1
|
Rysiewicz B, Błasiak E, Mystek P, Dziedzicka-Wasylewska M, Polit A. Beyond the G protein α subunit: investigating the functional impact of other components of the Gαi 3 heterotrimers. Cell Commun Signal 2023; 21:279. [PMID: 37817242 PMCID: PMC10566112 DOI: 10.1186/s12964-023-01307-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Specific interactions between G protein-coupled receptors (GPCRs) and G proteins play a key role in mediating signaling events. While there is little doubt regarding receptor preference for Gα subunits, the preferences for specific Gβ and Gγ subunits and the effects of different Gβγ dimer compositions on GPCR signaling are poorly understood. In this study, we aimed to investigate the subcellular localization and functional response of Gαi3-based heterotrimers with different combinations of Gβ and Gγ subunits. METHODS Live-cell imaging microscopy and colocalization analysis were used to investigate the subcellular localization of Gαi3 in combination with Gβ1 or Gβ2 heterotrimers, along with representative Gγ subunits. Furthermore, fluorescence lifetime imaging microscopy (FLIM-FRET) was used to investigate the nanoscale distribution of Gαi3-based heterotrimers in the plasma membrane, specifically with the dopamine D2 receptor (D2R). In addition, the functional response of the system was assessed by monitoring intracellular cAMP levels and conducting bioinformatics analysis to further characterize the heterotrimer complexes. RESULTS Our results show that Gαi3 heterotrimers mainly localize to the plasma membrane, although the degree of colocalization is influenced by the accompanying Gβ and Gγ subunits. Heterotrimers containing Gβ2 showed slightly lower membrane localization compared to those containing Gβ1, but certain combinations, such as Gαi3β2γ8 and Gαi3β2γ10, deviated from this trend. Examination of the spatial arrangement of Gαi3 in relation to D2R and of changes in intracellular cAMP level showed that the strongest functional response is observed for those trimers for which the distance between the receptor and the Gα subunit is smallest, i.e. complexes containing Gβ1 and Gγ8 or Gγ10 subunit. Deprivation of Gαi3 lipid modifications resulted in a significant decrease in the amount of protein present in the cell membrane, but did not always affect intracellular cAMP levels. CONCLUSION Our studies show that the composition of G protein heterotrimers has a significant impact on the strength and specificity of GPCR-mediated signaling. Different heterotrimers may exhibit different conformations, which further affects the interactions of heterotrimers and GPCRs, as well as their interactions with membrane lipids. This study contributes to the understanding of the complex signaling mechanisms underlying GPCR-G-protein interactions and highlights the importance of the diversity of Gβ and Gγ subunits in G-protein signaling pathways. Video Abstract.
Collapse
Affiliation(s)
- Beata Rysiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ewa Błasiak
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paweł Mystek
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
2
|
King J. Using T4 Genetics and Laemmli's Development of High Resolution SDS Gel Electrophoresis to Reveal Structural Protein Interactions Controlling Protein Folding and Phage Self-Assembly. J Biol Chem 2022; 298:102463. [PMID: 36067882 PMCID: PMC9576892 DOI: 10.1016/j.jbc.2022.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 11/03/2022] Open
Abstract
One of the most transformative experimental techniques in the rise of modern molecular biology and biochemistry was the development of high resolution Sodium Dodecyl Sulfate (SDS) poly acrylamide gel electrophoresis, which allowed separation of proteins - including structural proteins - in complex mixtures according to their molecular weights. Its development was intimately tied to investigations of the control of virus assembly within phage-infected cells. The method was developed by Ulrich K. Laemmli working in the virus structural group led by Aaron Klug at the famed Medical Research Council Laboratory for Molecular Biology (LMB) at Cambridge, UK. While Laemmli was tackling T4 head assembly, I sat at the next bench working on T4 tail assembly. To date, Laemmli's original paper has been cited almost 300,000 times. His gel procedure and our cooperation allowed us to sort out the sequential protein-protein interactions controlling the viral self-assembly pathways. It is still not fully appreciated that this control involved protein conformational change induced by interaction with an edge of the growing structure. Subsequent efforts of my students and I to understand how temperature sensitive mutations interfered with assembly were important in revealing the intracellular off-pathway aggregation processes competing with productive protein folding. These misfolding processes slowed the initial productivity of the biotechnology industry. The article below describes the scientific origin, context and sociology that supported these advances in protein biochemistry, protein expression, and virus assembly. The cooperation and collaboration that was integral to both the LMB culture and phage genetics fields were key to these endeavors.
Collapse
|
3
|
Sivinski J, Ngo D, Zerio CJ, Ambrose AJ, Watson ER, Kaneko LK, Kostelic MM, Stevens M, Ray AM, Park Y, Wu C, Marty MT, Hoang QQ, Zhang DD, Lander GC, Johnson SM, Chapman E. Allosteric differences dictate GroEL complementation of E. coli. FASEB J 2022; 36:e22198. [PMID: 35199390 PMCID: PMC8887798 DOI: 10.1096/fj.202101708rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/11/2022]
Abstract
GroES/GroEL is the only bacterial chaperone essential under all conditions, making it a potential antibiotic target. Rationally targeting ESKAPE GroES/GroEL as an antibiotic strategy necessitates studying their structure and function. Herein, we outline the structural similarities between Escherichia coli and ESKAPE GroES/GroEL and identify significant differences in intra- and inter-ring cooperativity, required in the refolding cycle of client polypeptides. Previously, we observed that one-half of ESKAPE GroES/GroEL family members could not support cell viability when each was individually expressed in GroES/GroEL-deficient E. coli cells. Cell viability was found to be dependent on the allosteric compatibility between ESKAPE and E. coli subunits within mixed (E. coli and ESKAPE) tetradecameric GroEL complexes. Interestingly, differences in allostery did not necessarily result in differences in refolding rate for a given homotetradecameric chaperonin. Characterization of ESKAPE GroEL allostery, ATPase, and refolding rates in this study will serve to inform future studies focused on inhibitor design and mechanism of action studies.
