydrogenases alone.
Collapse
Affiliation(s)
- Brian Glancy
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20817, USA
| | | |
Collapse
|
6
|
Cheung KL, Yu S, Pan Z, Ma J, Wu TY, Kong ANT. tBHQ-induced HO-1 expression is mediated by calcium through regulation of Nrf2 binding to enhancer and polymerase II to promoter region of HO-1. Chem Res Toxicol 2011; 24:670-6. [PMID: 21443188 DOI: 10.1021/tx1004369] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Induction of Nrf2-mediated detoxifying/antioxidant enzymes is an effective strategy for cancer chemoprevention. The goal of this study was to examine the role of calcium [Ca(2+)] in regulating a well-known phenolic chemopreventive compound tertiary-butylhydroquinone (tBHQ) activation of Nrf2 and induction of Nrf2 downstream target gene heme-oxygenase (HO-1). tBHQ alone caused Nrf2 nuclear localization and induced HO-1 mRNA and protein expression in a dose-dependent manner. Using RT-PCR and Western blotting, we showed that tBHQ-induced transcription of HO-1 is Ca(2+)-dependent. Chelation of [Ca(2+)](ext) or [Ca(2+)](intra) by EGTA or BAPTA attenuated tBHQ-induced HO-1. Cotreatment of tBHQ with inhibitors of [Ca(2+)]-sensitive protein kinase C and camodulin kinase did not attenuate HO-1 induction. Nuclear translocation of Nrf2 induced by tBHQ was also not affected by treatment of EGTA or BAPTA. Additionally, EGTA and BAPTA treatments decreased basal nuclear phosphorylation of CREB and decreased tBHQ-induced Nrf2-CBP binding and Nrf2 binding to enhancer as well as polymerase II binding to the promoter of HO-1 gene. Furthermore, tBHQ in combination with higher [Ca(2+)](ext) augmented HO-1 induction both in vitro and in vivo, indicating that the modulation of [Ca(2+)](int) could be used as an adjuvant to increase the efficacy of chemopreventive agents. Taken together, our results indicated that in addition to tBHQ-induced oxidative stress-mediated Nrf2 translocation, HO-1 induction by tBHQ also appears to be dependent on a series of Ca(2+)-regulated mechanisms.
Collapse
Affiliation(s)
- Ka Lung Cheung
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | | | | | | | | | |
Collapse
|
7
|
Gonzalez A, del Castillo-Vaquero A, Miro-Moran A, Tapia JA, Salido GM. Melatonin reduces pancreatic tumor cell viability by altering mitochondrial physiology. J Pineal Res 2011; 50:250-260. [PMID: 21118301 DOI: 10.1111/j.1600-079x.2010.00834.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin reduces proliferation in many different cancer cell lines. Thus, melatonin is considered a promising antitumor agent, promoting apoptosis in tumor cells while preserving viability of normal cells. Herein, we examined the effects of melatonin on the pancreatic AR42J tumor cell line. We have analyzed cytosolic-free Ca(2+) concentration ([Ca(2+) ](c) ), mitochondrial-free Ca(2+) concentration ([Ca(2+) ](m) ), mitochondrial membrane potential (Ψm), mitochondrial flavin adenine dinucleotide (FAD) oxidative state, cellular viability and caspase-3 activity. Our results show that melatonin induced transient changes in [Ca(2+) ](c) and [Ca(2+) ](m) . Melatonin also induced depolarization of Ψm and led to a reduction in the level of oxidized FAD. In addition, melatonin reduced AR42J cell viability. Finally, we found a Ca(2+) -dependent caspase-3 activation in response to melatonin. Collectively, these data support the likelihood that melatonin reduces viability of tumor AR42J cells via its action on mitochondrial activity and caspase-3 activation.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Department of Physiology, Cell Physiology Research Group, University of Extremadura, Caceres, Spain.
| | | | | | | | | |
Collapse
|
8
|
Sumalekshmy S, Fahrni CJ. Metal Ion-Responsive Fluorescent Probes for Two-Photon Excitation Microscopy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2011; 23:483-500. [PMID: 28503029 PMCID: PMC5427716 DOI: 10.1021/cm1021905] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Metal ion-responsive fluorescent probes are powerful tools for visualizing labile metal ion pools in live cells. To take full advantage of the benefits offered by two-photon excitation microscopy, including increased depth penetration, reduced phototoxicity, and intrinsic 3D capabilities, the photophysical properties of the probes must be optimized for nonlinear excitation. This review summarizes the challenges associated with the design of two-photon excitable fluorescent probes and labels and offers an overview on recent efforts in developing selective and sensitive reagents for the detection of metal ions in biological systems.
Collapse
|
9
|
Abstract
Peripheral taste receptor cells depend on distinct calcium signals to generate appropriate cellular responses that relay taste information to the central nervous system. Some taste cells have conventional chemical synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release from stores to formulate an output signal through a hemichannel. Despite the importance of calcium signaling in taste cells, little is known about how these signals are regulated. This review summarizes recent studies that have identified 2 calcium clearance mechanisms expressed in taste cells, including mitochondrial calcium uptake and sodium/calcium exchangers (NCXs). These studies identified a unique constitutive calcium influx that contributes to maintaining appropriate calcium homeostasis in taste cells and the role of the mitochondria and exchangers in this process. The additional role of NCXs in the regulation of evoked calcium responses is also discussed. Clearly, calcium signaling is a dynamic process in taste cells and appears to be more complex than has previously been appreciated.
