1
|
Jiang J, Sun Y, Sun Y, Lu F, Liu F, Zhang H. Rational Design of a Yeast-derived 3',5'-bisphosphate Nucleotidase with Improved Substrate Specificity. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38897942 DOI: 10.2323/jgam.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In recent years, a convenient phosphatase-coupled sulfotransferase assay method has been proven to be applicable to most sulfotransferases. The central principle of the method is that phosphatase specifically degrades 3'-phosphoadenosine-5'-phosphate (PAP) and leaves 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Our group previously acquired a yeast 3',5'-bisphosphate nucleotidase (YND), which showed a higher catalytic activity for PAP than PAPS and could be a potential phosphatase for the sulfotransferase assay. Here, we obtained a beneficial mutant of YND with markedly improved substrate specificity towards PAP via rational design. Of 9 chosen mutation sites in the active site pocket, the mutation G236D showed the best specificity for PAP. After optimization of the reaction conditions, the mutant YNDG236D displayed a 4.8-fold increase in the catalytic ratio PAP/PAPS compared to the wild-type. We subsequently applied YNDG236D to the assay of human SULT1A1 and SULT1A3 with their known substrate 1-naphthol, indicating that the mutant could be used to evaluate sulfotransferase activity by colorimetry. Analysis of the MD simulation results revealed that the improved substrate specificity of the mutant towards PAP may stem from a more stable protein conformation and the changed flexibility of key residues in the entrance of the substrate tunnel. This research will provide a valuable reference for the development of efficient sulfotransferase activity assays.
Collapse
Affiliation(s)
- Jipeng Jiang
- College of Biotechnology, Tianjin University of Science & Technology
| | - Yanqing Sun
- College of Biotechnology, Tianjin University of Science & Technology
| | - Yanan Sun
- College of Biotechnology, Tianjin University of Science & Technology
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology
| | - Huitu Zhang
- College of Biotechnology, Tianjin University of Science & Technology
| |
Collapse
|
2
|
Richard SA. Elucidating the pivotal molecular mechanisms, therapeutic and neuroprotective effects of lithium in traumatic brain injury. Brain Behav 2024; 14:e3595. [PMID: 38874089 PMCID: PMC11177180 DOI: 10.1002/brb3.3595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) refers to damage to brain tissue by mechanical or blunt force via trauma. TBI is often associated with impaired cognitive abilities, like difficulties in memory, learning, attention, and other higher brain functions, that typically remain for years after the injury. Lithium is an elementary light metal that is only utilized in salt form due to its high intrinsic reactivity. This current review discusses the molecular mechanisms and therapeutic and neuroprotective effects of lithium in TBI. METHOD The "Boolean logic" was used to search for articles on the subject matter in PubMed and PubMed Central, as well as Google Scholar. RESULTS Lithium's therapeutic action is extremely complex, involving multiple effects on gene secretion, neurotransmitter or receptor-mediated signaling, signal transduction processes, circadian modulation, as well as ion transport. Lithium is able to normalize multiple short- as well as long-term modifications in neuronal circuits that ultimately result in disparity in cortical excitation and inhibition activated by TBI. Also, lithium levels are more distinct in the hippocampus, thalamus, neo-cortex, olfactory bulb, amygdala as well as the gray matter of the cerebellum following treatment of TBI. CONCLUSION Lithium attenuates neuroinflammation and neuronal toxicity as well as protects the brain from edema, hippocampal neurodegeneration, loss of hemispheric tissues, and enhanced memory as well as spatial learning after TBI.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Medicine, Princefield University, Ho, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Weiss CA, Myers TM, Wu CH, Jenkins C, Sondermann H, Lee V, Winkler WC. NrnA is a 5'-3' exonuclease that processes short RNA substrates in vivo and in vitro. Nucleic Acids Res 2022; 50:12369-12388. [PMID: 36478094 PMCID: PMC9757072 DOI: 10.1093/nar/gkac1091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial RNases process RNAs until only short oligomers (2-5 nucleotides) remain, which are then processed by one or more specialized enzymes until only nucleoside monophosphates remain. Oligoribonuclease (Orn) is an essential enzyme that acts in this capacity. However, many bacteria do not encode for Orn and instead encode for NanoRNase A (NrnA). Yet, the catalytic mechanism, cellular roles and physiologically relevant substrates have not been fully resolved for NrnA proteins. We herein utilized a common set of reaction assays to directly compare substrate preferences exhibited by NrnA-like proteins from Bacillus subtilis, Enterococcus faecalis, Streptococcus pyogenes and Mycobacterium tuberculosis. While the M. tuberculosis protein specifically cleaved cyclic di-adenosine monophosphate, the B. subtilis, E. faecalis and S. pyogenes NrnA-like proteins uniformly exhibited striking preference for short RNAs between 2-4 nucleotides in length, all of which were processed from their 5' terminus. Correspondingly, deletion of B. subtilis nrnA led to accumulation of RNAs between 2 and 4 nucleotides in length in cellular extracts. Together, these data suggest that many Firmicutes NrnA-like proteins are likely to resemble B. subtilis NrnA to act as a housekeeping enzyme for processing of RNAs between 2 and 4 nucleotides in length.
Collapse
Affiliation(s)
| | | | - Chih Hao Wu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Conor Jenkins
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Holger Sondermann
- CSSB – Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany,Christian-Albrechts-Universität, 24118 Kiel, Germany
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Wade C Winkler
- To whom correspondence should be addressed. Tel: +1 301 405 7780;
| |
Collapse
|
4
|
Bruschi M, Granata S, Candiano G, Petretto A, Bartolucci M, Ghiggeri GM, Stallone G, Zaza G. Proteomic analysis of urinary extracellular vesicles of kidney transplant recipients with BKV viruria and viremia: A pilot study. Front Med (Lausanne) 2022; 9:1028085. [PMID: 36465937 PMCID: PMC9712214 DOI: 10.3389/fmed.2022.1028085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION To better define the biological machinery associated with BK virus (BKV) infection, in kidney transplantation, we performed a proteomics analysis of urinary extracellular vesicles (EVs). METHODS Twenty-nine adult kidney transplant recipients (KTRs) with normal allograft function affected by BKV infection (15 with only viremia, 14 with viruria and viremia) and 15 controls (CTR, KTRs without BKV infection) were enrolled and randomly divided in a training cohort (12 BKV and 6 CTR) used for the mass spectrometry analysis of the EVs (microvesicles and exosomes) protein content and a testing cohort (17 BKV and 9 CTR) used for the biological validation of the proteomic results by ELISA. Bioinformatics and functional analysis revealed that several biological processes were enriched in BKV (including immunity, complement activation, renal fibrosis) and were able to discriminate BKV vs. CTR. Kinase was the only gene ontology annotation term including proteins less abundant in BKV (with SLK being the most significantly down-regulated protein). Non-linear support vector machine (SVM) learning and partial least squares discriminant analysis (PLS-DA) identified 36 proteins (including DNASE2, F12, AGT, CTSH, C4A, C7, FABP4, and BPNT1) able to discriminate the two study groups. The proteomic profile of KTRs with BKV viruria alone vs. viremia and viruria was quite similar. Enzyme-linked immunosorbent assay (ELISA) for SLK, BPNT1 and DNASE2, performed on testing cohort, validated proteomics results. DISCUSSIONS Our pilot study demonstrated, for the first time, that BKV infection, also in the viruric state, can have a negative impact on the allograft and it suggested that, whether possible, an early preventive therapeutic strategy should be undertaken also in KTRs with viruria only. Our results, then, revealed new mechanistic insights into BKV infection and they selected potential biomarkers that should be tested in future studies with larger patients' cohorts.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Andrea Petretto
- Core Facilities—Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Martina Bartolucci
- Core Facilities—Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
5
|
Chen Y, Jin S, Zhang M, Hu Y, Wu KL, Chung A, Wang S, Tian Z, Wang Y, Wolynes PG, Xiao H. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat Commun 2022; 13:5434. [PMID: 36114189 PMCID: PMC9481576 DOI: 10.1038/s41467-022-33111-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023] Open
Abstract
Despite the great promise of genetic code expansion technology to modulate structures and functions of proteins, external addition of ncAAs is required in most cases and it often limits the utility of genetic code expansion technology, especially to noncanonical amino acids (ncAAs) with poor membrane internalization. Here, we report the creation of autonomous cells, both prokaryotic and eukaryotic, with the ability to biosynthesize and genetically encode sulfotyrosine (sTyr), an important protein post-translational modification with low membrane permeability. These engineered cells can produce site-specifically sulfated proteins at a higher yield than cells fed exogenously with the highest level of sTyr reported in the literature. We use these autonomous cells to prepare highly potent thrombin inhibitors with site-specific sulfation. By enhancing ncAA incorporation efficiency, this added ability of cells to biosynthesize ncAAs and genetically incorporate them into proteins greatly extends the utility of genetic code expansion methods.
