1
|
Baztarrika I, Martinez-Malaxetxebarria I, Martínez-Ballesteros I, Wösten MM. Human Toll-like receptor activation by pathogenic Arcobacter species. Microb Pathog 2025; 198:107189. [PMID: 39617077 DOI: 10.1016/j.micpath.2024.107189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
The increase of Arcobacter spp. infection cases in humans, coupled with varying symptomatology, highlights the need to study the virulence mechanisms of these bacteria. Arcobacter butzleri can induce the release of several proinflammatory cytokines in human monocytic-derived macrophages, but the mechanism used to achieve this is still unclear. Therefore, we aimed to investigate the human innate immune response triggered by pathogenic Arcobacter spp., by studying the activation of the human Toll-like receptors (TLRs). Arcobacter skirrowii was the only species that showed the ability to activate all tested TLRs. Arcobacter cryaerophilus demonstrated to be able to activate TLR1/2, TLR4, and TLR2/6. A. butzleri hardly activated the TLRs, only TLR2/6 and TLR1/2 to a small extent. While all the Arcobacter species tested possess flagellum, as shown by motility assays and electron microscopy, only the flagellum of A. skirrowii was able to activate TLR5. The alignment of the flagellin amino acid data revealed that A. skirrowii shares a greater number of crucial amino acids for TLR5 recognition with the FliC of Salmonella than the other Arcobacter species, which might explain why A. skirrowii activates TLR5. Our results demonstrated that the activation of the different TLRs is Arcobacter species dependent, and there might be a correlation between the activation of the TLRs and the pathogenicity of the Arcobacter species.
Collapse
Affiliation(s)
- Itsaso Baztarrika
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Álava, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Álava, Spain
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Álava, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Álava, Spain.
| | - Ilargi Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Álava, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Álava, Spain
| | - Marc Msm Wösten
- Department Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, the Netherlands
| |
Collapse
|
2
|
Ai J, Weng Y, Jiang L, Liu C, Liu H, Chen H. Dexamethasone Suppresses IL-33-exacerbated Malignant Phenotype of U87MG Glioblastoma Cells via NF-κB and MAPK Signaling Pathways. Anticancer Agents Med Chem 2024; 24:389-397. [PMID: 38192141 DOI: 10.2174/0118715206281991231222073858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Interleukin (IL)-33 is highly expressed in glioblastoma (GBM) and promotes tumor progression. Targeting IL-33 may be an effective strategy for the treatment of GBM. Dexamethasone (DEX) is a controversial drug routinely used clinically in GBM therapy. Whether DEX has an effect on IL-33 is unknown. This study aimed to investigate the effect of DEX on IL-33 and the molecular mechanisms involved. METHODS U87MG cells were induced by tumor necrosis factor (TNF)-α to express IL-33 and then treated with DEX. The mRNA levels of IL-33, NF-κB p65, ERK1/2, and p38 were determined by real-time quantitative PCR. The expression of IL-33, IkBα (a specific inhibitor of NF-κB) and MKP-1 (a negative regulator of MAPK), as well as the phosphorylation of NF-κB, ERK1/2 and p38 MAPK, were detected by Western blotting. The secretion of IL-33 was measured by ELISA. The proliferation, migration and invasion of U87MG cells were detected by CCK8 and transwell assays, respectively. RESULTS DEX significantly reduced TNF-α-induced production of IL-33 in U87MG cells, which was dependent on inhibiting the activation of the NF-κB, ERK1/2 and p38 MAPK signaling pathways, and was accompanied by the increased expression of IkBα but not MKP-1. Furthermore, the proliferation, migration and invasion of U87MG cells exacerbated by IL-33 were suppressed by DEX. CONCLUSION DEX inhibited the production and tumor-promoting function of IL-33. Whether DEX can benefit GBM patients remains controversial. Our results suggest that GBM patients with high IL-33 expression may benefit from DEX treatment and deserve further investigation.
Collapse
Affiliation(s)
- Jie Ai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
- College of Pharmacy, Guilin Medical University, Guilin, 541199, PR China
| | - Yinhua Weng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
| | - Liyan Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
| | - Chao Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Huoying Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| |
Collapse
|
3
|
Downton P, Bagnall JS, England H, Spiller DG, Humphreys NE, Jackson DA, Paszek P, White MRH, Adamson AD. Overexpression of IκB⍺ modulates NF-κB activation of inflammatory target gene expression. Front Mol Biosci 2023; 10:1187187. [PMID: 37228587 PMCID: PMC10203502 DOI: 10.3389/fmolb.2023.1187187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Cells respond to inflammatory stimuli such as cytokines by activation of the nuclear factor-κB (NF-κB) signalling pathway, resulting in oscillatory translocation of the transcription factor p65 between nucleus and cytoplasm in some cell types. We investigate the relationship between p65 and inhibitor-κB⍺ (IκBα) protein levels and dynamic properties of the system, and how this interaction impacts on the expression of key inflammatory genes. Using bacterial artificial chromosomes, we developed new cell models of IκB⍺-eGFP protein overexpression in a pseudo-native genomic context. We find that cells with high levels of the negative regulator IκBα remain responsive to inflammatory stimuli and maintain dynamics for both p65 and IκBα. In contrast, canonical target gene expression is dramatically reduced by overexpression of IκBα, but can be partially rescued by overexpression of p65. Treatment with leptomycin B to promote nuclear accumulation of IκB⍺ also suppresses canonical target gene expression, suggesting a mechanism in which nuclear IκB⍺ accumulation prevents productive p65 interaction with promoter binding sites. This causes reduced target promoter binding and gene transcription, which we validate by chromatin immunoprecipitation and in primary cells. Overall, we show how inflammatory gene transcription is modulated by the expression levels of both IκB⍺ and p65. This results in an anti-inflammatory effect on transcription, demonstrating a broad mechanism to modulate the strength of inflammatory response.
Collapse
Affiliation(s)
- Polly Downton
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - James S. Bagnall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Hazel England
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David G. Spiller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Neil E. Humphreys
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dean A. Jackson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Pawel Paszek
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Michael R. H. White
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Antony D. Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Wen S, Li X, Lv X, Liu K, Ren J, Zhai J, Song Y. Current progress on innate immune evasion mediated by N pro protein of pestiviruses. Front Immunol 2023; 14:1136051. [PMID: 37090696 PMCID: PMC10115221 DOI: 10.3389/fimmu.2023.1136051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Interferon (IFN), the most effective antiviral cytokine, is involved in innate and adaptive immune responses and is essential to the host defense against virus invasion. Once the host was infected by pathogens, the pathogen-associated molecular patterns (PAMPs) were recognized by the host pattern recognition receptors (PRRs), which activates interferon regulatory transcription factors (IRFs) and nuclear factor-kappa B (NF-κB) signal transduction pathway to induce IFN expression. Pathogens have acquired many strategies to escape the IFN-mediated antiviral immune response. Pestiviruses cause massive economic losses in the livestock industry worldwide every year. The immune escape strategies acquired by pestiviruses during evolution are among the major difficulties in its control. Previous experiments indicated that Erns, as an envelope glycoprotein unique to pestiviruses with RNase activity, could cleave viral ss- and dsRNAs, therefore inhibiting the host IFN production induced by viral ss- and dsRNAs. In contrast, Npro, the other envelope glycoprotein unique to pestiviruses, mainly stimulates the degradation of transcription factor IRF-3 to confront the IFN response. This review mainly summarized the current progress on mechanisms mediated by Npro of pestiviruses to antagonize IFN production.
Collapse
Affiliation(s)
- Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Xintong Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Lv
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Kai Liu
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Jingqiang Ren
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Zhejiang, Wenzhou, China
| | - Jingbo Zhai
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Yang Song
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
5
|
Kwanten B, Deconick T, Walker C, Wang F, Landesman Y, Daelemans D. E3 ubiquitin ligase ASB8 promotes selinexor-induced proteasomal degradation of XPO1. Biomed Pharmacother 2023; 160:114305. [PMID: 36731340 DOI: 10.1016/j.biopha.2023.114305] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Selinexor (KPT-330), a small-molecule inhibitor of exportin-1 (XPO1, CRM1) with potent anticancer activity, has recently been granted FDA approval for treatment of relapsed/refractory multiple myeloma and diffuse large B-cell lymphoma (DLBCL), with a number of additional indications currently under clinical investigation. Since selinexor has often demonstrated synergy when used in combination with other drugs, notably bortezomib and dexamethasone, a more comprehensive approach to uncover new beneficial interactions would be of great value. Moreover, stratifying patients, personalizing therapeutics and improving clinical outcomes requires a better understanding of the genetic vulnerabilities and resistance mechanisms underlying drug response. Here, we used CRISPR-Cas9 loss-of-function chemogenetic screening to identify drug-gene interactions with selinexor in chronic myeloid leukemia, multiple myeloma and DLBCL cell lines. We identified the TGFβ-SMAD4 pathway as an important mediator of resistance to selinexor in multiple myeloma cells. Moreover, higher activity of this pathway correlated with prolonged progression-free survival in multiple myeloma patients treated with selinexor, indicating that the TGFβ-SMAD4 pathway is a potential biomarker predictive of therapeutic outcome. In addition, we identified ASB8 (ankyrin repeat and SOCS box containing 8) as a shared modulator of selinexor sensitivity across all tested cancer types, with both ASB8 knockout and overexpression resulting in selinexor hypersensitivity. Mechanistically, we showed that ASB8 promotes selinexor-induced proteasomal degradation of XPO1. This study provides insight into the genetic factors that influence response to selinexor treatment and could support both the development of predictive biomarkers as well as new drug combinations.
Collapse
Affiliation(s)
- Bert Kwanten
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium
| | - Tine Deconick
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium
| | | | - Feng Wang
- Karyopharm Therapeutics, Newton, MA 02459, USA
| | | | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium.
| |
Collapse
|
6
|
Cao X, van de Lest CH, Huang LZ, van Putten JP, Wösten MM. Campylobacter jejuni permeabilizes the host cell membrane by short chain lysophosphatidylethanolamines. Gut Microbes 2022; 14:2091371. [PMID: 35797141 PMCID: PMC9272830 DOI: 10.1080/19490976.2022.2091371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lysophospholipids (LPLs) are crucial for regulating epithelial integrity and homeostasis in eukaryotes, however the effects of LPLs produced by bacteria on host cells is largely unknown. The membrane of the human bacterial pathogen Campylobacter jejuni is rich in LPLs. Although C. jejuni possesses several virulence factors, it lacks traditional virulence factors like type III secretion systems, present in most enteropathogens. Here, we provide evidence that membrane lipids lysophosphatidylethanolamines (lysoPEs) of C. jejuni are able to lyse erythrocytes and are toxic for HeLa and Caco-2 cells. Lactate dehydrogenase (LDH) release assays and confocal microscopy revealed that lysoPE permeabilizes the cells. LysoPE toxicity was partially rescued by oxidative stress inhibitors, indicating that intracellular reactive oxygen species may contribute to the cell damage. Our results show that especially the short-chain lysoPEs (C:14) which is abundantly present in the C. jejuni membrane may be considered as a novel virulence factor.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | | | - Liane Z.X. Huang
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Jos P.M. van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Marc M.S.M. Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands,CONTACT Marc M.S.M. Wösten Department Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, Netherlands
| |
Collapse
|
7
|
Timani KA, Rezaei S, Whitmill A, Liu Y, He JJ. Tip110/SART3-Mediated Regulation of NF-κB Activity by Targeting IκBα Stability Through USP15. Front Oncol 2022; 12:843157. [PMID: 35530338 PMCID: PMC9070983 DOI: 10.3389/fonc.2022.843157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
To date, there are a small number of nuclear-restricted proteins that have been reported to play a role in NF-κB signaling. However, the exact molecular mechanisms are not fully understood. Tip110 is a nuclear protein that has been implicated in multiple biological processes. In a previous study, we have shown that Tip110 interacts with oncogenic ubiquitin specific peptidase 15 (USP15) and that ectopic expression of Tip110 leads to re-distribution of USP15 from the cytoplasm to the nucleus. USP15 is known to regulate NF-κB activity through several mechanisms including modulation of IκBα ubiquitination. These findings prompted us to investigate the role of Tip110 in the NF-κB signaling pathway. We showed that Tip110 regulates NF-κB activity. The expression of Tip110 potentiated TNF-α-induced NF-κB activity and deletion of the nuclear localization domain in Tip110 abrogated this potentiation activity. We then demonstrated that Tip110 altered IκBα phosphorylation and stability in the presence of TNF-α. Moreover, we found that Tip110 and USP15 opposingly regulated NF-κB activity by targeting IκBα protein stability. We further showed that Tip110 altered the expression of NF-κB-dependent proinflammatory cytokines. Lastly, by using whole-transcriptome analysis of Tip110 knockout mouse embryonic stem cells, we found several NF-κB and NF-κB-related pathways were dysregulated. Taken together, these findings add to the nuclear regulation of NF-κB activity by Tip110 through IκBα stabilization and provide new evidence to support the role of Tip110 in controlling cellular processes such as cancers that involve proinflammatory responses.
