1
|
Shabani A, Tabrizian M. Design of a universal biointerface for sensitive, selective, and multiplex detection of biomarkers using surface plasmon resonance imaging. Analyst 2013; 138:6052-62. [DOI: 10.1039/c3an01374j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
2
|
White CD, Li Z, Dillon DA, Sacks DB. IQGAP1 protein binds human epidermal growth factor receptor 2 (HER2) and modulates trastuzumab resistance. J Biol Chem 2011; 286:29734-47. [PMID: 21724847 DOI: 10.1074/jbc.m111.220939] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in 20-25% of breast cancers. Increased HER2 expression is an adverse prognostic factor and correlates with decreased patient survival. HER2-positive (HER2(+)) breast cancer is treated with trastuzumab. Unfortunately, some patients are intrinsically refractory to therapy, and many who do respond initially become resistant within 1 year. Understanding the molecular mechanisms underlying HER2 signaling and trastuzumab resistance is essential to reduce breast cancer mortality. IQGAP1 is a ubiquitously expressed scaffold protein that contains multiple protein interaction domains. By regulating its binding partners IQGAP1 integrates signaling pathways, several of which contribute to breast tumorigenesis. We show here that IQGAP1 is overexpressed in HER2(+) breast cancer tissue and binds directly to HER2. Knockdown of IQGAP1 decreases HER2 expression, phosphorylation, signaling, and HER2-stimulated cell proliferation, effects that are all reversed by reconstituting cells with IQGAP1. Reducing IQGAP1 up-regulates p27, and blocking this increase attenuates the growth inhibitory effects of IQGAP1 knockdown. Importantly, IQGAP1 is overexpressed in trastuzumab-resistant breast epithelial cells, and reducing IQGAP1 both augments the inhibitory effects of trastuzumab and restores trastuzumab sensitivity to trastuzumab-resistant SkBR3 cells. These data suggest that inhibiting IQGAP1 function may represent a rational strategy for treating HER2(+) breast carcinoma.
Collapse
Affiliation(s)
- Colin D White
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
3
|
Mirza A, Mustafa M, Talevich E, Kannan N. Co-conserved features associated with cis regulation of ErbB tyrosine kinases. PLoS One 2010; 5:e14310. [PMID: 21179209 PMCID: PMC3001462 DOI: 10.1371/journal.pone.0014310] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 11/08/2010] [Indexed: 11/18/2022] Open
Abstract
Background The epidermal growth factor receptor kinases, or ErbB kinases, belong to a large sub-group of receptor tyrosine kinases (RTKs), which share a conserved catalytic core. The catalytic core of ErbB kinases have functionally diverged from other RTKs in that they are activated by a unique allosteric mechanism that involves specific interactions between the kinase core and the flanking Juxtamembrane (JM) and COOH-terminal tail (C-terminal tail). Although extensive studies on ErbB and related tyrosine kinases have provided important insights into the structural basis for ErbB kinase functional divergence, the sequence features that contribute to the unique regulation of ErbB kinases have not been systematically explored. Methodology/Principal Findings In this study, we use a Bayesian approach to identify the selective sequence constraints that most distinguish ErbB kinases from other receptor tyrosine kinases. We find that strong ErbB kinase-specific constraints are imposed on residues that tether the JM and C-terminal tail to key functional regions of the kinase core. A conserved RIxKExE motif in the JM-kinase linker region and a glutamine in the inter-lobe linker are identified as two of the most distinguishing features of the ErbB family. While the RIxKExE motif tethers the C-terminal tail to the N-lobe of the kinase domain, the glutamine tethers the C-terminal tail to hinge regions critical for inter-lobe movement. Comparison of the active and inactive crystal structures of ErbB kinases indicates that the identified residues are conformationally malleable and can potentially contribute to the cis regulation of the kinase core by the JM and C-terminal tail. ErbB3, and EGFR orthologs in sponges and parasitic worms, diverge from some of the canonical ErbB features, providing insights into sub-family and lineage-specific functional specialization. Conclusion/Significance Our analysis pinpoints key residues for mutational analysis, and provides new clues to cancer mutations that alter the canonical modes of ErbB kinase regulation.
