1
|
Wang D, Zhang W, Zhang R, Tao N, Si L, Guo C. Phytotoxicity of nitrobenzene bioaccumulation in rice seedlings: Nitrobenzene inhibits growth, induces oxidative stress, and reduces photosynthetic pigment synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108096. [PMID: 37864929 DOI: 10.1016/j.plaphy.2023.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Nitrobenzene (NB) has been used in numerous industrial and agricultural fields as an organic compound intermediate. NB has mutagenicity and acute toxicity, and is typically a toxic pollutant in industrial wastewater worldwide. To evaluate its phytotoxicity, we treated rice (Oryza sativa) with different concentrations of NB (0, 5, 25, 50, 75, and 100 mg L-1). NB inhibited growth indices of rice (shoot and root length, fresh shoot and root weight, and dry shoot and root weight) as NB treatment concentrations increased. High concentrations (>25 mg L-1) of NB significantly inhibited rice root and shoot growth; root growth was more susceptible to NB. NB treatment could damage the structure and reduce the activity of rice seedling roots. The result of high performance liquid chromatography (HPLC) indicated that the bioaccumulation of NB in rice seedlings had a dose-dependent effect on the growth inhibition. NB reduced the photosynthetic pigment content and the expression levels of chlorophyll synthesis genes. NB treatment increased active oxygen radicals, electrical conductivity, malondialdehyde (MDA), proline, and soluble sugar contents. The expressions of antioxidant enzyme genes were induced by NB stress, and exhibited a phenomenon of initial increase followed by decrease. When the NB concentration was higher than 50 mg L-1, the gene expression levels decreased rapidly. This study provides insight into the association between exposure to NB and its phytotoxic effects on rice seedlings, and assesses the potential risk of NB bioaccumulation for crops that require a large amount of irrigation water.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Wenrui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Runqiang Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Nan Tao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Liang Si
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China.
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China.
| |
Collapse
|
2
|
Tournaire MD, Scharff LB, Kramer M, Goss T, Vuorijoki L, Rodriguez‐Heredia M, Wilson S, Kruse I, Ruban A, Balk L. J, Hase T, Jensen P, Hanke GT. Ferredoxin C2 is required for chlorophyll biosynthesis and accumulation of photosynthetic antennae in Arabidopsis. PLANT, CELL & ENVIRONMENT 2023; 46:3287-3304. [PMID: 37427830 PMCID: PMC10947542 DOI: 10.1111/pce.14667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
Ferredoxins (Fd) are small iron-sulphur proteins, with sub-types that have evolved for specific redox functions. Ferredoxin C2 (FdC2) proteins are essential Fd homologues conserved in all photosynthetic organisms and a number of different FdC2 functions have been proposed in angiosperms. Here we use RNAi silencing in Arabidopsis thaliana to generate a viable fdC2 mutant line with near-depleted FdC2 protein levels. Mutant leaves have ~50% less chlorophyll a and b, and chloroplasts have poorly developed thylakoid membrane structure. Transcriptomics indicates upregulation of genes involved in stress responses. Although fdC2 antisense plants show increased damage at photosystem II (PSII) when exposed to high light, PSII recovers at the same rate as wild type in the dark. This contradicts literature proposing that FdC2 regulates translation of the D1 subunit of PSII, by binding to psbA transcript. Measurement of chlorophyll biosynthesis intermediates revealed a build-up of Mg-protoporphyrin IX, the substrate of the aerobic cyclase. We localise FdC2 to the inner chloroplast envelope and show that the FdC2 RNAi line has a disproportionately lower protein abundance of antennae proteins, which are nuclear-encoded and must be refolded at the envelope after import.
Collapse
Affiliation(s)
| | - Lars B. Scharff
- Department of Plant and Environmental Sciences, Copenhagen Plant Science CentreUniversity of CopenhagenFrederiksbergDenmark
| | - Manuela Kramer
- School of Biological and Behavioural sciencesQueen Mary University of LondonLondonUK
| | - Tatjana Goss
- Department of Plant PhysiologyOsnabrück UniversityOsnabrückGermany
| | | | | | - Sam Wilson
- School of Biological and Behavioural sciencesQueen Mary University of LondonLondonUK
| | - Inga Kruse
- Department of Plant PhysiologyOsnabrück UniversityOsnabrückGermany
| | - Alexander Ruban
- School of Biological and Behavioural sciencesQueen Mary University of LondonLondonUK
| | | | - Toshiharu Hase
- Institute for Protein ResearchOsaka UniversityOsakaJapan
| | - Poul‐Erik Jensen
- Department of Food ScienceUniversity of CopenhagenFrederiksbergDenmark
| | - Guy T. Hanke
- School of Biological and Behavioural sciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
3
|
Hu J, Chen J, Wang W, Zhu L. Mechanism of growth inhibition mediated by disorder of chlorophyll metabolism in rice (Oryza sativa) under the stress of three polycyclic aromatic hydrocarbons. CHEMOSPHERE 2023; 329:138554. [PMID: 37037159 DOI: 10.1016/j.chemosphere.2023.138554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Photosynthesis mediated by chlorophyll metabolism is the basis for plant growth, and also the important regulatory mechanism of carbon pool in cropland ecosystems. Soil organic pollutants induced growth inhibition in crop plants, herein, we conducted an in-depth investigation on the effects of three representative polycyclic aromatic hydrocarbons (PAHs), including phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP) on rice (Oryza sativa) growth and photosynthesis. PAHs were absorbed via root uptake and accumulated in leaves, causing the swelling of thylakoids and the increase of osmiophilic granules in chloroplasts. The actual quantum efficiency of PSII was significantly decreased under the stress of PHE, PYR, and BaP by 29.9%, 11.9%, and 24.1% respectively, indicating the inhibition in photon absorption and transfer, which was consistent with the decrease of chlorophyll a (22.3%-32.2% compared to the control) in rice leaves. Twenty-two encoding genes involved in chlorophyll metabolism were determined and the results indicated that the expression of chlorophyll synthetases was downregulated by over 50% whereas the degradation process was promoted. Consequently, the production of carbohydrates and the carbon fixation were inhibited, which revealed by the downregulation of intermediate metabolites in Calvin cycle and the declined carboxylation rate. The disturbed photosynthesis resulted in the decrease of the biomasses of both roots (21.0%-42.7%) and leaves (6.4%-22.1%) under the tested PAH stresses. The findings of this study implied that the photosynthetic inhibition was possibly attributed to the disorder of chlorophyll metabolism, thus providing novel insights into the mechanism of growth inhibition induced by organic pollutants and theoretical basis for the estimation of cropland carbon sequestration potential.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Jie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