Collapse
Affiliation(s)
- Khalid Amine Timani
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
- *Correspondence: Khalid Amine Timani,
| | - Sahar Rezaei
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Amanda Whitmill
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ying Liu
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Johnny J. He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| |
Collapse
|
8
|
Kim KA, Jung JH, Choi YS, Kim ST. Wogonin inhibits tight junction disruption via suppression of inflammatory response and phosphorylation of AKT/NF-κB and ERK1/2 in rhinovirus-infected human nasal epithelial cells. Inflamm Res 2022; 71:357-368. [PMID: 35107605 DOI: 10.1007/s00011-022-01542-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The maintenance of tight junction integrity contributes significantly to epithelial barrier function. If barrier function is destroyed, cell permeability increases and the movement of pathogens is promoted, further increasing the susceptibility to secondary infection. Here, we examined the protective effects of wogonin on rhinovirus (RV)-induced tight junction disruption. Additionally, we examined the signaling molecules responsible for anti-inflammatory activities in human nasal epithelial (HNE) cells. METHODS AND RESULTS Primary HNE cells grown at an air-liquid interface and RPMI 2650 cells were infected apically with RV. Incubation with RV resulted in disruption of tight junction proteins (ZO-1, E-cadherin, claudin-1, and occludin) in the HNE cells. Cell viability of wogonin-treated HNE cells was measured using the MTT assay. Pretreatment with wogonin decreased RV-induced disruption of tight junctions in HNE cells. Furthermore, wogonin significantly decreased RV-induced phosphorylation of Akt/NF-κB and ERK1/2. Additionally, RV-induced generation of reactive oxygen species and RV-induced up-regulation of the production of inflammatory cytokines IL-8 and IL-6 were diminished by wogonin in HNE cells. CONCLUSION Wogonin inhibits HRV-induced tight junction disruption via the suppression of inflammatory responses and phosphorylation of Akt/NF-κB and ERK1/2 in HNE cells. These finds will facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Kyeong Ah Kim
- Department of Otolaryngology-Head & Neck Surgery, Gil Medical Center, Gachon University College of Medicine, 21 Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Joo Hyun Jung
- Department of Otolaryngology-Head & Neck Surgery, Gil Medical Center, Gachon University College of Medicine, 21 Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Yun Sook Choi
- Department of Otolaryngology-Head & Neck Surgery, Gil Medical Center, Gachon University College of Medicine, 21 Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Seon Tae Kim
- Department of Otolaryngology-Head & Neck Surgery, Gil Medical Center, Gachon University College of Medicine, 21 Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea.
| |
Collapse
|
9
|
The ALPK1 pathway drives the inflammatory response to Campylobacter jejuni in human intestinal epithelial cells. PLoS Pathog 2021; 17:e1009787. [PMID: 34339468 PMCID: PMC8360561 DOI: 10.1371/journal.ppat.1009787] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/12/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
The Gram-negative bacterium Campylobacter jejuni is a major cause of foodborne disease in humans. After infection, C. jejuni rapidly colonizes the mucus layer of the small and large intestine and induces a potent pro-inflammatory response characterized by the production of a large repertoire of cytokines, chemokines, and innate effector molecules, resulting in (bloody) diarrhea. The virulence mechanisms by which C. jejuni causes this intestinal response are still largely unknown. Here we show that C. jejuni releases a potent pro-inflammatory compound into its environment, which activates an NF-κB-mediated pro-inflammatory response including the induction of CXCL8, CXCL2, TNFAIP2 and PTGS2. This response was dependent on a functional ALPK1 receptor and independent of Toll-like Receptor and Nod-like Receptor signaling. Chemical characterization, inactivation of the heptose-biosynthesis pathway by the deletion of the hldE gene and in vitro engineering identified the released factor as the LOS-intermediate ADP-heptose and/or related heptose phosphates. During C. jejuni infection of intestinal cells, the ALPK1-NF-κB axis was potently activated by released heptose metabolites without the need for a type III or type IV injection machinery. Our results classify ADP-heptose and/or related heptose phosphates as a major virulence factor of C. jejuni that may play an important role during Campylobacter infection in humans.
Collapse
|
10
|
Gao J, Chu P, Liu C, Sun Z, Liu Q, Yang Y. Discovery and biological evaluation of a small-molecule inhibitor of CRM1 that suppresses the growth of triple-negative breast cancer cells. Traffic 2021; 22:221-229. [PMID: 34021516 DOI: 10.1111/tra.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022]
Abstract
Dysregulation of the nuclear export machinery mediated by chromosomal maintenance 1 (CRM1, also known as exportin-1), is closely associated with various human disorders, such as breast cancer. Previously, we identified sulforaphene and its synthetic analogues as covalent inhibitors of CRM1. Herein, we describe the discovery and biological evaluation of another sulforaphene synthetic analogue, LFS-31, as a potential CRM1 inhibitor. In addition, we investigated the reversible binding mechanism of LFS-31 with CRM1 through molecular simulations coupled with bio-layer interferometry (BLI) and found relatively high binding affinity (KD = 43.1 ± 35.3 nM) between the LFS-31 and CRM1 groups. We found that LFS-31 exhibited a stronger growth suppression of triple-negative breast cancer (TNBC) cells than non-TNBC cells, and had minimal effect on normal breast cells. Pharmacological treatment of TNBC cells with LFS-31 at nanomolar concentrations led to the nuclear retention of IkBα resulting in strong suppression of NF-κB transcriptional activity and attenuated cell growth and proliferation, which collectively contributed to the antitumor responses. To the best of our knowledge, this is the first study to demonstrate the use of a sulforaphene analogue as a potent CRM1 inhibitor that targets the NF-κB signaling pathway for the targeted therapy of TNBC.
Collapse
Affiliation(s)
- Jiujiao Gao
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Peng Chu
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaolin Sun
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yongliang Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
11
|
D’Ignazio L, Shakir D, Batie M, Muller HA, Rocha S. HIF-1β Positively Regulates NF-κB Activity via Direct Control of TRAF6. Int J Mol Sci 2020; 21:ijms21083000. [PMID: 32344511 PMCID: PMC7216149 DOI: 10.3390/ijms21083000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
NF-κB signalling is crucial for cellular responses to inflammation but is also associated with the hypoxia response. NF-κB and hypoxia inducible factor (HIF) transcription factors possess an intense molecular crosstalk. Although it is known that HIF-1α modulates NF-κB transcriptional response, very little is understood regarding how HIF-1β contributes to NF-κB signalling. Here, we demonstrate that HIF-1β is required for full NF-κB activation in cells following canonical and non-canonical stimuli. We found that HIF-1β specifically controls TRAF6 expression in human cells but also in Drosophila melanogaster. HIF-1β binds to the TRAF6 gene and controls its expression independently of HIF-1α. Furthermore, exogenous TRAF6 expression is able to rescue all of the cellular phenotypes observed in the absence of HIF-1β. These results indicate that HIF-1β is an important regulator of NF-κB with consequences for homeostasis and human disease.
Collapse
Affiliation(s)
- Laura D’Ignazio
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
- The Lieber Institute for Brain Development, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dilem Shakir
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
| | - H. Arno Muller
- Developmental Genetics Unit, Institute of Biology, University of Kassel, 34132 Kassel, Germany;
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
- Correspondence: ; Tel.: +44-(0)151-794-9084
| |
Collapse
|
12
|
Wijenayake S, Rahman MF, Lum CMW, De Vega WC, Sasaki A, McGowan PO. Maternal high-fat diet induces sex-specific changes to glucocorticoid and inflammatory signaling in response to corticosterone and lipopolysaccharide challenge in adult rat offspring. J Neuroinflammation 2020; 17:116. [PMID: 32293490 PMCID: PMC7158103 DOI: 10.1186/s12974-020-01798-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Maternal obesity as a result of high levels of saturated fat (HFD) consumption leads to significant negative health outcomes in both mother and exposed offspring. Offspring exposed to maternal HFD show sex-specific alterations in metabolic, behavioral, and endocrine function, as well as increased levels of basal neuroinflammation that persists into adulthood. There is evidence that psychosocial stress or exogenous administration of corticosterone (CORT) potentiate inflammatory gene expression; however, the response to acute CORT or immune challenge in adult offspring exposed to maternal HFD during perinatal life is unknown. We hypothesize that adult rat offspring exposed to maternal HFD would show enhanced pro-inflammatory gene expression in response to acute administration of CORT and lipopolysaccharide (LPS) compared to control animals, as a result of elevated basal pro-inflammatory gene expression. To test this, we examined the effects of acute CORT and/or LPS exposure on pro and anti-inflammatory neural gene expression in adult offspring (male and female) with perinatal exposure to a HFD or a control house-chow diet (CHD). METHODS Rat dams consumed HFD or CHD for four weeks prior to mating, during gestation, and throughout lactation. All male and female offspring were weaned on to CHD. In adulthood, offspring were 'challenged' with administration of exogenous CORT and/or LPS, and quantitative PCR was used to measure transcript abundance of glucocorticoid receptors and downstream inflammatory markers in the amygdala, hippocampus, and prefrontal cortex. RESULTS In response to CORT alone, male HFD offspring showed increased levels of anti-inflammatory transcripts, whereas in response to LPS alone, female HFD offspring showed increased levels of pro-inflammatory transcripts. In addition, male HFD offspring showed greater pro-inflammatory gene expression and female HFD offspring exhibited increased anti-inflammatory gene expression in response to simultaneous CORT and LPS administration. CONCLUSIONS These findings suggest that exposure to maternal HFD leads to sex-specific changes that may alter inflammatory responses in the brain, possibly as an adaptive response to basal neuroinflammation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Mouly F Rahman
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Scarborough, 1265 Military Trail, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Christine M W Lum
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Scarborough, 1265 Military Trail, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Wilfred C De Vega
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Scarborough, 1265 Military Trail, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Aya Sasaki
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Scarborough, 1265 Military Trail, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Patrick O McGowan
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Scarborough, 1265 Military Trail, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Mendez JM, Keestra-Gounder AM. NF-κB-dependent Luciferase Activation and Quantification of Gene Expression in Salmonella Infected Tissue Culture Cells. J Vis Exp 2020. [PMID: 31984953 DOI: 10.3791/60567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The dimeric transcription factor NF-κB regulates many cellular response pathways, including inflammatory pathways by inducing the expression of various cytokines and chemokines. NF-κB is constitutively expressed and is sequestered in the cytosol by the inhibitory protein nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha (IκBα). Activation of NF-κB requires the degradation of IκBα, which then exposes a nuclear localization signal on NF-κB and promotes its trafficking to the nucleus. Once in the nucleus, NF-κB binds to the promotor region of NF-κB target genes such as interleukin 6 (IL-6) and IL-23, to promote their expression. The activation of NF-κB occurs independently of transcription or translation. Therefore, the activation state of NF-κB must be measured either by quantifying NF-κB specifically in the nucleus, or by quantifying expression of NF-κB target genes. In this protocol, cells stably transfected with an NF-κB::luciferase reporter construct are assayed for NF-κB activation using in vitro tissue culture techniques. These cells are infected with Salmonella Typhimurium to activate NF-κB, which traffics to the nucleus and binds to κB sites in the promoter region of luciferase, inducing its expression. Cells are lysed and analyzed with the luciferase assay system. The amount of luciferase produced by the cells correlates with the intensity of the luminescence signal, which is detected by a plate reader. The luminescence signal generated by this procedure provides a quick and highly sensitive method by which to assess NF-κB activation under a range of conditions. This protocol also utilizes quantitative reverse transcription PCR (RT-qPCR) to detect relative mRNA levels that are indicative of gene expression.