Collapse
Affiliation(s)
- Yuda Chen
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shikai Jin
- grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Mengxi Zhang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yu Hu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Kuan-Lin Wu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Anna Chung
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shichao Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Zeru Tian
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yixian Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Peter G. Wolynes
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Han Xiao
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005 USA
| |
Collapse
|
6
|
Eisele BS, Luka Z, Wu AJ, Yang F, Hale AT, York JD. Sulfation of glycosaminoglycans depends on the catalytic activity of lithium-inhibited phosphatase BPNT2 in vitro. J Biol Chem 2021; 297:101293. [PMID: 34634304 PMCID: PMC8551643 DOI: 10.1016/j.jbc.2021.101293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
Golgi-resident bisphosphate nucleotidase 2 (BPNT2) is a member of a family of magnesium-dependent, lithium-inhibited phosphatases that share a three-dimensional structural motif that directly coordinates metal binding to effect phosphate hydrolysis. BPNT2 catalyzes the breakdown of 3'-phosphoadenosine-5'-phosphate, a by-product of glycosaminoglycan (GAG) sulfation. KO of BPNT2 in mice leads to skeletal abnormalities because of impaired GAG sulfation, especially chondroitin-4-sulfation, which is critical for proper extracellular matrix development. Mutations in BPNT2 have also been found to underlie a chondrodysplastic disorder in humans. The precise mechanism by which the loss of BPNT2 impairs sulfation remains unclear. Here, we used mouse embryonic fibroblasts (MEFs) to test the hypothesis that the catalytic activity of BPNT2 is required for GAG sulfation in vitro. We show that a catalytic-dead Bpnt2 construct (D108A) does not rescue impairments in intracellular or secreted sulfated GAGs, including decreased chondroitin-4-sulfate, present in Bpnt2-KO MEFs. We also demonstrate that missense mutations in Bpnt2 adjacent to the catalytic site, which are known to cause chondrodysplasia in humans, recapitulate defects in overall GAG sulfation and chondroitin-4-sulfation in MEF cultures. We further show that treatment of MEFs with lithium (a common psychotropic medication) inhibits GAG sulfation and that this effect depends on the presence of BPNT2. Taken together, this work demonstrates that the catalytic activity of an enzyme potently inhibited by lithium can modulate GAG sulfation and therefore extracellular matrix composition, revealing new insights into lithium pharmacology.
Collapse
Affiliation(s)
- Brynna S Eisele
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Alice J Wu
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Fei Yang
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrew T Hale
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - John D York
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
7
|
Structure and Function of Piezophilic Hyperthermophilic Pyrococcus yayanosii pApase. Int J Mol Sci 2021; 22:ijms22137159. [PMID: 34281213 PMCID: PMC8268124 DOI: 10.3390/ijms22137159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/03/2022] Open
Abstract
3’-Phosphoadenosine 5’-monophosphate (pAp) is a byproduct of sulfate assimilation and coenzyme A metabolism. pAp can inhibit the activity of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) reductase and sulfotransferase and regulate gene expression under stress conditions by inhibiting XRN family of exoribonucleases. In metazoans, plants, yeast, and some bacteria, pAp can be converted into 5’-adenosine monophosphate (AMP) and inorganic phosphate by CysQ. In some bacteria and archaea, nanoRNases (Nrn) from the Asp-His-His (DHH) phosphoesterase superfamily are responsible for recycling pAp. In addition, histidinol phosphatase from the amidohydrolase superfamily can hydrolyze pAp. The bacterial enzymes for pAp turnover and their catalysis mechanism have been well studied, but these processes remain unclear in archaea. Pyrococcus yayanosii, an obligate piezophilic hyperthermophilic archaea, encodes a DHH family pApase homolog (PyapApase). Biochemical characterization showed that PyapApase can efficiently convert pAp into AMP and phosphate. The resolved crystal structure of apo-PyapApase is similar to that of bacterial nanoRNaseA (NrnA), but they are slightly different in the α-helix linker connecting the DHH and Asp-His-His associated 1 (DHHA1) domains. The longer α-helix of PyapApase leads to a narrower substrate-binding cleft between the DHH and DHHA1 domains than what is observed in bacterial NrnA. Through mutation analysis of conserved amino acid residues involved in coordinating metal ion and binding substrate pAp, it was confirmed that PyapApase has an ion coordination pattern similar to that of NrnA and slightly different substrate binding patterns. The results provide combined structural and functional insight into the enzymatic turnover of pAp, implying the potential function of sulfate assimilation in hyperthermophilic cells.
Collapse
|
8
|
Dollins DE, Xiong JP, Endo-Streeter S, Anderson DE, Bansal VS, Ponder JW, Ren Y, York JD. A structural basis for lithium and substrate binding of an inositide phosphatase. J Biol Chem 2021; 296:100059. [PMID: 33172890 PMCID: PMC7948987 DOI: 10.1074/jbc.ra120.014057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 01/07/2023] Open
Abstract
Inositol polyphosphate 1-phosphatase (INPP1) is a prototype member of metal-dependent/lithium-inhibited phosphomonoesterase protein family defined by a conserved three-dimensional core structure. Enzymes within this family function in distinct pathways including inositide signaling, gluconeogenesis, and sulfur assimilation. Using structural and biochemical studies, we report the effect of substrate and lithium on a network of metal binding sites within the catalytic center of INPP1. We find that lithium preferentially occupies a key site involved in metal-activation only when substrate or product is added. Mutation of a conserved residue that selectively coordinates the putative lithium-binding site results in a dramatic 100-fold reduction in the inhibitory constant as compared with wild-type. Furthermore, we report the INPP1/inositol 1,4-bisphosphate complex which illuminates key features of the enzyme active site. Our results provide insights into a structural basis for uncompetitive lithium inhibition and substrate recognition and define a sequence motif for metal binding within this family of regulatory phosphatases.
Collapse
Affiliation(s)
- D Eric Dollins
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Jian-Ping Xiong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Stuart Endo-Streeter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - David E Anderson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Vinay S Bansal
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Jay W Ponder
- Department of Chemistry, Washington University, St Louis, Missouri, USA
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - John D York
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
9
|
IMPAD1 functions as mitochondrial electron transport inhibitor that prevents ROS production and promotes lung cancer metastasis through the AMPK-Notch1-HEY1 pathway. Cancer Lett 2020; 485:27-37. [PMID: 32417395 DOI: 10.1016/j.canlet.2020.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
The tumor microenvironment (TME) and metabolic reprogramming have been implicated in cancer development and progression. However, the link between TME, metabolism, and cancer progression in lung cancer is unclear. In the present study, we identified IMPAD1 from the conditioned medium of highly invasive CL1-5. High expression of IMPAD1 was associated with a poorer clinical phenotype in lung cancer patients, with reduced survival and increased lymph node metastasis. Knockdown of IMPAD1 significantly inhibited migration/invasion abilities and metastasis in vitro and in vivo. Upregulation of IMPAD1 and subsequent accumulation of AMP in cells increased the pAMPK, leading to Notch1 and HEY1 upregulation. As AMP is an ADORA1 agonist, treatment with ADORA1 inhibitor reduced the expression of pAMPK and HEY1 expression in IMPAD1-overexpressing cells. IMPAD1 caused mitochondria dysfunction by inhibiting mitochondrial Complex I activity, which reduced mitochondrial ROS levels and activated the AMPK-HEY1 pathway. Collectively this study supports the multipotent role of IMPAD1 in promotion of lung cancer metastasis by simultaneously increasing AMP levels, inhibition of Complex I activity to decrease ROS levels, thereby activating AMPK-Notch1-HEY1 signaling, and providing an alternative metabolic pathway in energy stress conditions.
Collapse
|
10
|
Hale AT, Brown RE, Luka Z, Hudson BH, Matta P, Williams CS, York JD. Modulation of sulfur assimilation metabolic toxicity overcomes anemia and hemochromatosis in mice. Adv Biol Regul 2020; 76:100694. [PMID: 32019729 PMCID: PMC7230019 DOI: 10.1016/j.jbior.2020.100694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
Sulfur assimilation is an essential metabolic pathway that regulates sulfation, amino acid metabolism, nucleotide hydrolysis, and organismal homeostasis. We recently reported that mice lacking bisphosphate 3'-nucleotidase (BPNT1), a key regulator of sulfur assimilation, develop iron-deficiency anemia (IDA) and anasarca. Here we demonstrate two approaches that successfully reduce metabolic toxicity caused by loss of BPNT1: 1) dietary methionine restriction and 2) overproduction of a key transcriptional regulator hypoxia inducible factor 2α (Hif-2a). Reduction of methionine in the diet reverses IDA in mice lacking BPNT1, through a mechanism of downregulation of sulfur assimilation metabolic toxicity. Gaining Hif-2a acts through a different mechanism by restoring iron homeostatic gene expression in BPNT1 deficient mouse intestinal organoids. Finally, as loss of BPNT1 impairs expression of known genetic modifiers of iron-overload, we demonstrate that intestinal-epithelium specific loss of BPNT1 attenuates hepatic iron accumulation in mice with homozygous C282Y mutations in homeostatic iron regulator (HFEC282Y), the most common cause of hemochromatosis in humans. Overall, our study uncovers genetic and dietary strategies to overcome anemia caused by defects in sulfur assimilation and identifies BPNT1 as a potential target for the treatment of hemochromatosis.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Rachel E Brown
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Benjamin H Hudson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Pranathi Matta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Christopher S Williams
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - John D York
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
11
|
Naquet P, Kerr EW, Vickers SD, Leonardi R. Regulation of coenzyme A levels by degradation: the 'Ins and Outs'. Prog Lipid Res 2020; 78:101028. [PMID: 32234503 DOI: 10.1016/j.plipres.2020.101028] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/09/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023]
Abstract
Coenzyme A (CoA) is the predominant acyl carrier in mammalian cells and a cofactor that plays a key role in energy and lipid metabolism. CoA and its thioesters (acyl-CoAs) regulate a multitude of metabolic processes at different levels: as substrates, allosteric modulators, and via post-translational modification of histones and other non-histone proteins. Evidence is emerging that synthesis and degradation of CoA are regulated in a manner that enables metabolic flexibility in different subcellular compartments. Degradation of CoA occurs through distinct intra- and extracellular pathways that rely on the activity of specific hydrolases. The pantetheinase enzymes specifically hydrolyze pantetheine to cysteamine and pantothenate, the last step in the extracellular degradation pathway for CoA. This reaction releases pantothenate in the bloodstream, making this CoA precursor available for cellular uptake and de novo CoA synthesis. Intracellular degradation of CoA depends on specific mitochondrial and peroxisomal Nudix hydrolases. These enzymes are also active against a subset of acyl-CoAs and play a key role in the regulation of subcellular (acyl-)CoA pools and CoA-dependent metabolic reactions. The evidence currently available indicates that the extracellular and intracellular (acyl-)CoA degradation pathways are regulated in a coordinated and opposite manner by the nutritional state and maximize the changes in the total intracellular CoA levels that support the metabolic switch between fed and fasted states in organs like the liver. The objective of this review is to update the contribution of these pathways to the regulation of metabolism, physiology and pathology and to highlight the many questions that remain open.