Collapse
Affiliation(s)
- Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
10
|
|
11
|
Hacker K, Medler KF. Mitochondrial calcium buffering contributes to the maintenance of Basal calcium levels in mouse taste cells. J Neurophysiol 2008; 100:2177-91. [PMID: 18684902 DOI: 10.1152/jn.90534.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Taste stimuli are detected by taste receptor cells present in the oral cavity using diverse signaling pathways. Some taste stimuli are detected by G protein-coupled receptors (GPCRs) that cause calcium release from intracellular stores, whereas other stimuli depolarize taste cells to cause calcium influx through voltage-gated calcium channels (VGCCs). Although taste cells use two distinct mechanisms to transmit taste signals, increases in cytosolic calcium are critical for normal responses in both pathways. This creates a need to tightly control intracellular calcium levels in all transducing taste cells. To date, however, the mechanisms used by taste cells to regulate cytosolic calcium levels have not been identified. Studies in other cell types have shown that mitochondria can be important calcium buffers, even during small changes in calcium loads. In this study, we used calcium imaging to characterize the role of mitochondria in buffering calcium levels in taste cells. We discovered that mitochondria make important contributions to the maintenance of resting calcium levels in taste cells by routinely buffering a constitutive calcium influx across the plasma membrane. This is unusual because in other cell types, mitochondrial calcium buffering primarily affects large evoked calcium responses. We also found that the amount of calcium that is buffered by mitochondria varies with the signaling pathways used by the taste cells. A transient receptor potential (TRP) channel, likely TRPV1 or a taste variant of TRPV1, contributes to the constitutive calcium influx.
Collapse
Affiliation(s)
- Kyle Hacker
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
12
|
Gerasimenko O, Tepikin A. How to measure Ca2+ in cellular organelles? Cell Calcium 2008; 38:201-11. [PMID: 16102822 DOI: 10.1016/j.ceca.2005.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 11/27/2022]
Abstract
The review will aim to briefly summarise information on calcium measurements in cellular organelles with emphases on studies conducted in live cells using optical probes. When appropriate we will try to compare the effectiveness of different indicators for intraorganellar calcium measurements. We will consider calcium measurements in endoplasmic reticulum, Golgi apparatus, endosomes/lysosomes, nucleoplasm, nuclear envelope, mitochondria and secretory granules.
Collapse
Affiliation(s)
- Oleg Gerasimenko
- The Physiological Laboratory, The University of Liverpool, Crown Street, P.O. Box 147, Liverpool L69 3BX, UK
| | | |
Collapse
|
13
|
Hisatsune J, Nakayama M, Isomoto H, Kurazono H, Mukaida N, Mukhopadhyay AK, Azuma T, Yamaoka Y, Sap J, Yamasaki E, Yahiro K, Moss J, Hirayama T. Molecular characterization of Helicobacter pylori VacA induction of IL-8 in U937 cells reveals a prominent role for p38MAPK in activating transcription factor-2, cAMP response element binding protein, and NF-kappaB activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:5017-5027. [PMID: 18354227 PMCID: PMC3404739 DOI: 10.4049/jimmunol.180.7.5017] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Helicobacter pylori VacA induces multiple effects on susceptible cells, including vacuolation, mitochondrial damage, inhibition of cell growth, and enhanced cyclooxygenase-2 expression. To assess the ability of H. pylori to modulate the production of inflammatory mediators, we examined the mechanisms by which VacA enhanced IL-8 production by promonocytic U937 cells, which demonstrated the greatest VacA-induced IL-8 release of the cells tested. Inhibitors of p38 MAPK (SB203580), ERK1/2 (PD98059), IkappaBalpha ((E)-3-(4-methylphenylsulfonyl)-2-propenenitrile), Ca(2+) entry (SKF96365), and intracellular Ca(2+) channels (dantrolene) blocked VacA-induced IL-8 production. Furthermore, an intracellular Ca(2+) chelator (BAPTA-AM), which inhibited VacA-activated p38 MAPK, caused a dose-dependent reduction in VacA-induced IL-8 secretion by U937 cells, implying a role for intracellular Ca(2+) in mediating activation of MAPK and the canonical NF-kappaB pathway. VacA stimulated translocation of NF-kappaBp65 to the nucleus, consistent with enhancement of IL-8 expression by activation of the NF-kappaB pathway. In addition, small interfering RNA of activating transcription factor (ATF)-2 or CREB, which is a p38MAPK substrate and binds to the AP-1 site of the IL-8 promoter, inhibited VacA-induced IL-8 production. VacA activated an IL-8 promoter containing an NF-IL-6 site, but not a mutated AP-1 or NF-kappaB site, suggesting direct involvement of the ATF-2/CREB binding region or NF-kappaB-binding regions in VacA-induced IL-8 promoter activation. Thus, in U937 cells, VacA directly increases IL-8 production by activation of the p38 MAPK via intracellular Ca(2+) release, leading to activation of the transcription factors, ATF-2, CREB, and NF-kappaB.