Collapse
Affiliation(s)
- Jared Sivinski
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Duc Ngo
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Christopher J. Zerio
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Andrew J. Ambrose
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Edmond R. Watson
- Department of Integrative Structural and Computational
Biology, Scripps Research, La Jolla, CA, USA
| | - Lynn K. Kaneko
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Marius M. Kostelic
- The University of Arizona, Department of Chemistry and
Biochemistry, Tucson, AZ 85721
| | - Mckayla Stevens
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202
| | - Anne-Marie Ray
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202
| | - Yangshin Park
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202,Stark Neurosciences Research Institute, Indiana University
School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202,Department of Neurology, Indiana University School of
Medicine. 635 Barnhill Drive, Indianapolis, IN 46202
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale
University, New Haven, CT 06520
| | - Michael T. Marty
- The University of Arizona, Department of Chemistry and
Biochemistry, Tucson, AZ 85721
| | - Quyen Q. Hoang
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202,Stark Neurosciences Research Institute, Indiana University
School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202,Department of Neurology, Indiana University School of
Medicine. 635 Barnhill Drive, Indianapolis, IN 46202
| | - Donna D. Zhang
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational
Biology, Scripps Research, La Jolla, CA, USA
| | - Steven M. Johnson
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721,Corresponding author
, Phone: 520-626-2741
| |
Collapse
|
4
|
Dyachenko A, Tamara S, Heck AJR. Distinct Stabilities of the Structurally Homologous Heptameric Co-Chaperonins GroES and gp31. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:7-15. [PMID: 29736602 PMCID: PMC6318259 DOI: 10.1007/s13361-018-1910-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 05/06/2023]
Abstract
The GroES heptamer is the molecular co-chaperonin that partners with the tetradecamer chaperonin GroEL, which assists in the folding of various nonnative polypeptide chains in Escherichia coli. Gp31 is a structural and functional analogue of GroES encoded by the bacteriophage T4, becoming highly expressed in T4-infected E. coli, taking over the role of GroES, favoring the folding of bacteriophage proteins. Despite being slightly larger, gp31 is quite homologous to GroES in terms of its tertiary and quaternary structure, as well as in its function and mode of interaction with the chaperonin GroEL. Here, we performed a side-by-side comparison of GroES and gp31 heptamer complexes by (ion mobility) tandem mass spectrometry. Surprisingly, we observed quite distinct fragmentation mechanisms for the GroES and gp31 heptamers, whereby GroES displays a unique and unusual bimodal charge distribution in its released monomers. Not only the gas-phase dissociation but also the gas-phase unfolding of GroES and gp31 were found to be very distinct. We rationalize these observations with the similar discrepancies we observed in the thermal unfolding characteristics and surface contacts within GroES and gp31 in the solution. From our data, we propose a model that explains the observed simultaneous dissociation pathways of GroES and the differences between GroES and gp31 gas-phase dissociation and unfolding. We conclude that, although GroES and gp31 exhibit high homology in tertiary and quaternary structure, they are quite distinct in their solution and gas-phase (un)folding characteristics and stability. Graphical Abstract.
Collapse
Affiliation(s)
- Andrey Dyachenko
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
5
|
GroEL2 of Mycobacterium tuberculosis Reveals the Importance of Structural Pliability in Chaperonin Function. J Bacteriol 2015; 198:486-97. [PMID: 26553853 DOI: 10.1128/jb.00844-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Intracellular protein folding is mediated by molecular chaperones, the best studied among which are the chaperonins GroEL and GroES. Conformational changes and allosteric transitions between different metastable states are hallmarks of the chaperonin mechanism. These conformational transitions between three structural domains of GroEL are anchored at two hinges. Although hinges are known to be critical for mediating the communication between different domains of GroEL, the relative importance of hinges on GroEL oligomeric assembly, ATPase activity, conformational changes, and functional activity is not fully characterized. We have exploited the inability of Mycobacterium tuberculosis GroEL2 to functionally complement an Escherichia coli groEL mutant to address the importance of hinge residues in the GroEL mechanism. Various chimeras of M. tuberculosis GroEL2 and E. coli GroEL allowed us to understand the role of hinges and dissect the consequences of oligomerization and substrate binding capability on conformational transitions. The present study explains the concomitant conformational changes observed with GroEL hinge variants and is best supported by the normal mode analysis. IMPORTANCE Conformational changes and allosteric transitions are hallmarks of the chaperonin mechanism. We have exploited the inability of M. tuberculosis GroEL2 to functionally complement a strain of E. coli in which groEL expression is repressed to address the importance of hinges. The significance of conservation at the hinge regions stands out as a prominent feature of the GroEL mechanism in binding to GroES and substrate polypeptides. The hinge residues play a significant role in the chaperonin activity in vivo and in vitro.
Collapse
|
6
|
Wang L, Watzlawick H, Fridjonsson O, Hreggvidsson G, Altenbuchner J. Improved soluble expression of the gene encoding amylolytic enzyme Amo45 by fusion with the mobile-loop-region of co-chaperonin GroES in Escherichia coli.. BIOCATAL BIOTRANSFOR 2013; 31:335-342. [PMID: 24829536 PMCID: PMC4017763 DOI: 10.3109/10242422.2013.858712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/21/2013] [Indexed: 11/21/2022]
Abstract
The gene encoding the amylolytic enzyme Amo45, originating from a metagenomic project, was retrieved by a consensus primer-based approach for glycoside hydrolase (GH) family 57 enzymes. Family 57 contains mainly uncharacterized proteins similar to archaeal thermoactive amylopullulanases. For characterization of these family members soluble, active enzymes have to be produced in sufficient amounts. Heterologous expression of amo45 in E.coli resulted in low yields of protein, most of which was found in inclusion bodies. To improve protein production and to increase the amount of soluble protein, two different modifications of the gene were applied. The first was fusion to an N-terminal His-tag sequence which increased the yield of protein, but still resulted in high amounts of inclusion bodies. Co-expression with chaperones enhanced the amount of soluble protein 4-fold. An alternative modification was the attachment of a peptide consisting of the amino acid sequence of the mobile-loop of the co-chaperonin GroES of E.coli. This sequence improved the soluble protein production 5-fold compared to His6-Amo45 and additional expression of chaperones was unnecessary.