Collapse
Affiliation(s)
- Philippe Naquet
- Aix Marseille Univ, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Evan W Kerr
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America
| | - Schuyler D Vickers
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America
| | - Roberta Leonardi
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America.
| |
Collapse
|
12
|
Jendresen CB, Nielsen AT. Production of zosteric acid and other sulfated phenolic biochemicals in microbial cell factories. Nat Commun 2019; 10:4071. [PMID: 31492833 PMCID: PMC6731281 DOI: 10.1038/s41467-019-12022-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/19/2019] [Indexed: 12/23/2022] Open
Abstract
Biological production and application of a range of organic compounds is hindered by their limited solubility and toxicity. This work describes a process for functionalization of phenolic compounds that increases solubility and decreases toxicity. We achieve this by screening a wide range of sulfotransferases for their activity towards a range of compounds, including the antioxidant resveratrol. We demonstrate how to engineer cell factories for efficiently creating sulfate esters of phenolic compounds through the use of sulfotransferases and by optimization of sulfate uptake and sulfate nucleotide pathways leading to the 3′-phosphoadenosine 5′-phosphosulfate precursor (PAPS). As an example we produce the antifouling agent zosteric acid, which is the sulfate ester of p-coumaric acid, reaching a titer of 5 g L−1 in fed-batch fermentation. The described approach enables production of sulfate esters that are expected to provide new properties and functionalities to a wide range of application areas. Toxicity and limited solubility inhibits the biological production of many organic compounds. Here the authors metabolically engineer sulfate uptake and activation in order to produce sulfate esters of phenolic compounds, such as zosteric acid, thereby addressing these issues.
Collapse
Affiliation(s)
- Christian Bille Jendresen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs, Lyngby, Denmark. .,Cysbio ApS, Agern Allé 1, 2970, Hørsholm, Denmark.
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs, Lyngby, Denmark. .,Cysbio ApS, Agern Allé 1, 2970, Hørsholm, Denmark.
| |
Collapse
|
13
|
Clarke BP, Logeman BL, Hale AT, Luka Z, York JD. A synthetic biological approach to reconstitution of inositide signaling pathways in bacteria. Adv Biol Regul 2019; 73:100637. [PMID: 31378699 DOI: 10.1016/j.jbior.2019.100637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 11/19/2022]
Abstract
Inositide lipid (PIP) and soluble (IP) signaling pathways produce essential cellular codes conserved in eukaryotes. In many cases, deconvoluting metabolic and functional aspects of individual pathways are confounded by promiscuity and multiplicity of PIP and IP kinases and phosphatases. We report a molecular genetic approach that reconstitutes eukaryotic inositide lipid and soluble pathways in a prokaryotic cell which inherently lack inositide kinases and phosphatases in their genome. By expressing synthetic cassettes of eukaryotic genes, we have reconstructed the heterologous formation of a range of inositide lipids, including PI(3)P, PI(4,5)P2 and PIP3. In addition, we report the reconstruction of lipid-dependent production of inositol hexakisphosphate (IP6). Our synthetic system is scalable, reduces confounding metabolic issues, for example it is devoid of inositide phosphatases and orthologous kinases, and enables accurate characterization gene product enzymatic activity and substrate selectivity. This genetically engineered tool is designed to help interpret metabolic pathways and may facilitate in vivo testing of regulators and small molecule inhibitors. In summary, heterologous expression of inositide pathways in bacteria provide a malleable experimental platform for aiding signaling biologists and offers new insights into metabolism of these essential pathways.
Collapse
Affiliation(s)
- Bradley P Clarke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brandon L Logeman
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Andrew T Hale
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John D York
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
14
|
Abstract
Sulfur is present in the amino acids cysteine and methionine and in a large range of essential coenzymes and cofactors and is therefore essential for all organisms. It is also a constituent of sulfate esters in proteins, carbohydrates, and numerous cellular metabolites. The sulfation and desulfation reactions modifying a variety of different substrates are commonly known as sulfation pathways. Although relatively little is known about the function of most sulfated metabolites, the synthesis of activated sulfate used in sulfation pathways is essential in both animal and plant kingdoms. In humans, mutations in the genes encoding the sulfation pathway enzymes underlie a number of developmental aberrations, and in flies and worms, their loss-of-function is fatal. In plants, a lower capacity for synthesizing activated sulfate for sulfation reactions results in dwarfism, and a complete loss of activated sulfate synthesis is also lethal. Here, we review the similarities and differences in sulfation pathways and associated processes in animals and plants, and we point out how they diverge from bacteria and yeast. We highlight the open questions concerning localization, regulation, and importance of sulfation pathways in both kingdoms and the ways in which findings from these "red" and "green" experimental systems may help reciprocally address questions specific to each of the systems.
Collapse
Affiliation(s)
- Süleyman Günal
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| | - Rebecca Hardman
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany.
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom.
| |
Collapse
|
15
|
Ghodge SV, Raushel FM. Structure, Mechanism, and Substrate Profiles of the Trinuclear Metallophosphatases from the Amidohydrolase Superfamily. Methods Enzymol 2018; 607:187-216. [PMID: 30149858 DOI: 10.1016/bs.mie.2018.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rate of reliable protein function annotation has not kept pace with the rapid advances in genome sequencing technology. This has created a gap between the number of available protein sequences, and an accurate determination of the respective physiological functions. This investigation has attempted to bridge the gap within the confines of members of the polymerase and histidinol phosphatase family of proteins in cog1387 and cog0613, which is related to the amidohydrolase superfamily. The adopted approach relies on using the mechanistic knowledge of a known enzymatic reaction, and discovering functions of closely related homologs using various tools including bioinformatics and rational library screening. The initial enzymatic reaction was that of L-histidinol phosphate phosphatase. Extensive structural, biochemical, and bioinformatic analysis of enzymes capable of hydrolyzing L-histidinol phosphate provided useful insights in predicting substrates and mechanistic studies of related enzymes. This led to the discovery of unprecedented catalytic functions such as a cyclic phosphate dihydrolase that specifically hydrolyzed a cyclic phosphodiester to inorganic phosphate and a vicinal diol; a phosphoesterase that hydrolyzes the 3'-phosphate of 3',5'-adenosine bisphosphate and similar nucleotides; and the first reported 5'-3' exonuclease for 5'-phosphorylated oligonucleotides from Escherichia coli and related organisms. This work provides a template for developing sequence-structure-function correlations within a family of enzymes that helps expedite new enzyme function discovery and more accurate annotations in protein databases.
Collapse
Affiliation(s)
- Swapnil V Ghodge
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Frank M Raushel
- Department of Chemistry, Texas A & M University, College Station, TX, United States.
| |
Collapse
|
16
|
Abstract
Regulation of iron homeostasis is perturbed in numerous pathologic states. Thus, identifications of mechanisms responsible for iron metabolism have broad implications for disease modification. Here, we link the sulfur assimilation pathway to iron-deficiency anemia. Deletion of bisphosphate 3′-nucleotidase (Bpnt1), a key component of the sulfur assimilation pathway, leads to accumulation of phosphoadenosine phosphate (PAP), causing iron deficiency anemia in part due to inhibition of hypoxia-inducible factor 2-α. Reduction of PAP through introduction of a hypomorphic mutation in 3′-phosphoadenosine 5-phosphosulfate synthase 2 gene (Papss2, the enzyme responsible for PAP production) rescues the iron deficiency phenotype. Sulfur assimilation is an evolutionarily conserved pathway that plays an essential role in cellular and metabolic processes, including sulfation, amino acid biosynthesis, and organismal development. We report that loss of a key enzymatic component of the pathway, bisphosphate 3′-nucleotidase (Bpnt1), in mice, both whole animal and intestine-specific, leads to iron-deficiency anemia. Analysis of mutant enterocytes demonstrates that modulation of their substrate 3′-phosphoadenosine 5′-phosphate (PAP) influences levels of key iron homeostasis factors involved in dietary iron reduction, import and transport, that in part mimic those reported for the loss of hypoxic-induced transcription factor, HIF-2α. Our studies define a genetic basis for iron-deficiency anemia, a molecular approach for rescuing loss of nucleotidase function, and an unanticipated link between nucleotide hydrolysis in the sulfur assimilation pathway and iron homeostasis.
Collapse
|
17
|
The special existences: nanoRNA and nanoRNase. Microbiol Res 2017; 207:134-139. [PMID: 29458847 DOI: 10.1016/j.micres.2017.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/21/2022]
Abstract
To adapt to a wide range of nutritional and environmental changes, cells must adjust their gene expression profiles. This process is completed by the frequent transcription and rapid degradation of mRNA. mRNA decay is initiated by a series of endo- and exoribonucleases. These enzymes leave behind 2- to 5-nt-long oligoribonucleotides termed "nanoRNAs" that are degraded by specific nanoRNases; the degradation of nanoRNA is essential because nanoRNA can mediate the priming of transcription initiation that is harmful for the cell via an unknown mechanism. Identified nanoRNases include Orn in E. coli, NrnA and NrnB in B. subtilis, and NrnC in Bartonella. Even though these nanoRNases can degrade nanoRNA specifically into mononucleotides, the biochemical features, structural features and functional mechanisms of these enzymes are different. Sequence analysis has identified homologs of these nanoRNases in different bacteria, including Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria, Firmicutes and Cyanobacteria. However, there are several bacteria, such as those belonging to the class Thermolithobacteria, that do not have homologs of these nanoRNases. In this paper, the source of nanoRNA, the features of different kinds of nanoRNases and the distribution of these enzymes in prokaryotes are described in detail.