4
|
Li D, Yu F, Zhang Y, Hu K, Dai D, Song S, Zhang F, Sa R, Lian H, Sheng Y. Integrative analysis of different low-light-tolerant cucumber lines in response to low-light stress. FRONTIERS IN PLANT SCIENCE 2023; 13:1093859. [PMID: 36743563 PMCID: PMC9891299 DOI: 10.3389/fpls.2022.1093859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Low light stress inhibits plant growth due to a line of physiological disruptions in plants, and is one of the major barriers to protected cucumber cultivation in northern China. METHODS To comprehensively understand the responses of cucumber seedlings to low-light stress, the low-light-tolerant line (M67) and The low-light-sensitive line (M14) were conducted for the analysis of photosynthetic phenotype, RNA sequencing (RNA-seq) and the expression level of photosynthesis-related genes in leaves under low-light stress and normal light condition (control). RESULTS The results showed that there was a sharp decrease in the photosynthate accumulation in the leaves of the sensitive line, M14, resulting in a large decrease in the photosynthetic rate (Pn) (with 31.99%) of leaves compared to that of the control, which may have been caused by damage to chloroplast ultrastructure or a decrease in chlorophyll (Chl) content. However, under the same low-light treatment, there was no large drop in the photosynthate accumulation and even no decrease in Pn and Chl content for the tolerant line, M67. Moreover, results of gene expression analysis showed that the expression level of genes CsPsbQ (the photosystem II oxygen-evolving enhancer protein 3 gene) and Csgamma (ATPase, F1 complex gene) in the M14 leaves decreased sharply (by 35.04% and 30.58%, respectively) compared with the levels in the M67 leaves, which decreased by 14.78% and 23.61%, respectively. The expression levels of genes involved in Chl synthesis and carbohydrate biosynthesis in the leaves of M14 decreased markedly after low-light treatment; in contrast, there were no sharp decreases or changes in leaves of M67. DISCUSSION Over all, the ability of cucumber to respond to low-light stress, as determined on the basis of the degree of damage in leaf structure and chloroplast ultrastructure, which corresponded to decreased gene expression levels and ATP phosphorylase activity, significantly differed between different low-light-tolerant lines, which was manifested as significant differences in photosynthetic capacity between them. Results of this study will be a reference for comprehensive insight into the physiological mechanism involved in the low-light tolerance of cucumber.
Collapse
Affiliation(s)
- Dandan Li
- *Correspondence: Dandan Li, ; Yunyan Sheng,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Guo J, Wang H, Liu S, Wang Y, Liu F, Li X. Parental drought priming enhances tolerance to low temperature in wheat ( Triticum aestivum) offspring. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:946-957. [PMID: 35871526 DOI: 10.1071/fp22043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Low temperature is one of the major environmental stresses that limit crop growth and grain yield in wheat (Triticum aestivum L.). Drought priming at the vegetative stage could enhance wheat tolerance to later cold stress; however, the transgenerational effects of drought priming on wheat offspring's cold stress tolerance remains unclear. Here, the low temperature responses of offspring were tested after the parental drought priming treatment at grain filling stage. The offspring plants from parental drought priming treatment had a higher abscisic acid (ABA) level and lower osmotic potential (Ψo) than the control plants under cold conditions. Moreover, parental drought priming increased the antioxidant enzyme activities and decreased hydrogen peroxide (H2 O2 ) accumulation in offspring. In comparison to control plants, parental drought priming plants had a higher ATP concentration and higher activities of ATPase and the enzymes involved in sucrose biosynthesis and starch metabolism. The results indicated that parental drought priming induced low temperature tolerance in offspring by regulating endogenous ABA levels and maintaining the redox homeostasis and the balance of carbohydrate metabolism, which provided a potential approach for cold resistant cultivation in wheat.
Collapse
Affiliation(s)
- Junhong Guo
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Shengqun Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yongjun Wang
- Institute of Agricultural Resources and Environment, Jilin Academy of Agriculture Sciences/State Engineering Laboratory of Maize, Changchun 130033, China
| | - Fulai Liu
- University of Copenhagen, Faculty of Science, Department of Plant and Environmental Sciences, Højbakkegård Allé 13, Tåstrup DK-2630, Denmark
| | - Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; and University of Chinese Academy of Sciences, Beijing 100049, China; and CAS Engineering Laboratory for Eco-agriculture in Water Source of Liaoheyuan, Chinese Academy of Science, Changchun 130102, China
| |
Collapse
|
6
|
Sawicki A, Willows RD, Chen M. Spectral signatures of five hydroxymethyl chlorophyll a derivatives chemically derived from chlorophyll b or chlorophyll f. PHOTOSYNTHESIS RESEARCH 2019; 140:115-127. [PMID: 30604202 DOI: 10.1007/s11120-018-00611-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Chlorophylls (Chls) are pigments involved in light capture and light reactions in photosynthesis. Chl a, Chl b, Chl d, and Chl f are characterized by unique absorbance maxima in the blue (Soret) and red (Qy) regions with Chl b, Chl d, and Chl f each possessing a single formyl group at a unique position. Relative to Chl a the Qy absorbance maximum of Chl b is blue-shifted while Chl d and Chl f are red-shifted with the shifts attributable to the relative positions of the formyl substitutions. Reduction of a formyl group of Chl b to form 7-hydroxymethyl Chl a, or oxidation of the vinyl group of Chl a into a formyl group to form Chl d was achieved using sodium borohydride (NaBH4) or β-mercaptoethanol (BME/O2), respectively. During the consecutive reactions of Chl b and Chl f using a three-step procedure (1. NaBH4, 2. BME/O2, and 3. NaBH4) two new 7-hydroxymethyl Chl a species were prepared possessing the 3-formyl or 3-hydroxymethyl groups and three new 2-hydroxymethyl Chl a species possessing the 3-vinyl, 3-formyl, or 3-hydroxymethyl groups, respectively. Identification of the spectral properties of 2-hydroxymethyl Chl a may be biologically significant for deducing the latter stages of Chl f biosynthesis if the mechanism parallels Chl b biosynthesis. The spectral features and chromatographic properties of these modified Chls are important for identifying potential intermediates in the biosynthesis of Chls such as Chl f and Chl d and for identification of any new Chls in nature.