Collapse
Affiliation(s)
- Jonathan M Mendez
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| | | |
Collapse
|
14
|
Dou H, Duan Y, Zhang X, Yu Q, Di Q, Song Y, Li P, Gong Y. Aryl hydrocarbon receptor (AhR) regulates adipocyte differentiation by assembling CRL4B ubiquitin ligase to target PPARγ for proteasomal degradation. J Biol Chem 2019; 294:18504-18515. [PMID: 31653699 DOI: 10.1074/jbc.ra119.009282] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is the central regulator of adipogenesis, and its dysregulation is linked to obesity and metabolic diseases. Identification of the factors that regulate PPARγ expression and activity is therefore crucial for combating obesity. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor with a known role in xenobiotic detoxification. Recent studies have suggested that AhR also plays essential roles in energy metabolism. However, the detailed mechanisms remain unclear. We previously reported that experiments with adipocyte-specific Cullin 4b (Cul4b)-knockout mice showed that CUL4B suppresses adipogenesis by targeting PPARγ. Here, using immunoprecipitation, ubiquitination, real-time PCR, and GST-pulldown assays, we report that AhR functions as the substrate receptor in CUL4B-RING E3 ubiquitin ligase (CRL4B) complex and is required for recruiting PPARγ. AhR overexpression reduced PPARγ stability and suppressed adipocyte differentiation, and AhR knockdown stimulated adipocyte differentiation in 3T3-L1 cells. Furthermore, we found that two lysine sites on residues 268 and 293 in PPARγ are targeted for CRL4B-mediated ubiquitination, indicating cross-talk between acetylation and ubiquitination. Our findings establish a critical role of AhR in regulating PPARγ stability and suggest that the AhR-PPARγ interaction may represent a potential therapeutic target for managing metabolic diseases arising from PPARγ dysfunction.
Collapse
Affiliation(s)
- Hao Dou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yuyao Duan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohui Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Qian Yu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Qian Di
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yu Song
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Peishan Li
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
15
|
Activation of the Endoplasmic Reticulum Stress Response Impacts the NOD1 Signaling Pathway. Infect Immun 2019; 87:IAI.00826-18. [PMID: 31109951 PMCID: PMC6652781 DOI: 10.1128/iai.00826-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular pattern recognition receptor (PRR) responsible for sensing bacterial peptidoglycan fragments. Stimulation of NOD1 leads to a robust innate immune response via activation of the major transcription factor NF-κB. In addition to peptidoglycan sensing, NOD1 and the closely related PRR NOD2 have been linked to inflammation by responding to the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR). Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular pattern recognition receptor (PRR) responsible for sensing bacterial peptidoglycan fragments. Stimulation of NOD1 leads to a robust innate immune response via activation of the major transcription factor NF-κB. In addition to peptidoglycan sensing, NOD1 and the closely related PRR NOD2 have been linked to inflammation by responding to the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR). Here we show that differential ER stress induction renders cells more susceptible to Salmonella enterica serovar Typhimurium infection in a NOD1-dependent manner, measured by increased NF-κB activation and cytokine expression. In HeLa57A cells stably transfected with an NF-κB::luciferase reporter, we show that cells undergoing ER stress induced by thapsigargin display a significant increase in NF-κB activation in response to NOD1 stimulation by C12-iE-DAP (acylated derivative of the iE-DAP dipeptide [gamma-d-glutamyl-meso-diaminopimelic acid]) and the S. Typhimurium effector protein SopE. Tunicamycin-induced ER stress had no effect on NOD1-stimulated NF-κB activation. We further show that the mouse intestinal epithelial cell line MODE-K and RAW264.7 macrophages are more responsive to Salmonella infection when treated with thapsigargin but not with tunicamycin. These profound differences between thapsigargin- and tunicamycin-treated cells upon inflammation suggest that different components downstream of the UPR contribute to NOD1 activation. We found that the NOD1-induced inflammatory response is dependent on protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) activation in conjunction with stimulation of the inositol triphosphate receptor (IP3R). Together, these results suggest that differential UPR activation makes cells more responsive to bacterial infections in a NOD1-dependent manner.
Collapse
|
16
|
Seigner J, Junker-Samek M, Plaza A, D'Urso G, Masullo M, Piacente S, Holper-Schichl YM, de Martin R. A Symphytum officinale Root Extract Exerts Anti-inflammatory Properties by Affecting Two Distinct Steps of NF-κB Signaling. Front Pharmacol 2019; 10:289. [PMID: 31105555 PMCID: PMC6498879 DOI: 10.3389/fphar.2019.00289] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/11/2019] [Indexed: 01/09/2023] Open
Abstract
Symphytum officinale, commonly known as comfrey, constitutes a traditional medicinal plant with a long-standing therapeutic history, and preparations thereof have been widely used for the treatment of painful muscle and joint complaints, wound and bone healing, and inflammation. Today, its topical use is based on its analgesic and anti-inflammatory effects, which have been substantiated by modern clinical trials. However, the molecular basis of its action remained elusive. Here, we show that a hydroalcoholic extract of comfrey root impairs the development of a pro-inflammatory scenario in primary human endothelial cells in a dose-dependent manner. The extract, and especially its mucilage-depleted fraction, impair the interleukin-1 (IL-1) induced expression of pro-inflammatory markers including E-selectin, VCAM1, ICAM1, and COX-2. Both preparations inhibit the activation of NF-κB, a transcription factor of central importance for the expression of these and other pro-inflammatory genes. Furthermore, our biochemical studies provide evidence that comfrey inhibits NF-κB signaling at two stages: it dampens not only the activation of IKK1/2 and the subsequent IκBα degradation, but also interferes with NF-κB p65 nucleo-cytoplasmatic shuttling and transactivation. These results provide a first mechanistic insight into the mode of action of a century-old popular herbal medicine.
Collapse
Affiliation(s)
- Jacqueline Seigner
- Department of Vascular Biology, Medical University of Vienna, Vienna, Austria
| | | | | | - Gilda D'Urso
- Dipartimento di Farmacia, Università degli Studi di Salerno, Salerno, Italy
| | - Milena Masullo
- Dipartimento di Farmacia, Università degli Studi di Salerno, Salerno, Italy
| | - Sonia Piacente
- Dipartimento di Farmacia, Università degli Studi di Salerno, Salerno, Italy
| | | | - Rainer de Martin
- Department of Vascular Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Liu X, Jia Y, Chong L, Jiang J, Yang Y, Li L, Ma A, Sun Z, Zhou L. Effects of oral cimetidine on the reproductive system of male rats. Exp Ther Med 2018; 15:4643-4650. [PMID: 29805481 PMCID: PMC5958714 DOI: 10.3892/etm.2018.6065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/26/2017] [Indexed: 01/22/2023] Open
Abstract
Cimetidine is widely used for the treatment of digestive tract ulcers, but it induces testis injury. To explore the mechanisms underlying cimetidine-induced toxicity towards the testis, the effects of oral cimetidine on the reproductive system of male rats were assessed. Cimetidine was orally administered to male rats at 20, 40 or 120 mg/kg/day for 9 weeks. The rats were then euthanized, and serum, testis, epididymis, prostate gland, seminal vesicle, preputial gland, levator ani muscle and sphincter ani samples were collected. Sperm parameters were obtained by computer-assisted sperm analysis. Serum hormone levels were measured by ELISA. Protein expression levels were detected by immunohistochemistry. Apoptosis was assessed with the DeadEnd™ Colorimetric Apoptosis Detection System. The results indicated that the sperm average path velocity, straight line velocity and curvilinear velocity were significantly decreased in the 120 mg/kg cimetidine group compared with the control group, while luteinizing hormone and testosterone levels were significantly higher compared with the control group. Testicular lesions were observed by histopathology in the 120 mg/kg cimetidine group. The amounts of cells positive for cyclooxygenase-2 (COX-2) and nuclear factor κB (NF-κB) were increased in the 120 mg/kg cimetidine group compared with the control group. The amounts of cells positive for iNOS were increased in all cimetidine treatment groups. In addition, apoptotic cells were significantly more abundant in the 120 mg/kg cimetidine group compared with the control group, as indicated by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling. Overall, 9 weeks of oral cimetidine induced pathological changes in the testicles and hormone secretion disorder in rats. COX-2, iNOS and NF-κB upregulation and induction of apoptosis may be associated with the reproductive toxicity caused by cimetidine.
Collapse
Affiliation(s)
- Xu Liu
- Pharmacology and Toxicology Research Laboratory, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Yuling Jia
- Pharmacology and Toxicology Research Laboratory, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China.,Pharmacology and Toxicology Research Laboratory, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for The Toxicology of Fertility Regulating Drugs, Shanghai 200032, P.R. China.,Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China.,Pharmacology and Toxicology Research Laboratory, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China
| | - Liming Chong
- Pharmacology and Toxicology Research Laboratory, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China.,Pharmacology and Toxicology Research Laboratory, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for The Toxicology of Fertility Regulating Drugs, Shanghai 200032, P.R. China.,Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China.,Pharmacology and Toxicology Research Laboratory, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China
| | - Juan Jiang
- Pharmacology and Toxicology Research Laboratory, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China.,Pharmacology and Toxicology Research Laboratory, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for The Toxicology of Fertility Regulating Drugs, Shanghai 200032, P.R. China.,Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China.,Pharmacology and Toxicology Research Laboratory, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China
| | - Yang Yang
- Pharmacology and Toxicology Research Laboratory, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China.,Pharmacology and Toxicology Research Laboratory, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for The Toxicology of Fertility Regulating Drugs, Shanghai 200032, P.R. China.,Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China.,Pharmacology and Toxicology Research Laboratory, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China
| | - Lei Li
- Pharmacology and Toxicology Research Laboratory, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China.,Pharmacology and Toxicology Research Laboratory, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for The Toxicology of Fertility Regulating Drugs, Shanghai 200032, P.R. China.,Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China.,Pharmacology and Toxicology Research Laboratory, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China
| | - Aicui Ma
- Pharmacology and Toxicology Research Laboratory, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China.,Pharmacology and Toxicology Research Laboratory, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for The Toxicology of Fertility Regulating Drugs, Shanghai 200032, P.R. China.,Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China.,Pharmacology and Toxicology Research Laboratory, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China
| | - Zuyue Sun
- Pharmacology and Toxicology Research Laboratory, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China.,Pharmacology and Toxicology Research Laboratory, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for The Toxicology of Fertility Regulating Drugs, Shanghai 200032, P.R. China.,Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China.,Pharmacology and Toxicology Research Laboratory, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China
| | - Li Zhou
- Pharmacology and Toxicology Research Laboratory, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China.,Pharmacology and Toxicology Research Laboratory, Shanghai Institute of Planned Parenthood Research, National Evaluation Centre for The Toxicology of Fertility Regulating Drugs, Shanghai 200032, P.R. China.,Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China.,Pharmacology and Toxicology Research Laboratory, Reproductive and Developmental Research Institute of Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
18
|
Abstract
Toll-like receptor 5 (TLR5) of mammals, birds, and reptiles detects bacterial flagellin and signals as a homodimeric complex. Structural studies using truncated TLR5b of zebrafish confirm the homodimeric TLR5-flagellin interaction. Here we provide evidence that zebrafish (Danio rerio) TLR5 unexpectedly signals as a heterodimer composed of the duplicated gene products drTLR5b and drTLR5a. Flagellin-induced signaling by the zebrafish TLR5 heterodimer increased in the presence of the TLR trafficking chaperone UNC93B1. Targeted exchange of drTLR5b and drTLR5a regions revealed that TLR5 activation needs a heterodimeric configuration of the receptor ectodomain and cytoplasmic domain, consistent with ligand-induced changes in receptor conformation. Structure-guided substitution of the presumed principal flagellin-binding site in human TLR5 with corresponding zebrafish TLR5 residues abrogated human TLR5 activation, indicating a species-specific TLR5-flagellin interaction. Our findings indicate that the duplicated TLR5 of zebrafish underwent subfunctionalization through concerted coevolution to form a unique heterodimeric flagellin receptor that operates fundamentally differently from TLR5 of other species.
