1
|
Plessner M, Thiele L, Hofhuis J, Thoms S. Tissue-specific roles of peroxisomes revealed by expression meta-analysis. Biol Direct 2024; 19:14. [PMID: 38365851 PMCID: PMC10873952 DOI: 10.1186/s13062-024-00458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Peroxisomes are primarily studied in the brain, kidney, and liver due to the conspicuous tissue-specific pathology of peroxisomal biogenesis disorders. In contrast, little is known about the role of peroxisomes in other tissues such as the heart. In this meta-analysis, we explore mitochondrial and peroxisomal gene expression on RNA and protein levels in the brain, heart, kidney, and liver, focusing on lipid metabolism. Further, we evaluate a potential developmental and heart region-dependent specificity of our gene set. We find marginal expression of the enzymes for peroxisomal fatty acid oxidation in cardiac tissue in comparison to the liver or cardiac mitochondrial β-oxidation. However, the expression of peroxisome biogenesis proteins in the heart is similar to other tissues despite low levels of peroxisomal fatty acid oxidation. Strikingly, peroxisomal targeting signal type 2-containing factors and plasmalogen biosynthesis appear to play a fundamental role in explaining the essential protective and supporting functions of cardiac peroxisomes.
Collapse
Affiliation(s)
- Matthias Plessner
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Leonie Thiele
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Julia Hofhuis
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Sven Thoms
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany.
- Department of Child and Adolescent Health, University Medical Center, Göttingen, Germany.
| |
Collapse
|
2
|
Jiang Y, Han X, Feng N, Jin W, Zhang T, Zhang M, Shi M, Zhang B, Liu S, Hu D. Androgen plays an important role in regulating the synthesis of pheromone in the scent gland of muskrat. J Steroid Biochem Mol Biol 2022; 217:106026. [PMID: 34808361 DOI: 10.1016/j.jsbmb.2021.106026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 02/04/2023]
Abstract
The scent (musk) gland is an organ unique to muskrats and other scent-secreting animals, and the pheromones (musk) synthesized and secreted by the scent gland play a role in chemical communication among scent-secreting animals. The musk gland is synchronized with testicular developmental changes; however, little is known regarding androgen secretion from the testis and how this regulates pheromone synthesis and the secretion of scent. To investigate the effect of androgens on the synthesis of pheromones in the musk gland, we established a muskrat castration model by surgical removal of the testis, and analyzed the histomorphology, hormone concentration, gene expression, and changes in the chemical composition of the musk gland in castration and control groups by histomorphological analysis, Enzyme-Linked ImmunoSorbent Assay (ELISA), RNA sequencing (RNA-seq), and gas chromatography-mass spectrometry (GCMS). Histomorphological analysis results showed that after castration, muskrat gland cells underwent significant atrophy (P < 0.05). Hormone measurement results showed that there was a significant decrease in serum testosterone and muskrat musk testosterone (P < 0.05) after muskrat castration. Transcriptome sequencing results showed that 510 differentially expressed transcripts (DETs) were mainly enriched in fatty acid metabolism, terpenoid backbone biosynthesis, fatty acid degradation, PPAR signaling pathway, and fatty acid biosynthesis. GCMS results showed that macrocyclic ketones, steroids, fatty acids, alcohols, and esters in musk were significantly changed (P < 0.05). In conclusion, androgens were found to play an important function in the chemical communication exchange between muskrats through regulating pheromone synthesis in musk cells. This study provides a basis for understanding the mechanism of animal communication influenced by androgens.
Collapse
Affiliation(s)
- Yuanlin Jiang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiangyu Han
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Nuannuan Feng
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Weijiang Jin
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Tianxiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Meishan Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Minghui Shi
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Baofeng Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Shuqiang Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
3
|
Bao T, Wang S, Yang Y, He L, Han L, Zhai T, Chen J, Zhou Q, Zhao X, Lian F, Zhao L, Tong X. Exploring the Regulation of Jiangtang Tiaozhi Formula on the Biological Network of Obese T2DM Complicated With Dyslipidemia Based on Clinical Transcriptomics. Front Endocrinol (Lausanne) 2022; 13:817147. [PMID: 35957821 PMCID: PMC9357946 DOI: 10.3389/fendo.2022.817147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To use systems biology to explore the biomolecular network mechanism of the Jiangtang Tiaozhi Recipe (JTTZR) in the intervention of obese Type 2 diabetes (T2DM) patients with dyslipidemia. METHODS Twelve patients with obese type 2 diabetes mellitus and dyslipidemia (traditional Chinese medicine syndrome differentiation was excess heat syndrome of the stomach and intestines) were treated with JTTZR for 24 weeks, and 12 patients were included in the healthy control group. First, blood samples from 6 patients in each group (disease group before treatment, disease group after treatment, and healthy control group) were collected for RNA microarray analysis. Quantitative polymerase chain reaction (qPCR) was used to validate these target lncRNAs and mRNAs. Finally, a detailed analysis of the differences in the disease group before treatment vs. the healthy control group and the disease group after treatment vs. the disease group before treatment was undertaken. In addition, we focused on disease-related pathways and analyzed the correlation between the differential expression of target lncRNAs and clinical indicators. RESULTS (1) Disease group before treatment vs. healthy control group: There were 557 up-regulated lncRNAs, 273 down-regulated lncRNAs, 491 up-regulated mRNAs, and 1639 down-regulated mRNAs. GO analysis and pathway analysis showed that T2DM may be related to cell proliferation in the forebrain, post-embryonic organ development, calcium signaling pathway. qPCR validation showed that the expression of XLOC-005590 and HNF1A-AS1 as target lncRNAs increased, and this was verified by gene chip analysis. (2) Disease group after treatment vs. disease group before treatment: 128 lncRNAs were upregulated, 32 lncRNAs were downregulated, 45 mRNAs were upregulated, and 140 mRNAs were downregulated. GO analysis and pathway analysis showed that JTTZR may treat T2DM through endosome transport, the insulin signaling pathway, and glycine, serine, and threonine metabolism. qPCR validation showed that in the healthy control group, XLOC_005590 was upregulated, whereas the downstream gene (ECI2) was downregulated in the disease group before treatment. However, after 24 weeks of intervention with JTTZR, XLOC_005590 was downregulated and ECI2 was upregulated compared with the disease group before treatment (0 weeks) (P <0.05). CONCLUSION JTTZR may interfere in patients with obese T2DM with dyslipidemia by regulating pathways such as fatty acid degradation, glycolysis/gluconeogenesis, and pyruvate metabolism.
Collapse
Affiliation(s)
- Tingting Bao
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Song Wang
- Department of Geriatrics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingying Yang
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lisha He
- Medical History Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Han
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiangang Zhai
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Chen
- Graduate College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qiang Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiyan Zhao
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Linhua Zhao, ; Xiaolin Tong,
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Linhua Zhao, ; Xiaolin Tong,
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Linhua Zhao, ; Xiaolin Tong,
| |
Collapse
|
4
|
Huang W, Shimizu H, Bianchi J, Matovinovic K, Ayares DL, Gotoh M, Korbutt GS, Rajotte RV, Rayat GR. Impact of donor and prolonged cold ischemia time of neonatal pig pancreas on neonatal pig islet transplant outcome. Xenotransplantation 2021; 28:e12663. [PMID: 33230864 DOI: 10.1111/xen.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Genetically modified pigs (GMP) have been developed to alleviate the shortage of donors in human islet transplantation and rejection. In this study, we characterized and compared the islets from GalTKO, GalTKO/hCD46, GalTKO/hCD46/hCD39, and wild-type (WT) neonatal pigs. METHODS Islets were isolated from GMP and WT pig pancreases that have been packaged with ice pack for at least 24 hours. The difference in gene expression and function of islets were evaluated by microarray analysis and transplantation of islets under the kidney capsule of streptozotocin-induced diabetic immune-deficient mice, respectively. Blood glucose levels of these mice were monitored weekly post-transplantation for >100 days, and islet grafts were collected and evaluated for the presence of endocrine cells. RESULTS The genes involved in extracellular components, cell adhesion, glucose metabolism, and inflammatory response are differentially expressed between GMP and WT pig islets. Variation in the ability of pig islets in correcting the diabetic state of the mouse recipients appears to be dependent on the pig donor. In addition, prolonged cold ischemia time had a negative effect on the transplant outcome. All normoglycemic mice were able to respond well to glucose challenge despite the initial differences in the ability of islet transplants to reverse their diabetic state. Islet xenografts of normoglycemic mice contained abundant insulin- and glucagon-positive cells. CONCLUSION The effect of GMP and WT neonatal pig islet transplants on hyperglycemia in mice appears to be dependent on the pig donor, and prolonged cold ischemia time negatively affects the neonatal pig islet transplant outcome.