Collapse
Affiliation(s)
- Lei Wang
- Universität Stuttgart, Institut für Industrielle Genetik , Stuttgart , Germany
| | | | | | - Gudmundur Hreggvidsson
- Matis Ltd. , Reykjavik , Iceland ; Department of Biology, University of Iceland, Faculty of Life and Environmental Sciences , Reykjavik , Iceland
| | - Josef Altenbuchner
- Universität Stuttgart, Institut für Industrielle Genetik , Stuttgart , Germany
| |
Collapse
|
7
|
Tsai YCC, Mueller-Cajar O, Saschenbrecker S, Hartl FU, Hayer-Hartl M. Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J Biol Chem 2012; 287:20471-81. [PMID: 22518837 DOI: 10.1074/jbc.m112.365411] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The chloroplast chaperonin system of plants and green algae is a curiosity as both the chaperonin cage and its lid are encoded by multiple genes, in contrast to the single genes encoding the two components of the bacterial and mitochondrial systems. In the green alga Chlamydomonas reinhardtii (Cr), three genes encode chaperonin cofactors, with cpn10 encoding a single ∼10-kDa domain and cpn20 and cpn23 encoding tandem cpn10 domains. Here, we characterized the functional interaction of these proteins with the Escherichia coli chaperonin, GroEL, which normally cooperates with GroES, a heptamer of ∼10-kDa subunits. The C. reinhardtii cofactor proteins alone were all unable to assist GroEL-mediated refolding of bacterial ribulose-bisphosphate carboxylase/oxygenase but gained this ability when CrCpn20 and/or CrCpn23 was combined with CrCpn10. Native mass spectrometry indicated the formation of hetero-oligomeric species, consisting of seven ∼10-kDa domains. The cofactor "heptamers" interacted with GroEL and encapsulated substrate protein in a nucleotide-dependent manner. Different hetero-oligomer arrangements, generated by constructing cofactor concatamers, indicated a preferential heptamer configuration for the functional CrCpn10-CrCpn23 complex. Formation of heptamer Cpn10/Cpn20 hetero-oligomers was also observed with the Arabidopsis thaliana (At) cofactors, which functioned with the chloroplast chaperonin, AtCpn60α(7)β(7). It appears that hetero-oligomer formation occurs more generally for chloroplast chaperonin cofactors, perhaps adapting the chaperonin system for the folding of specific client proteins.
Collapse
Affiliation(s)
- Yi-Chin C Tsai
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
8
|
Ang D, Georgopoulos C. An ORFan no more: the bacteriophage T4 39.2 gene product, NwgI, modulates GroEL chaperone function. Genetics 2012; 190:989-1000. [PMID: 22234860 PMCID: PMC3296260 DOI: 10.1534/genetics.111.135640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 11/07/2011] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages are the most abundant biological entities in our biosphere, characterized by their hyperplasticity, mosaic composition, and the many unknown functions (ORFans) encoded by their immense genetic repertoire. These genes are potentially maintained by the bacteriophage to allow efficient propagation on hosts encountered in nature. To test this hypothesis, we devised a selection to identify bacteriophage-encoded gene(s) that modulate the host Escherichia coli GroEL/GroES chaperone machine, which is essential for the folding of certain host and bacteriophage proteins. As a result, we identified the bacteriophage RB69 gene 39.2, of previously unknown function and showed that homologs of 39.2 in bacteriophages T4, RB43, and RB49 similarly modulate GroEL/GroES. Production of wild-type bacteriophage T4 Gp39.2, a 58-amino-acid protein, (a) enables diverse bacteriophages to plaque on the otherwise nonpermissive groES or groEL mutant hosts in an allele-specific manner, (b) suppresses the temperature-sensitive phenotype of both groES and groEL mutants, (c) suppresses the defective UV-induced PolV function (UmuCD) of the groEL44 mutant, and (d) is lethal to the host when overproduced. Finally, as proof of principle that Gp39.2 is essential for bacteriophage growth on certain bacterial hosts, we constructed a T4 39.2 deletion strain and showed that, unlike the isogenic wild-type parent, it is incapable of propagating on certain groEL mutant hosts. We propose a model of how Gp39.2 modulates GroES/GroEL function.
Collapse
Affiliation(s)
- Debbie Ang
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| | - Costa Georgopoulos
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| |
Collapse
|
9
|
Hildenbrand ZL, Bernal RA. Chaperonin-Mediated Folding of Viral Proteins. VIRAL MOLECULAR MACHINES 2012; 726:307-24. [DOI: 10.1007/978-1-4614-0980-9_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Calmat S, Hendriks J, van Heerikhuizen H, Schmidt CF, van der Vies SM, Peterman EJG. Dissociation kinetics of the GroEL-gp31 chaperonin complex studied with Förster resonance energy transfer. Biochemistry 2010; 48:11692-8. [PMID: 19899806 DOI: 10.1021/bi9013962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Propagation of bacteriophage T4 in its host Escherichia coli involves the folding of the major capsid protein gp23, which is facilitated by a hybrid chaperone complex consisting of the bacterial chaperonin GroEL and the phage-encoded co-chaperonin, gp31. It has been well established that the GroEL-gp31 complex is capable of folding gp23 whereas the homologous GroEL-GroES complex cannot perform this function. To assess whether this is a consequence of differences in the interactions of the proteins within the chaperonin complex, we have investigated the dissociation kinetics of GroEL-gp31 and GroEL-GroES complexes using Forster resonance energy transfer. Here we report that the dissociation of gp31 from GroEL is slightly faster than that of GroES from GroEL and is further accelerated by the binding of gp23. In contrast to what had been observed previously, we found that gp23 is able to interact with the GroEL-GroES complex, which might explain how bacteriophage T4 redirects the folding machinery of Escherichia coli during morphogenesis.