Collapse
|
18
|
Meisel JD, Kim DH. Inhibition of Lithium-Sensitive Phosphatase BPNT-1 Causes Selective Neuronal Dysfunction in C. elegans. Curr Biol 2016; 26:1922-8. [PMID: 27397889 DOI: 10.1016/j.cub.2016.05.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 11/26/2022]
Abstract
Lithium has been a mainstay for the treatment of bipolar disorder, yet the molecular mechanisms underlying its action remain enigmatic. Bisphosphate 3'-nucleotidase (BPNT-1) is a lithium-sensitive phosphatase that catalyzes the breakdown of cytosolic 3'-phosphoadenosine 5'-phosphate (PAP), a byproduct of sulfation reactions utilizing the universal sulfate group donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) [1-3]. Loss of BPNT-1 leads to the toxic accumulation of PAP in yeast and non-neuronal cell types in mice [4, 5]. Intriguingly, BPNT-1 is expressed throughout the mammalian brain [4], and it has been hypothesized that inhibition of BPNT-1 could contribute to the effects of lithium on behavior [5]. Here, we show that loss of BPNT-1 in Caenorhabditis elegans results in the selective dysfunction of two neurons, the bilaterally symmetric pair of ASJ chemosensory neurons. As a result, BPNT-1 mutants are defective in behaviors dependent on the ASJ neurons, such as dauer exit and pathogen avoidance. Acute treatment with lithium also causes dysfunction of the ASJ neurons, and we show that this effect is reversible and mediated specifically through inhibition of BPNT-1. Finally, we show that the selective effect of lithium on the nervous system is due in part to the limited expression of the cytosolic sulfotransferase SSU-1 in the ASJ neuron pair. Our data suggest that lithium, through inhibition of BPNT-1 in the nervous system, can cause selective toxicity to specific neurons, resulting in corresponding effects on behavior of C. elegans.
Collapse
Affiliation(s)
- Joshua D Meisel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Dennis H Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| |
Collapse
|
19
|
Pirastu N, Kooyman M, Traglia M, Robino A, Willems SM, Pistis G, Amin N, Sala C, Karssen LC, Van Duijn C, Toniolo D, Gasparini P. A Genome-Wide Association Study in isolated populations reveals new genes associated to common food likings. Rev Endocr Metab Disord 2016; 17:209-19. [PMID: 27129595 DOI: 10.1007/s11154-016-9354-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Food preferences are the first factor driving food choice and thus nutrition. They involve numerous different senses such as taste and olfaction as well as various other factors such as personal experiences and hedonistic aspects. Although it is clear that several of these have a genetic basis, up to now studies have focused mostly on the effects of polymorphisms of taste receptor genes. Therefore, we have carried out one of the first large scale (4611 individuals) GWAS on food likings assessed for 20 specific food likings belonging to 4 different categories (vegetables, fatty, dairy and bitter). A two-step meta-analysis using three different isolated populations from Italy for the discovery step and two populations from The Netherlands and Central Asia for replication, revealed 15 independent genome-wide significant loci (p < 5 × 10(-8)) for 12 different foods. None of the identified genes coded for either taste or olfactory receptors suggesting that genetics impacts in determining food likings in a much broader way than simple differences in taste perception. These results represent a further step in uncovering the genes that underlie liking of common foods that in the end will greatly help understanding the genetics of human nutrition in general.
Collapse
Affiliation(s)
- Nicola Pirastu
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy.
- University of Trieste, Trieste, Italy.
| | - Maarten Kooyman
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Antonietta Robino
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Sara M Willems
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Giorgio Pistis
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Lennart C Karssen
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- PolyOmica, Groningen, The Netherlands
| | - Cornelia Van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Centre for Medical Systems Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
- University of Trieste, Trieste, Italy
| |
Collapse
|
20
|
AN FENGWEI, ZHANG ZHIQIANG, XIA MING, XING LIJUN. Subpath analysis of each subtype of head and neck cancer based on the regulatory relationship between miRNAs and biological pathways. Oncol Rep 2015; 34:1745-54. [DOI: 10.3892/or.2015.4150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/25/2015] [Indexed: 11/06/2022] Open
|
21
|
Li H, Li Z, Ma J, Sun M. Adenosine-5′-phosphosulfate kinase from Thermobifida fusca. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s000368381406009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Faisal Tarique K, Arif Abdul Rehman S, Gourinath S. Structural elucidation of a dual-activity PAP phosphatase-1 from Entamoeba histolytica capable of hydrolysing both 3'-phosphoadenosine 5'-phosphate and inositol 1,4-bisphosphate. ACTA ACUST UNITED AC 2014; 70:2019-31. [PMID: 25004978 DOI: 10.1107/s1399004714010268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/06/2014] [Indexed: 12/28/2022]
Abstract
The enzyme 3'-phosphoadenosine 5'-phosphatase-1 (PAP phosphatase-1) is a member of the Li(+)-sensitive Mg(2+)-dependent phosphatase superfamily, or inositol monophosphatase (IMPase) superfamily, and is an important regulator of the sulfate-activation pathway in all living organisms. Inhibition of this enzyme leads to accumulation of the toxic byproduct 3'-phosphoadenosine 5'-phosphate (PAP), which could be lethal to the organism. Genomic analysis of Entamoeba histolytica suggests the presence of two isoforms of PAP phosphatase. The PAP phosphatase-1 isoform of this organism is shown to be active over wide ranges of pH and temperature. Interestingly, this enzyme is inhibited by submillimolar concentrations of Li(+), while being insensitive to Na(+). Interestingly, the enzyme showed activity towards both PAP and inositol 1,4-bisphosphate and behaved as an inositol polyphosphate 1-phosphatase. Crystal structures of this enzyme in its native form and in complex with adenosine 5'-monophosphate have been determined to 2.1 and 2.6 Å resolution, respectively. The PAP phosphatase-1 structure is divided into two domains, namely α+β and α/β, and the substrate and metal ions bind between them. This is a first structure of any PAP phosphatase to be determined from a human parasitic protozoan. This enzyme appears to function using a mechanism involving three-metal-ion assisted catalysis. Comparison with other structures indicates that the sensitivity to alkali-metal ions may depend on the orientation of a specific catalytic loop.
Collapse
Affiliation(s)
| | | | - S Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
23
|
Yeast 3',5'-bisphosphate nucleotidase: an affinity tag for protein purification. Protein Expr Purif 2014; 97:81-7. [PMID: 24613729 DOI: 10.1016/j.pep.2014.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/23/2014] [Accepted: 02/25/2014] [Indexed: 11/22/2022]
Abstract
Affinity chromatography is one of the most popular methods for protein purification. Each tag method has its advantages and disadvantages, and combination of different tags and developing of new tags had been proposed and performed. Yeast 3',5'-bisphosphate nucleotidase, also known as HAL2, hydrolyzes 3'-phosphoadenosine 5'-phosphate (PAP) with submicromolar Km, which indicated the tight interactions between HAL2 and PAP. In order to explore the feasibility of HAL2 as a protein purification affinity tag, HAL2 was further characterized with PAP as substrate. Results demonstrated that KmPAP and kcatPAP were ∼0.3μM and ∼11s(-)(1), respectively. Kd for PAP was 0.008μM in the presence of Ca(2+). pH was also found to affect interactions between HAL2 and PAP, with tightest binding (Kd∼8nM) at pH 7.5 and 8. The purification protocol was rationally designed based on nanomolar affinity to PAP agarose in the presence of Ca(2+), which could satisfy the metal requirement for PAP binding, prevent hydrolysis of immobilized PAP and could be chelated by ethylene glycol tetraacetic acid (EGTA) for elution. A series of expression vectors were further constructed and Escherichia coli adenosine 5'-phosphosulfate kinase (APSK) was prokaryotically expressed, purified and characterized. Ready to use expression vector with eight commonly used restriction enzyme recognition sites in multiple cloning site was subsequently constructed. By comparing with current popular tags, HAL2 was found to be an efficient and economical tag for prokaryotic protein expression and purification.
Collapse
|
24
|
Can A, Schulze TG, Gould TD. Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol Biochem Behav 2014; 123:3-16. [PMID: 24534415 DOI: 10.1016/j.pbb.2014.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/21/2022]
Abstract
Mood disorders, including bipolar disorder and depression, are relatively common human diseases for which pharmacological treatment options are often not optimal. Among existing pharmacological agents and mood stabilizers used for the treatment of mood disorders, lithium has a unique clinical profile. Lithium has efficacy in the treatment of bipolar disorder generally, and in particular mania, while also being useful in the adjunct treatment of refractory depression. In addition to antimanic and adjunct antidepressant efficacy, lithium is also proven effective in the reduction of suicide and suicidal behaviors. However, only a subset of patients manifests beneficial responses to lithium therapy and the underlying genetic factors of response are not exactly known. Here we discuss preclinical research suggesting mechanisms likely to underlie lithium's therapeutic actions including direct targets inositol monophosphatase and glycogen synthase kinase-3 (GSK-3) among others, as well as indirect actions including modulation of neurotrophic and neurotransmitter systems and circadian function. We follow with a discussion of current knowledge related to the pharmacogenetic underpinnings of effective lithium therapy in patients within this context. Progress in elucidation of genetic factors that may be involved in human response to lithium pharmacology has been slow, and there is still limited conclusive evidence for the role of a particular genetic factor. However, the development of new approaches such as genome-wide association studies (GWAS), and increased use of genetic testing and improved identification of mood disorder patients sub-groups will lead to improved elucidation of relevant genetic factors in the future.