Collapse
Affiliation(s)
- Wenlong Huang
- Faculty of Medicine and Dentistry, Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, Canada
- General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hirofumi Shimizu
- Department of Surgery, Fukushima Medical University, Fukushima, Japan
| | | | - Kaja Matovinovic
- Faculty of Medicine and Dentistry, Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Mitsukazu Gotoh
- Department of Surgery, Fukushima Medical University, Fukushima, Japan
| | - Gregory S Korbutt
- Faculty of Medicine and Dentistry, Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Ray V Rajotte
- Faculty of Medicine and Dentistry, Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Gina R Rayat
- Faculty of Medicine and Dentistry, Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Islinger M, Costello JL, Kors S, Soupene E, Levine TP, Kuypers FA, Schrader M. The diversity of ACBD proteins - From lipid binding to protein modulators and organelle tethers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118675. [PMID: 32044385 PMCID: PMC7057175 DOI: 10.1016/j.bbamcr.2020.118675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Members of the large multigene family of acyl-CoA binding domain containing proteins (ACBDs) share a conserved motif required for binding of Coenzyme A esterified fatty acids of various chain length. These proteins are present in the three kingdoms of life, and despite their predicted roles in cellular lipid metabolism, knowledge about the precise functions of many ACBD proteins remains scarce. Interestingly, several ACBD proteins are now suggested to function at organelle contact sites, and are recognized as host interaction proteins for different pathogens including viruses and bacteria. Here, we present a thorough phylogenetic analysis of the ACBD family and discuss their structure and evolution. We summarize recent findings on the various functions of animal and fungal ACBDs with particular focus on peroxisomes, the role of ACBD proteins at organelle membranes, and their increasing recognition as targets for pathogens.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Suzan Kors
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|
6
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
7
|
Okumoto K, Miyata N, Fujiki Y. Identification of Peroxisomal Protein Complexes with PTS Receptors, Pex5 and Pex7, in Mammalian Cells. Subcell Biochem 2019; 89:287-298. [PMID: 30378028 DOI: 10.1007/978-981-13-2233-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Pex5 and Pex7 are cytosolic receptors for peroxisome targeting signal type-1 (PTS1) and type-2 (PTS2), respectively, and play a pivotal role in import of peroxisomal matrix proteins. Recent advance in mass spectrometry analysis has facilitated comprehensive analysis of protein-protein interaction network by a combination with immunoprecipitation or biochemical purification. In this chapter, we introduce several findings obtained by these methods applied to mammalian cells. Exploring Pex5-binding partners in mammalian cells revealed core components comprising the import machinery complex of matrix proteins and a number of PTS1-type cargo proteins. Biochemical purification of the Pex5-export stimulating factor from rat liver cytosol fraction identified Awp1, providing further insight into molecular mechanisms of the export step of mono-ubiquitinated Pex5. Identification of DDB1 (damage-specific DNA-binding protein 1), a component of CRL4 (Cullin4A-RING ubiquitin ligase) E3 complex, as a Pex7-interacting protein revealed that quality control of Pex7 by CRL4A is important for PTS2 protein import by preventing the accumulation of dysfunctional Pex7. Furthermore, analysis of binding partners of an intraperoxisomal processing enzyme, trypsin-domain containing 1 (Tysnd1), showed a protein network regulating peroxisomal fatty acid β-oxidation.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Non Miyata
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.,Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
8
|
Seo H, Kim KJ. Crystal Structure of a Novel Type Isomerase of Enoyl-CoA Hydratase/Isomerase Family Protein from Cupriavidus necator H16. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0393-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Glenn SE, Geyer PK. Investigation of the Developmental Requirements of Drosophila HP1 and Insulator Protein Partner, HIPP1. G3 (BETHESDA, MD.) 2019; 9:345-357. [PMID: 30514714 PMCID: PMC6385973 DOI: 10.1534/g3.118.200705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/30/2018] [Indexed: 12/02/2022]
Abstract
Drosophila Suppressor of Hairy-wing [Su(Hw)] is a multifunctional zinc finger DNA binding protein. Transcriptional regulation by Su(Hw) is essential in the ovary and testis, where Su(Hw) functions primarily as a repressor. Recently, the HP1a and Insulator Partner Protein 1 (HIPP1) was found to extensively co-localize with Su(Hw) and other insulator binding proteins in euchromatic regions of the genome, and with Heterochromatin Protein 1a (HP1a) in heterochromatic regions. As HIPP1 is the homolog of the human co-repressor Chromodomain Y-Like (CDYL), we tested its requirement in establishing transcriptional repression in flies. To this end, we generated multiple Hipp1 null alleles and a tagged derivative of the endogenous gene (Hipp1GFP ), using CRISPR mutagenesis. We show that HIPP1 is a widely expressed nuclear protein that is dispensable for viability, as well as female and male fertility. We find that HIPP1 and HP1a display minimum co-localization in interphase cells, and HP1a-dependent transcriptional repression of several reporter genes is HIPP1-independent, indicating that HIPP1 is not essential for HP1a-dependent heterochromatin formation. Despite Su(Hw) having a major role in promoting HIPP1 occupancy in euchromatin, we show that HIPP1 is dispensable for the transcriptional and insulator functions of Su(Hw), indicating that HIPP1 is not a critical Su(Hw) cofactor. Further studies are needed to clarify the role of HIPP1 in Drosophila development.
Collapse
Affiliation(s)
| | - Pamela K Geyer
- Molecular Medicine Program
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
10
|
Itkonen HM, Brown M, Urbanucci A, Tredwell G, Lau CH, Barfeld S, Hart C, Guldvik IJ, Takhar M, Heemers HV, Erho N, Bloch K, Davicioni E, Derua R, Waelkens E, Mohler JL, Clarke N, Swinnen JV, Keun HC, Rekvig OP, Mills IG. Lipid degradation promotes prostate cancer cell survival. Oncotarget 2017; 8:38264-38275. [PMID: 28415728 PMCID: PMC5503531 DOI: 10.18632/oncotarget.16123] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/01/2017] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential.
Collapse
Affiliation(s)
- Harri M Itkonen
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Michael Brown
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Alfonso Urbanucci
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research and Oslo University Hospital, Oslo, Norway
| | - Gregory Tredwell
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Chung Ho Lau
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Stefan Barfeld
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Claire Hart
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Ingrid J. Guldvik
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Mandeep Takhar
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Hannelore V. Heemers
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Urology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology/Medical Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Erho
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Katarzyna Bloch
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI Leuven Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Elai Davicioni
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Rita Derua
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven-University of Leuven, Leuven, Belgium
| | - Etienne Waelkens
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven-University of Leuven, Leuven, Belgium
| | - James L. Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Noel Clarke
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- PCUK/Movember Centre of Excellence for Prostate Cancer Research, CRUK Manchester Institute for Cancer Research, University of Manchester, Manchester, UK
- Department of Urology, The Christie NHS Foundation Trust, Manchester, UK
| | - Johan V. Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI Leuven Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Hector C. Keun
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ole P. Rekvig
- Department of Medical Biology, University of Tromso, Tromso, Norway
| | - Ian G. Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research and Oslo University Hospital, Oslo, Norway
- PCUK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| |
Collapse
|
11
|
Fan J, Li X, Issop L, Culty M, Papadopoulos V. ACBD2/ECI2-Mediated Peroxisome-Mitochondria Interactions in Leydig Cell Steroid Biosynthesis. Mol Endocrinol 2016; 30:763-82. [PMID: 27167610 DOI: 10.1210/me.2016-1008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Fatty acid metabolism and steroid biosynthesis are 2 major pathways shared by peroxisomes and mitochondria. Both organelles are in close apposition to the endoplasmic reticulum, with which they communicate via interorganelle membrane contact sites to promote cellular signaling and the exchange of ions and lipids. To date, no convincing evidence of the direct contact between peroxisomes and mitochondria was reported in mammalian cells. Hormone-induced, tightly controlled steroid hormone biosynthesis requires interorganelle interactions. Using immunofluorescent staining and live-cell imaging, we found that dibutyryl-cAMP treatment of MA-10 mouse tumor Leydig cells rapidly induces peroxisomes to approach mitochondria and form peroxisome-mitochondrial contact sites/fusion, revealed by the subcellular distribution of the endogenous acyl-coenzyme A-binding domain (ACBD)2/ECI2 isoform A generated by alternative splicing, and further validated using a proximity ligation assay. This event occurs likely via a peroxisome-like structure, which is mediated by peroxisomal and mitochondrial matrix protein import complexes: peroxisomal import receptor peroxisomal biogenesis factor 5 (PEX5), and the mitochondrial import receptor subunit translocase of outer mitochondrial membrane 20 homolog (yeast) protein. Similar results were obtained using the mLTC-1 mouse tumor Leydig cells. Ectopic expression of the ACBD2/ECI2 isoform A in MA-10 cells led to increased basal and hormone-stimulated steroid formation, indicating that ACBD2/ECI2-mediated peroxisomes-mitochondria interactions favor in the exchange of metabolites and/or macromolecules between these 2 organelles in support of steroid biosynthesis. Considering the widespread occurrence of the ACBD2/ECI2 protein, we propose that this protein might serve as a tool to assist in understanding the contact between peroxisomes and mitochondria.
Collapse
Affiliation(s)
- Jinjiang Fan
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Xinlu Li
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Leeyah Issop
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Martine Culty
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| |
Collapse
|
12
|
Wanders RJA, Waterham HR, Ferdinandusse S. Metabolic Interplay between Peroxisomes and Other Subcellular Organelles Including Mitochondria and the Endoplasmic Reticulum. Front Cell Dev Biol 2016; 3:83. [PMID: 26858947 PMCID: PMC4729952 DOI: 10.3389/fcell.2015.00083] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/10/2015] [Indexed: 01/02/2023] Open
Abstract
Peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways which include: (1.) etherphospholipid biosynthesis; (2.) fatty acid beta-oxidation; (3.) bile acid synthesis; (4.) docosahexaenoic acid (DHA) synthesis; (5.) fatty acid alpha-oxidation; (6.) glyoxylate metabolism; (7.) amino acid degradation, and (8.) ROS/RNS metabolism. The importance of peroxisomes for human health and development is exemplified by the existence of a large number of inborn errors of peroxisome metabolism in which there is an impairment in one or more of the metabolic functions of peroxisomes. Although the clinical signs and symptoms of affected patients differ depending upon the enzyme which is deficient and the extent of the deficiency, the disorders involved are usually (very) severe diseases with neurological dysfunction and early death in many of them. With respect to the role of peroxisomes in metabolism it is clear that peroxisomes are dependent on the functional interplay with other subcellular organelles to sustain their role in metabolism. Indeed, whereas mitochondria can oxidize fatty acids all the way to CO2 and H2O, peroxisomes are only able to chain-shorten fatty acids and the end products of peroxisomal beta-oxidation need to be shuttled to mitochondria for full oxidation to CO2 and H2O. Furthermore, NADH is generated during beta-oxidation in peroxisomes and beta-oxidation can only continue if peroxisomes are equipped with a mechanism to reoxidize NADH back to NAD+, which is now known to be mediated by specific NAD(H)-redox shuttles. In this paper we describe the current state of knowledge about the functional interplay between peroxisomes and other subcellular compartments notably the mitochondria and endoplasmic reticulum for each of the metabolic pathways in which peroxisomes are involved.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Laboratory Division, Departments of Paediatrics and Clinical Chemistry, Academic Medical Center, Emma Children's Hospital, University of Amsterdam Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Laboratory Division, Departments of Paediatrics and Clinical Chemistry, Academic Medical Center, Emma Children's Hospital, University of Amsterdam Amsterdam, Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Laboratory Division, Departments of Paediatrics and Clinical Chemistry, Academic Medical Center, Emma Children's Hospital, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
13
|
Unsaturated Lipid Assimilation by Mycobacteria Requires Auxiliary cis-trans Enoyl CoA Isomerase. ACTA ACUST UNITED AC 2015; 22:1577-87. [DOI: 10.1016/j.chembiol.2015.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 11/30/2022]
|
14
|
Onwukwe GU, Koski MK, Pihko P, Schmitz W, Wierenga RK. Structures of yeast peroxisomal Δ(3),Δ(2)-enoyl-CoA isomerase complexed with acyl-CoA substrate analogues: the importance of hydrogen-bond networks for the reactivity of the catalytic base and the oxyanion hole. ACTA ACUST UNITED AC 2015; 71:2178-91. [PMID: 26527136 DOI: 10.1107/s139900471501559x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/19/2015] [Indexed: 11/10/2022]
Abstract
Δ(3),Δ(2)-Enoyl-CoA isomerases (ECIs) catalyze the shift of a double bond from 3Z- or 3E-enoyl-CoA to 2E-enoyl-CoA. ECIs are members of the crotonase superfamily. The crotonase framework is used by many enzymes to catalyze a wide range of reactions on acyl-CoA thioesters. The thioester O atom is bound in a conserved oxyanion hole. Here, the mode of binding of acyl-CoA substrate analogues to peroxisomal Saccharomyces cerevisiae ECI (ScECI2) is described. The best defined part of the bound acyl-CoA molecules is the 3',5'-diphosphate-adenosine moiety, which interacts with residues of loop 1 and loop 2, whereas the pantetheine part is the least well defined. The catalytic base, Glu158, is hydrogen-bonded to the Asn101 side chain and is further hydrogen-bonded to the side chain of Arg100 in the apo structure. Arg100 is completely buried in the apo structure and a conformational change of the Arg100 side chain appears to be important for substrate binding and catalysis. The oxyanion hole is formed by the NH groups of Ala70 (loop 2) and Leu126 (helix 3). The O atoms of the corresponding peptide units, Gly69 O and Gly125 O, are both part of extensive hydrogen-bond networks. These hydrogen-bond networks are a conserved feature of the crotonase oxyanion hole and their importance for catalysis is discussed.
