1
|
van der Haar Àvila I, Windhouwer B, van Vliet SJ. Current state-of-the-art on ganglioside-mediated immune modulation in the tumor microenvironment. Cancer Metastasis Rev 2023; 42:941-958. [PMID: 37266839 PMCID: PMC10584724 DOI: 10.1007/s10555-023-10108-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
Gangliosides are sialylated glycolipids, mainly present at the cell surface membrane, involved in a variety of cellular signaling events. During malignant transformation, the composition of these glycosphingolipids is altered, leading to structural and functional changes, which are often negatively correlated to patient survival. Cancer cells have the ability to shed gangliosides into the tumor microenvironment, where they have a strong impact on anti-tumor immunity and promote tumor progression. Since most ganglioside species show prominent immunosuppressive activities, they might be considered checkpoint molecules released to counteract ongoing immunosurveillance. In this review, we highlight the current state-of-the-art on the ganglioside-mediated immunomodulation, specified for the different immune cells and individual gangliosides. In addition, we address the dual role that certain gangliosides play in the tumor microenvironment. Even though some ganglioside species have been more extensively studied than others, they are proven to contribute to the defense mechanisms of the tumor and should be regarded as promising therapeutic targets for inclusion in future immunotherapy regimens.
Collapse
Affiliation(s)
- Irene van der Haar Àvila
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Britt Windhouwer
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands.
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands.
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Sasaki N, Toyoda M. Vascular Diseases and Gangliosides. Int J Mol Sci 2019; 20:ijms20246362. [PMID: 31861196 PMCID: PMC6941100 DOI: 10.3390/ijms20246362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Vascular diseases, such as myocardial infarction and cerebral infarction, are most commonly caused by atherosclerosis, one of the leading causes of death worldwide. Risk factors for atherosclerosis include lifestyle and aging. It has been reported that lifespan could be extended in mice by targeting senescent cells, which led to the suppression of aging-related diseases, such as vascular diseases. However, the molecular mechanisms underlying the contribution of aging to vascular diseases are still not well understood. Several types of cells, such as vascular (endothelial cell), vascular-associated (smooth muscle cell and fibroblast) and inflammatory cells, are involved in plaque formation, plaque rupture and thrombus formation, which result in atherosclerosis. Gangliosides, a group of glycosphingolipids, are expressed on the surface of vascular, vascular-associated and inflammatory cells, where they play functional roles. Clarifying the role of gangliosides in atherosclerosis and their relationship with aging is fundamental to develop novel prevention and treatment methods for vascular diseases based on targeting gangliosides. In this review, we highlight the involvement and possible contribution of gangliosides to vascular diseases and further discuss their relationship with aging.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Correspondence: (N.S.); (M.T.); Tel.: +81-3-3964-3241 (N.S.); +81-3-3964-4421 (M.T.)
| | - Masashi Toyoda
- Correspondence: (N.S.); (M.T.); Tel.: +81-3-3964-3241 (N.S.); +81-3-3964-4421 (M.T.)
| |
Collapse
|
3
|
Zhang T, de Waard AA, Wuhrer M, Spaapen RM. The Role of Glycosphingolipids in Immune Cell Functions. Front Immunol 2019; 10:90. [PMID: 30761148 PMCID: PMC6361815 DOI: 10.3389/fimmu.2019.00090] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) exhibit a variety of functions in cellular differentiation and interaction. Also, they are known to play a role as receptors in pathogen invasion. A less well-explored feature is the role of GSLs in immune cell function which is the subject of this review article. Here we summarize knowledge on GSL expression patterns in different immune cells. We review the changes in GSL expression during immune cell development and differentiation, maturation, and activation. Furthermore, we review how immune cell GSLs impact membrane organization, molecular signaling, and trans-interactions in cellular cross-talk. Another aspect covered is the role of GSLs as targets of antibody-based immunity in cancer. We expect that recent advances in analytical and genome editing technologies will help in the coming years to further our knowledge on the role of GSLs as modulators of immune cell function.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Zhang G, Scarborough H, Kim J, Rozhok AI, Chen YA, Zhang X, Song L, Bai Y, Fang B, Liu RZ, Koomen J, Tan AC, Degregori J, Haura EB. Coupling an EML4-ALK-centric interactome with RNA interference identifies sensitizers to ALK inhibitors. Sci Signal 2016; 9:rs12. [PMID: 27811184 DOI: 10.1126/scisignal.aaf5011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients with lung cancers harboring anaplastic lymphoma kinase (ALK) gene fusions benefit from treatment with ALK inhibitors, but acquired resistance inevitably arises. A better understanding of proximal ALK signaling mechanisms may identify sensitizers to ALK inhibitors that disrupt the balance between prosurvival and proapoptotic effector signals. Using affinity purification coupled with mass spectrometry in an ALK fusion lung cancer cell line (H3122), we generated an ALK signaling network and investigated signaling activity using tyrosine phosphoproteomics. We identified a network of 464 proteins composed of subnetworks with differential response to ALK inhibitors. A small hairpin RNA screen targeting 407 proteins in this network revealed 64 and 9 proteins that when knocked down sensitized cells to crizotinib and alectinib, respectively. Among these, knocking down fibroblast growth factor receptor substrate 2 (FRS2) or coiled-coil and C2 domain-containing protein 1A (CC2D1A), both scaffolding proteins, sensitized multiple ALK fusion cell lines to the ALK inhibitors crizotinib and alectinib. Collectively, our data set provides a resource that enhances our understanding of signaling and drug resistance networks consequent to ALK fusions and identifies potential targets to improve the efficacy of ALK inhibitors in patients.
Collapse
Affiliation(s)
- Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Hannah Scarborough
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jihye Kim
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrii I Rozhok
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yian Ann Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Xiaohui Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Lanxi Song
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics Core Facility, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Richard Z Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John Koomen
- Department of Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Aik Choon Tan
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James Degregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
5
|
The productive entry pathway of HIV-1 in macrophages is dependent on endocytosis through lipid rafts containing CD4. PLoS One 2014; 9:e86071. [PMID: 24465876 PMCID: PMC3899108 DOI: 10.1371/journal.pone.0086071] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022] Open
Abstract
Macrophages constitute an important reservoir of HIV-1 infection, yet HIV-1 entry into these cells is poorly understood due to the difficulty in genetically manipulating primary macrophages. We developed an effective genetic approach to manipulate the sub-cellular distribution of CD4 in macrophages, and investigated how this affects the HIV-1 entry pathway. Pluripotent Stem Cells (PSC) were transduced with lentiviral vectors designed to manipulate CD4 location and were then differentiated into genetically modified macrophages. HIV-1 infection of these cells was assessed by performing assays that measure critical steps of the HIV-1 lifecycle (fusion, reverse transcription, and expression from HIV-1 integrants). Expression of LCK (which tethers CD4 to the surface of T cells, but is not normally expressed in macrophages) in PSC-macrophages effectively tethered CD4 at the cell surface, reducing its normal endocytic recycling route, and increasing surface CD4 expression 3-fold. This led to a significant increase in HIV-1 fusion and reverse transcription, but productive HIV-1 infection efficiency (as determined by reporter expression from DNA integrants) was unaffected. This implies that surface-tethering of CD4 sequesters HIV-1 into a pathway that is unproductive in macrophages. Secondly, to investigate the importance of lipid rafts (as detergent resistant membranes - DRM) in HIV-1 infection, we generated genetically modified PSC-macrophages that express CD4 mutants known to be excluded from DRM. These macrophages were significantly less able to support HIV-1 fusion, reverse-transcription and integration than engineered controls. Overall, these results support a model in which productive infection by HIV-1 in macrophages occurs via a CD4-raft-dependent endocytic uptake pathway.