Collapse
Affiliation(s)
- Artur Sawicki
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Robert D Willows
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2019, Australia
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
7
|
|
8
|
Atkinson JT, Campbell I, Bennett GN, Silberg JJ. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways. Biochemistry 2016; 55:7047-7064. [DOI: 10.1021/acs.biochem.6b00831] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua T. Atkinson
- Systems,
Synthetic, and Physical Biology Graduate Program, Rice University, MS-180, 6100 Main Street, Houston, Texas 77005, United States
| | - Ian Campbell
- Biochemistry
and Cell Biology Graduate Program, Rice University, MS-140, 6100
Main Street, Houston, Texas 77005, United States
| | - George N. Bennett
- Department
of Biosciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, MS-362,
6100 Main Street, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department
of Biosciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
9
|
Kambakam S, Bhattacharjee U, Petrich J, Rodermel S. PTOX Mediates Novel Pathways of Electron Transport in Etioplasts of Arabidopsis. MOLECULAR PLANT 2016; 9:1240-1259. [PMID: 27353362 DOI: 10.1016/j.molp.2016.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 06/05/2016] [Accepted: 06/16/2016] [Indexed: 05/21/2023]
Abstract
The immutans (im) variegation mutant of Arabidopsis defines the gene for PTOX (plastid terminal oxidase), a versatile plastoquinol oxidase in chloroplast membranes. In this report we used im to gain insight into the function of PTOX in etioplasts of dark-grown seedlings. We discovered that PTOX helps control the redox state of the plastoquinone (PQ) pool in these organelles, and that it plays an essential role in etioplast metabolism by participating in the desaturation reactions of carotenogenesis and in one or more redox pathways mediated by PGR5 (PROTON GRADIENT REGULATION 5) and NDH (NAD(P)H dehydrogenase), both of which are central players in cyclic electron transport. We propose that these elements couple PTOX with electron flow from NAD(P)H to oxygen, and by analogy to chlororespiration (in chloroplasts) and chromorespiration (in chromoplasts), we suggest that they define a respiratory process in etioplasts that we have termed "etiorespiration". We further show that the redox state of the PQ pool in etioplasts might control chlorophyll biosynthesis, perhaps by participating in mechanisms of retrograde (plastid-to-nucleus) signaling that coordinate biosynthetic and photoprotective activities required to poise the etioplast for light development. We conclude that PTOX is an important component of metabolism and redox sensing in etioplasts.
Collapse
Affiliation(s)
- Sekhar Kambakam
- Department of Genetics, Development and Cell Biology, Iowa State University, 445 Bessey Hall, Ames, IA 50011, USA
| | | | - Jacob Petrich
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Steve Rodermel
- Department of Genetics, Development and Cell Biology, Iowa State University, 445 Bessey Hall, Ames, IA 50011, USA.
| |
Collapse
|
10
|
Teixeira RN, Ligterink W, França-Neto JDB, Hilhorst HWM, da Silva EAA. Gene expression profiling of the green seed problem in Soybean. BMC PLANT BIOLOGY 2016; 16:37. [PMID: 26829931 PMCID: PMC4736698 DOI: 10.1186/s12870-016-0729-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/28/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Due to the climate change of the past few decades, some agricultural areas in the world are now experiencing new climatic extremes. For soybean, high temperatures and drought stress can potentially lead to the "green seed problem", which is characterized by chlorophyll retention in mature seeds and is associated with lower oil and seed quality, thus negatively impacting the production of soybean seeds. RESULTS Here we show that heat and drought stress result in a "mild" stay-green phenotype and impaired expression of the STAY-GREEN 1 and STAY-GREEN 2 (D1, D2), PHEOPHORBIDASE 2 (PPH2) and NON-YELLOW COLORING 1 (NYC1_1) genes in soybean seeds of a susceptible soybean cultivar. We suggest that the higher expression of these genes in fully mature seeds of a tolerant cultivar allows these seeds to cope with stressful conditions and complete chlorophyll degradation. CONCLUSIONS The gene expression results obtained in this study represent a significant advance in understanding chlorophyll retention in mature soybean seeds produced under stressful conditions. This will open new research possibilities towards finding molecular markers for breeding programs to produce cultivars which are less susceptible to chlorophyll retention under the hot and dry climate conditions which are increasingly common in the largest soybean production areas of the world.
Collapse
Affiliation(s)
- Renake N Teixeira
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
- Departamento de Produção e Melhoramento Vegetal, Faculdade de Ciências Agronômicas-UNESP, Universidade Estadual Paulista, Botucatu, SP, 18.610-307, Brazil.
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| | - José de B França-Neto
- Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Soja, EMBRAPA Soja, Caixa-postal 231, Londrina, PR, 86001970, Brazil.
| | - Henk W M Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| | - Edvaldo A A da Silva
- Departamento de Produção e Melhoramento Vegetal, Faculdade de Ciências Agronômicas-UNESP, Universidade Estadual Paulista, Botucatu, SP, 18.610-307, Brazil.
| |
Collapse
|
11
|
Armesto J, Carballo J, Martínez S. Physicochemical and Phytochemical Properties of Two Phenotypes of Galega Kale (B
rassica oleracea
L. var. Acephala
cv. Galega). J Food Biochem 2015. [DOI: 10.1111/jfbc.12151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jorge Armesto
- Área de Tecnología de los Alimentos, Facultad de Ciencias; Universidad de Vigo; Campus As Lagoas s/n 32004 Ourense Spain
| | - Javier Carballo
- Área de Tecnología de los Alimentos, Facultad de Ciencias; Universidad de Vigo; Campus As Lagoas s/n 32004 Ourense Spain
| | - Sidonia Martínez
- Área de Tecnología de los Alimentos, Facultad de Ciencias; Universidad de Vigo; Campus As Lagoas s/n 32004 Ourense Spain
| |
Collapse
|
12
|
Ryan AA, Senge MO. How green is green chemistry? Chlorophylls as a bioresource from biorefineries and their commercial potential in medicine and photovoltaics. Photochem Photobiol Sci 2015; 14:638-60. [DOI: 10.1039/c4pp00435c] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorophylls are the natural green pigments par excellence and offer potential as therapeutics and in energy generation. This perspective outlines the state-of-the-art, their possible applications and indicates future directions in the context of green chemistry and their production from biorefineries.