Collapse
Affiliation(s)
- Amar Mirza
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | | | | | | |
Collapse
|
4
|
Sithanandam G, Anderson LM. The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther 2008; 15:413-48. [PMID: 18404164 PMCID: PMC2761714 DOI: 10.1038/cgt.2008.15] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 01/19/2008] [Indexed: 12/29/2022]
Abstract
ERBB3, a member of the epidermal growth factor receptor (EGFR) family, is unique in that its tyrosine kinase domain is functionally defective. It is activated by neuregulins, by other ERBB and nonERBB receptors as well as by other kinases, and by novel mechanisms. Downstream it interacts prominently with the phosphoinositol 3-kinase/AKT survival/mitogenic pathway, but also with GRB, SHC, SRC, ABL, rasGAP, SYK and the transcription regulator EBP1. There are likely important but poorly understood roles for nuclear localization and for secreted isoforms. Studies of ERBB3 expression in primary cancers and of its mechanistic contributions in cultured cells have implicated it, with varying degrees of certainty, with causation or sustenance of cancers of the breast, ovary, prostate, certain brain cells, retina, melanocytes, colon, pancreas, stomach, oral cavity and lung. Recent results link high ERBB3 activity with escape from therapy targeting other ERBBs in lung and breast cancers. Thus a wide and centrally important role for ERBB3 in cancer is becoming increasingly apparent. Several approaches for targeting ERBB3 in cancers have been tested or proposed. Small inhibitory RNA (siRNA) to ERBB3 or AKT is showing promise as a therapeutic approach to treatment of lung adenocarcinoma.
Collapse
|
5
|
Eigenbrot C. A Trigger Squeezed. Structure 2008; 16:332-4. [DOI: 10.1016/j.str.2008.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Faress JA, Nethery DE, Kern EFO, Eisenberg R, Jacono FJ, Allen CL, Kern JA. Bleomycin-induced pulmonary fibrosis is attenuated by a monoclonal antibody targeting HER2. J Appl Physiol (1985) 2007; 103:2077-83. [PMID: 17916677 DOI: 10.1152/japplphysiol.00239.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The importance of HER2/HER3 signaling in decreasing the effects of lung injury was recently demonstrated. Transgenic mice unable to signal through HER2/HER3 had significantly less bleomycin-induced pulmonary fibrosis and showed a survival benefit. Based on these data, we hypothesized that pharmacological blockade of HER2/HER3 in vivo in wild-type mice would have the same beneficial effects. We tested this hypothesis in a bleomycin lung injury model using 2C4, a monoclonal antibody directed against HER2 that blocks HER2/HER3 signaling. The administration of 2C4 before injury decreased the effects of bleomycin at days 15 and 21 after injury. HER2/HER3 blockade resulted in less collagen deposition (362.8 +/- 37.9 compared with 610.5 +/- 27.1 microg/mg; P = 0.03) and less lung morphological changes (injury score of 1.99 +/- 1.55 vs. 3.90 +/- 0.76; P < 0.04). In addition, HER2/HER3 blockade resulted in a significant survival advantage with 50% vs. 25% survival at 30 days (P = 0.04). These results confirm that HER2 signaling can be pharmacologically targeted to reduce lung fibrosis and remodeling after injury.
Collapse
Affiliation(s)
- Jihane A Faress
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Anastasi S, Baietti MF, Frosi Y, Alemà S, Segatto O. The evolutionarily conserved EBR module of RALT/MIG6 mediates suppression of the EGFR catalytic activity. Oncogene 2007; 26:7833-46. [PMID: 17599051 DOI: 10.1038/sj.onc.1210590] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Physiological signalling by the epidermal growth factor receptor (EGFR) controls developmental processes and tissue homeostasis, whereas aberrant EGFR activity drives oncogenic cell transformation. Under normal conditions, the EGFR must therefore generate outputs of defined strength and duration. To this aim, cells balance EGFR activity via different modalities of negative signalling. Increasing attention is being drawn on transcriptionally controlled feedback inhibitors of EGFR, namely RALT/MIG6, LRIG1, SOCS4 and SOCS5. Genetic studies in mice have revealed the essential role of Ralt/Mig6 in regulating Egfr-driven skin morphogenesis and tumour formation, yet the mechanisms through which RALT abrogates EGFR activity are still undefined. We report that RALT suppresses EGFR function by inhibiting its catalytic activity. The evolutionarily conserved ErbB-binding region (EBR) is necessary and sufficient to carry out RALT-dependent suppression of EGFR kinase activity in vitro and in intact cells. The mechanism involves binding of the EBR to the 953RYLVIQ958 sequence, which is located in the alphaI helix of the EGFR kinase and has been shown to participate in allosteric control of EGFR catalytic activity. Our results uncover a novel mechanism of temporal regulation of EGFR activity in vertebrate organisms.