Collapse
|
6
|
A shift from N-glycolyl- to N-acetyl-sialic acid in the GM3 ganglioside impairs tumor development in mouse lymphocytic leukemia cells. Glycoconj J 2013; 30:687-99. [DOI: 10.1007/s10719-013-9473-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 03/15/2013] [Accepted: 03/17/2013] [Indexed: 12/12/2022]
|
7
|
Raposo RAS, Trudgian DC, Thomas B, van Wilgenburg B, Cowley SA, James W. Protein kinase C and NF-κB-dependent CD4 downregulation in macrophages induced by T cell-derived soluble factors: consequences for HIV-1 infection. THE JOURNAL OF IMMUNOLOGY 2011; 187:748-59. [PMID: 21666058 DOI: 10.4049/jimmunol.1003678] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Upon activation, CD4(+) T cells release cytokines, chemokines, and other soluble factors that influence the kinetics of HIV-1 replication in macrophages (M). In this article, we show that activation of human primary T cells suppresses the early stages of HIV-1 replication in human primary Mφ by downregulating the main cellular receptor for the virus CD4. The secreted factors responsible for this effect have a molecular mass greater than conventional cytokines, are independent of Th1 or Th2 polarization, and are not IFN-γ, IL-16, RANTES, or macrophage inhibitory factor, as revealed by cytokine array analysis and neutralization assays. CD4 downregulation is entirely posttranslational and involves serine phosphorylation of CD4 and its targeting to an intracellular compartment destined for acidification and degradation. CD4 downregulation is dependent on the activities of both protein kinase C and NF-κB as well as the proteasomes. Using high-resolution liquid chromatography-tandem mass spectrometry analysis in conjugation with label-free protein quantitation software, we found that proteins that promote Mφ adherence and spreading, such as attractin, fibronectin, and galectin-3-binding protein, were significantly overrepresented in the activated T cell supernatant fractions. These results reveal the existence of previously unreported anti-HIV-1 proteins, released by activated T cells that downregulate CD4 expression, and are of fundamental importance to understand the kinetics of HIV infection in vivo.
Collapse
|
8
|
Wang P, Xu S, Wang Y, Wu P, Zhang J, Sato T, Yamagata S, Yamagata T. GM3 suppresses anchorage-independent growth via Rho GDP dissociation inhibitor beta in melanoma B16 cells. Cancer Sci 2011; 102:1476-85. [PMID: 21518140 DOI: 10.1111/j.1349-7006.2011.01963.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Ly-GDI, Rho GTPase dissociation inhibitor beta, was found to be expressed parallel to the GM3 level in mouse B16 cells whose GM3 contents were modified by B4galt6 sense, B4galt6 antisense cDNA, or St3galt5 siRNA transfection. Ly-GDI expression was increased on GM3 addition to these cells and decreased with D-PDMP treatment, a glucosylceramide synthesis inhibitor. Suppression of GM3 or Ly-GDI by RNAi was concomitantly associated with an increase in anchorage-independent growth in soft agar. These results clearly indicate that GM3 suppresses anchorage-independent growth through Ly-GDI. GM3 signals regulating Ly-GDI expression was inhibited by LY294002, siRNA against Akt1 and Akt2 and rapamycin, showing that GM3 signals are transduced via the PI3K/Akt/mTOR pathway. Either siRNA towards Rictor or Raptor suppressed Ly-GDI expression. The Raptor siRNA suppressed the effects of GM3 on Ly-GDI expression and Akt phosphorylation at Thr(308) , suggesting GM3 signals to be transduced to mTOR-Raptor and Akt-Thr(308) , leading to Ly-GDI stimulation. siRNA targeting Pdpk1 reduced Akt phosphorylation at Thr(308) and rendered the cells insensitive to GM3 stimulation, indicating that Akt-Thr(308) plays a critical role in the pathway. The components aligned in this pathway showed similar effects on anchorage-independent growth as GM3 and Ly-GDI. Taken together, GM3 signals are transduced in B16 cells through PI3K, Pdpk1, Akt(Thr308) and the mTOR/Raptor pathway, leading to enhanced expression of Ly-GDI mRNA, which in turn suppresses anchorage-independent growth in melanoma B16 cells.
Collapse
Affiliation(s)
- Pu Wang
- Laboratory of Tumor Biology and Glycobiology, Department of Life Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Raposo RAS, Thomas B, Ridlova G, James W. Proteomic-based identification of CD4-interacting proteins in human primary macrophages. PLoS One 2011; 6:e18690. [PMID: 21533244 PMCID: PMC3076427 DOI: 10.1371/journal.pone.0018690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 03/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background Human macrophages (Mφ) express low levels of CD4 glycoprotein, which is
constitutively recycled, and 40–50% of its localization is
intracellular at steady-state. Although CD4-interacting proteins in lymphoid
cells are well characterised, little is known about the CD4 protein
interaction-network in human Mφ, which notably lack LCK, a Src family
protein tyrosine kinase believed to stabilise CD4 at the surface of T cells.
As CD4 is the main cellular receptor used by HIV-1, knowledge of its
molecular interactions is important for the understanding of viral infection
strategies. Methodology/Principal Findings We performed large-scale anti-CD4 immunoprecipitations in human primary
Mφ followed by high-resolution mass spectrometry analysis to elucidate
the protein interaction-network involved in induced CD4 internalization and
degradation. Proteomic analysis of CD4 co-immunoisolates in resting Mφ
showed CD4 association with a range of proteins found in the cellular
cortex, membrane rafts and components of clathrin-adaptor proteins, whereas
in induced internalization and degradation CD4 is associated with components
of specific signal transduction, transport and the proteasome. Conclusions/Significance This is the first time that the anti-CD4 co-immunoprecipitation sub-proteome
has been analysed in human primary Mφ. Our data have identified
important Mφ cell surface CD4-interacting proteins, as well as
regulatory proteins involved in internalization and degradation. The data
give valuable insights into the molecular pathways involved in the
regulation of CD4 expression in Mφ and provide candidates/targets for
further biochemical studies.