Collapse
Affiliation(s)
- Adem Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Thomas G Schulze
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
25
|
Cummings JA, Vetting M, Ghodge SV, Xu C, Hillerich B, Seidel RD, Almo SC, Raushel FM. Prospecting for unannotated enzymes: discovery of a 3',5'-nucleotide bisphosphate phosphatase within the amidohydrolase superfamily. Biochemistry 2014; 53:591-600. [PMID: 24401123 PMCID: PMC3985815 DOI: 10.1021/bi401640r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
In
bacteria, 3′,5′-adenosine bisphosphate (pAp) is
generated from 3′-phosphoadenosine 5′-phosphosulfate
in the sulfate assimilation pathway, and from coenzyme A by the transfer
of the phosphopantetheine group to the acyl-carrier protein. pAp is
subsequently hydrolyzed to 5′-AMP and orthophosphate, and this
reaction has been shown to be important for superoxide stress tolerance.
Herein, we report the discovery of the first instance of an enzyme
from the amidohydrolase superfamily that is capable of hydrolyzing
pAp. Crystal structures of Cv1693 from Chromobacterium violaceum have been determined to a resolution of 1.9 Å with AMP and
orthophosphate bound in the active site. The enzyme has a trinuclear
metal center in the active site with three Mn2+ ions. This
enzyme (Cv1693) belongs to the Cluster of Orthologous Groups cog0613
from the polymerase and histidinol phosphatase family of enzymes.
The values of kcat and kcat/Km for the hydrolysis
of pAp are 22 s–1 and 1.4 × 106 M–1 s–1, respectively. The enzyme is
promiscuous and is able to hydrolyze other 3′,5′-bisphosphonucleotides
(pGp, pCp, pUp, and pIp) and 2′-deoxynucleotides with comparable
catalytic efficiency. The enzyme is capable of hydrolyzing short oligonucleotides
(pdA)5, albeit at rates much lower than that of pAp. Enzymes
from two other enzyme families have previously been found to hydrolyze
pAp at physiologically significant rates. These enzymes include CysQ
from Escherichia coli (cog1218) and YtqI/NrnA from Bacillus subtilis (cog0618). Identification of the functional
homologues to the experimentally verified pAp phosphatases from cog0613,
cog1218, and cog0618 suggests that there is relatively little overlap
of enzymes with this function in sequenced bacterial genomes.
Collapse
Affiliation(s)
- Jennifer A Cummings
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hudson BH, York JD. Tissue-specific regulation of 3'-nucleotide hydrolysis and nucleolar architecture. Adv Biol Regul 2013; 54:208-13. [PMID: 24309248 DOI: 10.1016/j.jbior.2013.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022]
Abstract
Sulfur is an essential micronutrient involved in diverse cellular functions ranging from the control of intracellular redox states to electron transport. Eukaryotes incorporate sulfur by metabolizing inorganic sulfate into the universal sulfur donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Sulfotransferases then catalyze the donation of the activated sulfur from PAPS to a broad range of acceptors including xenobiotic small molecules and extracellular proteoglycans while also generating the byproduct 3'-phosphoadenosine 5'-phosphate (PAP). In mammals, PAP is regulated by two related 3'-nucleotidases, Golgi-resident PAP phosphatase (gPAPP) and cytoplasmic bisphosphate 3'-nucleotidase 1 (Bpnt1), which hydrolyze PAP to 5'-AMP and whose inactivation results in severe physiological defects. Loss of Bpnt1 in mice leads to the accumulation of PAP in the liver, aberrant nucleolar architecture, and liver failure, all of which can be rescued by genetically repressing PAPS synthesis. Yet interestingly, Bpnt1 protein is expressed at high levels in a majority of tissues, suggesting that additional tissues might also be affected. To investigate this possibility, we closely examined the expression of Bpnt1 protein, accumulation of PAP, and appearance of dysmorphic nucleoli in wild-type and Bpnt1(-/-) mice. Surprisingly, we found that while Bpnt1 protein is widely expressed, only the liver, duodenum, and kidneys contain high levels of PAP and nucleolar reorganization. We hypothesize that these tissues share commonalities such as being highly polarized and situated at the interfaces of fluid reservoirs that might enhance their susceptibility to loss of Bpnt1. These studies highlight the importance of PAP metabolism in extrahepatic tissues and provide a framework for future investigations into the function of Bpnt1 in the kidney and small intestine.
Collapse
Affiliation(s)
- Benjamin H Hudson
- Department of Biochemistry, Vanderbilt University Medical Center, 607 Light Hall, Nashville, TN 37232-0146, USA
| | - John D York
- Department of Biochemistry, Vanderbilt University Medical Center, 607 Light Hall, Nashville, TN 37232-0146, USA.
| |
Collapse
|
27
|
Roles for nucleotide phosphatases in sulfate assimilation and skeletal disease. Adv Biol Regul 2013; 52:229-38. [PMID: 22100882 DOI: 10.1016/j.advenzreg.2011.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022]
|
28
|
Role for cytoplasmic nucleotide hydrolysis in hepatic function and protein synthesis. Proc Natl Acad Sci U S A 2013; 110:5040-5. [PMID: 23479625 DOI: 10.1073/pnas.1205001110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nucleotide hydrolysis is essential for many aspects of cellular function. In the case of 3',5'-bisphosphorylated nucleotides, mammals possess two related 3'-nucleotidases, Golgi-resident 3'-phosphoadenosine 5'-phosphate (PAP) phosphatase (gPAPP) and Bisphosphate 3'-nucleotidase 1 (Bpnt1). gPAPP and Bpnt1 localize to distinct subcellular compartments and are members of a conserved family of metal-dependent lithium-sensitive enzymes. Although recent studies have demonstrated the importance of gPAPP for proper skeletal development in mice and humans, the role of Bpnt1 in mammals remains largely unknown. Here we report that mice deficient for Bpnt1 do not exhibit skeletal defects but instead develop severe liver pathologies, including hypoproteinemia, hepatocellular damage, and in severe cases, frank whole-body edema and death. Accompanying these phenotypes, we observed tissue-specific elevations of the substrate PAP, up to 50-fold in liver, repressed translation, and aberrant nucleolar architecture. Remarkably, the phenotypes of the Bpnt1 knockout are rescued by generating a double mutant mouse deficient for both PAP synthesis and hydrolysis, consistent with a mechanism in which PAP accumulation is toxic to tissue function independent of sulfation. Overall, our study defines a role for Bpnt1 in mammalian physiology and provides mechanistic insights into the importance of sulfur assimilation and cytoplasmic PAP hydrolysis to normal liver function.
Collapse
|
29
|
Involvement of the glycogen synthase kinase-3 signaling pathway in TBI pathology and neurocognitive outcome. PLoS One 2011; 6:e24648. [PMID: 21935433 PMCID: PMC3174188 DOI: 10.1371/journal.pone.0024648] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 08/17/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) sets in motion cascades of biochemical changes that result in delayed cell death and altered neuronal architecture. Studies have demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3) effectively reduces apoptosis following a number of stimuli. The Wnt family of proteins, and growth factors are two major factors that regulate GSK-3 activity. In the absence of stimuli, GSK-3 is constitutively active and is complexed with Axin, adenomatous polyposis coli (APC), and casein kinase Iα (CK1α) and phosphorylates ß-Catenin leading to its degradation. Binding of Wnt to Frizzled receptors causes the translocation of GSK-3 to the plasma membrane, where it phosphorylates and inactivates the Frizzled co-receptor lipoprotein-related protein 6 (LRP6). Furthermore, the translocation of GSK-3 reduces ß-Catenin phosphorylation and degradation, leading to ß-Catenin accumulation and gene expression. Growth factors activate Akt, which in turn inhibits GSK-3 activity by direct phosphorylation, leading to a reduction in apoptosis. METHODOLOGY/PRINCIPAL FINDINGS Using a rodent model, we found that TBI caused a rapid, but transient, increase in LRP6 phosphorylation that is followed by a modest decrease in ß-Catenin phosphorylation. Phospho-GSK-3β immunoreactivity was found to increase three days post injury, a time point at which increased Akt activity following TBI has been observed. Lithium influences several neurochemical cascades, including inhibiting GSK-3. When the efficacy of daily lithium was assessed, reduced hippocampal neuronal cell loss and learning and memory improvements were observed. These influences were partially mimicked by administration of the GSK-3-selective inhibitor SB-216763, as this drug resulted in improved motor function, but only a modest improvement in memory retention and no overt neuroprotection. CONCLUSION/SIGNIFICANCE Taken together, our findings suggest that selective inhibition of GSK-3 may offer partial cognitive improvement. As a broad spectrum inhibitor of GSK-3, lithium offers neuroprotection and robust cognitive improvement, supporting its clinical testing as a treatment for TBI.
Collapse
|
30
|
Jope RS. Glycogen synthase kinase-3 in the etiology and treatment of mood disorders. Front Mol Neurosci 2011; 4:16. [PMID: 21886606 PMCID: PMC3152743 DOI: 10.3389/fnmol.2011.00016] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 07/26/2011] [Indexed: 12/15/2022] Open
Abstract
The mood disorders major depressive disorder and bipolar disorder are prevalent, are inadequately treated, and little is known about their etiologies. A better understanding of the causes of mood disorders would benefit from improved animal models of mood disorders, which now rely on behavioral measurements. This review considers the limitations in relating measures of rodent behaviors to mood disorders, and the evidence from behavioral assessments indicating that glycogen synthase kinase-3 (GSK3) dysregulation promotes mood disorders and is a potential target for treating mood disorders. The classical mood stabilizer lithium was identified by studying animal behaviors and later was discovered to be an inhibitor of GSK3. Several mood-relevant behavioral effects of lithium in rodents have been identified, and most have now been shown to be due to its inhibition of GSK3. An extensive variety of pharmacological and molecular approaches for manipulating GSK3 are discussed, the results of which strongly support the proposal that inhibition of GSK3 reduces both depression-like and manic-like behaviors. Studies in human postmortem brain and peripheral cells also have identified correlations between alterations in GSK3 and mood disorders. Evidence is reviewed that depression may be associated with impaired inhibitory control of GSK3, and mania by hyper-stimulation of GSK3. Taken together, these studies provide substantial support for the hypothesis that inhibition of GSK3 activity is therapeutic for mood disorders. Future research should identify the causes of dysregulated GSK3 in mood disorders and the actions of GSK3 that contribute to these diseases.