Collapse
|
19
|
Vaezirad MM, Koene MG, Wagenaar JA, van Putten JPM. Chicken immune response following in ovo delivery of bacterial flagellin. Vaccine 2018. [PMID: 29530633 DOI: 10.1016/j.vaccine.2018.02.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In ovo immunization of chicken embryos with live vaccines is an effective strategy to protect chickens against several viral pathogens. We investigated the immune response of chicken embryos to purified recombinant protein. In ovo delivery of Salmonella flagellin to 18-day old embryonated eggs resulted in elevated pro-inflammatory chIL-6 and chIL-8 (CXCL8-CXCLi2) cytokine transcript levels in the intestine but not in the spleen at 24 h post-injection. Analysis of the chicken Toll-like receptor (TLR) repertoire in 19-day old embryos revealed gene transcripts in intestinal and spleen tissue for most chicken TLRs, including TLR5 which recognizes Salmonella flagellin (FliC). The in ovo administration of FliC did not alter TLR transcript levels, except for an increase in intestinal chTLR15 expression. Measurement of the antibody response in sera collected at day 11 and day 21 post-hatch demonstrated high titers of FliC-specific antibodies for the animals immunized at the late-embryonic stage in contrast to the mock-treated controls. The successful in ovo immunization with purified bacterial antigen indicates that the immune system of the chicken embryo is sufficiently mature to yield a strong humoral immune response after single exposure to purified protein. This finding strengthens the basis for the development of in ovo protein-based subunit vaccines.
Collapse
Affiliation(s)
- M M Vaezirad
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands; University of Birjand, Birjand, Iran
| | - M G Koene
- Central Veterinary Institute of Wageningen University, Lelystad, The Netherlands
| | - J A Wagenaar
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands; Central Veterinary Institute of Wageningen University, Lelystad, The Netherlands
| | - J P M van Putten
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
20
|
Zhu W, Winter MG, Byndloss MX, Spiga L, Duerkop BA, Hughes ER, Büttner L, de Lima Romão E, Behrendt CL, Lopez CA, Sifuentes-Dominguez L, Huff-Hardy K, Wilson RP, Gillis CC, Tükel Ç, Koh AY, Burstein E, Hooper LV, Bäumler AJ, Winter SE. Precision editing of the gut microbiota ameliorates colitis. Nature 2018; 553:208-211. [PMID: 29323293 DOI: 10.1038/nature25172] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/24/2017] [Indexed: 12/30/2022]
Abstract
Inflammatory diseases of the gastrointestinal tract are frequently associated with dysbiosis, characterized by changes in gut microbial communities that include an expansion of facultative anaerobic bacteria of the Enterobacteriaceae family (phylum Proteobacteria). Here we show that a dysbiotic expansion of Enterobacteriaceae during gut inflammation could be prevented by tungstate treatment, which selectively inhibited molybdenum-cofactor-dependent microbial respiratory pathways that are operational only during episodes of inflammation. By contrast, we found that tungstate treatment caused minimal changes in the microbiota composition under homeostatic conditions. Notably, tungstate-mediated microbiota editing reduced the severity of intestinal inflammation in mouse models of colitis. We conclude that precision editing of the microbiota composition by tungstate treatment ameliorates the adverse effects of dysbiosis in the inflamed gut.
Collapse
Affiliation(s)
- Wenhan Zhu
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Maria G Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | - Luisella Spiga
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Breck A Duerkop
- Department of Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Elizabeth R Hughes
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Lisa Büttner
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Everton de Lima Romão
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | - Cassie L Behrendt
- Department of Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Christopher A Lopez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | - Luis Sifuentes-Dominguez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Kayci Huff-Hardy
- Department of Internal Medicine, Division of Digestive & Liver Diseases, University of Texas Southwestern Medical Center 75390, 5323 Harry Hines Boulevard, Dallas, Texas, USA
| | - R Paul Wilson
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, 1801 North Broad Street, Philadelphia, Pennsylvania 19122, USA
| | - Caroline C Gillis
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Çagla Tükel
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, 1801 North Broad Street, Philadelphia, Pennsylvania 19122, USA
| | - Andrew Y Koh
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Ezra Burstein
- Department of Internal Medicine, Division of Digestive & Liver Diseases, University of Texas Southwestern Medical Center 75390, 5323 Harry Hines Boulevard, Dallas, Texas, USA
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| |
Collapse
|
21
|
Min SJ, Hyun HW, Kang TC. Leptomycin B attenuates neuronal death via PKA- and PP2B-mediated ERK1/2 activation in the rat hippocampus following status epilepticus. Brain Res 2017; 1670:14-23. [PMID: 28601633 DOI: 10.1016/j.brainres.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/04/2017] [Accepted: 06/02/2017] [Indexed: 01/04/2023]
Abstract
Leptomycin B (LMB), originally developed as an anti-fungal agent, has potent neuroprotective properties against status epilepticus (SE, a prolonged seizure activity). However, the pharmacological profiles and mechanisms of LMB for neuroprotection remain elusive. In the present study, we found that LMB increased phosphorylation levels of protein kinase A (PKA) catalytic subunits, protein phosphatase 2B (PP2B, calcineurin) and extracellular signal-regulated kinase 1/2 (ERK1/2) under normal condition, and abolished SE-induced neuronal death. Co-treatment of H-89 (a PKA inhibitor) with LMB could not affect the seizure latency and its severity in response to pilocarpine. However, H-89 co-treatment abrogated the protective effect of LMB on SE-induced neuronal damage. Cyclosporin A (CsA, a PP2B inhibitor) co-treatment effectively prevented SE-induced neuronal death without altered seizure susceptibility in response to pilocarpine more than LMB alone. H-89 co-treatment inhibited LMB-mediated ERK1/2 phosphorylation, but CsA enhanced it. U0126 (an ERK1/2 inhibitor) co-treatment abolished the protective effect of LMB on SE-induced neuronal death without alterations in PKA and PP2B phosphorylations. To the best of our knowledge, the present data demonstrate a previously unreported potential neuroprotective role of LMB against SE via PKA- and PP2B-mediated ERK1/2 activation.
Collapse
Affiliation(s)
- Su-Ji Min
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 24252, South Korea; Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 24252, South Korea
| | - Hye-Won Hyun
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 24252, South Korea; Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 24252, South Korea; Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 24252, South Korea.
| |
Collapse
|
22
|
Kashyap T, Argueta C, Aboukameel A, Unger TJ, Klebanov B, Mohammad RM, Muqbil I, Azmi AS, Drolen C, Senapedis W, Lee M, Kauffman M, Shacham S, Landesman Y. Selinexor, a Selective Inhibitor of Nuclear Export (SINE) compound, acts through NF-κB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death. Oncotarget 2016; 7:78883-78895. [PMID: 27713151 PMCID: PMC5346685 DOI: 10.18632/oncotarget.12428] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/22/2016] [Indexed: 12/17/2022] Open
Abstract
The nuclear export protein, exportin-1 (XPO1/CRM1), is overexpressed in many cancers and correlates with poor prognosis. Selinexor, a first-in-class Selective Inhibitor of Nuclear Export (SINE) compound, binds covalently to XPO1 and blocks its function. Treatment of cancer cells with selinexor results in nuclear retention of major tumor suppressor proteins and cell cycle regulators, leading to growth arrest and apoptosis. Recently, we described the selection of SINE compound resistant cells and reported elevated expression of inflammation-related genes in these cells. Here, we demonstrated that NF-κB transcriptional activity is up-regulated in cells that are naturally resistant or have acquired resistance to SINE compounds. Resistance to SINE compounds was created by knockdown of the cellular NF-κB inhibitor, IκB-α. Combination treatment of selinexor with proteasome inhibitors decreased NF-κB activity, sensitized SINE compound resistant cells and showed synergistic cytotoxicity in vitro and in vivo. Furthermore, we showed that selinexor inhibited NF-κB activity by blocking phosphorylation of the IκB-α and the NF-κB p65 subunits, protecting IκB-α from proteasome degradation and trapping IκB-α in the nucleus to suppress NF-κB activity. Therefore, combination treatment of selinexor with a proteasome inhibitor may be beneficial to patients with resistance to either single-agent.
Collapse
Affiliation(s)
| | | | - Amro Aboukameel
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | - Ramzi M. Mohammad
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Irfana Muqbil
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Asfar S. Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Claire Drolen
- Karyopharm Therapeutics Inc., Newton, MA, 02459, USA
| | | | - Margaret Lee
- Karyopharm Therapeutics Inc., Newton, MA, 02459, USA
| | | | | | | |
Collapse
|
23
|
Radomska KA, Vaezirad MM, Verstappen KM, Wösten MMSM, Wagenaar JA, van Putten JPM. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni. PLoS One 2016; 11:e0164837. [PMID: 27760175 PMCID: PMC5070796 DOI: 10.1371/journal.pone.0164837] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/30/2016] [Indexed: 01/02/2023] Open
Abstract
Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant) activity of the vaccine. The antigen (20–40 μg) was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization.
Collapse
Affiliation(s)
- Katarzyna A. Radomska
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Mahdi M. Vaezirad
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Koen M. Verstappen
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Marc M. S. M. Wösten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Jos P. M. van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
24
|
Slomiany B, Piotrowski J, Slomiany A. Effect of ebrotidine on Helicobacter pylori lipopolysaccharide-induced up-regulation of endothelin-1 in gastric mucosa. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519990050050401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Helicobacter pylori is recognized as a primary etiologic factor in the development of gastric disease. We applied the animal model of H. pylori lipopolysaccharide-induced acute gastritis to study the effect of the anti-ulcer agent, ebrotidine, on the course of mucosal inflammatory responses by analyzing over a period of 10 days the extent of epithelial cell apoptosis and the mucosal expression of endothelin-1 (ET-1), tumor necrosis factor α (TNFα), and the activity of constitutive (cNOS) and inducible (NOS-2) nitric oxide synthase. Rats, pretreated twice daily for 3 days with ebrotidine at 100 mg/kg or the vehicle, were subjected to intragastric application of H. pylori lipopolysaccharide at 50 µg/animal, and after 2, 4, and 10 additional days on the drug or vehicle regimen their mucosal tissue was used for histological and biochemical assessment. In the absence of ebrotidine, H. pylori lipopolysaccharide elicited within 2 days extensive mucosal inflammation accompanied by a significant increase in epithelial cell apoptosis (13.5-fold) and the mucosal expression of TNFα (11.7-fold), NOS-2 (9.3-fold), and ET-1 (2.9-fold), while cNOS activity showed a 5.5-fold decrease. The extent of mucosal inflammatory involvement reached a maximum by the 4th day and showed a decline by the 10th day. This was reflected in a marked reduction in epithelial cell apoptosis, a decrease in the mucosal expression of ET-1, TNFα and NOS-2, and the recovery in cNOS activity. Treatment with ebrotidine caused a reduction in the extent of mucosal inflammatory involvement elicited by the lipopolysaccharide and this effect of ebrotidine was reflected at the end of a 10 day period in a 61.3% reduction in inflammation, and a decrease in apoptosis (83%), TNFα (51.8%), ET-1 (27.6%) and NOS-2 (62.9%), while the expression of cNOS increased by 78.6%. The findings indicate that an increase in the ET-1 level elicited by H. pylori lipopolysaccharide, combined with a decline in cNOS, trigger the induction of TNFα which propagates the inflammatory process. We also show that ebrotidine is capable of suppressing the H. pylori-induced gastric mucosal inflammatory responses.