Collapse
Affiliation(s)
- Junzo Hisatsune
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Masaaki Nakayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hajime Isomoto
- Department of Endoscopy, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Hisao Kurazono
- Department of Applied Veterinary Medicine and Public Health, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Asish K. Mukhopadhyay
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Takeshi Azuma
- Department of Gastroenterology, Kobe University School of Medicine, Kobe, Japan
| | - Yoshio Yamaoka
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX 77030
| | - Jan Sap
- Copenhagen Biocenter-Biotechnology and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Eiki Yamasaki
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kinnosuke Yahiro
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joel Moss
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Toshiya Hirayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
14
|
Ostuni MA, Ducroc R, Péranzi G, Tonon MC, Papadopoulos V, Lacapere JJ. Translocator protein (18 kDa) ligand PK 11195 induces transient mitochondrial Ca2+ release leading to transepithelial Cl- secretion in HT-29 human colon cancer cells. Biol Cell 2008; 99:639-47. [PMID: 17561806 DOI: 10.1042/bc20070048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION TSPO (translocator protein), known previously as PBR (peripheral-type benzodiazepine receptor), is a 18 kDa protein expressed in the mitochondrial membrane of a variety of tissues. TSPO has been reported to be over-expressed in human colorectal tumours and cancer cell lines, but its function is not well characterized. RESULTS We investigated the expression and function of TSPO in the human colon cancer cells HT-29. Immunohistochemical studies revealed that TSPO is localized in mitochondria, and its endogenous ligand, the polypeptide diazepam-binding inhibitor, in the cytosol. Radioligand binding studies using the specific high-affinity drug ligand [(3)H]PK 11195 and membrane fraction demonstrated saturable binding, with K(d) and B(max) values of 13.5+/-1.5 nM and 10.1+/-1.0 pmol/mg respectively. PK 11195 induced a rapid and transient dose-dependent rise in intracellular [Ca(2+)], which was unaffected by extracellular Ca(2+), but was blocked by the PTP (permeability transition pore) inhibitor, cyclosporin A, and by the TSPO partial agonist, flunitrazepam. Using HT-29 clone 19A cell line, which forms cell monolayers, we demonstrated that TSPO ligand stimulated a Ca(2+)-dependent transepithelial Cl(-) secretion. This secretion was inhibited: (i) after removal of extracellular Cl(-); (ii) by apical addition of the Cl(-) channel blocker NPPB [5-nitro-2-(3-phenylpropylamino)-benzoate]; and (iii) by basolateral addition of the Na(+)-K(+)-2Cl(-) co-transporter inhibitor bumetanide. Furthermore, the intracellular Ca(2+) chelator BAPTA/AM [bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)] and cyclosporin A abolished the rise in PK 11195-induced Cl(-) secretion. CONCLUSIONS These findings indicate that TSPO is located in mitochondrial membranes of HT-29 and reveal that its activation induces a rise in cytosolic Ca(2+), leading to the stimulation of Cl(-) secretion.
Collapse
Affiliation(s)
- Mariano A Ostuni
- Inserm U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Université Paris 7 Denis Diderot, F-75018 Paris, France
| | | | | | | | | | | |
Collapse
|
15
|
Fischer W, Franke H, Gröger-Arndt H, Illes P. Evidence for the existence of P2Y1,2,4 receptor subtypes in HEK-293 cells: reactivation of P2Y1 receptors after repetitive agonist application. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:466-72. [PMID: 16025270 DOI: 10.1007/s00210-005-1070-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
ATP, ADPbetaS and UTP induced a comparable rise in the intracellular Ca2+ concentration ([Ca2+]i) in HEK-293 cells using fura-2 microfluorimetry. The responses persisted in Ca2+-free medium, but were abolished following depletion of intracellular Ca2+ stores by cyclopiazonic acid. Cross-desensitisation experiments demonstrated that exposure to ADPbetaS has no marked effect on UTP-induced [Ca2+]i transients and vice versa. Whereas the P2Y1 receptor-selective antagonist 2'-deoxy-N6-methyladenosine 3',5'-diphosphate (MRS 2179) abolished the responses to ADPbetaS, it decreased and did not alter the responses to ATP and UTP respectively. Although the P2Y1/P2Y4 receptor-preferential antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) abolished the responses to ADPbetaS, and decreased those to ATP, it also depressed the UTP-induced [Ca2+]i transients. Suramin, an antagonist with preference for P2Y2 receptors decreased both the ATP- and UTP-induced [Ca2+]i reactions. After numerous splittings, HEK-293 cells failed to react to ADPbetaS; however, repeated superfusion with this P2Y1 receptor agonist restored the [Ca2+]i signals. In agreement with the functional data, real-time polymerase chain reaction and immunocytochemical studies indicated the presence of P2Y1, P2Y2 and P2Y4 receptors. Our findings raise doubt with respect to the reliability of HEK-293 cells as expression systems for recombinant P2X receptors, because of a possible functional interaction with endogenous P2Y receptors.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany.
| | | | | | | |
Collapse
|
16
|
Wokosin DL, Loughrey CM, Smith GL. Characterization of a range of fura dyes with two-photon excitation. Biophys J 2004; 86:1726-38. [PMID: 14990500 PMCID: PMC1304008 DOI: 10.1016/s0006-3495(04)74241-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-photon excitation (TPE) spectra of Fura-2, -4F, -6F, -FF, and Furaptra were characterized using a tunable (750-850 nM) ultra-short pulse laser. Two-photon fluorescence of these dyes was studied in free solution and in the cytosol of isolated rabbit ventricular cardiomyocytes. The TPE spectra of the Ca(2+)-free and Ca(2+)-bound forms of the dyes were measured in free solution and expressed in terms of the two-photon fluorescence cross section (Goppert-Meyer units). The Fura dyes displayed the same Ca(2+)-free TPE spectrum in the intracellular volume of permeabilized and intact cardiomyocytes. Fluorescence measurements over a range of laser powers confirmed the TPE of both Ca(2+)-free and Ca(2+)-bound forms of the dyes. Single-wavelength excitation at 810 nM was used to determine the effective dissociation constants (K(eff)) and dynamic ranges (R(f)) of Fura-2, -4F, -6F, -FF, and Furaptra dyes (K(eff) = 181 +/- 52 nM, 1.16 +/- 0.016 micro M, 5.18 +/- 0.3 micro M, 19.2 +/- 1 micro M, and 58.5 +/- 2 micro M; and R(f) = 22.4 +/- 3.8, 12.2 +/- 0.34, 6.3 +/- 0.17, 16.1 +/- 2.8, and 25.4 +/- 4, respectively). Single-wavelength excitation of intracellular Fura-4F resolved diastolic and peak [Ca(2+)] in isolated stimulated cardiomyocytes after calibration of the intracellular signal using reversible exposure to low (100 micro M) extracellular [Ca(2+)]. Furthermore, TPE of Fura-4F allowed continuous, long-term (5-10 min) Ca(2+) imaging in ventricular cardiomyocytes using laser-scanning microscopy without significant cellular photodamage or photobleaching of the dye.