Collapse
|
10
|
Endocytosis of cationized ferritin in marginal cells of the stria vascularis is regulated by protein kinase, protein phosphatase, and MEK/ERK and PI3-K signaling pathways. Otol Neurotol 2011; 32:856-62. [PMID: 21358558 DOI: 10.1097/mao.0b013e318210b8ad] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The endocytosis of cationized ferritin (CF) via a clathrin-mediated pathway is regulated by a signaling network. BACKGROUND Marginal cells showed the active endocytosis of CF via a clathrin-mediated pathway. The internalization of receptors through the clathrin-mediated pathway is an important regulatory event in signal transduction. Numerous kinases are involved in endocytosis, and each endocytic route is subjected to high-order regulation by cellular signaling mechanisms. METHODS CF was infused into the cochlear duct with phorbol 12-myristate 13 acetate, okadaic acid, staurosporin, phenylarsine oxide, PD98059, SB20580 and wortmannin. Endocytic activity was measured at 30 minutes post-infusion by transmission electron microscopy. RESULTS The endocytosis of CF was stimulated by a protein kinase C activator (phorbol 12-myristate 13 acetate) and a protein kinase A activator (8-bromoadenosine-3', 5'-cyclic monophosphate). It was inhibited by protein phosphatase inhibitors (okadaic acid and phenylarsine oxide), mitogen-activated protein kinase/extracellular signal-related kinase inhibitors (PD98059 and SB20580), and a phosphatidylinositol 3-kinase inhibitor (wortmannin). CONCLUSION Our previous study showed the endocytosis of microperoxidase to be strongly dependent on protein kinase C, protein phosphatase, extracellular signal-related kinase, and phosphatidylinositol 3-kinase signaling networks but not on protein kinase A and mitogen-activated protein kinase signaling networks. The present study indicated that the signaling cascade regulating CF's internalization differed from the cascade for microperoxidase's endocytosis.
Collapse
|
11
|
Prokazova NV, Samovilova NN, Gracheva EV, Golovanova NK. Ganglioside GM3 and its biological functions. BIOCHEMISTRY (MOSCOW) 2009; 74:235-49. [PMID: 19364317 DOI: 10.1134/s0006297909030018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolism, topology, and possible mechanisms for regulation of the ganglioside GM3 content in the cell are reviewed. Under consideration are biological functions of GM3, such as involvement in cell differentiation, proliferation, oncogenesis, and apoptosis.
Collapse
Affiliation(s)
- N V Prokazova
- Institute of Experimental Cardiology, Russian Cardiology Research Center, Russian Ministry of Health, 121552 Moscow, Russia.
| | | | | | | |
Collapse
|
12
|
Park JE, Wu DY, Prendes M, Lu SX, Ragupathi G, Schrantz N, Chapman PB. Fine specificity of natural killer T cells against GD3 ganglioside and identification of GM3 as an inhibitory natural killer T-cell ligand. Immunology 2008; 123:145-55. [PMID: 18154620 DOI: 10.1111/j.1365-2567.2007.02760.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
GD3, a ganglioside expressed on melanoma, is the only tumour-associated glycolipid described to date that can induce a CD1d-restricted natural killer T (NKT)-cell response. We analysed the fine specificity of GD3-reactive NKT cells and discovered that immunization with GD3 induced two populations of GD3-reactive NKT cells. One population was CD4+ CD8- and was specific for GD3; the other population was CD4- CD8- and cross-reacted with GM3 in a CD1d-restricted manner, but did not cross-react with GM2, GD2, or lactosylceramide. This indicated that the T-cell receptors reacting with GD3 recognize glucose-galactose linked to at least one N-acetyl-neuraminic acid but will not accommodate a terminal N-acetylgalactosamine. Immunization with GM2, GM3, GD2, or lactosylceramide did not induce an NKT-cell response. Coimmunization of GM3-loaded antigen-presenting cells (APCs) with GD3-loaded APCs suppressed the NKT-cell response to GD3 in a CD1d-restricted manner. This suppressive effect was specific for GM3 and was a local effect lasting 2-4 days. In vitro, GM3-loaded APCs also suppressed the interleukin-4 response, but not the interferon-gamma response, of NKT cells to alpha-galactosylceramide. However, there was no effect on the T helper type 2 responses of conventional T cells. We found that this suppression was not mediated by soluble factors. We hypothesize that GM3 induces changes to the APC that lead to suppression of T helper type 2-like NKT-cell responses.
Collapse
Affiliation(s)
- Jun-Eui Park
- Department of Medicine, Swim Across America Laboratory, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Gracheva EV, Samovilova NN, Golovanova NK, Andreeva ER, Andrianova IV, Tararak EM, Prokazova NV. Activation of ganglioside GM3 biosynthesis in human monocyte/macrophages during culturing in vitro. BIOCHEMISTRY (MOSCOW) 2007; 72:772-7. [PMID: 17680770 DOI: 10.1134/s0006297907070127] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We found that GM3 levels in human peripheral blood monocytes and cultured monocyte-derived macrophages were 0.37 and 2.7 microg per million cells, respectively. GM3 synthase of monocytes and to a greater extent of monocyte-derived macrophages was shown to be able to sialylate endogenous substrate, lactosylceramide (LacCer), to form GM3. With exogenously added LacCer, GM3 synthase activity was 57.1 and 563 pmol/h per mg protein in monocytes and monocyte-derived macrophages, respectively. The revealed changes in ganglioside GM3 biosynthesis are specific as the activity of some other sialyltransferases under these conditions was not altered. Human anti-GM3 synthase antibody detected in monocytes a main protein with molecular weight of 60 kD and minor proteins with molecular masses of 52 and 64 kD. In monocyte-derived macrophages the amounts of 60 kD protein and especially 64 kD protein sharply rose. Thus, the increase in ganglioside GM3 levels, GM3 synthase activity, and the enzyme amounts during culturing of monocyte/macrophages may be one of the mechanisms of in vivo increased ganglioside GM3 levels in arterial atherosclerotic lesions.
Collapse
Affiliation(s)
- E V Gracheva
- Institute of Experimental Cardiology, Cardiology Research Center, Russian Ministry of Health, Moscow, 121552, Russia
| | | | | | | | | | | | | |
Collapse
|
14
|
Barbat C, Trucy M, Sorice M, Garofalo T, Manganelli V, Fischer A, Mazerolles F. p56lck, LFA-1 and PI3K but not SHP-2 interact with GM1- or GM3-enriched microdomains in a CD4-p56lck association-dependent manner. Biochem J 2007; 402:471-81. [PMID: 17123354 PMCID: PMC1863576 DOI: 10.1042/bj20061061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/14/2006] [Accepted: 11/24/2006] [Indexed: 11/17/2022]
Abstract
We previously showed that the association of CD4 and G(M3) ganglioside induced by CD4 ligand binding was required for the down-regulation of adhesion and that aggregation of ganglioside-enriched domains was accompanied by transient co-localization of LFA-1 (lymphocyte function-associated antigen-1), PI3K (phosphoinositide 3-kinase) and CD4. We also showed that these proteins co-localized with the G(M1) ganglioside that partially co-localized with G(M3) in these domains. In the present study, we show that CD4-p56(lck) association in CD4 signalling is required for the redistribution of p56(lck), PI3K and LFA-1 in ganglioside-enriched domains, since ganglioside aggregation and recruitment of these proteins were not observed in a T-cell line (A201) expressing the mutant form of CD4 that does not bind p56(lck). In addition, we show that although these proteins associated in different ways with G(M1) and G(M3), all of the associations were dependent on CD4-p56(lck) association. Gangliosides could associate with these proteins that differ in affinity binding and could be modified following CD4 signalling. Our results suggest that through these associations, gangliosides transiently sequestrate these proteins and consequently inhibit LFA-1-dependent adhesion. Furthermore, while structural diversity of gangliosides may allow association with distinct proteins, we show that the tyrosine phosphatase SHP-2 (Src homology 2 domain-containing protein tyrosine phosphatase 2), also required for the down-regulation of LFA-1-dependent adhesion, transiently and partially co-localized with PI3K and p56(lck) in detergent-insoluble membranes without association with G(M1) or G(M3). We propose that CD4 ligation and binding with p56(lck) and their interaction with G(M3) and/or G(M1) gangliosides induce recruitment of distinct proteins important for CD4 signalling to form a multimolecular signalling complex.