Collapse
Affiliation(s)
- Stéphane Calmat
- Department of Physics and Astronomy and Laser Centre, VU University, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Chennubhotla C, Bahar I. Markov methods for hierarchical coarse-graining of large protein dynamics. J Comput Biol 2007; 14:765-76. [PMID: 17691893 DOI: 10.1089/cmb.2007.r015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Elastic network models (ENMs) and, in particular, the Gaussian Network Model (GNM) have been widely used in recent years to gain insights into the machinery of proteins. The extension of ENMs to supramolecular assemblies presents computational challenges, because of the difficulty in retaining atomic details in mode decomposition of large protein dynamics. Here, we present a novel approach to address this problem. We rely on the premise that, all the residues of the protein machinery (network) must communicate with each other and operate in a coordinated manner to perform their function successfully. To gain insight into the mechanism of information transfer between residues, we study a Markov model of network communication. Using the Markov chain perspective, we map the full-atom network representation into a hierarchy of ENMs of decreasing resolution, perform analysis of dominant communication (or dynamic) patterns in reduced space(s) and reconstruct the detailed models with minimal loss of information. The communication properties at different levels of the hierarchy are intrinsically defined by the network topology. This new representation has several features, including: soft clustering of the protein structure into stochastically coherent regions thus providing a useful assessment of elements serving as hubs and/or transmitters in propagating information/interaction; automatic computation of the contact matrices for ENMs at each level of the hierarchy to facilitate computation of both Gaussian and anisotropic fluctuation dynamics. We illustrate the utility of the hierarchical decomposition in providing an insightful description of the supramolecular machinery by applying the methodology to the chaperonin GroEL-GroES.
Collapse
Affiliation(s)
- Chakra Chennubhotla
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
12
|
Georgopoulos C. Toothpicks, serendipity and the emergence of the Escherichia coli DnaK (Hsp70) and GroEL (Hsp60) chaperone machines. Genetics 2007; 174:1699-707. [PMID: 17182732 PMCID: PMC1698650 DOI: 10.1534/genetics.104.68262] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Costa Georgopoulos
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
13
|
Carmicle S, Steede NK, Landry SJ. Antigen three-dimensional structure guides the processing and presentation of helper T-cell epitopes. Mol Immunol 2006; 44:1159-68. [PMID: 16893568 DOI: 10.1016/j.molimm.2006.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 06/28/2006] [Accepted: 06/30/2006] [Indexed: 11/18/2022]
Abstract
Antigen three-dimensional structure potentially controls presentation of CD4(+) T-cell epitopes by limiting the access of proteolytic enzymes and MHC class II antigen-presenting proteins. The protease-sensitive mobile loops of Hsp10s from mycobacteria, Escherichia coli, and bacteriophage T4 (T4Hsp10) are associated with adjacent immunodominant helper T-cell epitopes, and a mobile-loop deletion in T4Hsp10 eliminated the protease sensitivity and the associated epitope immunodominance. In the present work, protease-sensitivity and epitope presentation was analyzed in a group of T4Hsp10 variants. Two mobile-loop sequence variants of T4Hsp10 were constructed by replacing different segments of the mobile loop with an irrelevant sequence from hen egg lysozyme. The variant proteins retained native-like structure, and the mobile loops retained protease sensitivity. Mobile-loop deletion and reconstruction affected the presentation of two epitopes according to whether the epitope was protease-independent or protease-dependent. The protease-independent epitope lies within the mobile loop, and the protease-dependent epitope lies in a well-ordered segment on the carboxy-terminal flank of the mobile loop. The results are consistent with a model for processing of the protease-dependent epitope in which an endoproteolytic nick in the mobile-loop unlocks T4Hsp10 three-dimensional structure, and then the epitope becomes available for binding to the MHC protein.
Collapse
Affiliation(s)
- Stephanie Carmicle
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
14
|
Chennubhotla C, Bahar I. Markov propagation of allosteric effects in biomolecular systems: application to GroEL-GroES. Mol Syst Biol 2006; 2:36. [PMID: 16820777 PMCID: PMC1681507 DOI: 10.1038/msb4100075] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 05/11/2006] [Indexed: 01/16/2023] Open
Abstract
We introduce a novel approach for elucidating the potential pathways of allosteric communication in biomolecular systems. The methodology, based on Markov propagation of 'information' across the structure, permits us to partition the network of interactions into soft clusters distinguished by their coherent stochastics. Probabilistic participation of residues in these clusters defines the communication patterns inherent to the network architecture. Application to bacterial chaperonin complex GroEL-GroES, an allostery-driven structure, identifies residues engaged in intra- and inter-subunit communication, including those acting as hubs and messengers. A number of residues are distinguished by their high potentials to transmit allosteric signals, including Pro33 and Thr90 at the nucleotide-binding site and Glu461 and Arg197 mediating inter- and intra-ring communication, respectively. We propose two most likely pathways of signal transmission, between nucleotide- and GroES-binding sites across the cis and trans rings, which involve several conserved residues. A striking observation is the opposite direction of information flow within cis and trans rings, consistent with negative inter-ring cooperativity. Comparison with collective modes deduced from normal mode analysis reveals the propensity of global hinge regions to act as messengers in the transmission of allosteric signals.