Collapse
Affiliation(s)
- B.L. Slomiany
- Research Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA,
| | - J. Piotrowski
- Research Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | - A. Slomiany
- Research Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
25
|
Fink IR, Pietretti D, Voogdt CGP, Westphal AH, Savelkoul HFJ, Forlenza M, Wiegertjes GF. Molecular and functional characterization of Toll-like receptor (Tlr)1 and Tlr2 in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2016; 56:70-83. [PMID: 27368535 DOI: 10.1016/j.fsi.2016.06.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptors (TLRs) are fundamental components of innate immunity that play significant roles in the defence against pathogen invasion. In this study, we present the molecular characterization of the full-length coding sequence of tlr1, tlr2a and tlr2b from common carp (Cyprinus carpio). Each is encoded within a single exon and contains a conserved number of leucine-rich repeats, a transmembrane region and an intracellular TIR domain for signalling. Indeed, sequence, phylogenetic and synteny analysis of carp tlr1, tlr2a and tlr2b support that these genes are orthologues of mammalian TLR1 and TLR2. The tlr genes are expressed in various immune organs and cell types. Furthermore, the carp sequences exhibited a good three-dimensional fit with the heterodimer structure of human TLR1-TLR2, including the potential to bind to the ligand Pam3CSK4. This supports the possible formation of carp Tlr1-Tlr2 heterodimers. However, we were unable to demonstrate Tlr1/Tlr2-mediated ligand binding in transfected cell lines through NF-κB activation, despite showing the expression and co-localization of Tlr1 and Tlr2. We discuss possible limitations when studying ligand-specific activation of NF-κB after expression of Tlr1 and/or Tlr2 in human but also fish cell lines and we propose alternative future strategies for studying ligand-binding properties of fish Tlrs.
Collapse
Affiliation(s)
- Inge R Fink
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Danilo Pietretti
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Carlos G P Voogdt
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, PO Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands.
| |
Collapse
|
26
|
Giri SS, Sen SS, Sukumaran V, Park SC. Pinocembrin attenuates lipopolysaccharide-induced inflammatory responses in Labeo rohita macrophages via the suppression of the NF-κB signalling pathway. FISH & SHELLFISH IMMUNOLOGY 2016; 56:459-466. [PMID: 27492123 DOI: 10.1016/j.fsi.2016.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/13/2016] [Accepted: 07/31/2016] [Indexed: 06/06/2023]
Abstract
Pinocembrin is a flavonoid that has been reported to exhibit various pharmacological and biological activities including antimicrobial, antioxidant, and anti-inflammatory. To explore the anti-inflammatory activity of pinocembrin in a fish cell line, we investigated its ability to regulate the inflammatory mediators elevated by lipopolysaccharide (LPS) in Labeo rohita head-kidney (HK) macrophages. HK macrophages of L. rohita were treated with LPS (1 μg mL(-1)) in the presence or absence of pinocembrin. We examined the inhibitory effect of pinocembrin on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. The inhibitory effect of pinocembrin on nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was investigated by RT-PCR and western blot. The effect of pinocembrin on pro-inflammatory cytokines (tumour necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β)) and anti-inflammatory cytokine IL-10 was investigated by ELISA and RT-PCR. The phosphorylation of three mitogen activated protein kinases (MAPKs) ERK, JNK, and p38 was analysed by western blot. Pinocembrin inhibited LPS-induced productions of NO and PGE2, and also markedly inhibited TNF-α, IL-1β, iNOS, and COX-2 production in a concentration-dependent manner. In addition, TNF-α and IL-1β mRNA expression levels decreased significantly, while IL-10 mRNA expression increased (P < 0.05) with pinocembrin pre-treatment. RT-PCR and western blot analysis showed that pinocembrin decreased both the mRNA and protein expression levels of LPS-induced iNOS and COX-2 in HK macrophages. Pinocembrin suppressed the phosphorylation of MAPK in LPS-stimulated HK macrophages. Further, pinocembrin significantly inhibited LPS-induced NF-κB transcriptional activity via the attenuation of IκBα degradation. Taken together, pinocembrin reduced the levels of pro-inflammatory mediators, such as iNOS, COX-2, TNF-α, and IL-1β, by inhibiting NF-κB activation via the suppression of ERK and p38 phosphorylation, and by attenuating the degradation of IκBα. These results suggest that pinocembrin is a potential novel candidate for the treatment of inflammatory conditions in L. rohita macrophages.
Collapse
Affiliation(s)
- Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea; Dept. of Zoology, Kundavai Nachiyar Government Arts College for Women (Autonomous), Thanjavur, Tamil Nadu, India
| | - Shib Sankar Sen
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Venkatachalam Sukumaran
- Dept. of Zoology, Kundavai Nachiyar Government Arts College for Women (Autonomous), Thanjavur, Tamil Nadu, India.
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|
27
|
Leukemia-Associated Nup214 Fusion Proteins Disturb the XPO1-Mediated Nuclear-Cytoplasmic Transport Pathway and Thereby the NF-κB Signaling Pathway. Mol Cell Biol 2016; 36:1820-35. [PMID: 27114368 DOI: 10.1128/mcb.00158-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023] Open
Abstract
Nuclear-cytoplasmic transport through nuclear pore complexes is mediated by nuclear transport receptors. Previous reports have suggested that aberrant nuclear-cytoplasmic transport due to mutations or overexpression of nuclear pore complexes and nuclear transport receptors is closely linked to diseases. Nup214, a component of nuclear pore complexes, has been found as chimeric fusion proteins in leukemia. Among various Nup214 fusion proteins, SET-Nup214 and DEK-Nup214 have been shown to be engaged in tumorigenesis, but their oncogenic mechanisms remain unclear. In this study, we examined the functions of the Nup214 fusion proteins by focusing on their effects on nuclear-cytoplasmic transport. We found that SET-Nup214 and DEK-Nup214 interact with exportin-1 (XPO1)/CRM1 and nuclear RNA export factor 1 (NXF1)/TAP, which mediate leucine-rich nuclear export signal (NES)-dependent protein export and mRNA export, respectively. SET-Nup214 and DEK-Nup214 decreased the XPO1-mediated nuclear export of NES proteins such as cyclin B and proteins involved in the NF-κB signaling pathway by tethering XPO1 onto nuclear dots where Nup214 fusion proteins are localized. We also demonstrated that SET-Nup214 and DEK-Nup214 expression inhibited NF-κB-mediated transcription by abnormal tethering of the complex containing p65 and its inhibitor, IκB, in the nucleus. These results suggest that SET-Nup214 and DEK-Nup214 perturb the regulation of gene expression through alteration of the nuclear-cytoplasmic transport system.
Collapse
|
28
|
Hayes JB, Sircy LM, Heusinkveld LE, Ding W, Leander RN, McClelland EE, Nelson DE. Modulation of Macrophage Inflammatory Nuclear Factor κB (NF-κB) Signaling by Intracellular Cryptococcus neoformans. J Biol Chem 2016; 291:15614-27. [PMID: 27231343 DOI: 10.1074/jbc.m116.738187] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 01/29/2023] Open
Abstract
Cryptococcus neoformans (Cn) is a common facultative intracellular pathogen that can cause life-threatening fungal meningitis in immunocompromised individuals. Shortly after infection, Cn is detectable as both extra- and intracellular yeast particles, with Cn being capable of establishing long-lasting latent infections within host macrophages. Although recent studies have shown that shed capsular polysaccharides and intact extracellular Cn can compromise macrophage function through modulation of NF-κB signaling, it is currently unclear whether intracellular Cn also affects NF-κB signaling. Utilizing live cell imaging and computational modeling, we find that extra- and intracellular Cn support distinct modes of NF-κB signaling in cultured murine macrophages. Specifically, in RAW 264.7 murine macrophages treated with extracellular glucuronoxylomannan (GXM), the major Cn capsular polysaccharide, LPS-induced nuclear translocation of p65 is inhibited, whereas in cells with intracellular Cn, LPS-induced nuclear translocation of p65 is both amplified and sustained. Mathematical simulations and quantification of nascent protein expression indicate that this is a possible consequence of Cn-induced "translational interference," impeding IκBα resynthesis. We also show that long term Cn infection induces stable nuclear localization of p65 and IκBα proteins in the absence of additional pro-inflammatory stimuli. In this case, nuclear localization of p65 is not accompanied by TNFα or inducible NOS (iNOS) expression. These results demonstrate that capsular polysaccharides and intact intracellular yeast manipulate NF-κB via multiple distinct mechanisms and provide new insights into how Cn might modulate cellular signaling at different stages of an infection.
Collapse
Affiliation(s)
| | | | | | - Wandi Ding
- Mathematical Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37130
| | - Rachel N Leander
- Mathematical Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37130
| | | | | |
Collapse
|
29
|
The Ubiquitination of NF-κB Subunits in the Control of Transcription. Cells 2016; 5:cells5020023. [PMID: 27187478 PMCID: PMC4931672 DOI: 10.3390/cells5020023] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
Nuclear factor (NF)-κB has evolved as a latent, inducible family of transcription factors fundamental in the control of the inflammatory response. The transcription of hundreds of genes involved in inflammation and immune homeostasis require NF-κB, necessitating the need for its strict control. The inducible ubiquitination and proteasomal degradation of the cytoplasmic inhibitor of κB (IκB) proteins promotes the nuclear translocation and transcriptional activity of NF-κB. More recently, an additional role for ubiquitination in the regulation of NF-κB activity has been identified. In this case, the ubiquitination and degradation of the NF-κB subunits themselves plays a critical role in the termination of NF-κB activity and the associated transcriptional response. While there is still much to discover, a number of NF-κB ubiquitin ligases and deubiquitinases have now been identified which coordinate to regulate the NF-κB transcriptional response. This review will focus the regulation of NF-κB subunits by ubiquitination, the key regulatory components and their impact on NF-κB directed transcription.
Collapse
|
30
|
Liu Y, Amin EB, Mayo MW, Chudgar NP, Bucciarelli PR, Kadota K, Adusumilli PS, Jones DR. CK2α' Drives Lung Cancer Metastasis by Targeting BRMS1 Nuclear Export and Degradation. Cancer Res 2016; 76:2675-86. [PMID: 26980766 DOI: 10.1158/0008-5472.can-15-2888] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/27/2016] [Indexed: 11/16/2022]
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) is decreased in non-small cell lung cancer (NSCLC) and other solid tumors, and its loss correlates with increased metastases. We show that BRMS1 is posttranslationally regulated by TNF-induced casein kinase 2 catalytic subunit (CK2α') phosphorylation of nuclear BRMS1 on serine 30 (S30), resulting in 14-3-3ε-mediated nuclear exportation, increased BRMS1 cytosolic expression, and ubiquitin-proteasome-induced BRMS1 degradation. Using our in vivo orthotopic mouse model of lung cancer metastases, we found that mutation of S30 in BRMS1 or the use of the CK2-specific small-molecule inhibitor CX4945 abrogates CK2α'-induced cell migration and invasion and decreases NSCLC metastasis by 60-fold. Analysis of 160 human NSCLC specimens confirmed that tumor CK2α' and cytoplasmic BRMS1 expression levels are associated with increased tumor recurrence, metastatic foci, and reduced disease-free survival. Collectively, we identify a therapeutically exploitable posttranslational mechanism by which CK2α-mediated degradation of BRMS1 promotes metastases in lung cancer. Cancer Res; 76(9); 2675-86. ©2016 AACR.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elianna B Amin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marty W Mayo
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Neel P Chudgar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter R Bucciarelli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kyuichi Kadota
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York. Weill Cornell Medical College, New York, New York
| | - David R Jones
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York. Weill Cornell Medical College, New York, New York.
| |
Collapse
|
31
|
Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition. Sci Rep 2016; 6:19046. [PMID: 26738735 PMCID: PMC4703953 DOI: 10.1038/srep19046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions.