Collapse
Key Words
- adhesion molecule
- cd4 t-cell
- ganglioside
- lymphocyte function-associated antigen-1 (lfa-1)
- phosphoinositide 3-kinase (pi3k)
- raft
- ab, antibody
- au, arbitrary units
- ctxb, cholera toxin
- drm, detergent-resistant membrane
- gamig, goat anti-mouse ig
- hla, human leucocyte antigen
- hptlc, high-performance tlc
- hrp, horseradish peroxidase
- lfa-1, lymphocyte function-associated antigen-1
- mab, monoclonal ab
- pi3k, phosphoinositide 3-kinase
- pdk1, phosphoinositide-dependent kinase-1
- pns, post-nuclear supernatant
- rn, relative number
- shp-2, src homology 2 domain-containing protein tyrosine phosphatase 2
- tcr, t-cell receptor
- tritc, tetramethylrhodamine β-isothiocyanate
Collapse
Affiliation(s)
- Christiane Barbat
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
| | - Maylis Trucy
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
| | - Maurizio Sorice
- ‡Dipartimento di Medicina Sperimentale, Università ‘La Sapienza’, Viale Regina Elena 324, 00161 Rome, Italy
| | - Tina Garofalo
- ‡Dipartimento di Medicina Sperimentale, Università ‘La Sapienza’, Viale Regina Elena 324, 00161 Rome, Italy
| | - Valeria Manganelli
- ‡Dipartimento di Medicina Sperimentale, Università ‘La Sapienza’, Viale Regina Elena 324, 00161 Rome, Italy
| | - Alain Fischer
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
- §Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants-Malades, Paris, F-75015, France
| | - Fabienne Mazerolles
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
| |
Collapse
|
15
|
Lynch GW, Turville S, Carter B, Sloane AJ, Chan A, Muljadi N, Li S, Low L, Armati P, Raison R, Zoellner H, Williamson P, Cunningham A, Church WB. Marked differences in the structures and protein associations of lymphocyte and monocyte CD4: resolution of a novel CD4 isoform. Immunol Cell Biol 2006; 84:154-65. [PMID: 16519733 DOI: 10.1111/j.1440-1711.2005.01403.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structures, molecular interactions and functions of CD4 in a subset of T lymphocytes have been well characterized. The CD4 receptors of other cell types have, however, been poorly documented. We have previously shown that lymphocytes and monocytes/macrophages differ in their expression of CD4 monomers and dimers. In the present study, we have shown further significant differences. Variability in the blocking of CD4 mAb binding by sulfated polyanions indicated differences in exofacial CD4 structures. In contrast to the well-documented 55 kDa monomers in lymphocytic cells, monocytic cells were found to coexpress two monomer isoforms: the 55 kDa form and a novel 59 kDa species. Experimental uncoupling of CD4 disulfides indicated that the oxidized 55 kDa monomer could be converted to the 59 kDa form. This was achieved by chemical reduction of purified native or recombinant CD4, or in cell transfection experiments by mutation of cysteine to alanine in domain 1 (D1) (Cys16 or Cys84) and in domain 4 (D4) (Cys303 or Cys345). All of these modifications promote CD4 distension on SDS-PAGE analysis and indicate that, when CD4 inter-beta-sheet disulfides in the D1 and D4 Ig folds are disrupted, there is an unravelling of the oxidized form to an extended 59 kDa unfolded state. We hypothesize that this may be a transition-state, structural-intermediate in the formation of disulfide-linked homodimers. Also identified were CD4-tyrosine kinase dissimilarities in which lymphocyte CD4 associated with Lck, but monocyte CD4 associated with HcK. These findings show that there is complex heterogeneity in structures and interactions in the CD4 of T lymphocytes and monocytes.
Collapse
Affiliation(s)
- Garry W Lynch
- HIV-Protein Interactions Laboratory, Westmead Millennium Institute, Westmead, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
de Leòn J, Fernández A, Mesa C, Clavel M, Fernández LE. Role of tumour-associated N-glycolylated variant of GM3 ganglioside in cancer progression: effect over CD4 expression on T cells. Cancer Immunol Immunother 2006; 55:443-50. [PMID: 16208470 PMCID: PMC11030556 DOI: 10.1007/s00262-005-0041-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Gangliosides have diverse biological functions including modulation of immune system response. These molecules are differentially expressed on malignant cells compared with the corresponding normal ones and are involved in cancer progression affecting, in different ways, the host's anti-tumour specific immune responses. Although in humans the N-glycolylated variant of GM3 ganglioside is almost exclusively expressed in tumour tissues, the significance of this glycolipid for malignant cell biology remains obscure, while for NAcGM3 strong immune suppressive effects have been reported. The present work demonstrates, for the first time, the capacity of NGcGM3 ganglioside to down-modulate CD4 expression in murine and human T lymphocytes, especially in non-activated T cells. Thirty and tenfold reductions in CD4 expression were induced by purified NGcGM3 ganglioside in murine and human T lymphocytes, respectively. The CD4 complete recovery in these cells occurred after 48 h of ganglioside removal, due to neo-synthesis. Restored T cells kept similar sensitivity to ganglioside-induced CD4 down-modulation after a new challenge. In addition, a clear association between NGcGM3 insertion in lymphocyte plasma membranes and the CD4 down-modulation effect was documented. Notably, a possible role of this ganglioside in tumour progression, taking advantage of the X63 myeloma model, was also outlined. The relevance of these findings, characterizing NGcGM3 as a possible tumour immunesurveillance inhibitor and supporting the reason for its neo-expression in certain human cancers, is contributing to this unique heterophilic ganglioside validation as target for cancer immunotherapy.
Collapse
Affiliation(s)
- Joel de Leòn
- Vaccine Department, Centre of Molecular Immunology, 216 esq 15, Atabey, Playa, 16040, C. Habana, Cuba.
| | | | | | | | | |
Collapse
|
17
|
Hezareh M, Moukil MA, Szanto I, Pondarzewski M, Mouche S, Cherix N, Brown SJ, Carpentier JL, Foti M. Mechanisms of HIV receptor and co-receptor down-regulation by prostratin: role of conventional and novel PKC isoforms. Antivir Chem Chemother 2005; 15:207-22. [PMID: 15457682 DOI: 10.1177/095632020401500404] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Prostratin is an unusual non-tumour promoting phorbol ester with potential as an inductive adjuvant therapy for highly active antiretroviral therapy (HAART) due to its ability to up-regulate viral expression from latent provirus. In addition, prostratin is also able to inhibit de novo HIV infection most probably because it induces down-regulation of HIV receptors from the surface of target cells. In this study, we investigate the mechanisms by which prostratin down-regulates HIV receptor and co-receptor surface expression in lymphocytic and monocytic cell lines. Our results indicate that prostratin induces down-regulation of surface expression of CD4 and CXCR4, but not CCR5, in various cell lines. Down-regulation of CD4 and CXCR4 by prostratin is achieved by internalization through receptor-mediated endocytosis and/or macropinocytosis, which is then followed by degradation of these molecules. Because prostratin is a protein kinase C (PKC) activator, we next examined the potential contribution of distinct PKC isoforms to down-regulate CD4 and CXCR4 in response to prostratin stimulation. Although exposure of cells to prostratin or phorbol-myristate-acetate (PMA) induces the translocation of several PKC isoforms to the plasma membrane, the use of specific PKC inhibitors revealed that novel PKCs are the main mediators of the prostratin-induced CD4 down-regulation, whereas both conventional and novel PKCs contribute to CXCR4 down-regulation. Altogether these results showed that prostratin, through the activation of conventional and/or novel PKC isoforms, rapidly reduces cell surface expression of CD4 and CXCR4, but not CCR5, by inducing their internalization and degradation.