Collapse
Affiliation(s)
- S Anastasi
- Department of Experimental Oncology, Laboratory of Immunology, Regina Elena Cancer Institute, Rome, Italy.
| | | | | | | | | |
Collapse
|
8
|
Landgraf R. HER2 therapy. HER2 (ERBB2): functional diversity from structurally conserved building blocks. Breast Cancer Res 2007; 9:202. [PMID: 17274834 PMCID: PMC1851388 DOI: 10.1186/bcr1633] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
EGFR-type receptor tyrosine kinases achieve a broad spectrum of cellular responses by utilizing a set of structurally conserved building blocks. Based on available crystal structures and biochemical information, significant new insights have emerged into modes of receptor control, its deregulation in cancer, and the nuances that differentiate the four human receptors. This review gives an overview of current models of the control of receptor activity with a special emphasis on HER2 and HER3.
Collapse
Affiliation(s)
- Ralf Landgraf
- University of California Los Angeles, Department of Medicine, Hematology-Oncology and Biological Chemistry, Molecular Biology Institute, Los Angeles, California 90095-1678, USA.
| |
Collapse
|
9
|
Liu Y, Tao YM, Woo RS, Xiong WC, Mei L. Stimulated ErbB4 internalization is necessary for neuregulin signaling in neurons. Biochem Biophys Res Commun 2007; 354:505-10. [PMID: 17250808 PMCID: PMC2696396 DOI: 10.1016/j.bbrc.2007.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 01/03/2007] [Indexed: 11/24/2022]
Abstract
Neuregulin-1 (NRG1) plays an important role in neural development, synapse formation, and synaptic plasticity by activating ErbB receptor tyrosine kinases. Although ligand-induced endocytosis has been shown to be important for many receptor tyrosine kinases, whether NRG1 signaling depends on ErbB endocytosis remains controversial. Here, we provide evidence that ErbB4, a prominent ErbB protein in the brain, becomes internalized in NRG1-stimulated neurons. The induced ErbB4 endocytosis requires its kinase activity. Remarkably, inhibition of ErbB endocytosis attenuates NRG1-induced activation of Erk and Akt in neurons. These observations indicate a role of ErbB endocytosis in NRG1 signaling in neurons.
Collapse
Affiliation(s)
- Yu Liu
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta GA 30912, USA
- Department of Radiochemotherapy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Yan-Mei Tao
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta GA 30912, USA
| | - Ran-Sook Woo
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta GA 30912, USA
| | - Wen-Cheng. Xiong
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta GA 30912, USA
| | - Lin Mei
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta GA 30912, USA
| |
Collapse
|
10
|
Stein RA, Staros JV. Insights into the evolution of the ErbB receptor family and their ligands from sequence analysis. BMC Evol Biol 2006; 6:79. [PMID: 17026767 PMCID: PMC1618406 DOI: 10.1186/1471-2148-6-79] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 10/06/2006] [Indexed: 11/21/2022] Open
Abstract
Background In the time since we presented the first molecular evolutionary study of the ErbB family of receptors and the EGF family of ligands, there has been a dramatic increase in genomic sequences available. We have utilized this greatly expanded data set in this study of the ErbB family of receptors and their ligands. Results In our previous analysis we postulated that EGF family ligands could be characterized by the presence of a splice site in the coding region between the fourth and fifth cysteines of the EGF module and the placement of that module near the transmembrane domain. The recent identification of several new ligands for the ErbB receptors supports this characterization of an ErbB ligand; further, applying this characterization to available sequences suggests additional potential ligands for these receptors, the EGF modules from previously identified proteins: interphotoreceptor matrix proteoglycan-2, the alpha and beta subunit of meprin A, and mucins 3, 4, 12, and 17. The newly available sequences have caused some reorganizations of relationships among the ErbB ligand family, but they add support to the previous conclusion that three gene duplication events gave rise to the present family of four ErbB receptors among the tetrapods. Conclusion This study provides strong support for the hypothesis that the presence of an easily identifiable sequence motif can distinguish EGF family ligands from other EGF-like modules and reveals several potential new EGF family ligands. It also raises interesting questions about the evolution of ErbB2 and ErbB3: Does ErbB2 in teleosts function differently from ErbB2 in tetrapods in terms of ligand binding and intramolecular tethering? When did ErbB3 lose kinase activity, and what is the functional significance of the divergence of its kinase domain among teleosts?