Collapse
|
32
|
Lin MY, de Zoete MR, van Putten JPM, Strijbis K. Redirection of Epithelial Immune Responses by Short-Chain Fatty Acids through Inhibition of Histone Deacetylases. Front Immunol 2015; 6:554. [PMID: 26579129 PMCID: PMC4630660 DOI: 10.3389/fimmu.2015.00554] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/16/2015] [Indexed: 01/17/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are products of microbial fermentation that are important for intestinal epithelial health. Here, we describe that SCFAs have rapid and reversible effects on toll-like receptor (TLR) responses in epithelial cells. Incubation of HEK293 or HeLa epithelial cells with the SCFAs butyrate or propionate at physiological concentrations enhanced NF-κB activation induced by TLR5, TLR2/1, TLR4, and TLR9 agonists. NF-κB activation in response to tumor necrosis factor α (TNFα) was also increased by SCFAs. Comparative transcript analysis of HT-29 colon epithelial cells revealed that SCFAs enhanced TLR5-induced transcription of TNFα but dampened or even abolished the TLR5-mediated induction of IL-8 and monocyte chemotactic protein 1. SCFAs are known inhibitors of histone deacetylases (HDACs). Butyrate or propionate caused a rapid increase in histone acetylation in epithelial cells, similar to the small molecule HDAC inhibitor trichostatin A (TSA). TSA also mimicked the effects of SCFAs on TLR–NF-κB responses. This study shows that bacterial SCFAs rapidly alter the epigenetic state of host cells resulting in redirection of the innate immune response and selective reprograming of cytokine/chemokine expression.
Collapse
Affiliation(s)
- May Young Lin
- Department of Infectious Diseases and Immunology, Utrecht University , Utrecht , Netherlands
| | - Marcel R de Zoete
- Department of Infectious Diseases and Immunology, Utrecht University , Utrecht , Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University , Utrecht , Netherlands
| | - Karin Strijbis
- Department of Infectious Diseases and Immunology, Utrecht University , Utrecht , Netherlands
| |
Collapse
|
33
|
Ji G, Liu M, Zhao XF, Liu XY, Guo QL, Guan ZF, Zhou HG, Guo JC. NF-κB Signaling is Involved in the Effects of Intranasally Engrafted Human Neural Stem Cells on Neurofunctional Improvements in Neonatal Rat Hypoxic-Ischemic Encephalopathy. CNS Neurosci Ther 2015; 21:926-35. [PMID: 26255634 DOI: 10.1111/cns.12441] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 12/22/2022] Open
Abstract
AIM Hypoxic-ischemic encephalopathy (HIE) is a common neurological disease in infants with persistent neurobehavioral impairments. Studies found that neural stem cell (NSC) therapy benefits HIE rats; however, the mechanisms underlying are still unclear. The current study investigated the efficacy and molecular events of human embryonic neural stem cells (hNSCs) in neonatal hypoxic-ischemic (HI) rats. METHODS PKH-26-labeled hNSCs were intranasally delivered to P7 Sprague Dawley rats 24 h after HI. Neurobehavioral tests were performed at the indicated time after delivery: righting reflex and gait testing at D1, 3, 5, and 7; grid walking at D7 and 14; social choice test (SCT) at D28; and Morris water maze from D35 to 40. Protein expression was determined by Western blot analysis. Brain damage was assessed by cresyl violet staining and MBP staining. hNSC distribution and differentiation were observed by in vivo bioluminescence imaging and immunofluorescence staining. RESULTS (1) hNSCs migrated extensively into brain areas within 24 h after the delivery, survived even at D42 with the majority in ipsi-hemisphere, and could be co-labeled with NeuN or GFAP. (2) hNSCs reduced the upregulation in cytosolic IL-1β, p-IκBα, and NF-κB p65 levels, whereas enhanced nuclear p65 expression in HI rats at D3 after the delivery. (3) hNSCs decreased HI-induced brain tissue loss and white matter injury at D42 after the delivery. (4) hNSCs improved neurological outcomes in HI rats in the tests of righting reflex (within 3 days), gait (D5), grid (D7), SCT (D28), and water maze (D42). CONCLUSION Intranasal delivery of hNSCs could prevent HI-induced brain injury and improve neurobehavioral outcomes in neonatal HI rats, which is possibly related to the modulation of NF-κB signaling.
Collapse
Affiliation(s)
- Gang Ji
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Liu
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiong-Fei Zhao
- Shanghai Angecon Biotechnology Co., Ltd., Shanghai, China
| | - Xiao-Yan Liu
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi-Lin Guo
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhu-Fei Guan
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hou-Guang Zhou
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing-Chun Guo
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Woo SM, Min KJ, Kwon TK. Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells. J Pineal Res 2015; 58:310-20. [PMID: 25711465 DOI: 10.1111/jpi.12217] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/20/2015] [Indexed: 12/12/2022]
Abstract
Melatonin is involved in many physiological functions, and it has differential effects on apoptosis in normal and cancer cells. However, the mechanism of its antitumor roles is not well understood. In this study, we show that melatonin enhances tunicamycin-induced apoptosis in human breast carcinoma MDA-MB-231 cells. Melatonin up-regulates pro-apoptotic protein Bim expression at the transcriptional levels in the presence of tunicamycin. Melatonin inhibits tunicamycin-induced COX-2 expression in MDA-MB-231 cells. Furthermore, inhibition of COX-2 activity using the COX-2 inhibitor, NS398, increases tunicamycin-induced apoptosis. Interestingly, these effects were not associated with melatonin receptor signal pathways. Pertussis toxin (a general Gi protein inhibitor) or luzindole (a nonspecific melatonin receptor antagonist) did not reverse the effect of melatonin. In addition, melatonin blocked tunicamycin-induced NF-κB transcriptional activity, p65 nuclear translocation, and p38 MAPK activation. Melatonin-mediated p38 MAPK inhibition contributed to decreased COX-2 mRNA stability. Taken together, our results suggest that melatonin enhances antitumor function through up-regulation of Bim expression and down-regulation of COX-2 expression in tunicamycin-treated MDA-MB-231 cells.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| | | | | |
Collapse
|
35
|
Abstract
The discovery and characterization of the nuclear factor-kappa B (NF-κB) family of transcription factors was predicated on the technical ability to detect protein binding to defined sequences of DNA. Proteins capable of binding to specific sequences of nucleic acid are detected through the use of the electrophoretic mobility shift assay (EMSA), also called a gel shift assay. While newer techniques, including chromatin immunoprecipitation (ChIP), are widely used to assess NF-κB binding to the promoters and enhancers of specific genes, the EMSA remains a powerful experimental tool to quickly test for the presence of NF-κB that is capable of binding DNA. In this way, the EMSA is a useful general readout of the activation state of the NF-κB pathway and an essential tool for the investigation of this important transcription factor family.
Collapse
Affiliation(s)
- Sitharam Ramaswami
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | | |
Collapse
|
36
|
Zhang J, Zhong Q. Histone deacetylase inhibitors and cell death. Cell Mol Life Sci 2014; 71:3885-901. [PMID: 24898083 PMCID: PMC4414051 DOI: 10.1007/s00018-014-1656-6] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/23/2014] [Accepted: 05/20/2014] [Indexed: 12/14/2022]
Abstract
Histone deacetylases (HDACs) are a vast family of enzymes involved in chromatin remodeling and have crucial roles in numerous biological processes, largely through their repressive influence on transcription. In addition to modifying histones, HDACs also target many other non-histone protein substrates to regulate gene expression. Recently, HDACs have gained growing attention as HDAC-inhibiting compounds are being developed as promising cancer therapeutics. Histone deacetylase inhibitors (HDACi) have been shown to induce differentiation, cell cycle arrest, apoptosis, autophagy and necrosis in a variety of transformed cell lines. In this review, we mainly discuss how HDACi may elicit a therapeutic response to human cancers through different cell death pathways, in particular, apoptosis and autophagy.
Collapse
Affiliation(s)
- Jing Zhang
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
37
|
Rodriguez MS, Egaña I, Lopitz-Otsoa F, Aillet F, Lopez-Mato MP, Dorronsoro A, Dorronroso A, Lobato-Gil S, Sutherland JD, Barrio R, Trigueros C, Lang V. The RING ubiquitin E3 RNF114 interacts with A20 and modulates NF-κB activity and T-cell activation. Cell Death Dis 2014; 5:e1399. [PMID: 25165885 PMCID: PMC4454333 DOI: 10.1038/cddis.2014.366] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/20/2014] [Accepted: 07/03/2014] [Indexed: 12/16/2022]
Abstract
Accurate regulation of nuclear factor-κB (NF-κB)
activity is crucial to prevent a variety of disorders including immune and
inflammatory diseases. Active NF-κB promotes
IκBα and A20 expression, important negative
regulatory molecules that control the NF-κB response. In this
study, using two-hybrid screening we identify the RING-type zinc-finger protein
114 (RNF114) as an A20-interacting factor. RNF114 interacts with A20 in T cells
and modulates A20 ubiquitylation. RNF114 acts as negative regulator of
NF-κB-dependent transcription, not only by stabilizing the
A20 protein but also IκBα. Importantly, we
demonstrate that in T cells, the effect of RNF114 is linked to the modulation of
T-cell activation and apoptosis but is independent of cell cycle regulation.
Altogether, our data indicate that RNF114 is a new partner of A2O involved in
the regulation of NF-κB activity that contributes to the control
of signaling pathways modulating T cell-mediated immune response.
Collapse
Affiliation(s)
- M S Rodriguez
- Cancer Unit, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | - I Egaña
- CIC bioGUNE, Derio, Bizkaia, Spain
| | | | - F Aillet
- Cancer Unit, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | - M P Lopez-Mato
- Cytometry and Advanced Optical Microscopy Core Facility, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | | | - A Dorronroso
- Hematological Diseases, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | - S Lobato-Gil
- Cancer Unit, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | | | - R Barrio
- CIC bioGUNE, Derio, Bizkaia, Spain
| | - C Trigueros
- Hematological Diseases, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | - V Lang
- Cancer Unit, Inbiomed, San Sebastian, Gipuzkoa, Spain
| |
Collapse
|
38
|
Zhao B, Barrera LA, Ersing I, Willox B, Schmidt SCS, Greenfeld H, Zhou H, Mollo SB, Shi TT, Takasaki K, Jiang S, Cahir-McFarland E, Kellis M, Bulyk ML, Kieff E, Gewurz BE. The NF-κB genomic landscape in lymphoblastoid B cells. Cell Rep 2014; 8:1595-606. [PMID: 25159142 DOI: 10.1016/j.celrep.2014.07.037] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/09/2014] [Accepted: 07/21/2014] [Indexed: 01/17/2023] Open
Abstract
The nuclear factor κB (NF-κΒ) subunits RelA, RelB, cRel, p50, and p52 are each critical for B cell development and function. To systematically characterize their responses to canonical and noncanonical NF-κB pathway activity, we performed chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) analysis in lymphoblastoid B cell lines (LCLs). We found a complex NF-κB-binding landscape, which did not readily reflect the two NF-κB pathway paradigms. Instead, 10 subunit-binding patterns were observed at promoters and 11 at enhancers. Nearly one-third of NF-κB-binding sites lacked κB motifs and were instead enriched for alternative motifs. The oncogenic forkhead box protein FOXM1 co-occupied nearly half of NF-κB-binding sites and was identified in protein complexes with NF-κB on DNA. FOXM1 knockdown decreased NF-κB target gene expression and ultimately induced apoptosis, highlighting FOXM1 as a synthetic lethal target in B cell malignancy. These studies provide a resource for understanding mechanisms that underlie NF-κB nuclear activity and highlight opportunities for selective NF-κB blockade.