Collapse
|
18
|
Park EJ, Suh M, Thomson B, Thomson ABR, Ramanujam KS, Clandinin MT. Dietary ganglioside decreases cholesterol content, caveolin expression and inflammatory mediators in rat intestinal microdomains. Glycobiology 2005; 15:935-42. [PMID: 15917432 DOI: 10.1093/glycob/cwi078] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Membrane microdomains rich in cholesterol and sphingolipids, including gangliosides (GGs), are known to be important regions for cell signaling and binding sites for various pathogens. Cholesterol depletion inhibits the cellular entry of pathogens and also reduces inflammatory signals by disrupting microdomain structure. Our previous study showed that dietary gangliosides increased total ganglioside incorporation while decreasing cholesterol in the intestinal mucosa. We hypothesized that diet-induced reduction in cholesterol content in the intestinal mucosa disrupts microdomain structure resulting in reduced pro-inflammatory signals. Male weanling Sprague-Dawley rats were fed semipurified diets for 2 weeks. Experimental diets were formulated to include either ganglioside-enriched lipid (GG diet, 0.02% gangliosides [w/w of diet] ) or polyunsaturated fatty acid (PUFA diet, 1% arachidonic acid and 0.5% docosahexaenoic acid, w/w of total fat), in a control diet containing 20% fat. Levels of cholesterol, GG, caveolin, platelet activating factor (PAF), and diglyceride (DG) were measured in the microdomain isolated from the intestinal brush border. The GG diet increased total gangliosides by 50% with a relative increase in GD3 and a relative decrease in GM3. Cholesterol content was also reduced by 23% in the intestinal microdomain. These changes resulted in a significant decrease in the ratio of cholesterol to ganglioside. The GG diet and the PUFA diet were both associated with reduction in caveolin, PAF, and DG content in microdomains, whereas no change occurred in the ganglioside profile of animals fed the PUFA diet. Dietary gangliosides decrease the cholesterol/ganglioside ratio, caveolin, PAF and DG content in microdomains thus exerting a potential anti-inflammatory effect during gut development.
Collapse
Affiliation(s)
- Eek Joong Park
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | | | | | | | | | | |
Collapse
|
19
|
Min KJ, Pyo HK, Yang MS, Ji KA, Jou I, Joe EH. Gangliosides activate microglia via protein kinase C and NADPH oxidase. Glia 2005; 48:197-206. [PMID: 15390122 DOI: 10.1002/glia.20069] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Microglia, the major immune effector cells in the central nervous system, are activated when the brain suffers injury. A number of studies indicate that gangliosides activate microglia. However, the signaling mechanisms involved in microglial activation are not yet to be elucidated. Our results show that gangliosides induce the expression of interleukin (IL)-1beta, tumor necrosis factor-alpha (TNF-alpha), and inducible nitric oxide synthase (iNOS) in rat brain microglia and BV2 murine microglia via protein kinase C (PKC) and NADPH oxidase. Expression of IL-1beta, TNF-alpha, and iNOS in ganglioside-treated cells was significantly reduced in the presence of inhibitors of PKC (GF109203X, Go6976, Ro31-8220, and rottlerin) and NADPH oxidase (diphenyleneiodonium chloride [DPI]). In response to gangliosides, PKC-alpha, betaII, and delta and NADPH oxidase p67(phox) translocated from the cytosol to the membrane. ROS generation was also activated within 5 min of ganglioside treatment. Ganglioside-induced ROS generation was blocked by PKC inhibitors. Furthermore, ganglioside-induced activation of NF-kappaB, an essential transcription factor that mediates the expression of IL-1beta, TNF-alpha, and iNOS, was reduced in the presence of GF109203X and DPI. Our results collectively suggest that gangliosides activate microglia via PKC and NADPH oxidase, which regulate activation of NF-kappaB.
Collapse
Affiliation(s)
- Kyoung-Jin Min
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Caldwell S, Heitger A, Shen W, Liu Y, Taylor B, Ladisch S. Mechanisms of ganglioside inhibition of APC function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1676-83. [PMID: 12902465 PMCID: PMC2849639 DOI: 10.4049/jimmunol.171.4.1676] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gangliosides shed by tumor cells exert potent inhibitory effects on cellular immune responses. Here we have studied ganglioside inhibition of APC function. When human monocytes were preincubated in 50 micro M highly purified ganglioside G(D1a), pulsed with tetanus toxoid (TT), and washed, the expected Ag-induced proliferative response of autologous normal T cells added to these monocytes was inhibited by 81%. Strikingly, there was also almost complete (92%) and selective inhibition of the up-regulation of the monocyte costimulatory molecule CD80, while I-CAM-1, LFA-3, HLA-DR, and CD86 expression were unaffected. Purified LPS-stimulated monocytes that had been preincubated in G(D1a) likewise showed inhibition of CD80 up-regulation (59%) as well as down-regulation of CD40 (54%) and impaired release of IL-12 and TNF-alpha (reduced by 59 and 51%). G(D1a)-preincubated human dendritic cells (DC) were also affected. They had reduced constitutive expression of CD40 (33%) and CD80 (61%), but not CD86, and marked inhibition of release of IL-6 (72%), IL-12 (70%), and TNF-alpha (46%). Even when pulsed with TT, these ganglioside-preincubated DC remained deficient in costimulatory molecule expression and cytokine secretion and were unable to induce a normal T cell proliferative response to TT. Finally, significant inhibition of nuclear localization of NF-kappaB proteins in activated DC suggests that disruption of NF-kappaB activation may be one mechanism contributing to ganglioside interference with APC expression of costimulatory molecules and cytokine secretion, which, in turn, may diminish antitumor immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephan Ladisch
- Address correspondence and reprint requests to Dr. Stephan Ladisch, Center for Cancer Research, Children’s Research Institute, 111 Michigan Avenue NW, Washington, DC 20010.
| |
Collapse
|
21
|
Burgermeister E, Endl J, Scheuer WV. Activation of cytosolic phospholipase A2 in human T-lymphocytes involves inhibitor-kappaB and mitogen-activated protein kinases. Eur J Pharmacol 2003; 466:169-80. [PMID: 12679154 DOI: 10.1016/s0014-2999(03)01492-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The group IV 85 kDa cytosolic phospholipase A(2) regulates many aspects of innate immunity. However, the function of this enzyme in T-cells remains controversial. We show here that human peripheral blood lymphocytes and Jurkat cells express cytosolic phospholipase A(2) and produce prostaglandin A(2) and leukotriene B(4). Selective inhibitors of this enzyme suppressed Ca(2+)-ionophore-, mitogen- and T-cell receptor-mediated expression of interleukin-2 at the level of transcription from the promoter. Activation of mitogen-activated protein kinases (MAPK), degradation of inhibitor-kappaBalpha and transactivation by nuclear factor-kappaB (NFkappaB) were impaired as was the antigen-, lectin- and interleukin-2-driven proliferation of T-cells in vitro. Ligands of peroxisome proliferator-activated receptor-gamma (PPARgamma) induced rapid phosphorylation of MAPK in human monocytic but not in Jurkat cells. These data indicated that in T-cells, eicosanoids generated upon signal-activated cytosolic phospholipase A(2) promote NFkappaB-dependent interleukin-2 transcription via a PPARgamma-independent mechanism involving the MAPK-pathway.