Collapse
Affiliation(s)
- Chakra Chennubhotla
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivet Bahar
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Markov Methods for Hierarchical Coarse-Graining of Large Protein Dynamics. LECTURE NOTES IN COMPUTER SCIENCE 2006. [DOI: 10.1007/11732990_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Hertveldt K, Lavigne R, Pleteneva E, Sernova N, Kurochkina L, Korchevskii R, Robben J, Mesyanzhinov V, Krylov VN, Volckaert G. Genome Comparison of Pseudomonas aeruginosa Large Phages. J Mol Biol 2005; 354:536-45. [PMID: 16256135 DOI: 10.1016/j.jmb.2005.08.075] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 08/31/2005] [Indexed: 11/26/2022]
Abstract
Pseudomonas aeruginosa phage EL is a dsDNA phage related to the giant phiKZ-like Myoviridae. The EL genome sequence comprises 211,215 bp and has 201 predicted open reading frames (ORFs). The EL genome does not share DNA sequence homology with other viruses and micro-organisms sequenced to date. However, one-third of the predicted EL gene products (gps) shares similarity (Blast alignments of 17-55% amino acid identity) with phiKZ proteins. Comparative EL and phiKZ genomics reveals that these giant phages are an example of substantially diverged genetic mosaics. Based on the position of similar EL and phiKZ predicted gene products, five genome regions can be delineated in EL, four of which are relatively conserved between EL and phiKZ. Region IV, a 17.7 kb genome region with 28 predicted ORFs, is unique to EL. Fourteen EL ORFs have been assigned a putative function based on protein similarity. Assigned proteins are involved in DNA replication and nucleotide metabolism (NAD+-dependent DNA ligase, ribonuclease HI, helicase, thymidylate kinase), host lysis and particle structure. EL-gp146 is the first chaperonin GroEL sequence identified in a viral genome. Besides a putative transposase, EL harbours predicted mobile endonucleases related to H-N-H and LAGLIDADG homing endonucleases associated with group I intron and intein intervening sequences.
Collapse
Affiliation(s)
- Kirsten Hertveldt
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shewmaker F, Kerner MJ, Hayer-Hartl M, Klein G, Georgopoulos C, Landry SJ. A mobile loop order-disorder transition modulates the speed of chaperonin cycling. Protein Sci 2004; 13:2139-48. [PMID: 15238634 PMCID: PMC2279813 DOI: 10.1110/ps.04773204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Molecular machines order and disorder polypeptides as they form and dissolve large intermolecular interfaces, but the biological significance of coupled ordering and binding has been established in few, if any, macromolecular systems. The ordering and binding of GroES co-chaperonin mobile loops accompany an ATP-dependent conformational change in the GroEL chaperonin that promotes client protein folding. Following ATP hydrolysis, disordering of the mobile loops accompanies co-chaperonin dissociation, reversal of the GroEL conformational change, and release of the client protein. "High-affinity" GroEL mutants were identified by their compatibility with "low-affinity" co-chaperonin mutants and incompatibility with high-affinity co-chaperonin mutants. Analysis of binding kinetics using the intrinsic fluorescence of tryptophan-containing co-chaperonin variants revealed that excessive affinity causes the chaperonin to stall in a conformation that forms in the presence of ATP. Destabilizing the beta-hairpins formed by the mobile loops restores the normal rate of dissociation. Thus, the free energy of mobile-loop ordering and disordering acts like the inertia of an engine's flywheel by modulating the speed of chaperonin conformational changes.
Collapse
Affiliation(s)
- Frank Shewmaker
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
18
|
Giese KC, Vierling E. Mutants in a small heat shock protein that affect the oligomeric state. Analysis and allele-specific suppression. J Biol Chem 2004; 279:32674-83. [PMID: 15152007 DOI: 10.1074/jbc.m404455200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oligomerization is an essential property of small heat shock proteins (sHSPs) that appears to regulate their chaperone activity. We have examined the role of conserved hydrophobic residues that are postulated to stabilize sHSP oligomers. We identified a mutation of Synechocystis Hsp16.6 that impairs function in vivo and in vitro. The V143A mutation is in the C-terminal extension, a region predicted to form an oligomeric interaction with a hydrophobic region that includes the site of a previously characterized mutation, L66A. Both mutants were dimeric, but V143A had a stronger oligomerization defect than L66A. However, V143A protected a model substrate better than L66A. This suggests that although the two regions both play a role in oligomerization, they are not equivalent. Nevertheless, the addition of either dimeric sHSP enhanced the in vitro chaperone activity of wild type Hsp16.6, consistent with models that the sHSP dimers initiate interactions with substrates. Suppressor analysis of V143A identified mutations in the N terminus that restored activity by restabilizing the oligomer. These mutants were allele-specific and unable to suppress L66A, although they suppressed a dimeric C-terminal truncation of Hsp16.6. Conversely, suppressors of L66A were unable to suppress either V143A or the truncation, although they, like suppressors of V143A, stabilize the Hsp16.6 oligomer. We interpret these data as evidence that the mutations V143A and L66A stabilize two different dimeric structures and as further support that sHSP dimers are active species.
Collapse
Affiliation(s)
- Kim C Giese
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, 85721, USA
| | | |
Collapse
|
19
|
Figueiredo L, Klunker D, Ang D, Naylor DJ, Kerner MJ, Georgopoulos C, Hartl FU, Hayer-Hartl M. Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation. J Biol Chem 2003; 279:1090-9. [PMID: 14576149 DOI: 10.1074/jbc.m310914200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In all three kingdoms of life chaperonins assist the folding of a range of newly synthesized proteins. As shown recently, Archaea of the genus Methanosarcina contain both group I (GroEL/GroES) and group II (thermosome) chaperonins in the cytosol. Here we report on a detailed functional analysis of the archaeal GroEL/GroES system of Methanosarcina mazei (Mm) in comparison to its bacterial counterpart from Escherichia coli (Ec). We find that the groESgroEL operon of M. mazei is unable to functionally replace groESgroEL in E. coli. However, the MmGroES protein can largely complement a mutant EcGroES protein in vivo. The ATPase rate of MmGroEL is very low and the dissociation of MmGroES from MmGroEL is 15 times slower than for the EcGroEL/GroES system. This slow ATPase cycle results in a prolonged enclosure time for model substrate proteins, such as rhodanese, in the MmGroEL:GroES folding cage before their release into the medium. Interestingly, optimal functionality of MmGroEL/GroES and its ability to encapsulate larger proteins, such as malate dehydrogenase, requires the presence of ammonium sulfate in vitro. In the absence of ammonium sulfate, malate dehydrogenase fails to be encapsulated by GroES and rather cycles on and off the GroEL trans ring in a non-productive reaction. These results indicate that the archaeal GroEL/GroES system has preserved the basic encapsulation mechanism of bacterial GroEL and suggest that it has adjusted the length of its reaction cycle to the slower growth rates of Archaea. Additionally, the release of only the folded protein from the GroEL/GroES cage may prevent adverse interactions of the GroEL substrates with the thermosome, which is not normally located within the same compartment.