Collapse
Affiliation(s)
- Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Luis A Barrera
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ina Ersing
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Bradford Willox
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Stefanie C S Schmidt
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Greenfeld
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hufeng Zhou
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah B Mollo
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tommy T Shi
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kaoru Takasaki
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sizun Jiang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ellen Cahir-McFarland
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Elliott Kieff
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Sun H, Hattori N, Chien W, Sun Q, Sudo M, E-Ling GL, Ding L, Lim SL, Shacham S, Kauffman M, Nakamaki T, Koeffler HP. KPT-330 has antitumour activity against non-small cell lung cancer. Br J Cancer 2014; 111:281-91. [PMID: 24946002 PMCID: PMC4102938 DOI: 10.1038/bjc.2014.260] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND We investigated the biologic and pharmacologic activities of a chromosome region maintenance 1 (CRM1) inhibitor against human non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. METHODS The in vitro and in vivo effects of a novel CRM1 inhibitor (KPT-330) for a large number of anticancer parameters were evaluated using a large panel of 11 NSCLC cell lines containing different key driver mutations. Mice bearing human NSCLC xenografts were treated with KPT-330, and tumour growth was assessed. RESULTS KPT-330 inhibited proliferation and induced cell cycle arrest and apoptosis-related proteins in 11 NSCLC cells lines. Moreover, the combination of KPT-330 with cisplatin synergistically enhanced the cell kill of the NSCLC cells in vitro. Human NSCLC tumours growing in immunodeficient mice were markedly inhibited by KPT-330. Also, KPT-330 was effective even against NSCLC cells with a transforming mutation of either exon 20 of EGFR, TP53, phosphatase and tensin homologue, RAS or PIK3CA, suggesting the drug might be effective against a variety of lung cancers irrespective of their driver mutation. CONCLUSIONS Our results support clinical testing of KPT-330 as a novel therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- H Sun
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - N Hattori
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - W Chien
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - Q Sun
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - M Sudo
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - G L E-Ling
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - L Ding
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - S L Lim
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - S Shacham
- Karyopharm Therapeutics, Boston, MA 01760, USA
| | - M Kauffman
- Karyopharm Therapeutics, Boston, MA 01760, USA
| | - T Nakamaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - H P Koeffler
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| |
Collapse
|
40
|
Salmonella enterica Serovar Typhi conceals the invasion-associated type three secretion system from the innate immune system by gene regulation. PLoS Pathog 2014; 10:e1004207. [PMID: 24992093 PMCID: PMC4081808 DOI: 10.1371/journal.ppat.1004207] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/10/2014] [Indexed: 01/13/2023] Open
Abstract
Delivery of microbial products into the mammalian cell cytosol by bacterial secretion systems is a strong stimulus for triggering pro-inflammatory host responses. Here we show that Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, tightly regulates expression of the invasion-associated type III secretion system (T3SS-1) and thus fails to activate these innate immune signaling pathways. The S. Typhi regulatory protein TviA rapidly repressed T3SS-1 expression, thereby preventing RAC1-dependent, RIP2-dependent activation of NF-κB in epithelial cells. Heterologous expression of TviA in S. enterica serovar Typhimurium (S. Typhimurium) suppressed T3SS-1-dependent inflammatory responses generated early after infection in animal models of gastroenteritis. These results suggest that S. Typhi reduces intestinal inflammation by limiting the induction of pathogen-induced processes through regulation of virulence gene expression. Bacterial pathogens translocate effector proteins into the cytoplasm of host cells to manipulate the mammalian host. These processes, e.g. the stimulation of small regulatory GTPases, activate the innate immune system and induce pro-inflammatory responses aimed at clearing invading microbes from the infected tissue. Here we show that strict regulation of virulence gene expression can be used as a strategy to limit the induction of inflammatory responses while retaining the ability to manipulate the host. Upon entry into host tissue, Salmonella enterica serovar Typhi, the causative agent of typhoid fever, rapidly represses expression of a virulence factor required for entering tissue to avoid detection by the host innate immune surveillance. This tight control of virulence gene expression enables the pathogen to deploy a virulence factor for epithelial invasion, while preventing the subsequent generation of pro-inflammatory responses in host cells. We conclude that regulation of virulence gene expression contributes to innate immune evasion during typhoid fever by concealing a pattern of pathogenesis.
Collapse
|
41
|
Islam S, Hassan F, Mu MM, Ito H, Koide N, Mori I, Yoshida T, Yokochi T. Piceatannol Prevents Lipopolysaccharide (LPS)-Induced Nitric Oxide (NO) Production and Nuclear Factor (NF)-κB Activation by Inhibiting IκB Kinase (IKK). Microbiol Immunol 2013; 48:729-36. [PMID: 15502405 DOI: 10.1111/j.1348-0421.2004.tb03598.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of piceatannol on lipopolysaccharide (LPS)-induced nitric oxide (NO) production was examined. Piceatannol significantly inhibited NO production in LPS-stimulated RAW 264.7 cells. The inhibition was due to the reduced expression of an inducible isoform of NO synthase (iNOS). The inhibitory effect of piceatannol was mediated by down-regulation of LPS-induced nuclear factor (NF)-kappaB activation, but not by its cytotoxic action. Piceatannol inhibited IkappaB kinase (IKK)-alpha and beta phosphorylation, and subsequently IkappaB-alpha phosphorylation in LPS-stimulated RAW 264.7 cells. On the other hand, piceatannol did not affect activation of mitogen-activated protein (MAP) kinases including extracellular signal regulated kinase 1/2 (Erk1/2), p38 and stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Piceatannol inhibited the phosphorylation of Akt and Raf-1 molecules, which regulated the activation of IKK-alpha and beta phosphorylation. The detailed mechanism of the inhibition of LPS-induced NO production by piceatannol is discussed.
Collapse
Affiliation(s)
- Shamima Islam
- Department of Microbiology and Immunology and Research Center for Infectious Disease, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Koutsokeras A, Purkayastha N, Purkayashta N, Rigby A, Subang MC, Sclanders M, Vessillier S, Mullen L, Chernajovsky Y, Gould D. Generation of an efficiently secreted, cell penetrating NF-κB inhibitor. FASEB J 2013; 28:373-81. [PMID: 24072781 DOI: 10.1096/fj.13-236570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gene therapy is a powerful approach to treat disease locally. However, if the therapeutic target is intracellular, the therapeutic will be effective only in the cells where the therapeutic gene is delivered. We have engineered a fusion protein containing an intracellular inhibitor of the transcription factor NF-κB pathway that can be effectively secreted from producing cells. This fusion protein is cleaved extracellularly by metalloproteinases allowing release of a protein transduction domain (PTD) linked to the NF-κB inhibitor for translocation into neighboring cells. We show that engineered molecules can be efficiently secreted (>80%); are cleaved with matrix metalloprotease-1; inhibit NF-κB driven transcription in a biological assay with a human reporter cell line; and display significant inhibition in mouse paw inflammation models when delivered by lentivirus or secreting cells. No inhibition of NF-κB transcription or therapeutic effect was seen using molecules devoid of the PTD and NF-κB inhibitory domains. By creating a fusion protein with an endogenous secretion partner, we demonstrate a novel approach to efficiently secrete PTD-containing protein domains, overcoming previous limitations, and allowing for potent paracrine effects.
Collapse
Affiliation(s)
- Apostolos Koutsokeras
- 2Bone and Joint Research Unit, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Charterhouse Square, London EC1M 6BQ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Role of immediate early protein ICP27 in the differential sensitivity of herpes simplex viruses 1 and 2 to leptomycin B. J Virol 2013; 87:8940-51. [PMID: 23740995 DOI: 10.1128/jvi.00633-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptomycin B (LMB) is a highly specific inhibitor of CRM1, a cellular karyopherin-β that transports nuclear export signal-containing proteins from the nucleus to the cytoplasm. Previous work has shown that LMB blocks herpes simplex virus 1 (HSV-1) replication in Vero cells and that certain mutations in viral immediate early protein ICP27 can confer LMB resistance. However, little is known of the molecular mechanisms involved. Here we report that HSV-2, a close relative of HSV-1, is naturally resistant to LMB. To see whether the ICP27 gene determines this phenotypic difference, we generated an HSV-1 mutant that expresses the HSV-2 ICP27 instead of the HSV-1 protein. This recombinant was fully sensitive to LMB, indicating that one or more other viral genes must be important in determining HSV-2's LMB-resistant phenotype. In additional work, we report several findings that shed light on how HSV-1 ICP27 mutations can confer LMB resistance. First, we show that LMB treatment of HSV-1-infected cells leads to suppression of late viral protein synthesis and a block to progeny virion release. Second, we identify a novel type of ICP27 mutation that can confer LMB resistance, that being the addition of a 100-residue amino-terminal affinity purification tag. Third, by studying infections where both LMB-sensitive and LMB-resistant forms of ICP27 are present, we show that HSV-1's sensitivity to LMB is dominant to its resistance. Together, our results suggest a model in which the N-terminal portion of ICP27 mediates a nonessential activity that interferes with HSV-1 replication when CRM1 is inactive. We suggest that LMB resistance mutations weaken or abrogate this activity.
Collapse
|
44
|
Abstract
HIF1A (hypoxia-inducible factor 1α) is the master regulator of the cellular response to
hypoxia and is implicated in cancer progression. Whereas the regulation of HIF1A protein in response
to oxygen is well characterized, less is known about the fate of HIF1A mRNA. In the
present study, we have identified the pseudo-DUB (deubiquitinating enzyme)/deadenylase USP52
(ubiquitin-specific protease 52)/PAN2 [poly(A) nuclease 2] as an important regulator of the
HIF1A-mediated hypoxic response. Depletion of USP52 reduced HIF1A mRNA and protein levels and
resulted in reduced expression of HIF1A-regulated hypoxic targets due to a 3′-UTR
(untranslated region)-dependent poly(A)-tail-length-independent destabilization in
HIF1A mRNA. MS analysis revealed an association of USP52 with several P-body
(processing body) components and we confirmed further that USP52 protein and HIF1A
mRNA co-localized with cytoplasmic P-bodies. Importantly, P-body dispersal by knockdown of
GW182 or LSM1 resulted in a reduction of HIF1A
mRNA levels. These data uncover a novel role for P-bodies in regulating HIF1A mRNA
stability, and demonstrate that USP52 is a key component of P-bodies required to prevent
HIF1A mRNA degradation.