Collapse
Affiliation(s)
- Richard Scott Jope
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
31
|
Abstract
RNA viruses are the champions of evolution due to high frequency mutations and genetic recombination occurring during virus replication. These genetic events are due to the error-prone nature of viral RNA-dependent RNA polymerases (RdRp). Recently emerging models on viral RNA recombination, however, also include key roles for host and environmental factors. Accordingly, genome-wide screens and global proteomics approaches with Tomato bushy stunt virus (TBSV) and yeast (Saccharomyces cerevisiae) as a model host have identified 38 host proteins affecting viral RNA recombination. Follow-up studies have identified key host proteins and cellular pathways involved in TBSV RNA recombination. In addition, environmental factors, such as salt stress, have been shown to affect TBSV recombination via influencing key host or viral factors involved in the recombination process. These advances will help build more accurate models on viral recombination, evolution, and adaptation.
Collapse
|
32
|
Jaag HM, Nagy PD. The combined effect of environmental and host factors on the emergence of viral RNA recombinants. PLoS Pathog 2010; 6:e1001156. [PMID: 20975943 PMCID: PMC2958810 DOI: 10.1371/journal.ppat.1001156] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/20/2010] [Indexed: 12/31/2022] Open
Abstract
Viruses are masters of evolution due to high frequency mutations and genetic recombination. In spite of the significance of viral RNA recombination that promotes the emergence of drug-resistant virus strains, the role of host and environmental factors in RNA recombination is poorly understood. Here we report that the host Met22p/Hal2p bisphosphate-3'-nucleotidase regulates the frequency of viral RNA recombination and the efficiency of viral replication. Based on Tomato bushy stunt virus (TBSV) and yeast as a model host, we demonstrate that deletion of MET22 in yeast or knockdown of AHL, SAL1 and FRY1 nucleotidases/phosphatases in plants leads to increased TBSV recombination and replication. Using a cell-free TBSV recombination/replication assay, we show that the substrate of the above nucleotidases, namely 3'-phosphoadenosine-5'-phosphate pAp, inhibits the activity of the Xrn1p 5'-3' ribonuclease, a known suppressor of TBSV recombination. Inhibition of the activity of the nucleotidases by LiCl and NaCl also leads to increased TBSV recombination, demonstrating that environmental factors could also affect viral RNA recombination. Thus, host factors in combination with environmental factors likely affect virus evolution and adaptation.
Collapse
MESH Headings
- Environment
- Evolution, Molecular
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/physiology
- Models, Biological
- Nucleotidases/genetics
- Nucleotidases/metabolism
- Nucleotidases/physiology
- Organisms, Genetically Modified
- RNA/genetics
- RNA/metabolism
- RNA Splicing/physiology
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombination, Genetic/drug effects
- Recombination, Genetic/physiology
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/virology
- Salts/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Stress, Physiological/physiology
- Nicotiana/drug effects
- Nicotiana/genetics
- Nicotiana/metabolism
- Tombusvirus/genetics
- Tombusvirus/physiology
- Virus Replication/genetics
Collapse
Affiliation(s)
- Hannah M. Jaag
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, Kentucky, United States of America
| |
Collapse
|
33
|
Shaltiel G, Deutsch J, Rapoport SI, Basselin M, Belmaker RH, Agam G. Is phosphoadenosine phosphate phosphatase a target of lithium's therapeutic effect? J Neural Transm (Vienna) 2010; 116:1543-9. [PMID: 19756369 DOI: 10.1007/s00702-009-0298-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 08/20/2009] [Indexed: 12/23/2022]
Abstract
Lithium, which is approved for treating patients with bipolar disorder, is reported to inhibit 3'(2')-phosphoadenosine-5'-phosphate (PAP) phosphatase activity. In yeast, deletion of PAP phosphatase results in elevated PAP levels and in inhibition of sulfation and of growth. The effect of lithium on PAP phosphatase is remarkable for the low Ki (approximately 0.2 mM), suggesting that this system would be almost completely shut down in vivo with therapeutic levels of 1 mM lithium, thereby elevating PAP levels. To test the hypothesis that lithium inhibition of PAP phosphatase is pharmacologically relevant to bipolar disorder, we fed rats LiCl for 6 weeks, and assayed brain PAP levels after subjecting the brain to high-energy microwaving. We also measured PAP phosphatase mRNA and protein levels in frozen brain tissue of lithium-treated mice. Brain adenosine phosphates were extracted by trichloroacetic acid and assayed by HPLC with a gradient system of two phases. PAP phosphatase mRNA was measured by RT-PCR, and PAP phosphatase protein was measured by Western blotting. Brain PAP levels were below detection limit of 2 nmol/g wet weight, even following lithium treatment. Lithium treatment also did not significantly change brain PAP phosphatase mRNA or protein levels. These results question the relevance of PAP phosphatase to the therapeutic mechanism of lithium. A statistically significant 25% reduced brain ADP/ATP ratio was found following lithium treatment in line with lithium's suggested neuroprotective effects.
Collapse
Affiliation(s)
- G Shaltiel
- Psychiatry Research Unit, Mental Health Center, Ben-Gurion University of the Negev, Beersheba, Israel
| | | | | | | | | | | |
Collapse
|
34
|
Lu SY, Zhao GR, Wu AM, Jenks MA, Zhang S, Liu JY. Molecular cloning of a cotton phosphatase gene and its functional characterization. BIOCHEMISTRY (MOSCOW) 2010; 75:85-94. [DOI: 10.1134/s0006297910010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
3'-Phosphoadenosine-5'-phosphate phosphatase activity is required for superoxide stress tolerance in Streptococcus mutans. J Bacteriol 2009; 191:4330-40. [PMID: 19429620 DOI: 10.1128/jb.00184-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aerobic microorganisms have evolved different strategies to withstand environmental oxidative stresses generated by various reactive oxygen species (ROS). For the facultative anaerobic human oral pathogen Streptococcus mutans, the mechanisms used to protect against ROS are not fully understood, since it does not possess catalase, an enzyme that degrades hydrogen peroxide. In order to elucidate the genes that are essential for superoxide stress response, methyl viologen (MV)-sensitive mutants of S. mutans were generated via ISS1 mutagenesis. Screening of approximately 2,500 mutants revealed six MV-sensitive mutants, each containing an insertion in one of five genes, including a highly conserved hypothetical gene, SMU.1297. Sequence analysis suggests that SMU.1297 encodes a hypothetical protein with a high degree of homology to the Bacillus subtilis YtqI protein, which possesses an oligoribonuclease activity that cleaves nano-RNAs and a phosphatase activity that degrades 3'-phosphoadenosine-5'-phosphate (pAp) and 3'-phosphoadenosine-5'-phosphosulfate (pApS) to produce AMP; the latter activity is similar to the activity of the Escherichia coli CysQ protein, which is required for sulfur assimilation. SMU.1297 was deleted using a markerless Cre-loxP-based strategy; the SMU.1297 deletion mutant was just as sensitive to MV as the ISS1 insertion mutant. Complementation of the deletion mutant with wild-type SMU.1297, in trans, restored the parental phenotype. Biochemical analyses with purified SMU.1297 protein demonstrated that it has pAp phosphatase activity similar to that of YtqI but apparently lacks an oligoribonuclease activity. The ability of SMU.1297 to dephosphorylate pApS in vivo was confirmed by complementation of an E. coli cysQ mutant with SMU.1297 in trans. Thus, our results suggest that SMU.1297 is involved in superoxide stress tolerance in S. mutans. Furthermore, the distribution of homologs of SMU.1297 in streptococci indicates that this protein is essential for superoxide stress tolerance in these organisms.
Collapse
|
36
|
Lee HS, Kim YJ, Lee JH, Kang SG. Identification and characterization of inorganic pyrophosphatase and PAP phosphatase from Thermococcus onnurineus NA1. J Bacteriol 2009; 191:3415-9. [PMID: 19286799 PMCID: PMC2687159 DOI: 10.1128/jb.01699-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/07/2009] [Indexed: 11/20/2022] Open
Abstract
Two hypothetical genes were functionally verified to be a pyrophosphatase and a PAP phosphatase in Thermococcus onnurineus NA1. This is the first report of the pyrophosphatases and the PAP phosphatases being organized in the gene clusters of the sulfate activation system only in T. onnurineus NA1 and "Pyrococcus abyssi."