Collapse
Affiliation(s)
- Aoife A. Ryan
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- 152-160 Pearse Street
- Trinity College Dublin
| | - Mathias O. Senge
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- 152-160 Pearse Street
- Trinity College Dublin
| |
Collapse
|
13
|
|
14
|
Sakuraba Y, Park SY, Kim YS, Wang SH, Yoo SC, Hörtensteiner S, Paek NC. Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence. MOLECULAR PLANT 2014; 7:1288-1302. [PMID: 24719469 DOI: 10.1093/mp/ssu045] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chlorophyll (Chl) degradation causes leaf yellowing during senescence or under stress conditions. For Chl breakdown, STAY-GREEN1 (SGR1) interacts with Chl catabolic enzymes (CCEs) and light-harvesting complex II (LHCII) at the thylakoid membrane, possibly to allow metabolic channeling of potentially phototoxic Chl breakdown intermediates. Among these Chl catabolic components, SGR1 acts as a key regulator of leaf yellowing. In addition to SGR1 (At4g22920), the Arabidopsis thaliana genome contains an additional homolog, SGR2 (At4g11910), whose biological function remains elusive. Under senescence-inducing conditions, SGR2 expression is highly up-regulated, similarly to SGR1 expression. Here we show that SGR2 function counteracts SGR1 activity in leaf Chl degradation; SGR2-overexpressing plants stayed green and the sgr2-1 knockout mutant exhibited early leaf yellowing under age-, dark-, and stress-induced senescence conditions. Like SGR1, SGR2 interacted with LHCII but, in contrast to SGR1, SGR2 interactions with CCEs were very limited. Furthermore, SGR1 and SGR2 formed homo- or heterodimers, strongly suggesting a role for SGR2 in negatively regulating Chl degradation by possibly interfering with the proposed CCE-recruiting function of SGR1. Our data indicate an antagonistic evolution of the functions of SGR1 and SGR2 in Arabidopsis to balance Chl catabolism in chloroplasts with the dismantling and remobilizing of other cellular components in senescing leaf cells.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - So-Yon Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; Present address: Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ye-Sol Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; Present address: Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Korea
| | - Seung-Hyun Wang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Soo-Cheul Yoo
- Department of Plant & Environmental Science, Hankyong National University, Ansung 456-749, Korea
| | | | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.
| |
Collapse
|
15
|
Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii. Int J Mol Sci 2013; 14:20913-29. [PMID: 24141188 PMCID: PMC3821650 DOI: 10.3390/ijms141020913] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) produced by plants in adverse environments can cause damage to organelles and trigger cell death. Removal of excess ROS can be achieved through the ascorbate scavenger pathway to prevent plant cell death. The amount of this scavenger can be regulated by ferredoxin (FDX). Chloroplastic FDXs are electron transfer proteins that perform in distributing photosynthetic reducing power. In this study, we demonstrate that overexpression of the endogenous photosynthetic FDX gene, PETF, in Chlamydomonas reinhardtii could raise the level of reduced ascorbate and diminish H2O2 levels under normal growth conditions. Furthermore, the overexpressing PETF transgenic Chlamydomonas lines produced low levels of H2O2 and exhibited protective effects that were observed through decreased chlorophyll degradation and increased cell survival under heat-stress conditions. The findings of this study suggest that overexpression of PETF can increase the efficiency of ROS scavenging in chloroplasts to confer heat tolerance. The roles of PETF in the downregulation of the ROS level offer a method for potentially improving the tolerance of crops against heat stress.
Collapse
|
16
|
Hörtensteiner S. Update on the biochemistry of chlorophyll breakdown. PLANT MOLECULAR BIOLOGY 2013; 82:505-17. [PMID: 22790503 DOI: 10.1007/s11103-012-9940-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/28/2012] [Indexed: 05/18/2023]
Abstract
In land plants, chlorophyll is broken down to colorless linear tetrapyrroles in a highly conserved multi-step pathway. The pathway is termed the 'PAO pathway', because the opening of the chlorine macrocycle present in chlorophyll catalyzed by pheophorbide a oxygenase (PAO), the key enzyme of the pathway, provides the characteristic structural basis found in all further downstream chlorophyll breakdown products. To date, most of the biochemical steps of the PAO pathway have been elucidated and genes encoding many of the chlorophyll catabolic enzymes been identified. This review summarizes the current knowledge on the biochemistry of the PAO pathway and provides insight into recent progress made in the field that indicates that the pathway is more complex than thought in the past.
Collapse
Affiliation(s)
- Stefan Hörtensteiner
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| |
Collapse
|
17
|
Hanke G, Mulo P. Plant type ferredoxins and ferredoxin-dependent metabolism. PLANT, CELL & ENVIRONMENT 2013; 36:1071-1084. [PMID: 23190083 DOI: 10.1111/pce.12046] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/24/2023]
Abstract
Ferredoxin (Fd) is a small [2Fe-2S] cluster-containing protein found in all organisms performing oxygenic photosynthesis. Fd is the first soluble acceptor of electrons on the stromal side of the chloroplast electron transport chain, and as such is pivotal to determining the distribution of these electrons to different metabolic reactions. In chloroplasts, the principle sink for electrons is in the production of NADPH, which is mostly consumed during the assimilation of CO2 . In addition to this primary function in photosynthesis, Fds are also involved in a number of other essential metabolic reactions, including biosynthesis of chlorophyll, phytochrome and fatty acids, several steps in the assimilation of sulphur and nitrogen, as well as redox signalling and maintenance of redox balance via the thioredoxin system and Halliwell-Asada cycle. This makes Fds crucial determinants of the electron transfer between the thylakoid membrane and a variety of soluble enzymes dependent on these electrons. In this article, we will first describe the current knowledge on the structure and function of the various Fd isoforms present in chloroplasts of higher plants and then discuss the processes involved in oxidation of Fd, introducing the corresponding enzymes and discussing what is known about their relative interaction with Fd.