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Biological Regulation, The Weizmann Institute of Science, I-76100 Rehovot, Israel
| | | | | |
Collapse
|
22
|
Abstract
Neuroectodermic tumors can mostly be characterized by the presence of tumor-associated glycosphingolipid antigens, such as gangliosides, defined by monoclonal antibodies. Recently, cumulative evidence indicates that gangliosides modify the biological effects of several trophic factors, in vitro and in vivo, as well as the mitogenic signaling cascade that these factors generate. The functional roles of gangliosides in tumor progression can be revisited: (i) ganglioside antigens on the cell surface, or shed from the cells, act as immunosuppressors, as typically observed for the suppression of cytotoxic T cells and dendritic cells, (ii) certain gangliosides, such as GD3 or GM2, promote tumor-associated angiogenesis, (iii) gangliosides strongly regulate cell adhesion/motility and thus initiate tumor metastasis, (iv) ganglioside antigens are directly connected with transducer molecules in microdomains to initiate adhesion coupled with signaling, and (v) ganglioside antigens and their catabolites are modulators of signal transduction through interaction with tyrosine kinases associated with growth factor receptors or other protein kinases. Given the potential importance of these sialylated gangliosides and their modulating biological behavior in vivo, further studies on the role of gangliosides are warranted.
Collapse
Affiliation(s)
- S Birklé
- Ecole Nationale Vétérinaire, Nantes, France
| | | | | | | | | |
Collapse
|
23
|
Derweesh IH, Tannenbaum CS, Rayman PA, Finke JH. Mechanisms of immune dysfunction in renal cell carcinoma. Cancer Treat Res 2003; 116:29-51. [PMID: 14650824 DOI: 10.1007/978-1-4615-0451-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Ithaar H Derweesh
- Department of Immunology, Lerner Research Institute, Glickman Urological Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
24
|
Abstract
A large variety of glycosylation patterns in combination with different ceramide structures in glycosphingolipids provide a basis for cell type-specific glycosphingolipid pattern in membrane, which essentially reflects the composition of glycosphingolipid-enriched microdomains. Functions of glycosphingolipids as antigens, mediators of cell adhesion, and modulators of signal transduction are all based on such organization. Of particular importance is the assembly of glycosphingolipids with signal transducers and other membrane proteins to form a functional unit termed a, through which glycosylation-dependent cell adhesion coupled with signal transduction takes place. The microenvironment formed by interfacing glycosynapses of interacting cells plays a central role in defining phenotypic changes after cell adhesion, as occur in ontogenic development and cancer progression. These basic functional features of glycosphingolipids in membrane can also be considered roles of glycosphingolipids and gangliosides characteristic of neutrophils, myelocytes, and other blood cells. A series of sialyl fucosyl poly-N-acetylgalactosamine gangliosides without the sialyl-Le epitope, collectively termed, have been shown to mediate E-selectin-dependent rolling and tethering under dynamic flow with physiologic shear stress conditions. Functional roles of myeloglycan in neutrophils during inflammatory processes are discussed.
Collapse
Affiliation(s)
- Senitiroh Hakomori
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, Washington 98122, USA.
| |
Collapse
|
25
|
Kim OS, Park EJ, Joe EH, Jou I. JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells. J Biol Chem 2002; 277:40594-601. [PMID: 12191995 DOI: 10.1074/jbc.m203885200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neuronal cell membranes are particularly rich in gangliosides, which play important roles in brain physiology and pathology. Previously, we reported that gangliosides could act as microglial activators and are thus likely to participate in many neuronal diseases. In the present study we provide evidence that JAK-STAT inflammatory signaling mediates gangliosides-stimulated microglial activation. Both in rat primary microglia and murine BV2 microglial cells, gangliosides stimulated nuclear factor binding to GAS/ISRE elements, which are known to be STAT-binding sites. Consistent with this, gangliosides rapidly activated JAK1 and JAK2 and induced phosphorylation of STAT1 and STAT3. In addition, gangliosides increased transcription of the inflammation-associated genes inducible nitric-oxide synthase, ICAM-1, and MCP-1, which are reported to contain STAT-binding elements in their promoter regions. AG490, a JAK inhibitor, reduced induction of these genes, nuclear factor binding activity, and activation of STAT1 and -3 in gangliosides-treated microglia. AG490 also inhibited gangliosides-induced release of nitric oxide, an inflammation hallmark. Furthermore, AG490 markedly reduced activation of ERK1/2 MAPK, indicating that ERKs act downstream of JAK-STAT signaling during microglial activation. However, AG490 did not affect activation of p38 MAPK. We also report that the sialic acid residues present on gangliosides may be one of the essential components in activation of JAK-STAT signaling. The present study indicates that JAK-STAT signaling is an early event in gangliosides-induced brain inflammatory responses.
Collapse
Affiliation(s)
- Ohn Soon Kim
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 442-721, Korea
| | | | | | | |
Collapse
|
26
|
|
27
|
Garofalo T, Lenti L, Longo A, Misasi R, Mattei V, Pontieri GM, Pavan A, Sorice M. Association of GM3 with Zap-70 induced by T cell activation in plasma membrane microdomains: GM3 as a marker of microdomains in human lymphocytes. J Biol Chem 2002; 277:11233-8. [PMID: 11781312 DOI: 10.1074/jbc.m109601200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent evidence demonstrated that T cell activation leads to the redistribution of membrane and intracellular kinase-rich raft microdomains at the site of TCR engagement. In this investigation we demonstrated by high performance thin layer chromatography, gas chromatographic, and mass spectrometric analyses that GM3 is the main ganglioside constituent of these microdomains in human lymphocytes. Then we analyzed GM3 distribution and its interaction with the phosphorylation protein Zap-70. Human T lymphocytes were stimulated with anti-CD3 and anti-CD28. Immunofluorescence microscopy analysis revealed a clustered GM3 distribution over the cell surface and an intracellular localization resembling specific cytoplasmic compartment(s). Scanning confocal microscopy showed that T cell activation induced a significant association between GM3 and Zap-70, as revealed by nearly complete colocalization areas; very few colocalization areas were detected in unstimulated cells. Coimmunoprecipitation experiments revealed that GM3 was immunoprecipitated by anti-Zap-70 only after co-stimulation through CD3 and CD28 as detected by both thin layer chromatography and immunoblotting. Therefore, T cell activation does not promote a redistribution of glycosphingolipid-enriched microdomains but induces Zap-70 translocation in selective membrane domains in which Zap-70 may interact with GM3. These findings suggest that GM3 is a component of a multimolecular signaling complex involved in T cell activation.