Collapse
Affiliation(s)
- D L Wokosin
- Centre for Biophotonics, Strathclyde University, Glasgow, United Kingdom
| | | | | |
Collapse
|
17
|
Roux E, Marhl M. Role of sarcoplasmic reticulum and mitochondria in Ca2+ removal in airway myocytes. Biophys J 2004; 86:2583-95. [PMID: 15041694 PMCID: PMC1304105 DOI: 10.1016/s0006-3495(04)74313-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 12/24/2003] [Indexed: 10/24/2022] Open
Abstract
The aim of this study was to use both a theoretical and experimental approach to determine the influence of the sarco-endoplasmic Ca2+-ATPase (SERCA) activity and mitochondria Ca2+ uptake on Ca2+ homeostasis in airway myocytes. Experimental studies were performed on myocytes freshly isolated from rat trachea. [Ca2+]i was measured by microspectrofluorimetry using indo-1. Stimulation by caffeine for 30 s induced a concentration-graded response characterized by a transient peak followed by a progressive decay to a plateau phase. The decay phase was accelerated for 1-s stimulation, indicating ryanodine receptor closure. In Na2+-Ca2+-free medium containing 0.5 mM La3+, the [Ca2+]i response pattern was not modified, indicating no involvement of transplasmalemmal Ca2+ fluxes. The mathematical model describing the mechanism of Ca2+ handling upon RyR stimulation predicts that after Ca2+ release from the sarcoplasmic reticulum, the Ca2+ is first sequestrated by cytosolic proteins and mitochondria, and pumped back into the sarcoplasmic reticulum after a time delay. Experimentally, we showed that the [Ca2+]i decay after Ca2+ increase was not altered by the SERCA inhibitor cyclopiazonic acid, but was slightly but significantly modified by the mitochondria uncoupler carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone. The experimental and theoretical results indicate that, although Ca2+ pumping back by SERCA is active, it is not primarily involved in [Ca2+]i decrease that is due, in part, to mitochondrial Ca2+ uptake.
Collapse
Affiliation(s)
- Etienne Roux
- Laboratoire de Physiologie Cellulaire Respiratoire, Institut National de la Santé et de Recherche Médicale E 356, Université Victor Segalen Bordeaux 2, 33076 Bordeaux, France.
| | | |
Collapse
|
18
|
Affiliation(s)
- Michael R Duchen
- Life Sciences Imaging Cooperative and Mitochondrial Biology Group, Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
19
|
Hajnóczky G, Csordás G, Yi M. Old players in a new role: mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium 2002; 32:363-77. [PMID: 12543096 DOI: 10.1016/s0143416002001872] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In many cell types, IP(3) and ryanodine receptor (IP(3)R/RyR)-mediated Ca(2+) mobilization from the sarcoendoplasmic reticulum (ER/SR) results in an elevation of mitochondrial matrix [Ca(2+)]. Although delivery of the released Ca(2+) to the mitochondria has been established as a fundamental signaling process, the molecular mechanism underlying mitochondrial Ca(2+) uptake remains a challenge for future studies. The Ca(2+) uptake can be divided into the following three steps: (1) Ca(2+) movement from the IP(3)R/RyR to the outer mitochondrial membrane (OMM); (2) Ca(2+) transport through the OMM; and (3) Ca(2+) transport through the inner mitochondrial membrane (IMM). Evidence has been presented that Ca(2+) delivery to the OMM is facilitated by a local coupling between closely apposed regions of the ER/SR and mitochondria. Recent studies of the dynamic changes in mitochondrial morphology and visualization of the subcellular pattern of the calcium signal provide important clues to the organization of the ER/SR-mitochondrial interface. Interestingly, key steps of phospholipid synthesis and transfer to the mitochondria have also been confined to subdomains of the ER tightly associated with the mitochondria, referred as mitochondria-associated membranes (MAMs). Through the OMM, the voltage-dependent anion channels (VDAC, porin) have been thought to permit free passage of ions and other small molecules. However, recent studies suggest that the VDAC may represent a regulated step in Ca(2+) transport from IP(3)R/RyR to the IMM. A novel proposal regarding the IMM Ca(2+) uptake site is a mitochondrial RyR that would mediate rapid Ca(2+) uptake by mitochondria in excitable cells. An overview of the progress in these directions is described in the present paper.
Collapse
Affiliation(s)
- G Hajnóczky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 19107, Philadelphia, PA, USA.
| | | | | |
Collapse
|
20
|
Johnson PR, Tepikin AV, Erdemli G. Role of mitochondria in Ca(2+) homeostasis of mouse pancreatic acinar cells. Cell Calcium 2002; 32:59-69. [PMID: 12161106 DOI: 10.1016/s0143-4160(02)00091-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of mitochondrial Ca(2+) uptake on cytosolic Ca(2+) concentration ([Ca(2+)](c)) were investigated in mouse pancreatic acinar cells using cytosolic and/or mitochondrial Ca(2+) indicators. When calcium stores of the endoplasmic reticulum (ER) were emptied by prolonged incubation with thapsigargin (Tg) and acetylcholine (ACh), small amounts of calcium could be released into the cytosol (Delta[Ca(2+)](c)=46 +/- 6 nM, n=13) by applying mitochondrial inhibitors (combination of rotenone (R) and oligomycin (O)). However, applications of R/O, soon after the peak of Tg/Ach-induced Ca(2+) transient, produced a larger cytosolic calcium elevation (Delta[Ca(2+)](c)=84 +/- 6 nM, n=9), this corresponds to an increase in the total mitochondrial calcium concentration ([Ca(2+)](m)) by approximately 0.4 mM. In cells pre-treated with R/O or Ru360 (a specific blocker of mitochondrial Ca(2+) uniporter), the decay time-constant of the Tg/ACh-induced Ca(2+) response was prolonged by approximately 40 and 80%, respectively. Tests with the mitochondrial Ca(2+) indicator rhod-2 revealed large increases in [Ca(2+)](m) in response to Tg/ACh applications; this mitochondrial uptake was blocked by Ru360. In cells pre-treated with Ru360, 10nM ACh elicited large global increases in [Ca(2+)](c), compared to control cells in which ACh-induced Ca(2+) signals were localised in the apical region. We conclude that mitochondria are active elements of cellular Ca(2+) homeostasis in pancreatic acinar cells and directly modulate both local and global calcium signals induced by agonists.