Collapse
Affiliation(s)
- Hyun Sook Lee
- Korea Ocean Research & Development Institute, Ansan P.O. Box 29, Seoul 425-600, South Korea
| | | | | | | |
Collapse
|
37
|
A role for a lithium-inhibited Golgi nucleotidase in skeletal development and sulfation. Proc Natl Acad Sci U S A 2008; 105:11605-12. [PMID: 18695242 DOI: 10.1073/pnas.0801182105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sulfation is an important biological process that modulates the function of numerous molecules. It is directly mediated by cytosolic and Golgi sulfotransferases, which use 3'-phosphoadenosine 5'-phosphosulfate to produce sulfated acceptors and 3'-phosphoadenosine 5'-phosphate (PAP). Here, we identify a Golgi-resident PAP 3'-phosphatase (gPAPP) and demonstrate that its activity is potently inhibited by lithium in vitro. The inactivation of gPAPP in mice led to neonatal lethality, lung abnormalities resembling atelectasis, and dwarfism characterized by aberrant cartilage morphology. The phenotypic similarities of gPAPP mutant mice to chondrodysplastic models harboring mutations within components of the sulfation pathway lead to the discovery of undersulfated chondroitin in the absence of functional enzyme. Additionally, we observed loss of gPAPP leads to perturbations in the levels of heparan sulfate species in lung tissue and whole embryos. Our data are consistent with a model that clearance of the nucleotide product of sulfotransferases within the Golgi plays an important role in glycosaminoglycan sulfation, provide a unique genetic basis for chondrodysplasia, and define a function for gPAPP in the formation of skeletal elements derived through endochondral ossification.
Collapse
|
38
|
Hatzios SK, Iavarone AT, Bertozzi CR. Rv2131c from Mycobacterium tuberculosis is a CysQ 3'-phosphoadenosine-5'-phosphatase. Biochemistry 2008; 47:5823-31. [PMID: 18454554 PMCID: PMC2711008 DOI: 10.1021/bi702453s] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Mycobacterium tuberculosis (Mtb) produces a number of sulfur-containing metabolites that contribute to its pathogenesis and ability to survive in the host. These metabolites are products of the sulfate assimilation pathway. CysQ, a 3′-phosphoadenosine-5′-phosphatase, is considered an important regulator of this pathway in plants, yeast, and other bacteria. By controlling the pools of 3′-phosphoadenosine 5′-phosphate (PAP) and 3′-phosphoadenosine 5′-phosphosulfate (PAPS), CysQ has the potential to modulate flux in the biosynthesis of essential sulfur-containing metabolites. Bioinformatic analysis of the Mtb genome suggests the presence of a CysQ homologue encoded by the gene Rv2131c. However, a recent biochemical study assigned the protein’s function as a class IV fructose-1,6-bisphosphatase. In the present study, we expressed Rv2131c heterologously and found that the protein dephosphorylates PAP in a magnesium-dependent manner, with optimal activity observed between pH 8.5 and pH 9.5 using 0.5 mM MgCl2. A sensitive electrospray ionization mass spectrometry-based assay was used to extract the kinetic parameters for PAP, revealing a Km (8.1 ± 3.1 μM) and kcat (5.4 ± 1.1 s−1) comparable to those reported for other CysQ enzymes. The second-order rate constant for PAP was determined to be over 3 orders of magnitude greater than those determined for myo-inositol 1-phosphate (IMP) and fructose 1,6-bisphosphate (FBP), previously considered to be the primary substrates of this enzyme. Moreover, the ability of the Rv2131c-encoded enzyme to dephosphorylate PAP and PAPS in vivo was confirmed by functional complementation of an Escherichia coli ΔcysQ mutant. Taken together, these studies indicate that Rv2131c encodes a CysQ enzyme that may play a role in mycobacterial sulfur metabolism.
Collapse
Affiliation(s)
- Stavroula K Hatzios
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
39
|
Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Biosci Biotechnol Biochem 2008; 72:919-30. [PMID: 18391451 DOI: 10.1271/bbb.70738] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The functions of NAD(H) (NAD(+) and NADH) and NADP(H) (NADP(+) and NADPH) are undoubtedly significant and distinct. Hence, regulation of the intracellular balance of NAD(H) and NADP(H) is important. The key enzymes involved in the regulation are NAD kinase and NADP phosphatase. In 2000, we first succeeded in identifying the gene for NAD kinase, thereby facilitating worldwide studies of this enzyme from various organisms, including eubacteria, archaea, yeast, plants, and humans. Molecular biological study has revealed the physiological function of this enzyme, that is to say, the significance of NADP(H), in some model organisms. Structural research has elucidated the tertiary structure of the enzyme, the details of substrate-binding sites, and the catalytic mechanism. Research on NAD kinase also led to the discovery of archaeal NADP phosphatase. In this review, we summarize the physiological functions, applications, and structure of NAD kinase, and the way we discovered archaeal NADP phosphatase.
Collapse
|
40
|
Schloesser RJ, Huang J, Klein PS, Manji HK. Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 2008; 33:110-33. [PMID: 17912251 DOI: 10.1038/sj.npp.1301575] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bipolar disorder (BPD) is characterized by recurrent episodes of disturbed affect including mania and depression as well as changes in psychovegetative function, cognitive performance, and general health. A growing body of data suggests that BPD arises from abnormalities in synaptic and neuronal plasticity cascades, leading to aberrant information processing in critical synapses and circuits. Thus, these illnesses can best be conceptualized as genetically influenced disorders of synapses and circuits rather than simply as deficits or excesses in individual neurotransmitters. In addition, commonly used mood-stabilizing drugs that are effective in treating BPD have been shown to target intracellular signaling pathways that control synaptic plasticity and cellular resilience. In this article we draw on clinical, preclinical, neuroimaging, and post-mortem data to discuss the neurobiology of BPD within a conceptual framework while highlighting the role of neuroplasticity in the pathophysiology and treatment of this disorder.
Collapse
Affiliation(s)
- Robert J Schloesser
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Program, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
41
|
Fukuda C, Kawai S, Murata K. NADP(H) phosphatase activities of archaeal inositol monophosphatase and eubacterial 3'-phosphoadenosine 5'-phosphate phosphatase. Appl Environ Microbiol 2007; 73:5447-52. [PMID: 17616624 PMCID: PMC2042097 DOI: 10.1128/aem.02703-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NADP(H) phosphatase has not been identified in eubacteria and eukaryotes. In archaea, MJ0917 of hyperthermophilic Methanococcus jannaschii is a fusion protein comprising NAD kinase and an inositol monophosphatase homologue that exhibits high NADP(H) phosphatase activity (S. Kawai, C. Fukuda, T. Mukai, and K. Murata, J. Biol. Chem. 280:39200-39207, 2005). In this study, we showed that the other archaeal inositol monophosphatases, MJ0109 of M. jannaschii and AF2372 of hyperthermophilic Archaeoglobus fulgidus, exhibit NADP(H) phosphatase activity in addition to the already-known inositol monophosphatase and fructose-1,6-bisphosphatase activities. Kinetic values for NADP+ and NADPH of MJ0109 and AF2372 were comparable to those for inositol monophosphate and fructose-1,6-bisphosphate. This implies that the physiological role of the two enzymes is that of an NADP(H) phosphatase. Further, the two enzymes showed inositol polyphosphate 1-phosphatase activity but not 3'-phosphoadenosine 5'-phosphate phosphatase activity. The inositol polyphosphate 1-phosphatase activity of archaeal inositol monophosphatase was considered to be compatible with the similar tertiary structures of inositol monophosphatase, fructose-1,6-bisphosphatase, inositol polyphosphate 1-phosphatase, and 3'-phosphoadenosine 5'-phosphate phosphatase. Based on this fact, we found that 3'-phosphoadenosine 5'-phosphate phosphatase (CysQ) of Escherichia coli exhibited NADP(H) phosphatase and fructose-1,6-bisphosphatase activities, although inositol monophosphatase (SuhB) and fructose-1,6-bisphosphatase (Fbp) of E. coli did not exhibit any NADP(H) phosphatase activity. However, the kinetic values of CysQ and the known phenotype of the cysQ mutant indicated that CysQ functions physiologically as 3'-phosphoadenosine 5'-phosphate phosphatase rather than as NADP(H) phosphatase.
Collapse
Affiliation(s)
- Chikako Fukuda
- Department of Basic and Applied Molecular Biotechnology, Division of Food and Biological Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
42
|
Cheong JJ, Hwang I, Rhee S, Moon TW, Choi YD, Kwon HB. Complementation of an E. coli cysteine auxotrophic mutant for the structural modification study of 3′(2′),5′-bisphosphate nucleotidase. Biotechnol Lett 2007; 29:913-8. [PMID: 17450323 DOI: 10.1007/s10529-007-9324-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 11/27/2022]
Abstract
The Arabidopsis AHL gene encodes a 3'(2'),5'-bisphosphate nucleotidase (BPNTase) involved in the reductive sulfate activation pathway. A bacterial expression vector containing AHL cDNA was randomly mutagenized with hydroxylamine and transformed into the E. coli cysteine auxotrophic mutant cysQ. Bacterial colonies that did not show evidence of complementation, i.e. those that exhibited slower growth on cysteine-free medium, were selected for further study. Sequencing of the AHL cDNA in one such clone revealed the conversion of cytosine 635 (C635) to thymine, resulting in an Alanine (A212) to Valine substitution. This microbial complementation procedure is useful in BPNTase structure-activity studies for biotechnological applications.
Collapse
Affiliation(s)
- Jong-Joo Cheong
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The synthesis of activated sulfate (adenosine 5'-phosphosulfate, APS) and inorganic pyrophosphate from ATP and SO4 is remarkably unfavorable: K(eq) approximately 10(-8) under presumed, near-physiological conditions. Consequently, ATP sulfurylases, which catalyze APS synthesis, suffer approximately 10(8)-fold losses in catalytic efficiency in the forward (APS-synthesis) versus reverse reaction. Losses of this magnitude place this catalyst at risk of being unable to supply its nutrients to the cell in a timely fashion. ATP sulfurylase domains are often embedded in multifunctional complexes that are capable of also catalyzing the second of two steps in the sulfate activation pathway: the phosphorylation of APS to produce PAPS (3'-phosphoadenosine 5'-phosphosulfate). The colocalization of these activities in a single scaffold suggests that evolution might have worked around the inefficiency problem by fashioning a system capable of transferring APS directly between the active sites of the complex, thereby avoiding the solution-phase energetics. For these reasons, representatives from each of the three types of sulfate activating complex (SAC) [Homo sapiens (type I); Mycobacterium tuberculosis (type II); and Rhodobacter sphaeroides (type III)] were tested for the ability to channel APS. A channeling assay that optically detects solution-phase APS was devised with APS reductase from M. tuberculosis, a previously uncharacterized enzyme. Channeling was not detected in two of the three types of SAC; however, the type III SAC channels with high efficiency. Structural models of type III reveal a 75 A-long channel that interconnects active-site pairs in the complex and that opens and closes in response to occupancy of those sites.