Collapse
Affiliation(s)
- Tina Garofalo
- Dipartimento Medicina Sperimentale e Patologia, Università La Sapienza Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Giammarioli AM, Garofalo T, Sorice M, Misasi R, Gambardella L, Gradini R, Fais S, Pavan A, Malorni W. GD3 glycosphingolipid contributes to Fas-mediated apoptosis via association with ezrin cytoskeletal protein. FEBS Lett 2001; 506:45-50. [PMID: 11591368 DOI: 10.1016/s0014-5793(01)02776-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Efficiency of Fas-mediated apoptosis of lymphoid cells is regulated, among other means, by a mechanism involving its association with ezrin, a cytoskeletal protein belonging to the 4.1 family of proteins. In the present work, we provide evidence for a further molecule that associates to ezrin in Fas-triggered apoptosis, the disialoganglioside GD3. In fact, as an early event, GD3 redistributed in membrane-associated domains in uropods and co-localized with ezrin. Co-immunoprecipitation analyses confirmed this result, indicating a GD3-ezrin association. Altogether, these results are suggestive for a role of GD3 in Fas/ezrin-mediated apoptosis, supporting the view that uropods contain a multimolecular signaling complex involved in Fas-mediated apoptosis.
Collapse
Affiliation(s)
- A M Giammarioli
- Department of Ultrastructures, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sorice M, Garofalo T, Misasi R, Longo A, Mattei V, Sale P, Dolo V, Gradini R, Pavan A. Evidence for cell surface association between CXCR4 and ganglioside GM3 after gp120 binding in SupT1 lymphoblastoid cells. FEBS Lett 2001; 506:55-60. [PMID: 11591370 DOI: 10.1016/s0014-5793(01)02830-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CXCR4 (fusin) is a chemokine receptor which is involved as a coreceptor in gp120 binding to the cell surface. In this study we provide evidence that binding of gp120 triggers CXCR4 recruitment to glycosphingolipid-enriched microdomains. Scanning confocal microscopy showed a nearly complete localization of CXCR4 within GM3-enriched plasma membrane domains of SupT1 cells and coimmunoprecipitation experiments revealed that CXCR4 was immunoprecipitated by IgG anti-GM3 after gp120 pretreatment. These findings reveal that gp120 binding induces a strict association between CXCR4 and ganglioside GM3, supporting the view that GM3 and CXCR4 are components of a functional multimolecular complex critical for HIV-1 entry.
Collapse
Affiliation(s)
- M Sorice
- Dipartimento di Medicina Sperimentale e Patologia, Università de Roma La Sapienza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hara-Yokoyama M, Nagatsuka Y, Katsumata O, Irie F, Kontani K, Hoshino S, Katada T, Ono Y, Fujita-Yoshigaki J, Sugiya H, Furuyama S, Hirabayashi Y. Complex gangliosides as cell surface inhibitors for the ecto-NAD+ glycohydrolase of CD38. Biochemistry 2001; 40:888-95. [PMID: 11170409 DOI: 10.1021/bi0012080] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Leukocyte cell surface antigen CD38 is a single-transmembrane protein whose extracellular domain has catalytic activity for NAD(+) glycohydrolase (NADase). We previously reported that b-series gangliosides inhibit the NADase activity of the extracellular domain of CD38 expressed as a fusion protein [Hara-Yokoyama, M., Kukimoto, I., Nishina, H., Kontani, K., Hirabayashi, Y., Irie, F., Sugiya, H., Furuyama, S., and Katada, T. (1996) J. Biol. Chem. 271, 12951-12955]. In the present study, we examined the effect of exogenous gangliosides on the NADase activity of CD38 on the surface of retinoic acid-treated human leukemic HL60 cells and CD38-transfected THP-1 cells. After incubation of the cells with G(T1b), inhibition of NADase activity was observed. The time course of inhibition was slower than that of the incorporation of G(T1b) into the cells, suggesting that incorporation into the cell membranes is a prerequisite for inhibition. Inhibition occurred efficiently when G(T1b) and CD38 were present on the same cells (cis interaction) rather than on different cells (trans interaction). Although gangliosides may affect localization of cell surface proteins, indirect immunofluorescence intensity due to CD38 was not affected after G(T1b) treatment. Comparison of the effect of G(T1b) and G(D1a) indicates that the tandem sialic acid residues linked to the internal galactose residue of the gangliotetraose core are crucial to the inhibition. These results suggest a novel role of complex gangliosides for the first time as cell surface inhibitors of CD38 through specific and cis interaction between the oligosaccharide moiety and the extracellular domain.
Collapse
Affiliation(s)
- M Hara-Yokoyama
- Department of Physiology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hug P, Lin HM, Korte T, Xiao X, Dimitrov DS, Wang JM, Puri A, Blumenthal R. Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5. J Virol 2000; 74:6377-85. [PMID: 10864648 PMCID: PMC112144 DOI: 10.1128/jvi.74.14.6377-6385.2000] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Treatment of human osteosarcoma cells, expressing CD4 and various chemokine receptors, with the glucosylceramide synthase inhibitor 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP), blocked target membrane glycosphingolipid (GSL) biosynthesis and reduced the susceptibility of cells to infection and fusion mediated by envelope glycoproteins from a variety of human immunodeficiency virus type 1 (HIV-1) isolates that utilize CXCR4 and/or CCR5. PPMP treatment of the cell lines did not significantly change the cell surface expression of CD4, CXCR4, and/or CCR5, nor did it alter the chemokine receptor association with CD4. PPMP-treated cells exhibited no changes in chemokine-induced Ca(2+) mobilization and chemotaxis. However, massive envelope glycoprotein conformational changes triggered by CD4 and the appropriate chemokine receptor on the target membrane were inhibited when the target cells were treated with PPMP. Addition of various purified GSLs to PPMP-treated target cells showed that for all isolates tested, globotriaosylceramide (Gb3) was the most potent GSL in restoring the fusion susceptibility of target cells with cells expressing HIV-1 envelope glycoproteins; addition of the monosialoganglioside GM3 yielded a slight enhancement of fusion susceptibility. Our data are consistent with the notion that a limited number of specific GSL species serve as crucial elements in organizing gp120-gp41, CD4, and an appropriate chemokine receptor into a membrane fusion complex.
Collapse
Affiliation(s)
- P Hug
- Laboratory of Experimental and Computational Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kleines M, Gärtner A, Ritter K, Schaade L. Early steps in termination of the immortalization state in Burkitt lymphoma: induction of genes involved in signal transduction, transcription, and trafficking by the ganglioside IV(3)NeuAc-nLcOse(4)Cer. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:139-44. [PMID: 10858540 DOI: 10.1016/s0167-4781(00)00098-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation by the ganglioside IV(3)NeuAc-nLcOse(4)Cer leads to growth arrest in the Burkitt lymphoma cell line Raji. In order to analyze the primary response of Raji cells to that stimulus, a cDNA array screen and a suppression subtractive hybridization-PCR approach were performed. Twenty-four genes with assigned functions were confirmed to be induced by the ganglioside in reverse Northern blot experiments covering e.g. protein kinase B, phospholipase C, the MAP-kinase ERK3, the transcription factors YY1, DR1 and NSEP, the membrane traffic protein TAP, and the nuclear export protein CRM1. Most of the genes identified are involved in signal transduction, transcription, and cell trafficking. For selected genes, the induction of expression was quantified by semiquantitative RT-PCR.