Collapse
Affiliation(s)
- P R Johnson
- MRC Secretory Control Research Group, Physiological Laboratory, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
21
|
Collins TJ, Berridge MJ, Lipp P, Bootman MD. Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 2002; 21:1616-27. [PMID: 11927546 PMCID: PMC125942 DOI: 10.1093/emboj/21.7.1616] [Citation(s) in RCA: 445] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We investigated whether mitochondria represent morphologically continuous and functionally homogenous entities within single intact cells. Physical continuity of mitochondria was determined by three-dimensional reconstruction of fluorescence from mitochondrially targeted DsRed1 or calcein. The mitochondria of HeLa, PAEC, COS-7, HUVEC, hepatocytes, cortical astrocytes and neuronal cells all displayed heterogeneous distributions and were of varying sizes. There was a denser aggregation of mitochondria in perinuclear positions than in the cell periphery, where individual isolated mitochondria could be seen clearly. Using fluorescence-recovery after photobleaching, we observed that DsRed1 and calcein were highly mobile within the matrix of individual mitochondria, and that mitochondria within a cell were not lumenally continuous. Mitochondria were not electrically coupled, since only individual mitochondria were observed to depolarize following irradiation of TMRE-loaded cells. Functional heterogeneity of mitochondria in single cells was observed with respect to membrane potential, sequestration of hormonally evoked cytosolic calcium signals and timing of permeability transition pore opening in response to tert-butyl hydroperoxide. Our data indicate that mitochondria within individual cells are morphologically heterogeneous and unconnected, allowing them to have distinct functional properties.
Collapse
Affiliation(s)
- Tony J. Collins
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT and Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Corresponding author e-mail:
| | - Michael J. Berridge
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT and Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Corresponding author e-mail:
| | - Peter Lipp
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT and Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Corresponding author e-mail:
| | - Martin D. Bootman
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT and Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Corresponding author e-mail:
| |
Collapse
|
22
|
Jacobson J, Duchen MR. Mitochondrial oxidative stress and cell death in astrocytes —requirement for stored Ca2+ and sustained opening of the permeability transition pore. J Cell Sci 2002; 115:1175-88. [PMID: 11884517 DOI: 10.1242/jcs.115.6.1175] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of oxidative stress is established in a range of pathologies. As mitochondria are a major source of reactive oxygen species (ROS), we have developed a model in which an intramitochondrial photosensitising agent is used to explore the consequences of mitochondrial ROS generation for mitochondrial function and cell fate in primary cells. We have found that, in astrocytes, the interplay between mitochondrial ROS and ER sequestered Ca2+ increased the frequency of transient mitochondrial depolarisations and caused mitochondrial Ca2+ loading from ER stores. The depolarisations were attributable to opening of the mitochondrial permeability transition pore (mPTP). Initially, transient events were seen in individual mitochondria, but ultimately, the mitochondrial potential(Δψm) collapsed completely and irreversibly in the whole population. Both ROS and ER Ca2+ were required to initiate these events, but neither alone was sufficient. Remarkably, the transient events alone appeared innocuous, and caused no increase in either apoptotic or necrotic cell death. By contrast, progression to complete collapse ofΔψ m caused necrotic cell death. Thus increased mitochondrial ROS generation initiates a destructive cycle involving Ca2+ release from stores and mitochondrial Ca2+-loading,which further increases ROS production. The amplification of oxidative stress and Ca2+ loading culminates in opening of the mPTP and necrotic cell death in primary brain cells.
Collapse
Affiliation(s)
- Jake Jacobson
- Department of Physiology, University College London, London, WC1E 6BT, UK
| | | |
Collapse
|
23
|
Medler K, Gleason EL. Mitochondrial Ca(2+) buffering regulates synaptic transmission between retinal amacrine cells. J Neurophysiol 2002; 87:1426-39. [PMID: 11877517 DOI: 10.1152/jn.00627.2001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The diverse functions of retinal amacrine cells are reliant on the physiological properties of their synapses. Here we examine the role of mitochondria as Ca(2+) buffering organelles in synaptic transmission between GABAergic amacrine cells. We used the protonophore p-trifluoromethoxy-phenylhydrazone (FCCP) to dissipate the membrane potential across the inner mitochondrial membrane that normally sustains the activity of the mitochondrial Ca(2+) uniporter. Measurements of cytosolic Ca(2+) levels reveal that prolonged depolarization-induced Ca(2+) elevations measured at the cell body are altered by inhibition of mitochondrial Ca(2+) uptake. Furthermore, an analysis of the ratio of Ca(2+) efflux on the plasma membrane Na-Ca exchanger to influx through Ca(2+) channels during voltage steps indicates that mitochondria can also buffer Ca(2+) loads induced by relatively brief stimuli. Importantly, we also demonstrate that mitochondrial Ca(2+) uptake operates at rest to help maintain low cytosolic Ca(2+) levels. This aspect of mitochondrial Ca(2+) buffering suggests that in amacrine cells, the normal function of Ca(2+)-dependent mechanisms would be contingent upon ongoing mitochondrial Ca(2+) uptake. To test the role of mitochondrial Ca(2+) buffering at amacrine cell synapses, we record from amacrine cells receiving GABAergic synaptic input. The Ca(2+) elevations produced by inhibition of mitochondrial Ca(2+) uptake are localized and sufficient in magnitude to stimulate exocytosis, indicating that mitochondria help to maintain low levels of exocytosis at rest. However, we found that inhibition of mitochondrial Ca(2+) uptake during evoked synaptic transmission results in a reduction in the charge transferred at the synapse. Recordings from isolated amacrine cells reveal that this is most likely due to the increase in the inactivation of presynaptic Ca(2+) channels observed in the absence of mitochondrial Ca(2+) buffering. These results demonstrate that mitochondrial Ca(2+) buffering plays a critical role in the function of amacrine cell synapses.