Collapse
|
45
|
Koshimizu JY, Beltrame FL, de Pizzol JP, Cerri PS, Caneguim BH, Sasso-Cerri E. NF-kB overexpression and decreased immunoexpression of AR in the muscular layer is related to structural damages and apoptosis in cimetidine-treated rat vas deferens. Reprod Biol Endocrinol 2013; 11:29. [PMID: 23570504 PMCID: PMC3727959 DOI: 10.1186/1477-7827-11-29] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/17/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Cimetidine, histamine H2 receptors antagonist, has caused adverse effects on the male hormones and reproductive tract due to its antiandrogenic effect. In the testes, peritubular myoid cells and muscle vascular cells death has been associated to seminiferous tubules and testicular microvascularization damages, respectively. Either androgen or histamine H2 receptors have been detected in the mucosa and smooth muscular layer of vas deferens. Thus, the effect of cimetidine on this androgen and histamine-dependent muscular duct was morphologically evaluated. METHODS The animals from cimetidine group (CMTG; n=5) received intraperitoneal injections of 100 mg/kg b.w. of cimetidine for 50 days; the control group (CG) received saline solution. The distal portions of vas deferens were fixed in formaldehyde and embedded in paraffin. Masson´s trichrome-stained sections were subjected to morphological and the following morphometrical analyzes: epithelial perimeter and area of the smooth muscular layer. TUNEL (Terminal deoxynucleotidyl-transferase mediated dUTP Nick End Labeling) method, NF-kB (nuclear factor kappa B) and AR (androgen receptors) immunohistochemical detection were also carried out. The birefringent collagen of the muscular layer was quantified in picrosirius red-stained sections under polarized light. The muscular layer was also evaluated under Transmission Electron Microscopy (TEM). RESULTS In CMTG, the mucosa of vas deferens was intensely folded; the epithelial cells showed numerous pyknotic nuclei and the epithelial perimeter and the area of the muscular layer decreased significantly. Numerous TUNEL-labeled nuclei were found either in the epithelial cells, mainly basal cells, or in the smooth muscle cells which also showed typical features of apoptosis under TEM. While an enhanced NF-kB immunoexpression was found in the cytoplasm of muscle cells, a weak AR immunolabeling was detected in these cells. In CMTG, no significant difference was observed in the birefringent collagen content of the muscular layer in comparison to CG. CONCLUSIONS Cimetidine induces significant damages in the epithelium; a possible antiandrogenic effect on the basal cells turnover should be considered. The cimetidine-induced muscle cells apoptosis confirms the susceptibility of these cells to this drug. The parallelism between enhanced cytoplasmic NF-kB immunolabeling in the damaged muscular tissue and muscle cell apoptosis suggests that this drug may avoid the translocation of NF-kB to the nucleus and interfere in the control of NF-kB-mediated smooth muscle cell apoptosis. The decreased immunoexpression of ARs verified in the damaged muscular tissue reinforces this possibility.
Collapse
Affiliation(s)
- Juliana Y Koshimizu
- Department of Morphology, Laboratory of Histology and Embryology, Araraquara Dental School-UNESP Univ. Estadual Paulista, Brazil
| | - Flávia L Beltrame
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP) São Paulo/SP, Brazil
| | - José P de Pizzol
- Department of Morphology, Laboratory of Histology and Embryology, Araraquara Dental School-UNESP Univ. Estadual Paulista, Brazil
| | - Paulo S Cerri
- Department of Morphology, Laboratory of Histology and Embryology, Araraquara Dental School-UNESP Univ. Estadual Paulista, Brazil
| | - Breno H Caneguim
- Department of Morphology, Laboratory of Histology and Embryology, Araraquara Dental School-UNESP Univ. Estadual Paulista, Brazil
| | - Estela Sasso-Cerri
- Department of Morphology, Laboratory of Histology and Embryology, Araraquara Dental School-UNESP Univ. Estadual Paulista, Brazil
| |
Collapse
|
46
|
Rapsinski GJ, Newman TN, Oppong GO, van Putten JPM, Tükel Ç. CD14 protein acts as an adaptor molecule for the immune recognition of Salmonella curli fibers. J Biol Chem 2013; 288:14178-14188. [PMID: 23548899 DOI: 10.1074/jbc.m112.447060] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloids, protein aggregates with a cross β-sheet structure, contribute to inflammation in debilitating disorders, including Alzheimer's disease. Enteric bacteria also produce amyloids, termed curli, contributing to inflammation during infection. It has been demonstrated that curli and β-amyloid are recognized by the immune system via the Toll-like receptor (TLR) 2/TLR1 complex. Here we investigated the role of CD14 in the immune recognition of bacterial amyloids. We used HeLa 57A cells, a human cervical cancer cell line containing a luciferase reporter gene under the control of an NF-κB promoter. When HeLa 57A cells were transiently transfected with combinations of human expression vectors containing genes for TLR2, TLR1, and CD14, membrane-bound CD14 enhanced NF-κB activation through the TLR2/TLR1 complex stimulated with curli fibers or recombinant CsgA, the curli major subunit. Similarly, soluble CD14 augmented the TLR2/TLR1 response to curli fibers in the absence of membrane-bound CD14. We further revealed that IL-6 and nitric oxide production were significantly higher by wild-type (C57BL/6) bone marrow-derived macrophages compared with TLR2-deficient or CD14-deficient bone marrow-derived macrophages when stimulated with curli fibers, recombinant CsgA, or synthetic CsgA peptide, CsgA-R4-5. Binding assays demonstrated that recombinant TLR2, TLR1, and CD14 bound purified curli fibers. Interestingly, CD14-curli interaction was specific to the fibrillar form of the amyloid, as demonstrated by using synthetic CsgA peptides proficient and deficient in fiber formation, respectively. Activation of the TLR2/TLR1/CD14 trimolecular complex by amyloids provides novel insights for innate immunity with implications for amyloid-associated diseases.
Collapse
Affiliation(s)
- Glenn J Rapsinski
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140
| | - Tiffanny N Newman
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140
| | - Gertrude O Oppong
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Çagla Tükel
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140.
| |
Collapse
|
47
|
Hansen B, Dittrich-Breiholz O, Kracht M, Windheim M. Regulation of NF-κB-dependent gene expression by ligand-induced endocytosis of the interleukin-1 receptor. Cell Signal 2013; 25:214-28. [DOI: 10.1016/j.cellsig.2012.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 02/06/2023]
|
48
|
Badding MA, Lapek JD, Friedman AE, Dean DA. Proteomic and functional analyses of protein-DNA complexes during gene transfer. Mol Ther 2012; 21:775-85. [PMID: 23164933 DOI: 10.1038/mt.2012.231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
One of the barriers to successful nonviral gene delivery is the crowded cytoplasm, which plasmids need to actively traverse for gene expression. Relatively little is known about how this process occurs, but our lab and others have shown that the microtubule network and motors are required for plasmid movement to the nucleus. To further investigate how plasmids exploit normal physiological processes to transfect cells, we have taken a proteomics approach to identify the proteins that comprise the plasmid-trafficking complex. We have developed a live cell DNA-protein pull-down assay to isolate complexes at certain time points post-transfection (15 minutes to 4 hours) for analysis by mass spectrometry (MS). Plasmids containing promoter sequences bound hundreds of unique proteins as early as 15 minutes post-electroporation, while a plasmid lacking any eukaryotic sequences failed to bind many of the proteins. Specific proteins included microtubule-based motor proteins (e.g., kinesin and dynein), proteins involved in protein nuclear import (e.g., importin 1, 2, 4, and 7, Crm1, RAN, and several RAN-binding proteins), a number of heterogeneous nuclear ribonucleoprotein (hnRNP)- and mRNA-binding proteins, and transcription factors. The significance of several of the proteins involved in protein nuclear localization and plasmid trafficking was determined by monitoring movement of microinjected fluorescently labeled plasmids via live cell particle tracking in cells following protein knockdown by small-interfering RNA (siRNA) or through the use of specific inhibitors. While importin β1 was required for plasmid trafficking and subsequent nuclear import, importin α1 played no role in microtubule trafficking but was required for optimal plasmid nuclear import. Surprisingly, the nuclear export protein Crm1 also was found to complex with the transfected plasmids and was necessary for plasmid trafficking along microtubules and nuclear import. Our results show that various proteins involved in nuclear import and export influence intracellular trafficking of plasmids and subsequent nuclear accumulation.
Collapse
Affiliation(s)
- Melissa A Badding
- Department of Pediatrics, Division of Neonatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
49
|
Jang JH, Yang ES, Min KJ, Kwon TK. Inhibitory effect of butein on tumor necrosis factor-α-induced expression of cell adhesion molecules in human lung epithelial cells via inhibition of reactive oxygen species generation, NF-κB activation and Akt phosphorylation. Int J Mol Med 2012; 30:1357-64. [PMID: 23064245 DOI: 10.3892/ijmm.2012.1158] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/28/2012] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion molecules play an important role in inflammatory response, angiogenesis and tumor progression. Butein (tetrahydroxychalcone) is a small molecule from natural sources, known to be a potential therapeutic drug with anti-inflammatory, anticancer and antioxidant activities. In the present study, we investigated the inhibitory effect of butein on tumor necrosis factor (TNF)-α-induced adhesion molecule expression and its molecular mechanism of action. Butein significantly decreased TNF-α-induced monocyte (U937) cell adhesion to lung epithelial cells in a dose-dependent manner. Butein also inhibited the protein and mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-stimulated A549 human lung epithelial cells in a dose-dependent manner. Butein inhibited TNF-α-induced reactive oxygen species (ROS) generation and nuclear factor-κB (NF-κB) activation in A549 cells; it also inhibited the phosphorylation of MAPKs and Akt, suggesting that the MAPK/Akt signaling pathway may be involved in the butein-mediated inhibition of TNF-α-induced leukocyte adhesion to A549 cells. Collectively, our results suggest that butein affects cell adhesion through the inhibition of TNF-α-induced ICAM-1 and VCAM-1 expression by inhibiting the NF-κB/MAPK/Akt signaling pathway and ROS generation, thereby, elucidating the role of butein in the anti-inflammatory response.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | | | | | | |
Collapse
|
50
|
Wang QS, Cui YL, Dong TJ, Zhang XF, Lin KM. Ethanol extract from a Chinese herbal formula, "Zuojin Pill", inhibit the expression of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 mouse macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:377-385. [PMID: 22414473 DOI: 10.1016/j.jep.2012.02.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/22/2012] [Accepted: 02/27/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojin Pill (ZJP), a traditional Chinese medicinal decoction that has been used in treating gastritis, gastric ulcer since 15th century, contains two herbs: Rhizoma Coptidis and Fructus Evodiae in the ratio of 6:1 (w/w). Alkaloids are the main active principles contributing to ZJP's efficacy, but anti-inflammatory mechanism has not been fully clarified. AIM OF THE STUDY The objective of the study is to reveal anti-inflammatory molecular mechanism of ethanol extract from ZJP, which would form an additional proof to the traditional experience of ZJP in clinical administration. MATERIALS AND METHODS Seven alkaloids were determined from the ethanol extract of ZJP using high performance liquid chromatography (HPLC) with the gradient mobile phase. The ethanol extract from ZJP were used to evaluate the anti-inflammatory action in murine macrophage cell line RAW 264.7 treated with lipopolysaccharide (LPS). Production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) were measured by the Griess colorimetric method and enzyme-linked immunosorbent assay (ELISA), respectively. Proteome profiler array was analyzed to evaluate 40 cytokines at protein level. In addition, interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) synthesis were analyzed using ELISA to confirm the result of the Proteome profiler array. The gene expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, IL-6, and interleukin 1β (IL-1β) were detected by quantitative real-time reverse-transcription polymerase chain reaction (real-time RT-PCR). Furthermore, the nuclear translocation of the NF-κB p50 and p65 subunits was detected with ELISA. RESULTS The secretions of NO, PGE(2) and the mRNA expression of iNOS, COX-2 were significantly inhibited, moreover, the protein and mRNA expressions of IL-6, IL-1β and TNF-α were inhibited by preventing the nuclear translocation of the NF-κB p50 and p65 subunits. The proteome profiler array showed that 15 cytokines and chemokines involved in the inflammatory process were down-regulated by ZJP. CONCLUSION These results suggest that the anti-inflammatory properties of ethanol extract from ZJP might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNF-α expression through preventing the nuclear translocation of the NF-κB p50 and p65 subunits in RAW 264.7 cells. In addition, these results provided evidence to understand the therapeutic effects of ZJP on gastritis, gastric ulcer, and other inflammatory diseases in clinic.
Collapse
Affiliation(s)
- Qiang-Song Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | | | | | | | | |
Collapse
|