Collapse
Affiliation(s)
- Richard A Stein
- Dept. of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - James V Staros
- Dept. of Biochemistry and Cell Biology, SUNY-Stony Brook, Stony Brook, NY 11794, USA, and Dept. of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
11
|
Warren CM, Landgraf R. Signaling through ERBB receptors: Multiple layers of diversity and control. Cell Signal 2006; 18:923-33. [PMID: 16460914 DOI: 10.1016/j.cellsig.2005.12.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 12/16/2005] [Indexed: 11/27/2022]
Abstract
The four known ERBB receptors in humans are involved in a broad range of cellular responses, and their deregulation is a significant aspect in a large number of disease states. However, their mechanism of action and modes of control are still poorly understood. This is largely due to the fact that the control of ERBB activity is a multilayered process with significant differences between the various ERBB members. In contrast to other receptor tyrosine kinases, the kinase domain of EGFR (ERBB1) does not require phosphorylation for activation. Consequently, the overall activation state of the receptor is controlled by constant balancing of activity favoring and activity suppressing actions within the receptor molecule. Influences of the membrane microenvironment and context dependent interactions with varying sets of signaling partners are superimposed on this system of intramolecular checks and balances. We will discuss current models of the control of ERBB signaling with an emphasis on the multilayered nature of activation control and aspects that give rise to diversity between ERBB receptors.
Collapse
Affiliation(s)
- Carmen M Warren
- University of California Los Angeles, Department of Medicine, Biological Chemistry, United States
| | | |
Collapse
|
12
|
Aifa S, Miled N, Frikha F, Aniba MR, Svensson SPS, Rebai A. Electrostatic interactions of peptides flanking the tyrosine kinase domain in the epidermal growth factor receptor provides a model for intracellular dimerization and autophosphorylation. Proteins 2006; 62:1036-43. [PMID: 16380971 DOI: 10.1002/prot.20780] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mechanism by which ligand-activated EGFR induces autophosphorylation via dimerization is not fully understood. Structural studies have revealed an extracellular loop mediated receptor dimerization. We have previously presented experimental data showing the involvement of a positive 13 amino acid peptide (R645-R657; P13+) from the intracellular juxtamembrane domain (JM) of EGFR important for intracellular dimerization and autophosphorylation. A model was presented that suggest that P13+ interacts with a negative peptide (D979-E991; P13-) positioned distal to the tyrosine kinase domain in the opposite EGFR monomer. The present work shows additional data strengthening this model. In fact, by analyzing protein sequences of 21 annotated ErbB proteins from 9 vertebrate genomes, we reveal the high conservation of peptides P13+ and P13- with regard to their sequence as well as their position relative to the tyrosine kinase (TK) domain. Moreover in silico structure modeling of these ErbB intracellular domains supports a general electrostatic P13+/P13- interaction, implying that the C-terminal of one receptor monomer is facing the TK domain of the other monomer in the receptor dimer and vice versa. This model provides new insights into the molecular mechanism of ErbB receptor activation and suggests a new strategy to pharmacologically interfering with ErbB receptor activity.