Collapse
Affiliation(s)
- Kathryn Medler
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
24
|
González A, Salido GM. Participation of mitochondria in calcium signalling in the exocrine pancreas. J Physiol Biochem 2001; 57:331-339. [PMID: 12005036 DOI: 10.1007/bf03179827] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This minireview is an attempt to put together some of the recent advances regarding the implications of mitochondria in Ca2+ homeostasis. Although the main role of this cytoplasmic organelle is ATP supply to the cell, during the past years strong evidence has been accumulated supporting an active role of these organelles in Ca2+ handling by the cell. The discovery of mitochondrial specific fluorescent dyes has permitted the study of these organelles within living cells. Due to its ubiquitous localisation within the cytosol, mitochondria would play an important role in the modulation of the subcellular patterns of Ca2+ signalling, and therefore would act as modulators of Ca2+-dependent cellular processes.
Collapse
Affiliation(s)
- A González
- Department of Physiology, University of Extremadura, Faculty of Veterinary Sciences, Cáceres, Spain
| | | |
Collapse
|
25
|
Haberichter T, Marhl M, Heinrich R. Birhythmicity, trirhythmicity and chaos in bursting calcium oscillations. Biophys Chem 2001; 90:17-30. [PMID: 11321672 DOI: 10.1016/s0301-4622(01)00127-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have analyzed various types of complex calcium oscillations. The oscillations are explained with a model based on calcium-induced calcium release (CICR). In addition to the endoplasmic reticulum as the main intracellular Ca2+ store, mitochondrial and cytosolic Ca2+ binding proteins are also taken into account. This model was previously proposed for the study of the physiological role of mitochondria and the cytosolic proteins in gene rating complex Ca2+ oscillations [1]. Here, we investigated the occurrence of different types of Ca2+ oscillations obtained by the model, i.e. simple oscillations, bursting, and chaos. In a bifurcation diagram, we have shown that all these various modes of oscillatory behavior are obtained by a change of only one model parameter, which corresponds to the physiological variability of an agonist. Bursting oscillations were studied in more detail because they express birhythmicity, trirhythmicity and chaotic behavior. Two different routes to chaos are observed in the model: in addition to the usual period doubling cascade, we also show intermittency. For the characterization of the chaotic behavior, we made use of return maps and Lyapunov exponents. The potential biological role of chaos in intracellular signaling is discussed.
Collapse
Affiliation(s)
- T Haberichter
- Humboldt University Berlin, Institute of Biology, Theoretical Biophysics, Germany.
| | | | | |
Collapse
|
26
|
Nagai T, Sawano A, Park ES, Miyawaki A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 2001; 98:3197-202. [PMID: 11248055 PMCID: PMC30630 DOI: 10.1073/pnas.051636098] [Citation(s) in RCA: 751] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To visualize Ca(2+)-dependent protein-protein interactions in living cells by fluorescence readouts, we used a circularly permuted green fluorescent protein (cpGFP), in which the amino and carboxyl portions had been interchanged and reconnected by a short spacer between the original termini. The cpGFP was fused to calmodulin and its target peptide, M13. The chimeric protein, which we have named "pericam," was fluorescent and its spectral properties changed reversibly with the amount of Ca(2+), probably because of the interaction between calmodulin and M13 leading to an alteration of the environment surrounding the chromophore. Three types of pericam were obtained by mutating several amino acids adjacent to the chromophore. Of these, "flash-pericam" became brighter with Ca(2+), whereas "inverse-pericam" dimmed. On the other hand, "ratiometric-pericam" had an excitation wavelength changing in a Ca(2+)-dependent manner. All of the pericams expressed in HeLa cells were able to monitor free Ca(2+) dynamics, such as Ca(2+) oscillations in the cytosol and the nucleus. Ca(2+) imaging using high-speed confocal line-scanning microscopy and a flash-pericam allowed to detect the free propagation of Ca(2+) ions across the nuclear envelope. Then, free Ca(2+) concentrations in the nucleus and mitochondria were simultaneously measured by using ratiometric-pericams having appropriate localization signals, revealing that extra-mitochondrial Ca(2+) transients caused rapid changes in the concentration of mitochondrial Ca(2+). Finally, a "split-pericam" was made by deleting the linker in the flash-pericam. The Ca(2+)-dependent interaction between calmodulin and M13 in HeLa cells was monitored by the association of the two halves of GFP, neither of which was fluorescent by itself.