Collapse
Affiliation(s)
- Guy Hanke
- Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076, Osnabrück, Germany
| | | |
Collapse
|
18
|
Hörtensteiner S. The Pathway of Chlorophyll Degradation: Catabolites, Enzymes and Pathway Regulation. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Cheng Y, Dong Y, Yan H, Ge W, Shen C, Guan J, Liu L, Zhang Y. Effects of 1-MCP on chlorophyll degradation pathway-associated genes expression and chloroplast ultrastructure during the peel yellowing of Chinese pear fruits in storage. Food Chem 2012; 135:415-22. [PMID: 22868108 DOI: 10.1016/j.foodchem.2012.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/21/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
The peel yellowing is an important pigment physiological process of green fruit ripening, which mainly results from chlorophyll degradation in the fruit peel. In this work, two typical cultivars with different ripening speed, a slow ripening pear 'Emerald' (Pyrus bretschneideri Rehd. cv. Emerald) and a fast ripening 'Jingbai' (Pyrus ussuriensis Maxim. cv. Jingbai) were used to investigate the molecular mechanism of chlorophyll degradation in pear yellowing/ripening during postharvest storage. The fruits after harvest were treated with 1-methylcyclopropene (1-MCP), an ethylene action inhibitor at 1.0 μLl(-1) to determine its effect on chloroplast ultrastructure and the expression of chlorophyll degradation associated genes in peel tissues. Our results show that the pears treated with 1-MCP had a lower ethylene production rate and higher chlorophyll content compared to those of untreated fruit. The more intact chloroplasts with well-organised grana thylakoids and small plastoglobuli were maintained in the peel of 1-MCP treated fruit for up to 30 and 15 d in 'Emerald' and 'Jingbai', respectively. The expression of chlorophyll degradation associated genes: pheophorbide a oxygenase (PAO), non-yellow colouring (NYC), NYC1-like (NOL), stay-green 1(SGR1), was suppressed, while no significant change was found in chlorophyllase 1 (CHL1) and red chlorophyll catabolite reductase (RCCR) in both cultivar fruits treated with 1-MCP. These results suggest that 1-MCP can delay chlorophyll degradation by inhibiting ethylene production and suppressing the gene expression of PAO, NYC, NOL and SGR1, which are closely associated with chlorophyll catabolic pathway.
Collapse
Affiliation(s)
- Yudou Cheng
- Institute of Genetics and Physiology, Hebei Academy of Agricultural and Forestry Science, Shijiazhuang 050051, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Meguro M, Ito H, Takabayashi A, Tanaka R, Tanaka A. Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. THE PLANT CELL 2011; 23:3442-53. [PMID: 21934147 PMCID: PMC3203437 DOI: 10.1105/tpc.111.089714] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/23/2011] [Accepted: 09/02/2011] [Indexed: 05/18/2023]
Abstract
The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation.
Collapse
Affiliation(s)
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | | | | | | |
Collapse
|
21
|
Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0145. [PMID: 22303270 PMCID: PMC3268503 DOI: 10.1199/tab.0145] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Hirai Y, Kashimura S, Saga Y. Demetalation Kinetics of Chlorophyll Derivatives Possessing Different Substituents at the 7-Position Under Acidic Conditions. Photochem Photobiol 2011; 87:302-7. [DOI: 10.1111/j.1751-1097.2010.00874.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Nagane T, Tanaka A, Tanaka R. Involvement of AtNAP1 in the regulation of chlorophyll degradation in Arabidopsis thaliana. PLANTA 2010; 231:939-49. [PMID: 20087600 DOI: 10.1007/s00425-010-1099-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/06/2010] [Indexed: 05/08/2023]
Abstract
In plants, chlorophyll is actively synthesized from glutamate in the developmental phase and is degraded into non-fluorescent chlorophyll catabolites during senescence. The chlorophyll metabolism must be strictly regulated because chlorophylls and their intermediate molecules generate reactive oxygen species. Many mechanisms have been proposed for the regulation of chlorophyll synthesis including gene expression, protein stability, and feedback inhibition. However, information on the regulation of chlorophyll degradation is limited. The conversion of chlorophyll b to chlorophyll a is the first step of chlorophyll degradation. In order to understand the regulatory mechanism of this reaction, we isolated a mutant which accumulates 7-hydroxymethyl chlorophyll a (HMChl), an intermediate molecule of chlorophyll b to chlorophyll a conversion, and designated the mutant hmc1. In addition to HMChl, hmc1 accumulated pheophorbide a, a chlorophyll degradation product, when chlorophyll degradation was induced by dark incubation. These results indicate that the activities of HMChl reductase (HAR) and pheophorbide a oxygenase (PaO) are simultaneously down-regulated in this mutant. We identified a mutation in the AtNAP1 gene, which encodes a subunit of the complex for iron-sulfur cluster formation. HAR and PaO use ferredoxin as a reducing power and PaO has an iron-sulfur center; however, there were no distinct differences in the protein levels of ferredoxin and PaO between wild type and hmc1. The concerted regulation of chlorophyll degradation is discussed in relation to the function of AtNAP1.
Collapse
Affiliation(s)
- Tomohiro Nagane
- Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-ku, Sapporo 060-0819, Japan
| | | | | |
Collapse
|
24
|
Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:940-52. [PMID: 19453447 DOI: 10.1111/j.1365-313x.2009.03919.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chlorophyll degradation is an important phenomenon in the senescence process. It is necessary for the degradation of certain chlorophyll-protein complexes and thylakoid membranes during leaf senescence. Mutants retaining greenness during leaf senescence are known as 'stay-green' mutants. Non-functional type stay-green mutants, which possess defects in chlorophyll degradation, retain greenness but not leaf functionality during senescence. Here, we report a new stay-green mutant in rice, nyc3. nyc3 retained a higher chlorophyll a and chlorophyll b content than the wild-type but showed a decrease in other senescence parameters during dark incubation, suggesting that it is a non-functional stay-green mutant. In addition, a small amount of pheophytin a, a chlorophyll a-derivative without Mg(2+) ions in its tetrapyrrole ring, accumulated in the senescent leaves of nyc3. nyc3 shows a similar but weaker phenotype to stay green (sgr), another non-functional stay-green mutant in rice. The chlorophyll content of nyc3 sgr double mutants at the late stage of leaf senescence was also similar to that of sgr. Linkage analysis revealed that NYC3 is located near the centromere region of chromosome 6. Map-based cloning of genes near the centromere is very difficult because of the low recombination rate; however, we overcame this problem by using ionizing radiation-induced mutant alleles harboring deletions of hundreds of kilobases. Thus, it was revealed that NYC3 encodes a plastid-localizing alpha/beta hydrolase-fold family protein with an esterase/lipase motif. The possible function of NYC3 in the regulation of chlorophyll degradation is discussed.