Collapse
Affiliation(s)
- Sami Aifa
- Centre of Biotechnology of Sfax, Sfax, Tunisia
| | | | | | | | | | | |
Collapse
|
13
|
Nethery DE, Moore BB, Minowada G, Carroll J, Faress JA, Kern JA. Expression of mutant human epidermal receptor 3 attenuates lung fibrosis and improves survival in mice. J Appl Physiol (1985) 2005; 99:298-307. [PMID: 15731393 DOI: 10.1152/japplphysiol.01360.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neuregulin-1 (NRG-1), binding to the human epidermal growth factor receptor HER2/HER3, plays a role in pulmonary epithelial cell proliferation and recovery from injury in vitro. We hypothesized that activation of HER2/HER3 by NRG-1 would also play a role in recovery from in vivo lung injury. We tested this hypothesis using bleomycin lung injury of transgenic mice incapable of signaling through HER2/HER3 due to lung-specific dominant-negative HER3 (DNHER3) expression. In animals expressing DNHER3, protein leak, cell infiltration, and NRG-1 levels in bronchoalveolar lavage fluid increased after injury, similar to that in nontransgenic littermate control animals. However, HER2/HER3 was not activated, and DNHER3 animals displayed fewer lung morphological changes at 10 and 21 days after injury (P = 0.01). In addition, they contained 51% less collagen in injured lungs (P = 0.04). Transforming growth factor-beta1 did not increase in bronchoalveolar lavage fluid from DNHER3 mice compared with nontransgenic littermate mice (P = 0.001), suggesting that a mechanism for the decreased fibrosis was lack of transforming growth factor-beta1 induction in DNHER3 mice. Severe lung injury (0.08 units bleomycin) resulted in 80% mortality of nontransgenic mice, but only 35% mortality of DNHER3 transgenic mice (P = 0.04). Thus inhibition of HER2/HER3 signaling protects against pulmonary fibrosis and improves survival.
Collapse
Affiliation(s)
- David E Nethery
- Dept. of Internal Medicine, Pulmonary and Critical Care Division, Univ. Hospitals of Cleveland, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bennasroune A, Fickova M, Gardin A, Dirrig-Grosch S, Aunis D, Crémel G, Hubert P. Transmembrane peptides as inhibitors of ErbB receptor signaling. Mol Biol Cell 2004; 15:3464-74. [PMID: 15146055 PMCID: PMC452597 DOI: 10.1091/mbc.e03-10-0753] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 04/23/2004] [Accepted: 05/03/2004] [Indexed: 11/11/2022] Open
Abstract
Receptor tyrosine kinases have a single transmembrane (TM) segment that is usually assumed to play a passive role in ligand-induced dimerization and activation of the receptor. However, mutations within some of these receptors, and recent studies with the epidermal growth factor (EGF) and ErbB2 receptors have indicated that interactions between TM domains do contribute to stabilization of ligand-independent and/or ligand-induced receptor dimerization and activation. One consequence of the importance of these interactions is that short hydrophobic peptides corresponding to these domains should act as specific inhibitors. To test this hypothesis, we constructed expression vectors encoding short fusion peptides encompassing native or mutated TM domains of the EGF, ErbB2, and insulin receptors. In human cell lines overexpressing the wild-type EGF receptor or ErbB2, we observed that the peptides are expressed at the cell surface and that they inhibit specifically the autophosphorylation and signaling pathway of their cognate receptor. Identical results were obtained with peptides chemically synthesized. Mechanism of action involves inhibition of dimerization of the receptors as shown by the lack of effects of mutant nondimerizing sequences, completed by density centrifugation and covalent cross-linking experiments. Our findings stress the role of TM domain interactions in ErbB receptor function, and possibly for other single-spanning membrane proteins.