Collapse
Affiliation(s)
- Luis Figueiredo
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 588] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Keppel F, Rychner M, Georgopoulos C. Bacteriophage-encoded cochaperonins can substitute for Escherichia coli's essential GroES protein. EMBO Rep 2002; 3:893-8. [PMID: 12189177 PMCID: PMC1084229 DOI: 10.1093/embo-reports/kvf176] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Escherichia coli chaperonin machine is composed of two members, GroEL and GroES. The GroEL chaperonin can bind 10-15% of E. coli's unfolded proteins in one of its central cavities and help them fold in cooperation with the GroES cochaperonin. Both proteins are absolutely essential for bacterial growth. Several large, lytic bacteriophages, such as T4 and RB49, use the host-encoded GroEL in conjunction with their own bacteriophage-encoded cochaperonin for the correct assembly of their major capsid protein, suggesting a cochaperonin specificity for the in vivo folding of certain substrates. Here, we demonstrate that, when the cochaperonin of either bacteriophage T4 (Gp31) or RB49 (CocO) is expressed in E. coli, the otherwise essential groES gene can be deleted. Thus, it appears that, despite very little sequence identity with groES, the bacteriophage-encoded Gp31 and CocO proteins are capable of replacing GroES in the folding of E. coli's essential, housekeeping proteins.
Collapse
Affiliation(s)
- France Keppel
- Département de Biochimie Médicale, Centre Médicale Universitaire, Geneva, Switzerland.
| | | | | |
Collapse
|
22
|
Carmicle S, Dai G, Steede NK, Landry SJ. Proteolytic sensitivity and helper T-cell epitope immunodominance associated with the mobile loop in Hsp10s. J Biol Chem 2002; 277:155-60. [PMID: 11673463 DOI: 10.1074/jbc.m107624200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antigen three-dimensional structure potentially limits antigen processing and presentation to helper T-cell epitopes. The association of helper T-cell epitopes with the mobile loop in Hsp10s from mycobacteria and bacteriophage T4 suggests that the mobile loop facilitates proteolytic processing and presentation of adjacent sequences. Sites of initial proteolytic cleavage were mapped in divergent Hsp10s after treatment with a variety of proteases including cathepsin S. Each protease preferentially cleaved the Hsp10s in the mobile loop. Flexibility in the 22-residue mobile loop most probably allows it to conform to protease active sites. Three variants of the bacteriophage T4 Hsp10 were constructed with deletions in the mobile loop to test the hypothesis that shorter loops would be less sensitive to proteolysis. The two largest deletions effectively inhibited proteolysis by several proteases. Circular dichroism spectra and chemical cross-linking of the deletion variants indicate that the secondary and quaternary structures of the variants are native-like, and all three variants were more thermostable than the wild-type Hsp10. Local structural flexibility appears to be a general requirement for proteolytic sensitivity, and thus, it could be an important factor in antigen processing and helper T-cell epitope immunogenicity.
Collapse
Affiliation(s)
- Stephanie Carmicle
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA
| | | | | | | |
Collapse
|
23
|
Dai G, Carmicle S, Steede NK, Landry SJ. Structural basis for helper T-cell and antibody epitope immunodominance in bacteriophage T4 Hsp10. Role of disordered loops. J Biol Chem 2002; 277:161-8. [PMID: 11602571 DOI: 10.1074/jbc.m102259200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antigen three-dimensional structure potentially limits the access of endoproteolytic processing enzymes to cleavage sites and of class II major histocompatibility antigen-presenting proteins to helper T-cell epitopes. Helper T-cell epitopes in bacteriophage T4 Hsp10 have been mapped by restimulation of splenocytes from CBA/J and C57BL/6J mice immunized in conjunction with mutant (R192G) heat-labile enterotoxin from Escherichia coli. Promiscuously immunogenic sequences were associated with unstable loops in the three-dimensional structure of T4 Hsp10. The immunodominant sequence lies on the N-terminal flank of the 22-residue mobile loop, which is sensitive to proteolysis in divergent Hsp10s. Several mobile loop deletions that inhibited proteolysis in vitro caused global changes in the helper T-cell epitope map. A mobile loop deletion that strongly stabilized the protein dramatically reduced the immunogenicity of the flanking immunodominant helper T-cell epitope, although the protein retained good overall immunogenicity. Antisera against the mobile loop deletion variants exhibited increased cross-reactivity, most especially the antisera against the strongly stabilized variant. The results support the hypothesis that unstable loops promote the presentation of flanking epitopes and suggest that loop deletion could be a general strategy to increase the breadth and strength of an immune response.