Collapse
Affiliation(s)
- Ryouhei Morita
- Institute of Radiation Breeding, National Institute of Agrobiological Sciences, Hitachi-ohmiya 219-2293, Japan
| | | | | | | | | |
Collapse
|
25
|
Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:120-31. [PMID: 18778405 DOI: 10.1111/j.1365-313x.2008.03670.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Yellowing, which is related to the degradation of chlorophyll and chlorophyll-protein complexes, is a notable phenomenon during leaf senescence. NON-YELLOW COLORING 1 (NYC1) in rice encodes a membrane-localized short-chain dehydrogenase/reductase (SDR) that is thought to represent a chlorophyll b reductase necessary for catalyzing the first step of chlorophyll b degradation. Analysis of the nyc1 mutant, which shows the stay-green phenotype, revealed that chlorophyll b degradation is required for the degradation of light-harvesting complex II and thylakoid grana in leaf senescence. Phylogenetic analysis further revealed the existence of NYC1-LIKE (NOL) as the most closely related protein to NYC1. In the present paper, the nol mutant in rice was also found to show a stay-green phenotype very similar to that of the nyc1 mutant, i.e. the degradation of chlorophyll b was severely inhibited and light-harvesting complex II was selectively retained during senescence, resulting in the retention of thylakoid grana even at a late stage of senescence. The nyc1 nol double mutant did not show prominent enhancement of inhibition of chlorophyll degradation. NOL was localized on the stromal side of the thylakoid membrane despite the lack of a transmembrane domain. Immunoprecipitation analysis revealed that NOL and NYC1 interact physically in vitro. These observations suggest that NOL and NYC1 are co-localized in the thylakoid membrane and act in the form of a complex as a chlorophyll b reductase in rice.
Collapse
Affiliation(s)
- Yutaka Sato
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Ougham H, Hörtensteiner S, Armstead I, Donnison I, King I, Thomas H, Mur L. The control of chlorophyll catabolism and the status of yellowing as a biomarker of leaf senescence. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10 Suppl 1:4-14. [PMID: 18721307 DOI: 10.1111/j.1438-8677.2008.00081.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The pathway of chlorophyll catabolism during leaf senescence is known in a fair amount of biochemical and cell biological detail. In the last few years, genes encoding a number of the catabolic enzymes have been characterized, including the key ring-opening activities, phaeophorbide a oxygenase (PaO) and red chlorophyll catabolite reductase (RCCR). Recently, a gene that modulates disassembly of chlorophyll-protein complexes and activation of pigment ring-opening has been isolated by comparative mapping in monocot species, positional cloning exploiting rice genomics resources and functional testing in Arabidopsis. The corresponding gene in pea has been identified as Mendel's I locus (green/yellow cotyledons). Mutations in this and other chlorophyll catabolic genes have significant consequences, both for the course of leaf senescence and senescence-like stress responses, notably hypersensitivity to pathogen challenge. Loss of chlorophyll can occur via routes other than the PaO/RCCR pathway, resulting in changes that superficially resemble senescence. Such 'pseudosenescence' responses tend to be pathological rather than physiological and may differ from senescence in fundamental aspects of biochemistry and regulation.
Collapse
Affiliation(s)
- H Ougham
- IGER, Plas Gogerddan, Aberystwyth, Ceredigion, UK.
| | | | | | | | | | | | | |
Collapse
|
27
|
Masuda T. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. PHOTOSYNTHESIS RESEARCH 2008; 96:121-43. [PMID: 18273690 DOI: 10.1007/s11120-008-9291-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/29/2008] [Indexed: 05/20/2023]
Abstract
In plants, chlorophylls (chlorophyll a and chlorophyll b) are the most abundant tetrapyrrole molecules and are essential for photosynthesis. The first committed step of chlorophyll biosynthesis is the insertion of Mg(2+) into protoporphyrin IX, and thus subsequent steps of the biosynthesis are called the Mg branch. As the Mg branch in higher plants is complex, it was not until the last decade--after many years of intensive research--that most of the genes encoding the enzymes for the pathway were identified. Biochemical and molecular genetic analyses have certainly modified the classic metabolic map of tetrapyrrole biosynthesis, and only recently have the molecular mechanisms of regulatory pathways governing chlorophyll metabolism been elucidated. As a result, novel functions of tetrapyrroles and biosynthetic enzymes have been proposed. In this review, I summarize the recent findings on enzymes involved in the Mg branch, mainly in higher plants.
Collapse
Affiliation(s)
- Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
28
|
Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. THE PLANT CELL 2007; 19:1362-75. [PMID: 17416733 PMCID: PMC1913755 DOI: 10.1105/tpc.106.042911] [Citation(s) in RCA: 324] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chlorophyll degradation is an aspect of leaf senescence, which is an active process to salvage nutrients from old tissues. non-yellow coloring1 (nyc1) is a rice (Oryza sativa) stay-green mutant in which chlorophyll degradation during senescence is impaired. Pigment analysis revealed that degradation of not only chlorophylls but also light-harvesting complex II (LHCII)-bound carotenoids was repressed in nyc1, in which most LHCII isoforms were selectively retained during senescence. Ultrastructural analysis of nyc1 chloroplasts revealed that large and thick grana were present even in the late stage of senescence, suggesting that degradation of LHCII is required for the proper degeneration of thylakoid membranes. Map-based cloning of NYC1 revealed that it encodes a chloroplast-localized short-chain dehydrogenase/reductase (SDR) with three transmembrane domains. The predicted structure of the NYC1 protein and the phenotype of the nyc1 mutant suggest the possibility that NYC1 is a chlorophyll b reductase. Although we were unable to detect the chlorophyll b reductase activity of NYC1, NOL (for NYC1-like), a protein closely related to NYC1 in rice, showed chlorophyll b reductase activity in vitro. We suggest that NYC1 and NOL encode chlorophyll b reductases with divergent functions. Our data collectively suggest that the identified SDR protein NYC1 plays essential roles in the regulation of LHCII and thylakoid membrane degradation during senescence.
Collapse
Affiliation(s)
- Makoto Kusaba
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Tetrapyrroles play vital roles in various biological processes, including photosynthesis and respiration. Higher plants contain four classes of tetrapyrroles, namely, chlorophyll, heme, siroheme, and phytochromobilin. All of the tetrapyrroles are derived from a common biosynthetic pathway. Here we review recent progress in the research of tetrapyrrole biosynthesis from a cellular biological view. The progress consists of biochemical, structural, and genetic analyses, which contribute to our understanding of how the flow and the synthesis of tetrapyrrole molecules are regulated and how the potentially toxic intermediates of tetrapyrrole synthesis are maintained at low levels. We also describe interactions of tetrapyrrole biosynthesis and other cellular processes including the stay-green events, the cell-death program, and the plastid-to-nucleus signal transduction. Finally, we present several reports on attempts for agricultural and horticultural applications in which the tetrapyrrole biosynthesis pathway was genetically modified.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo 060-0819, Japan.
| | | |
Collapse
|
30
|
Eckhardt U, Grimm B, Hörtensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. PLANT MOLECULAR BIOLOGY 2004; 56:1-14. [PMID: 15604725 DOI: 10.1007/s11103-004-2331-3] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chlorophyll (Chl) has unique and essential roles in photosynthetic light-harvesting and energy transduction, but its biosynthesis, accumulation and degradation is also associated with chloroplast development, photomorphogenesis and chloroplast-nuclear signaling. Biochemical analyses of the enzymatic steps paved the way to the identification of their encoding genes. Thus, important progress has been made in the recent elucidation of almost all genes involved in Chl biosynthesis and breakdown. In addition, analysis of mutants mainly in Arabidopsis , genetically engineered plants and the application of photo-reactive herbicides contributed to the genetic and regulatory characterization of the formation and breakdown of Chl. This review highlights recent progress in Chl metabolism indicating highly regulated pathways from the synthesis of precursors to Chl and its degradation to intermediates, which are not longer photochemically active.