Collapse
Affiliation(s)
- Amar Bennasroune
- Institut National de la Santé et de la Recherche Médicale Unit 575, and Université Louis Pasteur, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 2004; 5:317-28. [PMID: 15093539 DOI: 10.1016/s1535-6108(04)00083-2] [Citation(s) in RCA: 829] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 02/09/2004] [Accepted: 02/26/2004] [Indexed: 12/12/2022]
Abstract
We have determined the 3.2 A X-ray crystal structure of the extracellular domain of the human epidermal growth factor receptor 2 (ErbB2 or HER2) in a complex with the antigen binding fragment of pertuzumab, an anti-ErbB2 monoclonal antibody also known as 2C4 or Omnitarg. Pertuzumab binds to ErbB2 near the center of domain II, sterically blocking a binding pocket necessary for receptor dimerization and signaling. The ErbB2-pertuzumab structure, combined with earlier mutagenesis data, defines the pertuzumab residues essential for ErbB2 interaction. To analyze the ErbB2 side of the interface, we have mutated a number of residues contacting pertuzumab and examined the effects of these mutations on pertuzumab binding and ErbB2-ErbB3 heterodimerization. We have also shown that conserved residues previously shown to be necessary for EGF receptor homodimerization may be dispensible for ErbB2-ErbB3 heterodimerization.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal, Humanized
- Binding Sites
- Binding Sites, Antibody
- CHO Cells
- Cricetinae
- Crystallography, X-Ray
- Dimerization
- Humans
- Ligands
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Structure, Tertiary
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Matthew C Franklin
- Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94114 USA
| | | | | | | | | | | |
Collapse
|
16
|
Marmor MD, Skaria KB, Yarden Y. Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys 2004; 58:903-13. [PMID: 14967450 DOI: 10.1016/j.ijrobp.2003.06.002] [Citation(s) in RCA: 267] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Accepted: 06/25/2003] [Indexed: 12/31/2022]
Abstract
Growth factors enable cells to escape irradiation-induced death (apoptosis). One important family of growth factors share an epidermal growth factor motif, and all bind to ErbB transmembrane receptors. In response to growth factor ligands, ErbB receptor tyrosine kinases induce a variety of cellular responses, including proliferation, differentiation and motility. Signal transduction pathways are initiated upon ligand-induced receptor homo- or heterodimerization and activation of tyrosine kinase activity. The complement of induced signaling pathways, as well as their magnitude and duration, determines the biological outcome of signaling, and in turn, is regulated by the identity of the ligand and the receptor composition. Recent insights into the structural basis for receptor dimerization, as provided by crystallographic analysis, are described, as is the differential activation of signaling pathways and downregulatory mechanisms. Further, dysregulation of the ErbB network is implicated in a variety of human cancers, and the nature of aberrant signaling through ErbB proteins, as well as current therapeutic approaches, are discussed, highlighting the role of the highly oncogenic ErbB-2 molecule.
Collapse
Affiliation(s)
- Mina D Marmor
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
17
|
Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TPJ, Leahy DJ, Lemmon MA, Sliwkowski MX, Ward CW, Yokoyama S. An Open-and-Shut Case? Recent Insights into the Activation of EGF/ErbB Receptors. Mol Cell 2003; 12:541-52. [PMID: 14527402 DOI: 10.1016/s1097-2765(03)00350-2] [Citation(s) in RCA: 640] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent crystallographic studies have provided significant new insight into how receptor tyrosine kinases from the EGF receptor or ErbB family are regulated by their growth factor ligands. EGF receptor dimerization is mediated by a unique dimerization arm, which becomes exposed only after a dramatic domain rearrangement is promoted by growth factor binding. ErbB2, a family member that has no ligand, has its dimerization arm constitutively exposed, and this explains several of its unique properties. We outline a mechanistic view of ErbB receptor homo- and heterodimerization, which suggests new approaches for interfering with these processes when they are implicated in human cancers.