Collapse
Affiliation(s)
- Goodluck U Onwukwe
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - M Kristian Koski
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Petri Pihko
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, University of Würzburg, Biozentrum, Am Hubland, 97074 Würzburg, Germany
| | - Rik K Wierenga
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
15
|
Zhang Y, Zhang L, Sun J, Qiu J, Hu X, Hu J, Bao Z. Proteomic analysis identifies proteins related to carotenoid accumulation in Yesso scallop (Patinopecten yessoensis). Food Chem 2014; 147:111-6. [DOI: 10.1016/j.foodchem.2013.09.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/08/2013] [Accepted: 09/14/2013] [Indexed: 12/19/2022]
|
16
|
van Weeghel M, Ofman R, Argmann CA, Ruiter JPN, Claessen N, Oussoren SV, Wanders RJA, Aten J, Houten SM. Identification and characterization of Eci3, a murine kidney-specific Δ3,Δ2-enoyl-CoA isomerase. FASEB J 2013; 28:1365-74. [PMID: 24344334 DOI: 10.1096/fj.13-240416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oxidation of unsaturated fatty acids requires the action of auxiliary enzymes, such as Δ(3),Δ(2)-enoyl-CoA isomerases. Here we describe a detailed biochemical, molecular, histological, and evolutionary characterization of Eci3, the fourth member of the mammalian enoyl-CoA isomerase family. Eci3 specifically evolved in rodents after gene duplication of Eci2. Eci3 is with 79% identity homologous to Eci2 and contains a peroxisomal targeting signal type 1. Subcellular fractionation of mouse kidney and immunofluorescence studies revealed a specific peroxisomal localization for Eci3. Expression studies showed that mouse Eci3 is almost exclusively expressed in kidney. By using immunohistochemistry, we found that Eci3 is not only expressed in cells of the proximal tubule, but also in a subset of cells in the tubulointerstitium and the glomerulus. In vitro, Eci3 catalyzed the isomerization of trans-3-nonenoyl-CoA to trans-2-nonenoyl-CoA equally efficient as Eci2, suggesting a role in oxidation of unsaturated fatty acids. However, in contrast to Eci2, in silico gene coexpression and enrichment analysis for Eci3 in kidney did not yield carboxylic acid metabolism, but diverse biological functions, such as ion transport (P=7.1E-3) and tissue morphogenesis (P=1.0E-3). Thus, Eci3 picked up a novel and unexpected role in kidney function during rodent evolution.
Collapse
Affiliation(s)
- Michel van Weeghel
- 1Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mt. Sinai, 1425 Madison Ave., Box 1498, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Noguchi M, Okumoto K, Fujiki Y. System to quantify the import of peroxisomal matrix proteins by fluorescence intensity. Genes Cells 2013; 18:476-92. [PMID: 23573963 DOI: 10.1111/gtc.12051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/23/2013] [Indexed: 11/30/2022]
Abstract
Fourteen distinct peroxins are essential for peroxisome biogenesis in mammals, of which ten are involved in the import of matrix proteins into peroxisomes. Peroxisomal matrix protein import is regulated by various cellular factors; however, the mechanisms underlying this regulation are poorly understood. This is primarily because no quantitative detection method with high resolution is available to study the import of peroxisomal matrix proteins. Here, we developed a monitoring system that uses a fluorescent reporter that is stabilized in peroxisomes but is degraded in the cytosol. An FK506 binding protein 12 variant, termed destabilization domain (DD), is rapidly and constitutively degraded by proteasomes when expressed in mammalian cells. DD is reversibly protected by the addition of a specific synthetic ligand. In the absence of the ligand, a reporter molecule, enhanced GFP (EGFP) fused with DD and peroxisomal targeting signal 1 (DD-EGFP-PTS1), is largely degraded in the cytosol. By contrast, in the presence of the ligand, the reporter is stabilized and translocates into peroxisomes. Upon withdrawal of the ligand, the reporter in peroxisomes remains intact, whereas that in the cytosol is rapidly degraded. Thus, peroxisomal protein import can be readily quantified by measuring the fluorescence intensity of whole cells.
Collapse
Affiliation(s)
- Masafumi Noguchi
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
18
|
Mutowo-Meullenet P, Huntley RP, Dimmer EC, Alam-Faruque Y, Sawford T, Jesus Martin M, O'Donovan C, Apweiler R. Use of Gene Ontology Annotation to understand the peroxisome proteome in humans. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bas062. [PMID: 23327938 PMCID: PMC3548334 DOI: 10.1093/database/bas062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Gene Ontology (GO) is the de facto standard for the functional description of gene products, providing a consistent, information-rich terminology applicable across species and information repositories. The UniProt Consortium uses both manual and automatic GO annotation approaches to curate UniProt Knowledgebase (UniProtKB) entries. The selection of a protein set prioritized for manual annotation has implications for the characteristics of the information provided to users working in a specific field or interested in particular pathways or processes. In this article, we describe an organelle-focused, manual curation initiative targeting proteins from the human peroxisome. We discuss the steps taken to define the peroxisome proteome and the challenges encountered in defining the boundaries of this protein set. We illustrate with the use of examples how GO annotations now capture cell and tissue type information and the advantages that such an annotation approach provides to users. Database URL:http://www.ebi.ac.uk/GOA/ and http://www.uniprot.org
Collapse
|
19
|
Sahoo S, Franzson L, Jonsson JJ, Thiele I. A compendium of inborn errors of metabolism mapped onto the human metabolic network. MOLECULAR BIOSYSTEMS 2013; 8:2545-58. [PMID: 22699794 DOI: 10.1039/c2mb25075f] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inborn errors of metabolism (IEMs) are hereditary metabolic defects, which are encountered in almost all major metabolic pathways occurring in man. Many IEMs are screened for in neonates through metabolomic analysis of dried blood spot samples. To enable the mapping of these metabolomic data onto the published human metabolic reconstruction, we added missing reactions and pathways involved in acylcarnitine (AC) and fatty acid oxidation (FAO) metabolism. Using literary data, we reconstructed an AC/FAO module consisting of 352 reactions and 139 metabolites. When this module was combined with the human metabolic reconstruction, the synthesis of 39 acylcarnitines and 22 amino acids, which are routinely measured, was captured and 235 distinct IEMs could be mapped. We collected phenotypic and clinical features for each IEM enabling comprehensive classification. We found that carbohydrate, amino acid, and lipid metabolism were most affected by the IEMs, while the brain was the most commonly affected organ. Furthermore, we analyzed the IEMs in the context of metabolic network topology to gain insight into common features between metabolically connected IEMs. While many known examples were identified, we discovered some surprising IEM pairs that shared reactions as well as clinical features but not necessarily causal genes. Moreover, we could also re-confirm that acetyl-CoA acts as a central metabolite. This network based analysis leads to further insight of hot spots in human metabolism with respect to IEMs. The presented comprehensive knowledge base of IEMs will provide a valuable tool in studying metabolic changes involved in inherited metabolic diseases.