Collapse
Affiliation(s)
- Guixiang Dai
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA
| | | | | | | |
Collapse
|
24
|
Shewmaker F, Maskos K, Simmerling C, Landry SJ. The disordered mobile loop of GroES folds into a defined beta-hairpin upon binding GroEL. J Biol Chem 2001; 276:31257-64. [PMID: 11395498 DOI: 10.1074/jbc.m102765200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GroES mobile loop is a stretch of approximately 16 amino acids that exhibits a high degree of flexible disorder in the free protein. This loop is responsible for the interaction between GroES and GroEL, and it undergoes a folding transition upon binding to GroEL. Results derived from a combination of transferred nuclear Overhauser effect NMR experiments and molecular dynamics simulations indicate that the mobile loop adopts a beta-hairpin structure with a Type I, G1 Bulge turn. This structure is distinct from the conformation of the loop in the co-crystal of GroES with GroEL-ADP but identical to the conformation of the bacteriophage-panned "strongly binding peptide" in the co-crystal with GroEL. Analysis of sequence conservation suggests that sequences of the mobile loop and strongly binding peptide were selected for the ability to adopt this hairpin conformation.
Collapse
Affiliation(s)
- F Shewmaker
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA
| | | | | | | |
Collapse
|
25
|
Donnelly MI, Stevens PW, Stols L, Su SX, Tollaksen S, Giometti C, Joachimiak A. Expression of a highly toxic protein, Bax, in Escherichia coli by attachment of a leader peptide derived from the GroES cochaperone. Protein Expr Purif 2001; 22:422-9. [PMID: 11483004 PMCID: PMC4113414 DOI: 10.1006/prep.2001.1442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Expression of the human apoptosis modulator protein Bax in Escherichia coli is highly toxic, resulting in cell lysis at very low concentrations (Asoh, S., et al., J. Biol. Chem. 273, 11384-11391, 1998). Attempts to express a truncated form of murine Bax in the periplasm by using an expression vector that attached the OmpA signal sequence to the protein failed to alleviate this toxicity. In contrast, attachment of a peptide based on a portion of the E. coli cochaperone GroES reduced Bax's toxicity significantly and allowed good expression. The peptide, which was attached to the N-terminus, included the amino acid sequence of the mobile loop of GroES that has been demonstrated to interact with the chaperonin, GroEL. Under normal growth conditions, expression of this construct was still toxic, but generated a small amount of detectable recombinant Bax. However, when cells were grown in the presence of 2% ethanol, which stimulated overproduction of the molecular chaperones GroEL and DnaK, toxicity was reduced and good overexpression occurred. Two-dimensional gel electrophoresis analysis showed that approximately 15-fold more GroES-loop-Bax was produced under these conditions than under standard conditions and that GroEL and DnaK were elevated approximately 3-fold.
Collapse
Affiliation(s)
- Mark I. Donnelly
- Environmental Research Division, Argonne National Laboratory, Argonne, Illinois 60439
| | | | - Lucy Stols
- Environmental Research Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Sharyn Xiaoyin Su
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Sandra Tollaksen
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Carol Giometti
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Andrzej Joachimiak
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
- To whom correspondence should be addressed: Fax: (630) 252-6126.
| |
Collapse
|
26
|
Klein G, Georgopoulos C. Identification of important amino acid residues that modulate binding of Escherichia coli GroEL to its various cochaperones. Genetics 2001; 158:507-17. [PMID: 11404317 PMCID: PMC1461677 DOI: 10.1093/genetics/158.2.507] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic experiments have shown that the GroEL/GroES chaperone machine of Escherichia coli is absolutely essential, not only for bacterial growth but also for the propagation of many bacteriophages including lambda. The virulent bacteriophages T4 and RB49 are independent of the host GroES function, because they encode their own cochaperone proteins, Gp31 and CocO, respectively. E. coli groEL44 mutant bacteria do not form colonies above 42 degrees nor do they propagate bacteriophages lambda, T4, or RB49. We found that the vast majority (40/46) of spontaneous groEL44 temperature-resistant colonies at 43 degrees were due to the presence of an intragenic suppressor mutation. These suppressors define 21 different amino acid substitutions in GroEL, each affecting one of 13 different amino acid residues. All of these amino acid residues are located at or near the hinge, which regulates the large en bloc movements of the GroEL apical domain. All of these intragenic suppressors support bacteriophages lambda, T4, and RB49 growth to various extents in the presence of the groEL44 allele. Since it is known that the GroEL44 mutant protein does not interact effectively with Gp31, the suppressor mutations should enhance cochaperone binding. Analogous intragenic suppressor studies were conducted with the groEL673 temperature-sensitive allele.
Collapse
Affiliation(s)
- G Klein
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, 1, rue Michel Servet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
27
|
Ang D, Richardson A, Mayer MP, Keppel F, Krisch H, Georgopoulos C. Pseudo-T-even bacteriophage RB49 encodes CocO, a cochaperonin for GroEL, which can substitute for Escherichia coli's GroES and bacteriophage T4's Gp31. J Biol Chem 2001; 276:8720-6. [PMID: 11104767 DOI: 10.1074/jbc.m008477200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4-encoded Gp31 is a functional ortholog of the Escherichia coli GroES cochaperonin protein. Both of these proteins form transient, productive complexes with the GroEL chaperonin, required for protein folding and other related functions in the cell. However, Gp31 is specifically required, in conjunction with GroEL, for the correct folding of Gp23, the major capsid protein of T4. To better understand the interaction between GroEL and its cochaperonin cognates, we determined whether the so-called "pseudo-T-even bacteriophages" are dependent on host GroEL function and whether they also encode their own cochaperonin. Here, we report the isolation of an allele-specific mutation of bacteriophage RB49, called epsilon22, which permits growth on the E. coli groEL44 mutant but not on the isogenic wild type host. RB49 epsilon22 was used in marker rescue experiments to identify the corresponding wild type gene, which we have named cocO (cochaperonin cognate). CocO has extremely limited identity to GroES but is 34% identical and 55% similar at the protein sequence level to T4 Gp31, sharing all of the structural features of Gp31 that distinguish it from GroES. CocO can substitute for Gp31 in T4 growth and also suppresses the temperature-sensitive phenotype of the E. coli groES42 mutant. CocO's predicted mobile loop is one residue longer than that of Gp31, with the epsilon22 mutation resulting in a Q36R substitution in this extra residue. Both the CocO wild type and epsilon22 proteins have been purified and shown in vitro to assist GroEL in the refolding of denatured citrate synthase.