Collapse
Affiliation(s)
- Antony W Burgess
- Cooperative Research Centre for Cellular Growth Factors, P.O. Box 2008, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Garrett TPJ, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Kofler M, Jorissen RN, Nice EC, Burgess AW, Ward CW. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 2003; 11:495-505. [PMID: 12620236 DOI: 10.1016/s1097-2765(03)00048-0] [Citation(s) in RCA: 427] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ErbB2 does not bind ligand, yet appears to be the major signaling partner for other ErbB receptors by forming heteromeric complexes with ErbB1, ErbB3, or ErbB4. The crystal structure of residues 1-509 of ErbB2 at 2.5 A resolution reveals an activated conformation similar to that of the EGFR when complexed with ligand and very different from that seen in the unactivated forms of ErbB3 or EGFR. The structure explains the inability of ErbB2 to bind known ligands and suggests why ErbB2 fails to form homodimers. Together, the data suggest a model in which ErbB2 is already in the activated conformation and ready to interact with other ligand-activated ErbB receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites
- CHO Cells
- Cricetinae
- Crystallography, X-Ray
- DNA, Complementary/genetics
- ErbB Receptors/chemistry
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Humans
- In Vitro Techniques
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Conformation
- Protein Structure, Tertiary
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/chemistry
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Static Electricity
Collapse
Affiliation(s)
- Thomas P J Garrett
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, 3050, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 2002; 277:46265-72. [PMID: 12196540 DOI: 10.1074/jbc.m207135200] [Citation(s) in RCA: 1043] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of the kinase domain from the epidermal growth factor receptor (EGFRK) including forty amino acids from the carboxyl-terminal tail has been determined to 2.6-A resolution, both with and without an EGFRK-specific inhibitor currently in Phase III clinical trials as an anti-cancer agent, erlotinib (OSI-774, CP-358,774, Tarceva(TM)). The EGFR family members are distinguished from all other known receptor tyrosine kinases in possessing constitutive kinase activity without a phosphorylation event within their kinase domains. Despite its lack of phosphorylation, we find that the EGFRK activation loop adopts a conformation similar to that of the phosphorylated active form of the kinase domain from the insulin receptor. Surprisingly, key residues of a putative dimerization motif lying between the EGFRK domain and carboxyl-terminal substrate docking sites are found in close contact with the kinase domain. Significant intermolecular contacts involving the carboxyl-terminal tail are discussed with respect to receptor oligomerization.
Collapse
Affiliation(s)
- Jennifer Stamos
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | |
Collapse
|
20
|
Penuel E, Akita RW, Sliwkowski MX. Identification of a region within the ErbB2/HER2 intracellular domain that is necessary for ligand-independent association. J Biol Chem 2002; 277:28468-73. [PMID: 12000754 DOI: 10.1074/jbc.m202510200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand-independent ErbB2 activation occurs principally by two distinct mechanisms: overexpression and mutation. Overexpression of ErbB2 at the plasma membrane drives receptor self-association in a concentration-dependent manner, which in turn leads to constitutive receptor activation. Subsets of human breast cancers contain a molecular alteration that leads to erbB2 gene amplification and subsequent protein overexpression. Although not recognized to occur in human cancers, mutation can also lead to increased ErbB2 association. A well characterized mutant of the rodent ortholog neu involves substitution of glutamate for valine within the transmembrane domain. In each case, a number of explanations have been proposed to explain the resulting ErbB2 activation. These include stabilization of receptor oligomers, release of negative constraints, and altered receptor conformations. Here we define a short amino acid segment comprising amino acids 966-968 in the intracellular domain that seemingly disrupts receptor-receptor association that is driven either by overexpression or mutation in the transmembrane region. Because of the hydrophobic nature of these amino acids (VVI), we propose that alteration of this segment likely results in a global conformational change in an area that has been proposed previously to be a dimerization motif for ErbB homomeric association.
Collapse
Affiliation(s)
- Elicia Penuel
- Molecular Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | |
Collapse
|
21
|
Laura RP, Witt AS, Held HA, Gerstner R, Deshayes K, Koehler MFT, Kosik KS, Sidhu SS, Lasky LA. The Erbin PDZ domain binds with high affinity and specificity to the carboxyl termini of delta-catenin and ARVCF. J Biol Chem 2002; 277:12906-14. [PMID: 11821434 DOI: 10.1074/jbc.m200818200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Erbin is a recently described member of the LAP (leucine-rich repeat and PDZ domain) protein family. We used a C-terminally displayed phage peptide library to identify optimal ligands for the Erbin PDZ domain. Phage-selected peptides were type 1 PDZ ligands that bound with high affinity and specificity to the Erbin PDZ domain in vitro. These peptides most closely resembled the C-terminal PDZ domain-binding motifs of three p120-related catenins: delta-catenin, ARVCF, and p0071 (DSWV-COOH). Analysis of the interactions of the Erbin PDZ domain with synthetic peptides matching the C termini of ARVCF or delta-catenin also demonstrated specific high affinity binding. We characterized the interactions between the Erbin PDZ domain and both ARVCF and delta-catenin in vitro and in vivo. The Erbin PDZ domain co-localized and coprecipitated with ARVCF or delta-catenin complexed with beta-catenin and E/N-cadherin. Mutagenesis and peptide competition experiments showed that the association of Erbin with the cadherin-catenin complex was mediated by the interaction of its PDZ domain with the C-terminal PDZ domain-binding motifs (DSWV-COOH) of ARVCF and delta-catenin. Finally, we showed that endogenous delta-catenin and Erbin co-localized in and co-immunoprecipitated from neurons. These results suggest that delta-catenin and ARVCF may function to mediate the association of Erbin with the junctional cadherin-catenin complex. They also demonstrate that C-terminal phage-display technology can be used to predict physiologically relevant ligands for PDZ domains.