Collapse
|
20
|
Honma T, Kitano Y, Kijima R, Jibu Y, Kawakami Y, Tsuduki T, Nakagawa K, Miyazawa T. Comparison of the Health Benefits of Different Eras of Japanese Foods : Lipid and Carbohydrate Metabolism Focused Research. J JPN SOC FOOD SCI 2013. [DOI: 10.3136/nskkk.60.541] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Weeghel M, Brinke HT, Lenthe H, Kulik W, Minkler PE, Stoll MSK, Sass JO, Janssen U, Stoffel W, Schwab KO, Wanders RJA, Hoppel CL, Houten SM. Functional redundancy of mitochondrial enoyl‐CoA isomerases in the oxidation of unsaturated fatty acids. FASEB J 2012; 26:4316-26. [DOI: 10.1096/fj.12-206326] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michel Weeghel
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Heleen te Brinke
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Henk Lenthe
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Wim Kulik
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Paul E. Minkler
- Department of PharmacologyCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Maria S. K. Stoll
- Department of PharmacologyCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Jörn Oliver Sass
- Center for Children's Hospital in FreiburgFreiburgGermany
- Department of Clinical Chemistry and BiochemistryUniversity Children's Hospital ZürichZürichSwitzerland
| | - Uwe Janssen
- Miltenyi Biotec GmbHBergisch GladbachGermany
| | - Wilhelm Stoffel
- Institute of BiochemistryCenter of Molecular Medicine Cologne, Cluster of Excellence, Cellular Stress Response in Aging Related Diseases (CECAD)University of CologneGermany
| | | | - Ronald J. A. Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
- Department of PediatricsEmma Children's HospitalAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Charles L. Hoppel
- Department of PharmacologyCase Western Reserve University School of MedicineClevelandOhioUSA
- Department of MedicineCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Sander M. Houten
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
- Department of PediatricsEmma Children's HospitalAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
22
|
Houten SM, Denis S, Argmann CA, Jia Y, Ferdinandusse S, Reddy JK, Wanders RJA. Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. J Lipid Res 2012; 53:1296-303. [PMID: 22534643 DOI: 10.1194/jlr.m024463] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
L-bifunctional enzyme (Ehhadh) is part of the classical peroxisomal fatty acid β-oxidation pathway. This pathway is highly inducible via peroxisome proliferator-activated receptor α (PPARα) activation. However, no specific substrates or functions for Ehhadh are known, and Ehhadh knockout (KO) mice display no appreciable changes in lipid metabolism. To investigate Ehhadh functions, we used a bioinformatics approach and found that Ehhadh expression covaries with genes involved in the tricarboxylic acid cycle and in mitochondrial and peroxisomal fatty acid oxidation. Based on these findings and the regulation of Ehhadh's expression by PPARα, we hypothesized that the phenotype of Ehhadh KO mice would become apparent after fasting. Ehhadh mice tolerated fasting well but displayed a marked deficiency in the fasting-induced production of the medium-chain dicarboxylic acids adipic and suberic acid and of the carnitine esters thereof. The decreased levels of adipic and suberic acid were not due to a deficient induction of ω-oxidation upon fasting, as Cyp4a10 protein levels increased in wild-type and Ehhadh KO mice.We conclude that Ehhadh is indispensable for the production of medium-chain dicarboxylic acids, providing an explanation for the coordinated induction of mitochondrial and peroxisomal oxidative pathways during fasting.
Collapse
Affiliation(s)
- Sander M Houten
- Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
23
|
Jayashankar S, Glover CN, Folven KI, Brattelid T, Hogstrand C, Lundebye AK. Cerebral gene expression and neurobehavioural responses in mice pups exposed to methylmercury and docosahexaenoic acid through the maternal diet. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:26-38. [PMID: 22056564 DOI: 10.1016/j.etap.2011.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 09/24/2011] [Accepted: 10/06/2011] [Indexed: 05/12/2023]
Abstract
Methylmercury (MeHg) is an environmental neurotoxicant with adverse effects particularly noted in the developing brain. The main source of MeHg exposure is seafood. However, fish is also an important source of n-3 fatty acids such as docosahexaenoic acid (DHA) which has neuroprotective effects, and which plays an important role during the prenatal development of the central nervous system. The aim of the present study was to examine the effects of DHA and MeHg individually, and in combination, on development using accumulation, behavioural and transcriptomic endpoints in a mammalian model. Analyses were performed on 15 day old mice which had been exposed to varying levels of DHA (8 or 24 mg/kg) and/or MeHg (4 mg/kg) throughout development via the maternal diet. Supplementation of the maternal diet with DHA reduced MeHg accumulation in the brain. An accelerated development of grasping reflex was seen in mice offspring in the 'MeHg+high DHA' group when compared to 'MeHg' and 'control'. Exposure to MeHg and DHA had an impact on cerebral gene expression as assessed by microarray and qPCR analysis. The results from the present study show the potential of DHA for alleviating toxicity caused by MeHg. This information may contribute towards refining risk/benefit assessment of seafood consumption and may enhance understanding of discrepancies between epidemiological studies of MeHg neurodevelopmental toxicity.
Collapse
Affiliation(s)
- S Jayashankar
- National Institute of Nutrition and Seafood Research (NIFES), Post Box 2029 Nordnes 5817 Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
24
|
Stute P, Sielker S, Wood CE, Register TC, Lees CJ, Dewi FN, Williams JK, Wagner JD, Stefenelli U, Cline JM. Life stage differences in mammary gland gene expression profile in non-human primates. Breast Cancer Res Treat 2011; 133:617-34. [PMID: 22037779 DOI: 10.1007/s10549-011-1811-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 09/28/2011] [Indexed: 12/21/2022]
Abstract
Breast cancer (BC) is the most common malignancy of women in the developed world. To better understand its pathogenesis, knowledge of normal breast development is crucial, as BC is the result of disregulation of physiologic processes. The aim of this study was to investigate the impact of reproductive life stages on the transcriptional profile of the mammary gland in a primate model. Comparative transcriptomic analyses were carried out using breast tissues from 28 female cynomolgus macaques (Macaca fascicularis) at the following life stages: prepubertal (n = 5), adolescent (n = 4), adult luteal (n = 5), pregnant (n = 6), lactating (n = 3), and postmenopausal (n = 5). Mammary gland RNA was hybridized to Affymetrix GeneChip(®) Rhesus Macaque Genome Arrays. Differential gene expression was analyzed using ANOVA and cluster analysis. Hierarchical cluster analysis revealed distinct separation of life stage groups. More than 2,225 differentially expressed mRNAs were identified. Gene families or pathways that changed across life stages included those related to estrogen and androgen (ESR1, PGR, TFF1, GREB1, AR, 17HSDB2, 17HSDB7, STS, HSD11B1, AKR1C4), prolactin (PRLR, ELF5, STAT5, CSN1S1), insulin-like growth factor signaling (IGF1, IGFBP1, IGFBP5), extracellular matrix (POSTN, TGFB1, COL5A2, COL12A1, FOXC1, LAMC1, PDGFRA, TGFB2), and differentiation (CD24, CD29, CD44, CD61, ALDH1, BRCA1, FOXA1, POSTN, DICER1, LIG4, KLF4, NOTCH2, RIF1, BMPR1A, TGFB2). Pregnancy and lactation displayed distinct patterns of gene expression. ESR1 and IGF1 were significantly higher in the adolescent compared to the adult animals, whereas differentiation pathways were overrepresented in adult animals and pregnancy-associated life stages. Few individual genes were distinctly different in postmenopausal animals. Our data demonstrate characteristic patterns of gene expression during breast development. Several of the pathways activated during pubertal development have been implicated in cancer development and metastasis, supporting the idea that other developmental markers may have application as biomarkers for BC.
Collapse
Affiliation(s)
- Petra Stute
- Department of Gynecologic Endocrinology and Reproductive Medicine, University Women's Hospital, Berne, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lymphoblastoid cell lines for diagnosis of peroxisome biogenesis disorders. JIMD Rep 2011. [PMID: 23430824 DOI: 10.1007/8904_2011_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] Open
Abstract
Peroxisome biogenesis disorders (PBDs) are a group of autosomal-recessive developmental and progressive metabolic diseases leading to the Zellweger spectrum (ZS) phenotype in most instances. Diagnosis of clinically suspected cases can be difficult because of extensive genetic heterogeneity and large spectrum of disease severity. Furthermore, a second group of peroxisomal diseases caused by deficiencies of single peroxisomal enzymes can show an indistinguishable clinical phenotype. The diagnosis of these peroxisomal disorders relies on the clinical presentation, the biochemical parameters in plasma and erythrocyte membranes, and genetic testing as the final step. Analysis of patients' cells is frequently required during the diagnostic process, e.g., for complementation analysis to identify the affected gene before sequencing. In the cases with unclear clinical or biochemical presentation, patients' cells are analyzed to prove PBD or to demonstrate biochemical abnormalities that might be elusive in plasma. Cell lines from skin fibroblast that are usually generated for diagnostic workup are not available in all instances, mainly because the required skin biopsy is invasive and sometimes denied by parents. An alternative cellular system has not been analyzed sufficiently. In this study, we evaluated the alternative use of lymphoblastoid cell lines (LCLs), derived from a peripheral blood sample, in the diagnostic process for PBD. LCLs were suitable for immunofluorescence visualization of peroxisomal enzymes, complementation analysis, and the biochemical analysis to differentiate between control and PBD LCL. LCLs are therefore an easily obtainable alternative cellular system for a detailed PBD diagnostic workup with a reliability of diagnostic results equal to those of skin fibroblasts.
Collapse
|
26
|
Hendrickson SL, Lautenberger JA, Chinn LW, Malasky M, Sezgin E, Kingsley LA, Goedert JJ, Kirk GD, Gomperts ED, Buchbinder SP, Troyer JL, O'Brien SJ. Genetic variants in nuclear-encoded mitochondrial genes influence AIDS progression. PLoS One 2010; 5:e12862. [PMID: 20877624 PMCID: PMC2943476 DOI: 10.1371/journal.pone.0012862] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 08/21/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression. METHODOLOGY/PRINCIPAL FINDINGS Here we explore whether single nucleotide polymorphisms (SNPs) within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs) influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4) on chromosome 12 and peroxisomal D3,D2-enoyl-CoA isomerase (PECI) on chromosome 6. CONCLUSIONS Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclear-encoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis.
Collapse
Affiliation(s)
- Sher L Hendrickson
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog Lipid Res 2010; 49:218-34. [PMID: 20043945 DOI: 10.1016/j.plipres.2009.12.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Golgi body-mediated signaling has been linked to its fragmentation and regeneration during the mitotic cycle of the cell. During this process, Golgi-resident proteins are released to the cytosol and interact with other signaling molecules to regulate various cellular processes. Acyl-coenzyme A binding domain containing 3 protein (ACBD3) is a Golgi protein involved in several signaling events. ACBD3 protein was previously known as peripheral-type benzodiazepine receptor and cAMP-dependent protein kinase associated protein 7 (PAP7), Golgi complex-associated protein of 60kDa (GCP60), Golgi complex-associated protein 1 (GOCAP1), and Golgi phosphoprotein 1 (GOLPH1). In this review, we present the gene ontology of ACBD3, its relations to other Acyl-coenzyme A binding domain containing (ACBD) proteins, and its biological function in steroidogenesis, apoptosis, neurogenesis, and embryogenesis. We also discuss the role of ACBD3 in asymmetric cell division and cancer. New findings about ACBD3 may help understand this newly characterized signaling molecule and stimulate further research into its role in molecular endocrinology, neurology, and stem cell biology.