Collapse
Affiliation(s)
- T Nagai
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Center, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | | | | | |
Collapse
|
27
|
González A, Schulz I, Schmid A. Agonist-evoked mitochondrial Ca2+ signals in mouse pancreatic acinar cells. J Biol Chem 2000; 275:38680-38686. [PMID: 10995756 DOI: 10.1074/jbc.m005667200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study we have investigated cytosolic and mitochondrial Ca(2+) signals in isolated mouse pancreatic acinar cells double-loaded with the fluorescent probes fluo-3 and rhod-2. Stimulation of pancreatic acinar cells with 500 nm acetylcholine caused release of Ca(2+) from intracellular stores and produced cytosolic Ca(2+) signals in form of Ca(2+) waves propagating from the luminal to the basal cell pole. The increase in the cytosolic Ca(2+) concentration was followed by Ca(2+) uptake into mitochondria. Between onset of cytosolic and mitochondrial Ca(2+) signals there was a delay of 10.7 +/- 0.4 s. Ca(2+) uptake into mitochondria could be inhibited with Ruthenium Red and carbonyl cyanide m-chlorophenylhydrazone, whereas 2,5-di-tert-butylhydroquinone, which inhibits sarco(endo)plasmic reticulum Ca(2+) ATPases, did not prevent Ca(2+) accumulation in mitochondria. Carbonyl cyanide m-chlorophenylhydrazone-induced Ca(2+) release from mitochondria could only be observed after a preceding stimulation of the cell with a physiological agonist or by treatment with 2, 5-di-tert-butylhydroquinone, indicating that under resting conditions mitochondria do not contain releasable Ca(2+) ions. Analysis of the propagation rate of acetylcholine-induced Ca(2+) waves revealed that inhibition of mitochondrial Ca(2+) uptake did not accelerate spreading of cytosolic Ca(2+) signals. Our experiments indicate that in the early phase of secretagogue-induced Ca(2+) signals, mitochondria behave as passive Ca(2+)-buffering elements and do not actively suppress spreading of Ca(2+) signals in pancreatic acinar cells.
Collapse
Affiliation(s)
- A González
- Department of Physiology, University of the Saarland, D-66421 Homburg/Saar, Germany
| | | | | |
Collapse
|
28
|
Abstract
While a pathway for Ca2+ accumulation into mitochondria has long been established, its functional significance is only now becoming clear in relation to cell physiology and pathophysiology. The observation that mitochondria take up Ca2+ during physiological Ca2+ signalling in a variety of cell types leads to four questions: (i) 'What is the impact of mitochondrial Ca2+ uptake on mitochondrial function?' (ii) 'What is the impact of mitochondrial Ca2+ uptake on Ca2+ signalling?' (iii) 'What are the consequences of impaired mitochondrial Ca2+ uptake for cell function?' and finally (iv) 'What are the consequences of pathological [Ca2+]c signalling for mitochondrial function?' These will be addressed in turn. Thus: (i) accumulation of Ca2+ into mitochondria regulates mitochondrial metabolism and causes a transient depolarisation of mitochondrial membrane potential. (ii) Mitochondria may act as a spatial Ca2+ buffer in many cells, regulating the local Ca2+ concentration in cellular microdomains. This process regulates processes dependent on local cytoplasmic Ca2+ concentration ([Ca2+]c), particularly the flux of Ca2+ through IP3-gated channels of the endoplasmic reticulum (ER) and the channels mediating capacitative Ca2+ influx through the plasma membrane. Consequently, mitochondrial Ca2+ uptake plays a substantial role in shaping [Ca2+]c signals in many cell types. (iii) Impaired mitochondrial Ca2+ uptake alters the spatiotemporal characteristics of cellular [Ca2+]c signalling and downregulates mitochondrial metabolism. (iv) Under pathological conditions of cellular [Ca2+]c overload, particularly in association with oxidative stress, mitochondrial Ca2+ uptake may trigger pathological states that lead to cell death. In the model of glutamate excitotoxicity, microdomains of [Ca2+]c are apparently central, as the pathway to cell death seems to require the local activation of neuronal nitric oxide synthase (nNOS), itself held by scaffolding proteins in close association with the NMDA receptor. Mitochondrial Ca2+ uptake in combination with NO production triggers the collapse of mitochondrial membrane potential, culminating in delayed cell death.
Collapse
Affiliation(s)
- M R Duchen
- Life Sciences Imaging Consortium and Mitochondrial Biology Group, Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
29
|
Monteith GR. Seeing is believing: recent trends in the measurement of Ca2+ in subcellular domains and intracellular organelles. Immunol Cell Biol 2000; 78:403-7. [PMID: 10947865 DOI: 10.1046/j.1440-1711.2000.00920.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of Ca2+ in the regulation of the cell cycle has been investigated mostly in studies assessing global cytosolic free Ca2+. Recent studies, however, have used unique techniques to assess Ca2+ in subcellular organelles, such as mitochondria, and in discrete regions of the cytoplasm. These studies have used advanced fluorescence digital imaging techniques and Ca2+-sensitive fluorescence probes, and/or targeting of Ca2+-sensitive proteins to intracellular organelles. The present review describes the results of some of these studies and the techniques used. The novel techniques used to measure Ca2+ in microdomains and intracellular organelles are likely to be of great use in future investigations assessing Ca2+ homeostasis during the cell cycle.
Collapse
Affiliation(s)
- G R Monteith
- School of Pharmacy, The University of Queensland, St Lucia, Australia.
| |
Collapse
|
30
|
Marhl M, Haberichter T, Brumen M, Heinrich R. Complex calcium oscillations and the role of mitochondria and cytosolic proteins. Biosystems 2000; 57:75-86. [PMID: 11004387 DOI: 10.1016/s0303-2647(00)00090-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intracellular calcium oscillations, which are oscillatory changes of cytosolic calcium concentration in response to agonist stimulation, are experimentally well observed in various living cells. Simple calcium oscillations represent the most common pattern and many mathematical models have been published to describe this type of oscillation. On the other hand, relatively few theoretical studies have been proposed to give an explanation of complex intracellular calcium oscillations, such as bursting and chaos. In this paper, we develop a new possible mechanism for complex calcium oscillations based on the interplay between three calcium stores in the cell: the endoplasmic reticulum (ER), mitochondria and cytosolic proteins. The majority ( approximately 80%) of calcium released from the ER is first very quickly sequestered by mitochondria. Afterwards, a much slower release of calcium from the mitochondria serves as the calcium supply for the intermediate calcium exchanges between the ER and the cytosolic proteins causing bursting calcium oscillations. Depending on the permeability of the ER channels and on the kinetic properties of calcium binding to the cytosolic proteins, different patterns of complex calcium oscillations appear. With our model, we are able to explain simple calcium oscillations, bursting and chaos. Chaos is also observed for calcium oscillations in the bursting mode.