Collapse
Affiliation(s)
- Richard P Laura
- Department of Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The mechanisms by which most receptor protein-tyrosine kinases (RTKs) transmit signals are now well established. Binding of ligand results in the dimerization of receptor monomers followed by transphosphorylation of tyrosine residues within the cytoplasmic domains of the receptors. This tidy picture has, however, some strange characters lurking around the edges. Cases have now been identified in which RTKs lack kinase activity, but, despite being "dead" appear to have roles in signal transduction. Even stranger are the cases in which genes encoding RTKs produce protein products consisting of only a portion of the kinase domain. At least one such "fractured" RTK appears to be involved in signal transduction. Here we describe how these strange molecules might function and discuss the questions associated with their evolution. BioEssays 23:69-76, 2001.
Collapse
Affiliation(s)
- M Kroiher
- Zoologisches Institut, Universität zu Köln, Germany
| | | | | |
Collapse
|
23
|
Chausovsky A, Waterman H, Elbaum M, Yarden Y, Geiger B, Bershadsky AD. Molecular requirements for the effect of neuregulin on cell spreading, motility and colony organization. Oncogene 2000; 19:878-88. [PMID: 10702796 DOI: 10.1038/sj.onc.1203410] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuregulin can trigger morphogenetic signals in cells both in vivo and in culture through the activation of receptors from the ErbB family. We have ectopically expressed various ErbB-receptors in 32D myeloid cells lacking endogenous ErbB-proteins, and in CHO cells, which express only ErbB-2. We show here that activation of ErbB-3/ErbB-2 heterodimeric receptors triggers PI3-kinase-dependent lamellipodia formation and spreading, while individual ErbB-receptor homodimers as well as ErbB-3/ErbB-1 heterodimers are much less effective. CHO cells expressing ErB-3/ErbB-2 together with N-cadherin, an adhesion receptor, form epithelioid colonies. Neuregulin activates cell motility leading to transition of these colonies into ring-shaped multicellular arrays, similar to those induced by neuregulin in epithelial cells of different types (Chausovsky et al., 1998). This process requires both PI3-kinase and MAP kinase kinase activity and depends on coordinated changes in the actin- and microtubule-based cytoskeleton. Transactivation of ErbB-2 is not sufficient for the activation of cell motility and ring formation, and the C-terminal domain of ErbB-3 bearing the docking sites for the p85 subunit of PI3-kinase is essential for these morphogenetic effects. Thus, ErbB-3 in conjunction with ErbB-2 mediates, via its C-terminal domain, cytoskeletal and adhesion alterations which activate cell spreading and motility, leading to the formation of complex structures such as multicellular rings. Oncogene (2000) 19, 878 - 888.
Collapse
Affiliation(s)
- A Chausovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Our understanding of the normal signaling mechanisms and functions of human epidermal growth factor receptor 2 (HER2) and other members of the HER family, namely epidermal growth factor receptor, HER3, and HER4, is growing rapidly. Activation of these receptors results in a diverse array of signals through the formation of homodimeric and heterodimeric receptor complexes; HER2 is the preferred dimerization partner for the other HERs. These oligomeric receptor complexes activate distinct signaling pathways, such as the Ras-MAPK and PI3-kinase pathways. These, in turn, affect various cellular processes. Recent gene deletion experiments in mice point to an important role for HER2 in cardiac and neural development, and evidence from other studies indicates that HER2 is involved in normal breast growth and development. Thus, HER2 is a key component of a complex signaling network that plays a critical role in the regulation of tissue development, growth, and differentiation.
Collapse
Affiliation(s)
- S Sundaresan
- Department of Molecular Oncology, Genentech, Inc., MS 63, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | |
Collapse
|