Collapse
|
28
|
Kim DM, Ko BS, Ju JW, Cho SH, Yang SJ, Yeom YI, Kim TS, Won Y, Kim IC. Gene expression profiling in mouse liver infected with Clonorchis sinensis metacercariae. Parasitol Res 2009; 106:269-78. [PMID: 19902254 DOI: 10.1007/s00436-009-1662-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/19/2009] [Indexed: 01/25/2023]
Abstract
Clonorchis sinensis, the parasite that causes clonorchiasis, is endemic in many Asian countries, and infection with the organism drives changes in the liver tissues of the host. However, information regarding the molecular events in clonorchiasis remains limited, and little is currently known about host-pathogen interactions in clonorchiasis. In this study, we assessed the gene expression profiles in mice livers via DNA microarray analysis 1, 2, 4, and 6 weeks after induced metacercariae infection. Functional clustering of the gene expression profile showed that the immunity-involved genes were induced in the livers of the mice at the early stage of metacercariae infection, whereas immune responses were reduced in the 6-week liver tissues after infection in which the metacercariae became adult flukes. Many genes involved in fatty acid metabolism, including Peci, Cyp4a10, Acat1, Ehhadh, Gcdh, and Cyp2 family were downregulated in the infected livers. On the other hand, the liver tissues infected with the parasite expressed Wnt signaling molecules such as Wnt7b, Fzd6, and Pdgfrb and cell cycle-regulating genes including cyclin-D1, Cdca3, and Bcl3. These investigations constitute an excellent starting point for increased understanding of the molecular mechanisms underlying host-pathogen interaction during the development of C. sinensis in the host liver.
Collapse
Affiliation(s)
- Dong Min Kim
- BK21 Ubiquitous Information Appliances, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Goepfert S, Vidoudez C, Tellgren-Roth C, Delessert S, Hiltunen JK, Poirier Y. Peroxisomal Delta(3),Delta(2)-enoyl CoA isomerases and evolution of cytosolic paralogues in embryophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:728-42. [PMID: 18657232 DOI: 10.1111/j.1365-313x.2008.03635.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Delta(3),Delta(2)-enoyl CoA isomerase (ECI) is an enzyme that participates in the degradation of unsaturated fatty acids through the beta-oxidation cycle. Three genes encoding Delta(3),Delta(2)-enoyl CoA isomerases and named AtECI1, AtECI2 and AtECI3 have been identified in Arabidopsis thaliana. When expressed heterologously in Saccharomyces cerevisiae, all three ECI proteins were targeted to the peroxisomes and enabled the yeast Deltaeci1 mutant to degrade 10Z-heptadecenoic acid, demonstrating Delta(3),Delta(2)-enoyl CoA isomerase activity in vivo. Fusion proteins between yellow fluorescent protein and AtECI1 or AtECI2 were targeted to the peroxisomes in onion epidermal cells and Arabidopsis root cells, but a similar fusion protein with AtECI3 remained in the cytosol for both tissues. AtECI3 targeting to peroxisomes in S. cerevisiae was dependent on yeast PEX5, while expression of Arabidopsis PEX5 in yeast failed to target AtECI3 to peroxisomes. AtECI2 and AtECI3 are tandem duplicated genes and show a high level of amino acid conservation, except at the C-terminus; AtECI2 ends with the well conserved peroxisome targeting signal 1 (PTS1) terminal tripeptide PKL, while AtECI3 possesses a divergent HNL terminal tripeptide. Evolutionary analysis of ECI genes in plants revealed several independent duplication events, with duplications occurring in rice and Medicago truncatula, generating homologues with divergent C-termini and no recognizable PTS1. All plant ECI genes analyzed, including AtECI3, are under negative purifying selection, implying functionality of the cytosolic AtECI3. Analysis of the mammalian and fungal genomes failed to identify cytosolic variants of the Delta(3),Delta(2)-enoyl CoA isomerase, indicating that evolution of cytosolic Delta(3),Delta(2)-enoyl CoA isomerases is restricted to the plant kingdom.
Collapse
Affiliation(s)
- Simon Goepfert
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Zolman BK, Martinez N, Millius A, Adham AR, Bartel B. Identification and characterization of Arabidopsis indole-3-butyric acid response mutants defective in novel peroxisomal enzymes. Genetics 2008; 180:237-51. [PMID: 18725356 PMCID: PMC2535678 DOI: 10.1534/genetics.108.090399] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 07/08/2008] [Indexed: 01/04/2023] Open
Abstract
Genetic evidence suggests that indole-3-butyric acid (IBA) is converted to the active auxin indole-3-acetic acid (IAA) by removal of two side-chain methylene units in a process similar to fatty acid beta-oxidation. Previous studies implicate peroxisomes as the site of IBA metabolism, although the enzymes that act in this process are still being identified. Here, we describe two IBA-response mutants, ibr1 and ibr10. Like the previously described ibr3 mutant, which disrupts a putative peroxisomal acyl-CoA oxidase/dehydrogenase, ibr1 and ibr10 display normal IAA responses and defective IBA responses. These defects include reduced root elongation inhibition, decreased lateral root initiation, and reduced IBA-responsive gene expression. However, peroxisomal energy-generating pathways necessary during early seedling development are unaffected in the mutants. Positional cloning of the genes responsible for the mutant defects reveals that IBR1 encodes a member of the short-chain dehydrogenase/reductase family and that IBR10 resembles enoyl-CoA hydratases/isomerases. Both enzymes contain C-terminal peroxisomal-targeting signals, consistent with IBA metabolism occurring in peroxisomes. We present a model in which IBR3, IBR10, and IBR1 may act sequentially in peroxisomal IBA beta-oxidation to IAA.
Collapse
Affiliation(s)
- Bethany K Zolman
- Department of Biology, University of Missouri, St. Louis, Missouri 63121, USA.
| | | | | | | | | |
Collapse
|
31
|
Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Lüder F, Weckwerth W, Jahn O. Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. THE PLANT CELL 2007; 19:3170-93. [PMID: 17951448 PMCID: PMC2174697 DOI: 10.1105/tpc.107.050989] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 09/12/2007] [Accepted: 09/24/2007] [Indexed: 05/18/2023]
Abstract
We have established a protocol for the isolation of highly purified peroxisomes from mature Arabidopsis thaliana leaves and analyzed the proteome by complementary gel-based and gel-free approaches. Seventy-eight nonredundant proteins were identified, of which 42 novel proteins had previously not been associated with plant peroxisomes. Seventeen novel proteins carried predicted peroxisomal targeting signals (PTS) type 1 or type 2; 11 proteins contained PTS-related peptides. Peroxisome targeting was supported for many novel proteins by in silico analyses and confirmed for 11 representative full-length fusion proteins by fluorescence microscopy. The targeting function of predicted and unpredicted signals was investigated and SSL>, SSI>, and ASL> were established as novel functional PTS1 peptides. In contrast with the generally accepted confinement of PTS2 peptides to the N-terminal domain, the bifunctional transthyretin-like protein was demonstrated to carry internally a functional PTS2. The novel enzymes include numerous enoyl-CoA hydratases, short-chain dehydrogenases, and several enzymes involved in NADP and glutathione metabolism. Seven proteins, including beta-glucosidases and myrosinases, support the currently emerging evidence for an important role of leaf peroxisomes in defense against pathogens and herbivores. The data provide new insights into the biology of plant peroxisomes and improve the prediction accuracy of peroxisome-targeted proteins from genome sequences.
Collapse
Affiliation(s)
- Sigrun Reumann
- Department of Plant Biochemistry, Georg-August-University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, D-37077 Goettingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tang ZH, Xiao P, Lei SF, Deng FY, Zhao LJ, Deng HY, Tan LJ, Shen H, Xiong DH, Recker RR, Deng HW. A bivariate whole-genome linkage scan suggests several shared genomic regions for obesity and osteoporosis. J Clin Endocrinol Metab 2007; 92:2751-7. [PMID: 17473065 DOI: 10.1210/jc.2006-2607] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT A genome-wide bivariate analysis was conducted for body fat mass (BFM) and bone mineral density (BMD) in a large Caucasian sample. We found some quantitative trait loci shared by BFM and BMD in the total sample and the gender-specific subgroups, and quantitative trait loci with potential pleiotropy were disclosed. BFM and BMD, as the respective measure for obesity and osteoporosis, are phenotypically and genetically correlated. However, specific genomic regions accounting for their genetic correlation are unknown. OBJECTIVE To identify systemically the shared genomic regions for BFM and BMD, we performed a bivariate whole-genome linkage scan in 4498 Caucasian individuals from 451 families for BFM and BMD at the hip, spine, and wrist, respectively. Linkage analyses were performed in the total sample and the male and female subgroups, respectively. RESULTS In the entire sample, suggestive linkages were detected at 7p22-p21 (LOD 2.69) for BFM and spine BMD, 6q27 (LOD 2.30) for BFM and hip BMD, and 11q13 (LOD 2.64) for BFM and wrist BMD. Male-specific suggestive linkages were found at 13q12 (LOD 3.23) for BFM and spine BMD and at 7q21 (LOD 2.59) for BFM and hip BMD. Female-specific suggestive LOD scores were 3.32 at 15q13 for BFM and spine BMD and 3.15 at 6p25-24 for BFM and wrist BMD. CONCLUSIONS Several shared genomic regions for BFM and BMD were identified here. Our data may benefit further positional and functional studies, aimed at eventually uncovering the complex mechanism underlying the shared genetic determination of obesity and osteoporosis.