Collapse
Affiliation(s)
- M Kleines
- Division of Virology, Department of Medical Microbiology, RWTH Aachen, D-52057 Aachen, Germany
| | | | | | | |
Collapse
|
33
|
Sorice M, Garofalo T, Misasi R, Longo A, Mikulak J, Dolo V, Pontieri GM, Pavan A. Association between GM3 and CD4-Ick complex in human peripheral blood lymphocytes. Glycoconj J 2000; 17:247-52. [PMID: 11201797 DOI: 10.1023/a:1026501609699] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to further elucidate our previous observation on molecular interaction of GM3, CD4 and p56Ick in microdomains of human peripheral blood lymphocytes (PBL). We analyzed GM3 distribution by immunoelectron microscopy and the association between GM3 and CD4-p56Ick complex by scanning confocal microscopy and co-immunoprecipitation experiments. Scanning confocal microscopy analysis showed an uneven signal distribution of GM3 molecules over the surface of human lymphocytes. Nearly complete colocalization areas indicated that CD4 molecules were distributed in GM3-enriched plasma membrane domains. Co-immunoprecipitation experiments revealed that CD4 and p56Ick were immunoprecipitated by IgG anti-GM3, demonstrating that GM3 tightly binds to the CD4-p56Ick complex in human PBL. In order to verify whether GM3 association with CD4 molecules may depend on the presence of p56Ick, we analyzed this association in U937, a CD4 + and p56Ick negative cell line. The immunoprecipitation with anti-GM3 revealed the presence of a 58kDa band immunostained with anti-CD4 Ab, suggesting that the GM3-CD4 interaction does not require its association with p56Ick. These findings support the view that GM3 enriched-domains may represent a functional multimolecular complex involved in signal transduction and cell activation.
Collapse
Affiliation(s)
- M Sorice
- Dipartimento di Medicina Sperimentale e Patologia, Universitá di Roma La Sapienza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kasahara K, Sanai Y. Functional roles of glycosphingolipids in signal transduction via lipid rafts. Glycoconj J 2000; 17:153-62. [PMID: 11201786 DOI: 10.1023/a:1026576804247] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The formation of glycosphingolipid (GSL)-cholesterol microdomains in cell membranes has been proposed to function as platforms for the attachment of lipid-modified proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins and src-family tyrosine kinases. The microdomains are postulated to be involved in GPI-anchored protein signaling via src-family kinase. Here, the functional roles of GSLs in signal transduction mediated by the microdomains are discussed. Antibodies against GSLs co-precipitate GPI-anchored proteins, src-family kinases and several components of the microdomains. Antibody-mediated crosslinking of GSLs, as well as that of GPI-anchored proteins, induces a rapid activation of src-family kinases and a transient increase in the tyrosine phosphorylation of several substrates. Enzymatic degradation of GSLs reduces the activation of src-family kinase and tyrosine phosphorylation by antibody-mediated crosslinking of GPI-anchored protein. Furthermore, GSLs can also modulate signal transduction of immunoreceptors and growth factor receptors in the microdomains. Thus, GSLs have important roles in signal transduction mediated by the microdomains.
Collapse
Affiliation(s)
- K Kasahara
- The Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, Japan.
| | | |
Collapse
|
35
|
Abstract
Microglia, brain resident macrophages, are activated in brain injuries and several neurodegenerative diseases. However, microglial activators that are produced in the brain are not yet defined. In this study, we showed that gangliosides, sialic acid-containing glycosphingolipids, could be a microglial activator. Gangliosides induced production of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) and expression of cyclooxygenase-2 (COX-2). The effect of gangliosides on NO release increased dose-dependently in the range of 10-100 microgram/ml; however, the effect decreased at concentrations higher than 200 microgram/ml. Specific types of gangliosides showed differential effects on microglial activation. Similar to gangliosides, GT1b induced production of NO and TNF-alpha and expression of COX-2. However, GM1 and GD1a induced expression of COX-2 but had little effect on NO and TNF-alpha release. The effect of gangliosides and GT1b on NO release was reduced in the presence of neuraminidase, which removes sialic acid residues from gangliosides and GT1b. Gangliosides activated extracellular signal-regulated kinase significantly but activated c-jun N-terminal kinase/stress-activated protein kinase and p38 relatively weakly. The inhibition of extracellular signal-regulated kinase by PD98059 reduced NO release from both gangliosides- and GT1b-treated microglia whereas inhibition of p38 by SB203580 increased it rather slightly. Gangliosides activated NF-kappaB, and N-acetyl cystein, an inhibitor of NF-kappaB, reduced NO release. These results suggest that gangliosides could be a microglial activator that functions via activation of mitogen-activated protein kinase and NF-kappaB.
Collapse
Affiliation(s)
- H Pyo
- Department of Pharmacology, Ajou University School of Medicine, Suwon, 442-749, Korea
| | | | | | | | | |
Collapse
|
36
|
McKallip R, Li R, Ladisch S. Tumor Gangliosides Inhibit the Tumor-Specific Immune Response. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.7.3718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Tumor gangliosides are highly immunosuppressive membrane glycosphingolipids that are shed into the tumor cell microenvironment. We directly tested the impact of shed gangliosides on the in vivo antitumor immune response in a syngeneic fully autochthonous system (FBL-3 erythroleukemia cells, C57BL/6 mice, and highly purified FBL-3 cell gangliosides). The major FBL-3 ganglioside was identified as GM1b by mass spectrometry. Substantial ganglioside shedding (90 pmol/108 cells/h), a requisite for their inhibition of the immune function of tumor-infiltrating leukocytes, was detected. Immunosuppression by FBL-3 gangliosides was potent; 5–20 μM inhibited the tumor-specific secondary proliferative response (80–100%) and suppressed the generation of tumor-specific CTLs (97% reduction of FBL-3 cell lysis at an E:T ratio of 100:1). In vivo, coinjection of 10 nmol of FBL-3 gangliosides with a primary FBL-3 cell immunization led to a reduced response to a secondary challenge (the increase in the draining popliteal lymph node mass, cell number, and lymphocyte thymidine incorporation were lowered by 70, 69, and 72%, respectively). Coinjection of gangliosides with a secondary tumor challenge led to a 61, 74, and 42% reduction of the increase in lymph node mass, cell number, and thymidine uptake and a 63–74% inhibition of the increase of draining lymph node T cells (CD3+), B cells (CD19+), and dendritic cells/macrophages (Mac-3+). Overall, the clear conclusion that tumor-derived gangliosides inhibit syngeneic antitumor immune responses implicates these molecules as a potent factor in promoting tumor formation and progression.
Collapse
Affiliation(s)
- Robert McKallip
- Glycobiology Program, Center for Cancer and Transplantation Biology, Children’s National Medical Center, and Departments of Pediatrics and Biochemistry/Molecular Biology, George Washington University School of Medicine,Washington, DC 20010
| | - Ruixiang Li
- Glycobiology Program, Center for Cancer and Transplantation Biology, Children’s National Medical Center, and Departments of Pediatrics and Biochemistry/Molecular Biology, George Washington University School of Medicine,Washington, DC 20010
| | - Stephan Ladisch
- Glycobiology Program, Center for Cancer and Transplantation Biology, Children’s National Medical Center, and Departments of Pediatrics and Biochemistry/Molecular Biology, George Washington University School of Medicine,Washington, DC 20010
| |
Collapse
|