Collapse
Affiliation(s)
- D Ang
- Département de Biochimie Médicale, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Genève 4, Switzerland.
| | | | | | | | | | | |
Collapse
|
28
|
Richardson A, Schwager F, Landry SJ, Georgopoulos C. The importance of a mobile loop in regulating chaperonin/ co-chaperonin interaction: humans versus Escherichia coli. J Biol Chem 2001; 276:4981-7. [PMID: 11050098 DOI: 10.1074/jbc.m008628200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chaperonins are universally conserved proteins that nonspecifically facilitate the folding of a wide spectrum of proteins. While bacterial GroEL is functionally promiscuous with various co-chaperonin partners, its human homologue, Hsp60 functions specifically with its co-chaperonin partner, Hsp10, and not with other co-chaperonins, such as the bacterial GroES or bacteriophage T4-encoded Gp31. Co-chaperonin interaction with chaperonin is mediated by the co-chaperonin mobile loop that folds into a beta-hairpin conformation upon binding to the chaperonin. A delicate balance of flexibility and conformational preferences of the mobile loop determines co-chaperonin affinity for chaperonin. Here, we show that the ability of Hsp10, but not GroES, to interact specifically with Hsp60 lies within the mobile loop sequence. Using mutational analysis, we show that three substitutions in the GroES mobile loop are necessary and sufficient to acquire Hsp10-like specificity. Two of these substitutions are predicted to preorganize the beta-hairpin turn and one to increase the hydrophobicity of the GroEL-binding site. Together, they result in a GroES that binds chaperonins with higher affinity. It seems likely that the single ring mitochondrial Hsp60 exhibits intrinsically lower affinity for the co-chaperonin that can be compensated for by a higher affinity mobile loop.
Collapse
Affiliation(s)
- A Richardson
- Département de Biochimie Médicale, Centre Médical Universitaire, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
29
|
Sines CC, McFail-Isom L, Howerton SB, VanDerveer D, Williams LD. Cations Mediate B-DNA Conformational Heterogeneity. J Am Chem Soc 2000. [DOI: 10.1021/ja002244p] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chad C. Sines
- Contribution from the School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Lori McFail-Isom
- Contribution from the School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Shelley B. Howerton
- Contribution from the School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Don VanDerveer
- Contribution from the School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Loren Dean Williams
- Contribution from the School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| |
Collapse
|
30
|
Manson MD. Allele-specific suppression as a tool to study protein-protein interactions in bacteria. Methods 2000; 20:18-34. [PMID: 10610801 DOI: 10.1006/meth.1999.0902] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Suppression analysis is well suited to study the interactions of gene products. It offers the advantage of simplicity for any organism for which a convenient genetic system has been developed, which holds for a wide spectrum of bacteria and an ever-increasing number of unicellular as well as complex eukaryotes. No other method provides as much information about the functional relationships of biological macromolecules. The intrinsic value of suppression analysis is enhanced by advances in genomics and in biophysical techniques for investigating the properties of nucleic acids and proteins, such as X-ray crystallography, liquid and solid-state nuclear magnetic resonance, electron spin labeling, and isothermal calorimetry. These approaches confirm and complement whatever is revealed by genetics. Despite these sterling qualities, suppression analysis has its dangers, less in execution than in conceptualization of experiments and interpretation of data. A consistent nomenclature is essential for a uniform and widespread understanding of the results. Familiarity with the genetic background and idiosyncracies of the organism studied is critical in avoiding extraneous phenomena that can affect the outcome. Finally, it is imperative not to underestimate potentially bizarre and improbable consequences that can transpire when rigorous genetic selection is maintained for an appreciable length of time. The article begins with a somewhat pedagogical discussion of genetic terminology. It then moves on to the necessary precautions to observe while planning and conducting suppression analysis. The remainder of the article considers different manifestations of suppression: bypass suppression; gradients of suppression; suppression by relaxed specificity; allele-specific "suppression at a distance"; and true conformational suppression. The treatment is not exhaustive, but representative examples have been gleaned from the recent bacterial literature.
Collapse
Affiliation(s)
- M D Manson
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
31
|
Abstract
Previous genetic and biochemical analyses have established that the bacteriophage T4-encoded Gp31 is a cochaperonin that interacts with Escherichia coli's GroEL to ensure the timely and accurate folding of Gp23, the bacteriophage-encoded major capsid protein. The heptameric Gp31 cochaperonin, like the E. coli GroES cochaperonin, interacts with GroEL primarily through its unstructured mobile loop segment. Upon binding to GroEL, the mobile loop adopts a structured, beta-hairpin turn. In this article, we present extensive genetic data that strongly substantiate and extend these biochemical studies. These studies begin with the isolation of mutations in gene 31 based on the ability to plaque on groEL44 mutant bacteria, whose mutant product interacts weakly with Gp31. Our genetic system is unique because it also allows for the direct selection of revertants of such gene 31 mutations, based on their ability to plaque on groEL515 mutant bacteria. Interestingly, all of these revertants are pseudorevertants because the original 31 mutation is maintained. In addition, we show that the classical tsA70 mutation in gene 31 changes a conserved hydrophobic residue in the mobile loop to a hydrophilic one. Pseudorevertants of tsA70, which enable growth at the restrictive temperatures, acquire the same mutation previously shown to allow plaque formation on groEL44 mutant bacteria. Our genetic analyses highlight the crucial importance of all three highly conserved hydrophobic residues of the mobile loop of Gp31 in the productive interaction with GroEL.
Collapse
Affiliation(s)
- A Richardson
- Université de Genève, Département de Biochimie Médicale, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|