Collapse
Affiliation(s)
- Zi-Hui Tang
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Taskinen JP, van Aalten DM, Knudsen J, Wierenga RK. High resolution crystal structures of unliganded and liganded human liver ACBP reveal a new mode of binding for the acyl-CoA ligand. Proteins 2007; 66:229-38. [PMID: 17044054 DOI: 10.1002/prot.21124] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The acyl-CoA binding protein (ACBP) is essential for the fatty acid metabolism, membrane structure, membrane fusion, and ceramide synthesis. Here high resolution crystal structures of human cytosolic liver ACBP, unliganded and liganded with a physiological ligand, myristoyl-CoA are described. The binding of the acyl-CoA molecule induces only few structural differences near the binding pocket. The crystal form of the liganded ACBP, which has two ACBP molecules in the asymmetric unit, shows that in human ACBP the same acyl-CoA binding pocket is present as previously described for the bovine and Plasmodium falciparum ACBP and the mode of binding of the 3'-phosphate-AMP moiety is conserved. Unexpectedly, in one of the acyl-CoA binding pockets the acyl moiety is bound in a reversed mode as compared with the bovine and P. falciparum structures. In this binding mode, the myristoyl-CoA molecule is fully ordered and bound across the two ACBP molecules of the crystallographic asymmetric unit: the 3'-phosphate-AMP moiety is bound in the binding pocket of one ACBP molecule and the acyl chain is bound in the pocket of the other ACBP molecule. The remaining binding pocket cavities of these two ACBP molecules are filled by other ligand fragments. This novel binding mode shows that the acyl moiety can flip out of its classical binding pocket and bind elsewhere, suggesting a mechanism for the acyl-CoA transfer between ACBP and the active site of a target enzyme. This mechanism is of possible relevance for the in vivo function of ACBP.
Collapse
Affiliation(s)
- Jukka P Taskinen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, FIN-90014, Finland
| | | | | | | |
Collapse
|
34
|
Abstract
In this review, we describe the current state of knowledge about the biochemistry of mammalian peroxisomes, especially human peroxisomes. The identification and characterization of yeast mutants defective either in the biogenesis of peroxisomes or in one of its metabolic functions, notably fatty acid beta-oxidation, combined with the recognition of a group of genetic diseases in man, wherein these processes are also defective, have provided new insights in all aspects of peroxisomes. As a result of these and other studies, the indispensable role of peroxisomes in multiple metabolic pathways has been clarified, and many of the enzymes involved in these pathways have been characterized, purified, and cloned. One aspect of peroxisomes, which has remained ill defined, is the transport of metabolites across the peroxisomal membrane. Although it is clear that mammalian peroxisomes under in vivo conditions are closed structures, which require the active presence of metabolite transporter proteins, much remains to be learned about the permeability properties of mammalian peroxisomes and the role of the four half ATP-binding cassette (ABC) transporters therein.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Disease, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
35
|
Zeng B, Cai X, Zhu G. Functional characterization of a fatty acyl-CoA-binding protein (ACBP) from the apicomplexan Cryptosporidium parvum. MICROBIOLOGY-SGM 2006; 152:2355-2363. [PMID: 16849800 PMCID: PMC1513434 DOI: 10.1099/mic.0.28944-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this paper, the identification and functional analysis of a fatty acyl-CoA-binding protein (ACBP) gene from the opportunistic protist Cryptosporidium parvum are described. The CpACBP1 gene encodes a protein of 268 aa that is three times larger than typical ACBPs (i.e. approximately 90 aa) of humans and animals. Sequence analysis indicated that the CpACBP1 protein consists of an N-terminal ACBP domain (approximately 90 aa) and a C-terminal ankyrin repeat sequence (approximately 170 aa). The entire CpACBP1 ORF was engineered into a maltose-binding protein fusion system and expressed as a recombinant protein for functional analysis. Acyl-CoA-binding assays clearly revealed that the preferred binding substrate for CpACBP1 is palmitoyl-CoA. RT-PCR, Western blotting and immunolabelling analyses clearly showed that the CpACBP1 gene is mainly expressed during the intracellular developmental stages and that the level increases during parasite development. Immunofluorescence microscopy showed that CpACBP1 is associated with the parasitophorous vacuole membrane (PVM), which implies that this protein may be involved in lipid remodelling in the PVM, or in the transport of fatty acids across the membrane.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77483-4467, USA
| | - Xiaomin Cai
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77483-4467, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77483-4467, USA
| |
Collapse
|
36
|
De Souza AT, Cornwell PD, Dai X, Caguyong MJ, Ulrich RG. Agonists of the peroxisome proliferator-activated receptor alpha induce a fiber-type-selective transcriptional response in rat skeletal muscle. Toxicol Sci 2006; 92:578-86. [PMID: 16707586 DOI: 10.1093/toxsci/kfl019] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In rodents, treatment with peroxisome proliferator-activated receptor alpha (PPARalpha) agonists results in peroxisome proliferation, hepatocellular hypertrophy, and hepatomegaly. Drugs in the fibrate class of PPARalpha agonists have also been reported to produce rare skeletal muscle toxicity. Although target-driven hepatic effects of PPARalpha treatment have been extensively studied, a characterization of the transcriptional effects of this nuclear receptor/transcription factor on skeletal muscle responses has not been reported. In this study we investigated the effects of PPARalpha agonists on skeletal muscle gene transcription in rats. Further, since statins have been reported to preferentially effect type II muscle fibers, we compared PPARalpha signaling effects between type I and type II muscles. By comparing the transcriptional responses of agonists that signal through different nuclear receptors and using a selection/deselection analytical strategy based on ANOVA, we identified a PPARalpha activation signature that is evident in type I (soleus), but not type II (quadriceps femoris), skeletal muscle fibers. The fiber-type-selective nature of this response is consistent with increased fatty acid uptake and beta-oxidation, which represent the major clinical benefits of the hypolipidemic compounds used in this study, but does not reveal any obvious off-target pathways that may drive adverse effects.
Collapse
Affiliation(s)
- Angus T De Souza
- Rosetta Inpharmatics LLC, Merck & Co, Inc, Seattle, Washington 98109, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Acyl-CoA-binding protein (ACBP) is a 10 kDa protein that binds C12-C22 acyl-CoA esters with high affinity. In vitro and in vivo experiments suggest that it is involved in multiple cellular tasks including modulation of fatty acid biosynthesis, enzyme regulation, regulation of the intracellular acyl-CoA pool size, donation of acyl-CoA esters for beta-oxidation, vesicular trafficking, complex lipid synthesis and gene regulation. In the present study, we delineate the evolutionary history of ACBP to get a complete picture of its evolution and distribution among species. ACBP homologues were identified in all four eukaryotic kingdoms, Animalia, Plantae, Fungi and Protista, and eleven eubacterial species. ACBP homologues were not detected in any other known bacterial species, or in archaea. Nearly all of the ACBP-containing bacteria are pathogenic to plants or animals, suggesting that an ACBP gene could have been acquired from a eukaryotic host by horizontal gene transfer. Many bacterial, fungal and higher eukaryotic species only harbour a single ACBP homologue. However, a number of species, ranging from protozoa to vertebrates, have evolved two to six lineage-specific paralogues through gene duplication and/or retrotransposition events. The ACBP protein is highly conserved across phylums, and the majority of ACBP genes are subjected to strong purifying selection. Experimental evidence indicates that the function of ACBP has been conserved from yeast to humans and that the multiple lineage-specific paralogues have evolved altered functions. The appearance of ACBP very early on in evolution points towards a fundamental role of ACBP in acyl-CoA metabolism, including ceramide synthesis and in signalling.
Collapse
Affiliation(s)
- Mark Burton
- *Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Timothy M. Rose
- †Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA, 98195, U.S.A
| | - Nils J. Færgeman
- *Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jens Knudsen
- *Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- To whom correspondence should be addressed (email )
| |
Collapse
|
38
|
Zeng J, Deng G, Li D. Intrinsic enoyl-CoA isomerase activity of rat acyl-CoA oxidase I. Biochim Biophys Acta Gen Subj 2006; 1760:78-85. [PMID: 16236453 DOI: 10.1016/j.bbagen.2005.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 09/09/2005] [Accepted: 09/13/2005] [Indexed: 11/17/2022]
Abstract
Rat peroxisomal acyl-CoA oxidase I is a key enzyme for the beta-oxidation of fatty acids, and the deficiency of this enzyme in patient has been previously reported. It was found that rat acyl-CoA oxidase I has intrinsic enoyl-CoA isomerase activity, which was confirmed using incubation followed with HPLC analysis in this study. Various 3-enoyl-CoA substrates with cis or trans configuration were synthesized and used in the study of enzyme substrate specificity. The isomerase activity of the enzyme was characterized through studies of kinetics, pH dependence, and enzyme inhibition. Most k(cat)/K(M) values of rat peroxisomal acyl-CoA oxidase I for isomerization reaction are comparable with those of authentic rat liver peroxisomal Delta(3)-Delta(2)-enoyl-CoA isomerase and rat liver peroxisomal multifunctional enzyme 1 when hexenoyl-CoA and octenoyl-CoA with cis- or trans-configuration were used as substrate. Glu421 was found to be the catalytic residue for both oxidase and isomerase activities of the enzyme. The isomerase activity of rat peroxisomal acyl-CoA oxidase I is probably due to a spontaneous process driven by thermodynamic equilibrium with formation of a conjugated structure after deprotonation of substrate alpha-proton. The energy level of transition state may be lowered by a stable dienolate intermediate, which gain further stabilization via charge transfer with electron-deficient FAD cofactor of the enzyme.
Collapse
Affiliation(s)
- Jia Zeng
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | | | | |
Collapse
|
39
|
Kurochkin IV, Nagashima T, Konagaya A, Schönbach C. Sequence-based discovery of the human and rodent peroxisomal proteome. ACTA ACUST UNITED AC 2005; 4:93-104. [PMID: 16128611 DOI: 10.2165/00822942-200504020-00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Peroxisomes are metabolic organelles present in virtually all eukaryotic cells. They contain enzymes involved in hydrogen peroxide-based respiration and lipid metabolism. At present, only a small number of peroxisomal enzymes that are associated with oxidative stress response and metabolic disorders have been characterised biochemically. Therefore, we devised a sequence-based, multistep knowledge discovery strategy to identify potential novel peroxisomal protein candidates in small rodent model organisms and human. METHODS Screening of 130,629 putative translations of GenBank rodent and primate mRNA sequences was limited to the classical type-1 peroxisomal targeting signal [SA]-K-L. This motif is over-represented among peroxisomal proteins and has a high targeting efficiency. Subsequent steps of identifying co-occurring motifs, secondary structure properties, orthologues and variants, in combination with literature searching and visual inspection by domain experts, aimed at reduction of both false positive and negative validation targets. RESULTS Our method yielded 117 known peroxisome-targeted proteins and 29 novel candidate proteins. Of special interest were the mouse C530046K17Rik and 1300019N10Rik protein sequences that contain domains associated with enzymatic functions. C530046K17Rik showed no similarity to any known sequence of the animal kingdom, but weak similarity to the possible Leishmania quinone oxidoreductase and a putative cyanobacterium nicotinamide adenine dinucleotide phosphate (NADP)-dependent oxidoreductase. 1300019N10Rik contains two protease-related domains, glutamyl endopeptidase I and trypsin-like serine and cysteine proteases, which may have unique specificities to achieve efficient breakdown of proteins in the peroxisomes. CONCLUSION One mouse C57BL/6J strain-specific isocitrate dehydrogenase 1 isoform might be suitable to investigate potential phenotypes associated with the deficit of the intraperoxisomal reduced form of NADP (NADPH) and 2-oxoglutarate. Our biological knowledge discovery strategy enabled not only the identification of peroxisomal enzymes already described in the literature, but also the prediction of several novel proteins with possible roles in peroxisomal biochemistry and metabolism that are currently under experimental validation.