Collapse
Affiliation(s)
- Ulrich Eckhardt
- Institut für Biologie, Pflanzenphysiologie, Humboldt-Universität zu Berlin, Philippstr 13, Haus 12, Berlin, D-10115, Germany
| | | | | |
Collapse
|
31
|
Reinbothe C, Satoh H, Alcaraz JP, Reinbothe S. A novel role of water-soluble chlorophyll proteins in the transitory storage of chorophyllide. PLANT PHYSIOLOGY 2004; 134:1355-65. [PMID: 15047899 PMCID: PMC419813 DOI: 10.1104/pp.103.033613] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Revised: 12/03/2003] [Accepted: 12/03/2003] [Indexed: 05/22/2023]
Abstract
All chlorophyll (Chl)-binding proteins involved in photosynthesis of higher plants are hydrophobic membrane proteins integrated into the thylakoids. However, a different category of Chl-binding proteins, the so-called water-soluble Chl proteins (WSCPs), was found in members of the Brassicaceae, Polygonaceae, Chenopodiaceae, and Amaranthaceae families. WSCPs from different plant species bind Chl a and Chl b in different ratios. Some members of the WSCP family are induced after drought and heat stress as well as leaf detachment. It has been proposed that this group of proteins might have a physiological function in the Chl degradation pathway. We demonstrate here that a protein that shared sequence homology to WSCPs accumulated in etiolated barley (Hordeum vulgare) seedlings exposed to light for 2 h. The novel 22-kD protein was attached to the outer envelope of barley etiochloroplasts, and import of the 27-kD precursor was light dependent and induced after feeding the isolated plastids the tetrapyrrole precursor 5-aminolevulinic acid. HPLC analyses and spectroscopic pigment measurements of acetone-extracted pigments showed that the 22-kD protein is complexed with chlorophyllide. We propose a novel role of WSCPs as pigment carriers operating during light-induced chloroplast development.
Collapse
Affiliation(s)
- Christiane Reinbothe
- Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, D-95447 Bayreuth, Germany.
| | | | | | | |
Collapse
|
32
|
Tanaka R, Hirashima M, Satoh S, Tanaka A. The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a: inhibition of the pheophorbide a oxygenase activity does not lead to the "stay-green" phenotype in Arabidopsis. PLANT & CELL PHYSIOLOGY 2003; 44:1266-74. [PMID: 14701922 DOI: 10.1093/pcp/pcg172] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxygenation of pheophorbide a is a key step in chlorophyll breakdown. Several biochemical studies have implicated that this step was catalyzed by an iron-containing and ferredoxin-dependent monooxygenase, pheophorbide a oxygenase (PaO). It has been proposed that inhibition of its activity arrests the chlorophyll breakdown and leads to the "stay-green" phenotype. We searched the Arabidopsis genome for a possible PaO-encoding gene and hypothesized that it has homology to known iron-containing Rieske-type monooxygenase sequences. We identified three such open reading frames, Tic55, ACD1 and ACD1-like. We produced transgenic Arabidopsis plants which expressed antisense RNA as a method to inhibit the expression of these genes. The appearance of these antisense plants were indistinguishable from that of the wild type under illumination. However, after they were kept under darkness for 5 d and again illuminated, the leaves of the antisense ACD1 plants (AsACD1) were bleached. Leaves of AsACD1 accumulated 387 nmol (g FW)(-1) pheophorbide a which corresponded to 60% of chlorophyll a degraded. The rate of decrease in chlorophyll a was not influenced in senesced AsACD1 leaves. These results demonstrated that ACD1 is involved in PaO activity, and its inhibition led to photooxidative destruction of the cell instead of the "stay-green" phenotype.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, and Core Research of Science and Technology (CREST), Japan Science and Technology Corporation (JST), Kita-ku, N19 W8, Sapporo, 060-0819 Japan.
| | | | | | | |
Collapse
|
33
|
Gomes MSO, Sinnecker P, Tanaka RT, Lanfer-Marquez UM. Effect of harvesting and drying conditions on chlorophyll levels of soybean (Glycine max L. Merr). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:1634-9. [PMID: 12617597 DOI: 10.1021/jf011227w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chlorophyll in soybean represents a downgrading factor for the crops. Five Brazilian cultivars were harvested between R(6) and R(8) stage of development (Fehr & Caviness scale) and dried at 25 degrees and 40 degrees C. The effect of maturity stages and two drying conditions after harvest were studied to achieve reduction of moisture and chlorophylls to acceptable levels. When seeds were dried at 25 degrees C, even harvesting at early stages of development such as R(6), the green pigments were almost degraded, and 16 ppm of chlorophyll were found at maximum, accompanied by loss of moisture. Moisture and chlorophyll declines as seed matures, but at intermediary stages (R(6)-R(7)), chlorophyll degrades first, so the rate of moisture loss should not be used to predict chlorophyll contents. At 40 degrees C, complete degradation of chlorophyll pigments is only achieved when seeds are swathed from R(7) stage up, otherwise the seed quality could be compromised. Slow drying allows almost complete removal of green pigments, even when seeds are swathed a few days before the physiological maturity stage.