Collapse
Affiliation(s)
- M Marhl
- Department of Physics, Faculty of Education, University of Maribor, Koroska cesta 160, SI-2000, Maribor, Slovenia.
| | | | | | | |
Collapse
|
31
|
Hajnóczky G, Csordás G, Krishnamurthy R, Szalai G. Mitochondrial calcium signaling driven by the IP3 receptor. J Bioenerg Biomembr 2000; 32:15-25. [PMID: 11768758 DOI: 10.1023/a:1005504210587] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many agonists bring about their effects on cellular functions through a rise in cytosolic [Ca2+] ([Ca2+]c) mediated by the second messenger inositol 1,4,5-trisphosphate (IP3). Imaging studies of single cells have demonstrated that [Ca2+]c signals display cell specific spatiotemporal organization that is established by coordinated activation of IP3 receptor Ca2+ channels. Evidence emerges that cytosolic calcium signals elicited by activation of the IP3 receptors are efficiently transmitted to the mitochondria. An important function of mitochondrial calcium signals is to activate the Ca2+-sensitive mitochondrial dehydrogenases, and thereby to meet demands for increased energy in stimulated cells. Activation of the permeability transition pore (PTP) by mitochondrial calcium signals may also be involved in the control of cell death. Furthermore, mitochondrial Ca2+ transport appears to modulate the spatiotemporal organization of [Ca2+]c responses evoked by IP3 and so mitochondria may be important in cytosolic calcium signaling as well. This paper summarizes recent research to elucidate the mechanisms and significance of IP3-dependent mitochondrial calcium signaling.
Collapse
Affiliation(s)
- G Hajnóczky
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
32
|
Kirlin WG, Cai J, Thompson SA, Diaz D, Kavanagh TJ, Jones DP. Glutathione redox potential in response to differentiation and enzyme inducers. Free Radic Biol Med 1999; 27:1208-18. [PMID: 10641713 DOI: 10.1016/s0891-5849(99)00145-8] [Citation(s) in RCA: 278] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The reduced glutathione (GSH)/oxidized glutathione (GSSG) redox state is thought to function in signaling of detoxification gene expression, but also appears to be tightly regulated in cells under normal conditions. Thus it is not clear that the magnitude of change in response to physiologic stimuli is sufficient for a role in redox signaling under nontoxicologic conditions. The purpose of this study was to determine the change in 2GSH/GSSG redox during signaling of differentiation and increased detoxification enzyme activity in HT29 cells. We measured GSH, GSSG, cell volume, and cell pH, and we used the Nernst equation to determine the changes in redox potential Eh of the 2GSH/GSSG pool in response to the differentiating agent, sodium butyrate, and the detoxification enzyme inducer, benzyl isothiocyanate. Sodium butyrate caused a 60-mV oxidation (from -260 to -200 mV), an oxidation sufficient for a 100-fold change in protein dithiols:disulfide ratio. Benzyl isothiocyanate caused a 16-mV oxidation in control cells but a 40-mV oxidation (to -160 mV) in differentiated cells. Changes in GSH and mRNA for glutamate:cysteine ligase did not correlate with Eh; however, correlations were seen between Eh and glutathione S-transferase (GST) and nicotinamide adenine dinucleotide phosphate (NADPH):quinone reductase activities (N:QR). These results show that 2GSH/GSSG redox changes in response to physiologic stimuli such as differentiation and enzyme inducers are of a sufficient magnitude to control the activity of redox-sensitive proteins. This suggests that physiologic modulation of the 2GSH/GSSG redox poise could provide a fundamental parameter for the control of cell phenotype.
Collapse
Affiliation(s)
- W G Kirlin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
33
|
Kunzelmann K. The cystic fibrosis transmembrane conductance regulator and its function in epithelial transport. Rev Physiol Biochem Pharmacol 1999; 137:1-70. [PMID: 10207304 DOI: 10.1007/3-540-65362-7_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CF is a well characterized disease affecting a variety of epithelial tissues. Impaired function of the cAMP activated CFTR Cl- channel appears to be the basic defect detectable in epithelial and non-epithelial cells derived from CF patients. Apart from cAMP-dependent Cl- channels also Ca2+ and volume activated Cl- currents may be changed in the presence of CFTR mutations. This is supported by recent additional findings showing that different intracellular messengers converge on the CFTR Cl- channel. Analysis of the ion transport in CF airways and intestinal epithelium identified additional defects in Na+ transport. It became clear recently that mutations of CFTR may also affect the activity of other membrane conductances including epithelial Na+ channels, KvLQT-1 K+ channels and aquaporins (Fig. 7). Several additional, initially unexpected effects of CFTR on cellular functions, such as exocytosis, mucin secretion and regulation of the intracellular pH were reported during the past. Taken together, these results clearly indicate that CFTR not only acts as a cAMP regulated Cl- channel, but may fulfill several other cellular functions, particularly by regulating other membrane conductances. Failure in CFTR dependent regulation of these membrane conductances is likely to contribute to the defects observed in CF. Currently, no general concept is available that can explain how CFTR controls this variety of cellular functions. Further studies will have to verify whether direct protein interaction, specific effects on membrane turnover, changes of the intracellular ion concentration or additional proteins are involved in these regulatory loops. At the end of this review one cannot share the provocative and reassuring title "CFTR!" of a review written a few years ago [114]. Today one might rather finish with the statement "CFTR?".
Collapse
Affiliation(s)
- K Kunzelmann
- Physiologisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|