Collapse
Affiliation(s)
- Igor V Kurochkin
- Immunoinformatics Team, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | | | | | | |
Collapse
|
40
|
Geisbrecht BV, Bouyain S, Pop M. An optimized system for expression and purification of secreted bacterial proteins. Protein Expr Purif 2005; 46:23-32. [PMID: 16260150 DOI: 10.1016/j.pep.2005.09.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2005] [Revised: 08/27/2005] [Accepted: 09/03/2005] [Indexed: 10/25/2022]
Abstract
In this report, we describe an optimized system for the efficient overexpression, purification, and refolding of secreted bacterial proteins. Candidate secreted proteins were produced recombinantly in Escherichia coli as Tobacco Etch Virus protease-cleavable hexahistidine-c-myc eptiope fusion proteins. Without regard to their initial solubility, recombinant fusion proteins were extracted from whole cells with guanidium chloride, purified under denaturing conditions by immobilized metal affinity chromatography, and refolded by rapid dilution into a solution containing only Tris buffer and sodium chloride. Following concentration on the same resin under native conditions, each protein was eluted for further purification and/or characterization. Preliminary studies on a test set of 12 secreted proteins ranging in size from 13 to 130 kDa yielded between 10 and 50 mg of fusion protein per liter of induced culture at greater than 90% purity, as judged by Coomassie-stained SDS-PAGE. Of the nine proteins further purified, analytical gel filtration chromatography indicated that each was a monomer in solution and circular dichroism spectroscopy revealed that each had adopted a well-defined secondary structure. While there are many potential applications for this system, the results presented here suggest that it will be particularly useful for investigators employing structural approaches to understand protein function, as attested to by the crystal structures of three proteins purified using this methodology (B.V. Geisbrecht, B.Y. Hamaoka, B. Perman, A. Zemla, D.J. Leahy, J. Biol. Chem. 280 (2005) 17243-17250).
Collapse
Affiliation(s)
- Brian V Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110, USA.
| | | | | |
Collapse
|
41
|
Hayashi K, Spencer TE. Estrogen disruption of neonatal ovine uterine development: effects on gene expression assessed by suppression subtraction hybridization. Biol Reprod 2005; 73:752-60. [PMID: 15972882 DOI: 10.1095/biolreprod.105.042812] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Inappropriate exposure of neonatal sheep to estrogen during critical developmental periods inhibits or retards endometrial gland morphogenesis and reduces uterine growth. Studies were conducted to identify mechanisms mediating estrogen disruption of neonatal ovine uterine development by analysis of candidate growth factor systems and using suppression subtraction hybridization (SSH). In study 1, sheep were exposed either to corn oil as a control or to estradiol valerate (EV) from birth to Postnatal Day (PND) 14, which ablated endometrial gland development. Estradiol valerate decreased uterine FGF7 (fibroblast growth factor 7) and MET (hepatocyte growth factor receptor) expression and increased INHBA (inhibin betaA). The SSH identified a number of genes responsive to EV, which included GSTM3 (glutathione S-transferase), IDH1 (cytosolic NADP-isocitrate dehydrogenase), PECI (peroxisomal D(3),D(2)-enoyl-coenzyme A isomerase), OAS1 (2',5'-oligoadenylate 40/46-kDa synthetase), IGFBP3 (insulin-like growth factor-binding protein-3), TEGT (testis-enhanced gene transcript), CXCL10 (interferon-gamma-inducible protein 10), and IGLV (immunoglobulin V). These mRNAs were expressed predominantly in the endometrial epithelia (GSTM3, IDH1, PEC1, OAS1, and TEGT), stroma (IGFBP3), or immune cells (CXCL10 and IGLV). In study 2, effects of estrogen exposure on uterine gene expression were determined during three different critical developmental periods (PNDs 0-14, 14- 28, and 42-56). Estrogen exposure decreased expression of the SSH-identified genes, particularly those from PNDs 0-14. These studies suggest that estrogen disruption of postnatal uterine development involves period-specific effects on expression of genes predominantly in the endometrial epithelium. The SSH-identified, estrogen-disrupted genes represent new candidate regulators of postnatal endometrial adenogenesis.
Collapse
Affiliation(s)
- Kanako Hayashi
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, 77843-2471, USA
| | | |
Collapse
|
42
|
Geisbrecht BV, Hamaoka BY, Perman B, Zemla A, Leahy DJ. The crystal structures of EAP domains from Staphylococcus aureus reveal an unexpected homology to bacterial superantigens. J Biol Chem 2005; 280:17243-50. [PMID: 15691839 DOI: 10.1074/jbc.m412311200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Eap (extracellular adherence protein) of Staphylococcus aureus functions as a secreted virulence factor by mediating interactions between the bacterial cell surface and several extracellular host proteins. Eap proteins from different Staphylococcal strains consist of four to six tandem repeats of a structurally uncharacterized domain (EAP domain). We have determined the three-dimensional structures of three different EAP domains to 1.8, 2.2, and 1.35 A resolution, respectively. These structures reveal a core fold that is comprised of an alpha-helix lying diagonally across a five-stranded, mixed beta-sheet. Comparison of EAP domains with known structures reveals an unexpected homology with the C-terminal domain of bacterial superantigens. Examination of the structure of the superantigen SEC2 bound to the beta-chain of a T-cell receptor suggests a possible ligand-binding site within the EAP domain (Fields, B. A., Malchiodi, E. L., Li, H., Ysern, X., Stauffacher, C. V., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. (1996) Nature 384, 188-192). These results provide the first structural characterization of EAP domains, relate EAP domains to a large class of bacterial toxins, and will guide the design of future experiments to analyze EAP domain structure/function relationships.
Collapse
Affiliation(s)
- Brian V Geisbrecht
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
43
|
Partanen ST, Novikov DK, Popov AN, Mursula AM, Hiltunen JK, Wierenga RK. The 1.3 A crystal structure of human mitochondrial Delta3-Delta2-enoyl-CoA isomerase shows a novel mode of binding for the fatty acyl group. J Mol Biol 2004; 342:1197-208. [PMID: 15351645 DOI: 10.1016/j.jmb.2004.07.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 07/02/2004] [Accepted: 07/06/2004] [Indexed: 11/18/2022]
Abstract
The crystal structure of Delta3-Delta2-enoyl-CoA isomerase from human mitochondria (hmEci), complexed with the substrate analogue octanoyl-CoA, has been refined at 1.3 A resolution. This enzyme takes part in the beta-oxidation of unsaturated fatty acids by converting both cis-3 and trans-3-enoyl-CoA esters (with variable length of the acyl group) to trans-2-enoyl-CoA. hmEci belongs to the hydratase/isomerase (crotonase) superfamily. Most of the enzymes belonging to this superfamily are hexamers, but hmEci is shown to be a trimer. The mode of binding of the ligand, octanoyl-CoA, shows that the omega-end of the acyl group binds in a hydrophobic tunnel formed by residues of the loop preceding helix H4 as well as by side-chains of the kinked helix H9. From the structure of the complex it can be seen that Glu136 is the only catalytic residue. The importance of Glu136 for catalysis is confirmed by mutagenesis studies. A cavity analysis shows the presence of two large, adjacent empty hydrophobic cavities near the active site, which are shaped by side-chains of helices H1, H2, H3 and H4. The structure comparison of hmEci with structures of other superfamily members, in particular of rat mitochondrial hydratase (crotonase) and yeast peroxisomal enoyl-CoA isomerase, highlights the variable mode of binding of the fatty acid moiety in this superfamily.
Collapse
Affiliation(s)
- Sanna T Partanen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, PO Box 3000, FIN-90014 University of Oulu, Finland
| | | | | | | | | | | |
Collapse
|
44
|
Feng X, Chuhjo T, Sugimori C, Kotani T, Lu X, Takami A, Takamatsu H, Yamazaki H, Nakao S. Diazepam-binding inhibitor-related protein 1: a candidate autoantigen in acquired aplastic anemia patients harboring a minor population of paroxysmal nocturnal hemoglobinuria-type cells. Blood 2004; 104:2425-31. [PMID: 15217832 DOI: 10.1182/blood-2004-05-1839] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To identify candidate antigens in aplastic anemia (AA), we screened proteins derived from a leukemia cell line with serum of an AA patient and identified diazepam-binding inhibitor-related protein 1 (DRS-1). Enzyme-linked immunosorbent assay (ELISA) revealed high titers of anti-DRS-1 antibodies (DRS-1 Abs) in 27 (38.0%) of 71 AA patients displaying increased paroxysmal nocturnal hemoglobinuria (PNH)-type cells (PNH(+)), 2 (6.3%) of 32 PNH(-) AA patients, 5 (38.5%) of 13 PNH(+) myelodysplastic syndrome (MDS) patients, and none of 42 PNH(-) MDS patients. DRS-1 gene was abundantly expressed in myeloid leukemia cell lines and in CD34(+) cells derived from healthy individuals. Stimulation of T cells from an AA patient displaying high DRS-1 Abs with a putative CD4(+) T-cell epitope (amino acid residues [aa's] 191-204) presented by HLA-DR15, which overlapped with a hot spot (aa's 173-198) of DRS-1 Ab epitopes, gave rise to T cells cytotoxic for L cells (murine fibroblasts) that were transfected with DRB1*1501 and DRS-1. Enzyme-linked immunospot assay demonstrated increased frequency of T-cell precursors specific to the DRS-1 peptide in other HLA-DR15(+) AA patients displaying high DRS-1 Ab titers. These findings indicate that DRS-1 may serve as an autoantigen eliciting immune attack against hematopoietic stem cells in a subset of AA patients characterized by increased PNH-type cells.