Collapse
Affiliation(s)
- Meihao Sun
- The Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1926, USA
| | | |
Collapse
|
44
|
Gould TD. Targeting glycogen synthase kinase-3 as an approach to develop novel mood-stabilising medications. Expert Opin Ther Targets 2006; 10:377-92. [PMID: 16706678 DOI: 10.1517/14728222.10.3.377] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Historically, success in the pharmacological treatment of bipolar disorder has arisen either from serendipitous findings or from studies with drugs (antipsychotics and anticonvulsants) developed for other indications (schizophrenia and epilepsy, respectively). Lithium has been in widespread clinical use in the treatment of bipolar disorder for > 30 years. Development of lithium-mimetic compounds has the potential to result in a more specific medication, with fewer side effects and a less narrow dose range. However, novel medications based upon a known mechanism of action of this drug are yet to be developed. Increasing evidence suggests that a next-generation lithium compound may derive from knowledge of a direct target of lithium, glycogen synthase kinase-3 (GSK-3). GSK-3 is an intracellular enzyme implicated as a critical component in many neuronal signalling pathways. However, despite the large body of preclinical data discussed in this review, definitive validation of GSK-3 as therapeutically relevant target of lithium will require clinical trials with novel GSK-3 inhibitors. A number of recent reports suggest that it is possible to develop selective, small-molecule GSK-3 inhibitors.
Collapse
Affiliation(s)
- Todd D Gould
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-3711, USA.
| |
Collapse
|
45
|
Mechold U, Ogryzko V, Ngo S, Danchin A. Oligoribonuclease is a common downstream target of lithium-induced pAp accumulation in Escherichia coli and human cells. Nucleic Acids Res 2006; 34:2364-73. [PMID: 16682444 PMCID: PMC1458514 DOI: 10.1093/nar/gkl247] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified Oligoribonuclease (Orn), an essential Escherichia coli protein and the only exonuclease degrading small ribonucleotides (5mer to 2mer) and its human homologue, small fragment nuclease (Sfn), in a screen for proteins that are potentially regulated by 3′-phosphoadenosine 5′-phosphate (pAp). We show that both enzymes are sensitive to micromolar amounts of pAp in vitro. We also demonstrate that Orn can degrade short DNA oligos in addition to its activity on RNA oligos, similar to what was documented for Sfn. pAp was shown to accumulate as a result of inhibition of the pAp-degrading enzyme by lithium, widely used to treat bipolar disorder, thus its regulatory targets are of significant medical interest. CysQ, the E.coli pAp-phosphatase is strongly inhibited by lithium and calcium in vitro and is a main target of lithium toxicity in vivo. Our findings point to remarkable conservation of the connection between sulfur- and RNA metabolism between E.coli and humans.
Collapse
Affiliation(s)
- Undine Mechold
- Institut Pasteur, URA 2171, Unite de Génétique des Génomes Bactériens, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
46
|
Aggarwal M, Mondal AK. Role of N-terminal hydrophobic region in modulating the subcellular localization and enzyme activity of the bisphosphate nucleotidase from Debaryomyces hansenii. EUKARYOTIC CELL 2006; 5:262-71. [PMID: 16467467 PMCID: PMC1405886 DOI: 10.1128/ec.5.2.262-271.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
3', 5'-Bisphosphate nucleotidase is a ubiquitous enzyme that converts 3'-phosphoadenosine-5'-phosphate to adenosine-5'-phosphate and inorganic phosphate. These enzymes are highly sensitive to sodium and lithium and, thus, perform a crucial rate-limiting metabolic step during salt stress in yeast. Recently, we have identified a bisphosphate nucleotidase gene (DHAL2) from the halotolerant yeast Debaryomyces hansenii. One of the unique features of Dhal2p is that it contains an N-terminal 54-amino-acid-residue hydrophobic extension. In this study, we have shown that Dhal2p exists as a cytosolic as well as a membrane-bound form and that salt stress markedly influences the accumulation of the latter form in the cell. We have demonstrated that the N-terminal hydrophobic region was necessary for the synthesis of the membrane-bound isoform. It appeared that an alternative translation initiation was the major mechanism for the synthesis of these two forms. Moreover, the two forms exhibit significant differences in their substrate specificity. Unlike the cytosolic form, the membrane-bound form showed very high activity against inositol-1,4-bisphosphate. Thus, the present study for the first time reports the existence of multiple forms of a bisphosphate nucleotidase in any organism.
Collapse
Affiliation(s)
- Monika Aggarwal
- Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | | |
Collapse
|
47
|
Affiliation(s)
- Javad Torabinejad
- Department of Biochemistry, Virginia Tech, 306 Fralin Biotechnology Center, Blacksburg, VA 24061, USA
| | | |
Collapse
|
48
|
Almazán C, Blas-Machado U, Kocan KM, Yoshioka JH, Blouin EF, Mangold AJ, de la Fuente J. Characterization of three Ixodes scapularis cDNAs protective against tick infestations. Vaccine 2005; 23:4403-16. [PMID: 16005748 DOI: 10.1016/j.vaccine.2005.04.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 03/30/2005] [Accepted: 04/06/2005] [Indexed: 11/18/2022]
Abstract
cDNA expression library immunization (ELI) and analysis of expressed sequenced tags (EST) in a mouse model of tick infestations was used to identified cDNA clones that affected I. scapularis. Three protective antigens against larval tick infestations, 4F8, with homology to a nucleotidase, and 4D8 and 4E6 of unknown function, were selected for further characterization. All three antigens were expressed in all I. scapularis stages and localized in adult tick tissues. 4D8 was shown to be conserved in six other tick species. Based on immunization trials with synthetic polypeptides against larvae and nymphs and on artificial feeding experiments of adults, these antigens, especially 4D8, appear to be good candidates for continued development of a vaccine for control of tick infestations and may be useful in a formulation to target multiple species of ticks.
Collapse
Affiliation(s)
- Consuelo Almazán
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Aggarwal M, Bansal PK, Mondal AK. Molecular cloning and biochemical characterization of a 3'(2'),5'-bisphosphate nucleotidase from Debaryomyces hansenii. Yeast 2005; 22:457-70. [PMID: 15849794 DOI: 10.1002/yea.1223] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme 3'(2'),5'-bisphosphate nucleotidase catalyses a reaction that converts 3'-phosphoadenosine-5'-phosphate (PAP) to adenosine-5'-phosphate (AMP) and inorganic phosphate (Pi). The enzyme from Saccharomyces cerevisiae is highly sensitive to sodium and lithium and is thus considered to be the in vivo target of salt toxicity in yeast. In S. cerevisiae, the HAL2 gene encodes this enzyme. We have cloned a homologous gene, DHAL2, from the halotolerant yeast Debaryomyces hansenii. DNA sequencing of this clone revealed a 1260 bp open reading frame (ORF) that putatively encoded a protein of 420 amino acid residues. S. cerevisiae transformed with DHAL2 gene displayed higher halotolerance. Biochemical studies showed that recombinant Dhal2p could efficiently utilize PAP (K(m)17 microM) and PAPS (K(m)48 microM) as substrate. Moreover, we present evidence that, in comparison to other homologues from yeast, Dhal2p displays significantly higher resistance towards lithium and sodium ions.
Collapse
Affiliation(s)
- Monika Aggarwal
- Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | | | | |
Collapse
|
50
|
Shull NP, Spinelli SL, Phizicky EM. A highly specific phosphatase that acts on ADP-ribose 1''-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Res 2005; 33:650-60. [PMID: 15684411 PMCID: PMC548356 DOI: 10.1093/nar/gki211] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 01/07/2005] [Accepted: 01/07/2005] [Indexed: 11/21/2022] Open
Abstract
One molecule of ADP-ribose 1'',2''-cyclic phosphate (Appr>p) is formed during each of the approximately 500 000 tRNA splicing events per Saccharomyces cerevisiae generation. The metabolism of Appr>p remains poorly defined. A cyclic phosphodiesterase (Cpd1p) has been shown to convert Appr>p to ADP-ribose-1''-phosphate (Appr1p). We used a biochemical genomics approach to identify two yeast phosphatases that can convert Appr1p to ADP-ribose: the product of ORF YBR022w (now Poa1p), which is completely unrelated to other known phosphatases; and Hal2p, a known 3'-phosphatase of 5',3'-pAp. Poa1p is highly specific for Appr1p, and thus likely acts on this molecule in vivo. Poa1 has a relatively low K(M) for Appr1p (2.8 microM) and a modest kcat (1.7 min(-1)), but no detectable activity on several other substrates. Furthermore, Poa1p is strongly inhibited by ADP-ribose (K(I), 17 microM), modestly inhibited by other nucleotides containing an ADP-ribose moiety and not inhibited at all by other tested molecules. In contrast, Hal2p is much more active on pAp than on Appr1p, and several other tested molecules were Hal2p substrates or inhibitors. poa1-Delta mutants have no obvious growth defect at different temperatures in rich media, and analysis of yeast extracts suggests that approximately 90% of Appr1p processing activity originates from Poa1p.
Collapse
Affiliation(s)
- Neil P. Shull
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Sherry L. Spinelli
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|