Collapse
Affiliation(s)
- M Salete O Gomes
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Caixa Postal 66083, CEP 05389-970, Brasil
| | | | | | | |
Collapse
|
34
|
Reinbothe S, Pollmann S, Reinbothe C. In situ conversion of protochlorophyllide b to protochlorophyllide a in barley. Evidence for a novel role of 7-formyl reductase in the prolamellar body of etioplasts. J Biol Chem 2003; 278:800-6. [PMID: 12401789 DOI: 10.1074/jbc.m209737200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently put forth a model of a protochlorophyllide (Pchlide) light-harvesting complex operative during angiosperm seedling de-etiolation (Reinbothe, C., Lebedev, N., and Reinbothe, S. (1999) Nature 397, 80-84). This model, which was based on in vitro reconstitution experiments with zinc analogs of Pchlide a and Pchlide b and the two NADPH:protochlorophyllide oxidoreductases (PORs), PORA and PORB, of barley, predicted a 5-fold excess of Pchlide b, relative to Pchlide a, in the prolamellar body of etioplasts. Recent work (Scheumann, V., Klement, H., Helfrich, M., Oster, U., Schoch, S., and Rüdiger, W. (1999) FEBS Lett. 445, 445-448), however, contradicted this model and reported that Pchlide b would not be present in etiolated plants. Here we demonstrate that Pchlide b is an abundant pigment in barley etioplasts but is rather metabolically unstable. It is rapidly converted to Pchlide a by virtue of 7-formyl reductase activity, an enzyme that had previously been implicated in the chlorophyll (Chl) b to Chl a reaction cycle. Our findings suggest that etiolated plants make use of 7-formyl reductase to fine tune the levels of Pchlide b and Pchlide a and thereby may regulate the steady-state level of light-harvesting POR-Pchlide complex.
Collapse
Affiliation(s)
- Steffen Reinbothe
- Université Joseph Fourier et CNRS, UMR 5575, BP53, CERMO, F-38041 Grenoble cedex 9, France
| | | | | |
Collapse
|
35
|
Metzler DE, Metzler CM, Sauke DJ. The Metabolism of Nitrogen and Amino Acids. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Matile P. Senescence and Cell Death in Plant Development: Chloroplast Senescence and its Regulation. REGULATION OF PHOTOSYNTHESIS 2001. [DOI: 10.1007/0-306-48148-0_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Oster U, Tanaka R, Tanaka A, Rüdiger W. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 21:305-10. [PMID: 10758481 DOI: 10.1046/j.1365-313x.2000.00672.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Chlorophyll (Chl) biosynthesis and degradation are the only biochemical processes on Earth that can be directly observed from satellites or other planets. The bulk of the Chls is found in the light-harvesting antenna complexes of photosynthetic organisms. Surprisingly little is known about the biosynthesis of Chl b, which is the second most abundant Chl pigment after Chl a. We describe here the expression and properties of the chlorophyllide a oxygenase gene (CAO) from Arabidopsis thaliana, which is apparently the key enzyme in Chl b biosynthesis. The recombinant enzyme produced in Escherichia coli catalyses an unusual two-step oxygenase reaction that is the 'missing link' in the chlorophyll cycle of higher plants.
Collapse
Affiliation(s)
- U Oster
- Institute of Botany, University of Munich, Menzinger Str. 67, D-80638 Munich, Germany, andInstitute of Low Temperature Science, Hokkaido University, N19W8 Sapporo, Japan
| | | | | | | |
Collapse
|
38
|
Folly P, Engel N. Chlorophyll b to chlorophyll a conversion precedes chlorophyll degradation in Hordeum vulgare L. J Biol Chem 1999; 274:21811-6. [PMID: 10419497 DOI: 10.1074/jbc.274.31.21811] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study reveals by in vivo deuterium labeling that in higher plants chlorophyll (Chl) b is converted to Chl a before degradation. For this purpose, de-greening of excised green primary leaves of barley (Hordeum vulgare) was induced by permanent darkness in the presence of heavy water (80 atom % (2)H). The resulting Chl a catabolite in the plant extract was subjected to chemical degradation by chromic acid. 3-(2-Hydroxyethyl)-4-methyl-maleimide, the key fragment that originates from the Chl catabolite, was isolated. High resolution (1)H-, (2)H-NMR and mass spectroscopy unequivocally demonstrates that a fraction of this maleimide fragment consists of a mono-deuterated methyl group. These results suggest that Chl b is converted into Chl a before degradation. Quantification proves that the initial ratio of Chl a:Chl b in the green plant is preserved to about 60-70% in the catabolite composition isolated from yellowing leaves. The incorporation of only one deuterium atom indicates the involvement of two distinguishable redox enzymes during the conversion.
Collapse
Affiliation(s)
- P Folly
- Institut für Organische Chemie der Universität Fribourg, Ch. du Musée 9, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
39
|
Abstract
Although the loss of green color in senescent leaves and ripening fruits is a spectacular natural phenomenon, research on chlorophyll breakdown has been largely neglected until recently. This review summarizes knowledge about the fate of chlorophyll in degreening tissues that has been gained during the past few years. Structures of end- and intermediary products of degradation as well as the biochemistry of the porphyrin-cleaving reaction have been elucidated. The intracellular localization of the catabolic pathway is particularly important in the regulation of chlorophyll breakdown. None of the genes encoding the related catabolic enzymes has so far been isolated, which makes chlorophyll degradation an area of opportunity for future research.
Collapse
Affiliation(s)
- Philippe Matile
- University of Zurich, Institute of Plant Biology, Zollikerstrasse 107, Zurich, CH 8008 Switzerland; e-mail: , Cell Biology Department, Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom; e-mail:
| | | | | |
Collapse
|
40
|
Scheumann V, Klement H, Helfrich M, Oster U, Schoch S, Rüdiger W. Protochlorophyllide b does not occur in barley etioplasts. FEBS Lett 1999; 445:445-8. [PMID: 10094504 DOI: 10.1016/s0014-5793(99)00169-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Barley (Hordeum vulgare L.) etioplasts were isolated, and the pigments were extracted with acetone. The extract was analyzed by HPLC. Only protochlorophyllide a and no protochlorophyllide b was detected (limit of detection < 1% of protochlorophyllide a). Protochlorophyllide b was synthesized starting from chlorophyll b and incubated with etioplast membranes and NADPH. In the light, photoconversion to chlorophyllide b was observed, apparently catalyzed by NADPH :protochlorophyllide oxidoreductase. In darkness, reduction of the analogue zinc protopheophorbide b to zinc 7-hydroxy-protopheophorbide a was observed, apparently catalyzed by chlorophyll b reductase. We conclude that protochlorophyllide b does not occur in detectable amounts in etioplasts, and even traces of it as the free pigment are metabolically unstable. Thus the direct experimental evidence contradicts the idea by Reinbothe et al. (Nature 397 (1999) 80-84) of a protochlorophyllide b-containing light-harvesting complex in barley etioplasts.
Collapse
Affiliation(s)
- V Scheumann
- Botanisches Institut der Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | | | |
Collapse
|