Collapse
Affiliation(s)
- Xingmin Feng
- Cellular Transplantation Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ren Y, Aguirre J, Ntamack AG, Chu C, Schulz H. An alternative pathway of oleate beta-oxidation in Escherichia coli involving the hydrolysis of a dead end intermediate by a thioesterase. J Biol Chem 2004; 279:11042-50. [PMID: 14707139 DOI: 10.1074/jbc.m310032200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The degradation of 2-trans,5-cis-tetradecadienoyl-CoA, a metabolite of oleic acid, by the purified complex of fatty acid oxidation from Escherichia coli was studied to determine how much of the metabolite is converted to 3,5-cis-tetradecadienoyl-CoA and thereby diverted from the classical, isomerase-dependent pathway of oleate beta-oxidation. Approximately 10% of the 2,5-intermediate was converted to the 3,5-isomer. When the latter compound was allowed to accumulate, it strongly inhibited the flux through the main pathway. Since Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase was not detected in E. coli cells grown on oleate, the 3,5-intermediate cannot be metabolized via the reductase-dependent pathway. However, it was hydrolyzed by a thioesterase, which was most active with 3,5-cis-tetradecadienoyl-CoA as substrate and which was induced by growth of E. coli on oleate. An analysis of fatty acids present in the medium after growth of E. coli on oleate revealed the presence of 3,5-tetradecadienoate, which was not detected after cells were grown on palmitate or glucose. Altogether, these data prompt the conclusion that oleate is mostly degraded via the classical, isomerase-dependent pathway in E. coli but that a small amount of 2-trans,5-cis-tetradecadienoyl-CoA is diverted from the pathway via conversion to 3,5-cis-tetradecadienoyl-CoA by Delta(3),Delta(2)-enoyl-CoA isomerase. The 3,5-intermediate, which would strongly inhibit beta-oxidation if allowed to accumulate, is hydrolyzed, and the resultant 3,5-tetradecadienoate is excreted into the growth medium. This study provides evidence for the novel function of a thioesterase in beta-oxidation.
Collapse
Affiliation(s)
- Ying Ren
- Department of Chemistry, City College and Graduate School of the City University of New York, New York, New York 10031, USA
| | | | | | | | | |
Collapse
|
46
|
Geisbrecht BV, Dowd KA, Barfield RW, Longo PA, Leahy DJ. Netrin binds discrete subdomains of DCC and UNC5 and mediates interactions between DCC and heparin. J Biol Chem 2003; 278:32561-8. [PMID: 12810718 DOI: 10.1074/jbc.m302943200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Netrins are secreted proteins that elicit both attractive and repulsive responses in migrating cells in the central and peripheral nervous systems. Netrins interact with members of two distinct families of transmembrane receptors, represented by DCC (deleted in colorectal cancer) and UNC5. A human netrin fragment (soluble netrin; sNetrin) was purified from an engineered Chinese hamster ovary cell line and used in a pull-down assay to map the interactions between netrin and its receptors. We find that sNetrin binds exclusively to the fifth fibronectin type III repeat of DCC and to each immunoglobulin repeat of UNC5. Both DCC and UNC5 bind to sNetrin with 1:1 stoichiometry in solution, and the minimal receptor fragments behave similarly to larger fragments in cross-linking experiments with purified sNetrin. We find no evidence for formation of a ternary complex between sNetrin and soluble forms of DCC and UNC5. We also find no evidence for an interaction between DCC and heparin and instead demonstrate that a loop on the fifth fibronectin type III repeat of DCC previously implicated in mediating interactions with heparin is important for sNetrin binding. Since netrin binds heparin, our results suggest that interactions between DCC and heparin are probably mediated by netrin.
Collapse
Affiliation(s)
- Brian V Geisbrecht
- Howard Hughes Medical Institute and the Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
47
|
Harper CC, Berg JM, Gould SJ. PEX5 binds the PTS1 independently of Hsp70 and the peroxin PEX12. J Biol Chem 2003; 278:7897-901. [PMID: 12456682 DOI: 10.1074/jbc.m206651200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most peroxisomal enzymes are targeted to peroxisomes by virtue of a type-1 peroxisomal targeting signal (PTS1) at their extreme C terminus. PEX5 binds the PTS1 through its C-terminal 40-kDa tetratricopeptide repeat domain and is essential for import of PTS1-contining proteins into peroxisomes. Here we examined the PTS1-binding activity of purified, recombinant, full-length PEX5 using a fluorescence anisotropy-based assay. Like its C-terminal fragment, full-length tetrameric PEX5 exhibits high intrinsic affinity for the PTS1, with a K(d) of 35 nm for the peptide lissamine-Tyr-Gln-Ser-Lys-Leu-COO(-). The specificity of this interaction was demonstrated by the fact that PEX5 had no detectable affinity for a peptide in which the Lys was replaced with Glu, a substitution that inactivates PTS1 signals in vivo. Hsp70 has been found to regulate the affinity of PEX5 for a PTS1-containing protein, but we found that the kinetics of PEX5-PTS1 binding was unaffected by Hsp70, Hsp70 plus ATP, or Hsp70 plus ADP. In addition, we found that another protein known to interact with the PTS1-binding domain of PEX5, the PEX12 zinc RING domain, also had no discernable effect on PEX5-PTS1 binding kinetics. Taken together, these results suggest that the initial step in peroxisomal protein import, the recognition of enzymes by PEX5, is a relatively simple process and that Hsp70 most probably stimulates this process by catalyzing the folding of newly synthesized peroxisomal enzymes and/or enhancing the accessibility of their PTS1.
Collapse
Affiliation(s)
- Courtney C Harper
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
48
|
Ren Y, Schulz H. Metabolic functions of the two pathways of oleate beta-oxidation double bond metabolism during the beta-oxidation of oleic acid in rat heart mitochondria. J Biol Chem 2003; 278:111-6. [PMID: 12397064 DOI: 10.1074/jbc.m209261200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unsaturated fatty acids with odd-numbered double bonds, e.g. oleic acid, can be degraded by beta-oxidation via the isomerase-dependent pathway or the reductase-dependent pathway that differ with respect to the metabolism of the double bond. In an attempt to elucidate the metabolic functions of the two pathways and to determine their contributions to the beta-oxidation of unsaturated fatty acids, the degradation of 2-trans,5-cis-tetradecadienoyl-CoA, a metabolite of oleic acid, was studied with rat heart mitochondria. Kinetic measurements of metabolite and cofactor formation demonstrated that more than 80% of oleate beta-oxidation occurs via the classical isomerase-dependent pathway whereas the more recently discovered reductase-dependent pathway is the minor pathway. However, the reductase-dependent pathway is indispensable for the degradation of 3,5-cis-tetradecadienoyl-CoA, which is formed from 2-trans,5-cis-tetradecadienoyl-CoA by delta(3),delta(2)-enoyl-CoA isomerase, the auxiliary enzyme that is essential for the operation of the major pathway of oleate beta-oxidation. The degradation of 3,5-cis-tetradecadienoyl-CoA is limited by the capacity of 2,4-dienoyl-CoA reductase to reduce 2-trans,4-trans-tetradecadienoyl-CoA, which is rapidly formed from its 3,5 isomer by delta(3,5),delta(2,4)-dienoyl-CoA isomerase. It is concluded that both pathways are essential for the degradation of unsaturated fatty acids with odd-numbered double bonds inasmuch as the isomerase-dependent pathway facilitates the major flux through beta-oxidation and the reductase-dependent pathway prevents the accumulation of an otherwise undegradable metabolite.
Collapse
Affiliation(s)
- Ying Ren
- Department of Chemistry, City College and Graduate School of the City University of New York, New York, New York 10031, USA
| | | |
Collapse
|
49
|
Long chain acyl-CoA esters and acyl-CoA binding protein (ACBP) in cell function. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)33008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
Zhang D, Yu W, Geisbrecht BV, Gould SJ, Sprecher H, Schulz H. Functional characterization of Delta3,Delta2-enoyl-CoA isomerases from rat liver. J Biol Chem 2002; 277:9127-32. [PMID: 11781327 DOI: 10.1074/jbc.m112228200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The degradation of unsaturated fatty acids by beta-oxidation involves Delta(3),Delta(2)-enoyl-CoA isomerases (enoyl-CoA isomerases) that catalyze 3-cis --> 2-trans and 3-trans --> 2-trans isomerizations of enoyl-CoAs and the 2,5 --> 3,5 isomerization of dienoyl-CoAs. An analysis of rat liver enoyl-CoA isomerases revealed the presence of a monofunctional enoyl-CoA isomerase (ECI) in addition to mitochondrial enoyl-CoA isomerase (MECI) in mitochondria, whereas peroxisomes contain ECI and multifunctional enzyme 1 (MFE1). Thus ECI, which previously had been described as peroxisomal enoyl-CoA isomerase, was found to be present in both peroxisomes and mitochondria. This enzyme seems to be identical with mitochondrial long-chain enoyl-CoA isomerase (Kilponen, J.M., Palosaari, P.M., and Hiltunen, J.K. 1990. Biochem. J. 269, 223-226). All three hepatic enoyl-CoA isomerases have broad chain length specificities but are distinguishable by their preferences for one of the three isomerization reactions. MECI is most active in catalyzing the 3-cis --> 2-trans isomerization; ECI has a preference for the 3-trans --> 2-trans isomerization, and MFE1 is the optimal isomerase for the 2,5 --> 3,5 isomerization. A functional characterization based on substrate specificities and total enoyl-CoA isomerase activities in rat liver leads to the conclusion that the 3-cis --> 2-trans and 2,5 --> 3,5 isomerizations in mitochondria are catalyzed overwhelmingly by MECI, whereas ECI contributes significantly to the 3-trans --> 2-trans isomerization. In peroxisomes, ECI is predicted to be the dominant enzyme for the 3-cis --> 2-trans and 3-trans --> 2-trans isomerizations of long-chain intermediates, whereas MFE1 is the key enzyme in the 2,5 --> 3,5 isomerization.
Collapse
Affiliation(s)
- Dongyan Zhang
- Department of Chemistry, City College and Graduate School of the City University of New York, New York, New York 10031, USA
| | | | | | | | | | | |
Collapse
|