1
|
Ye JS, Majumdar A, Park BC, Black MH, Hsieh TS, Osinski A, Servage KA, Kulkarni K, Naidoo J, Alto NM, Stratton MM, Alfandari D, Ready JM, Pawłowski K, Tomchick DR, Tagliabracci VS. Bacterial ubiquitin ligase engineered for small molecule and protein target identification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644192. [PMID: 40166235 PMCID: PMC11957136 DOI: 10.1101/2025.03.20.644192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The Legionella SidE effectors ubiquitinate host proteins independently of the canonical E1-E2 cascade. Here we engineer the SidE ligases to develop a modular proximity ligation approach for the identification of targets of small molecules and proteins, which we call SidBait. We validate the method with known small molecule-protein interactions and use it to identify CaMKII as an off-target interactor of the breast cancer drug ribociclib. Structural analysis and activity assays confirm that ribociclib binds the CaMKII active site and inhibits its activity. We further customize SidBait to identify protein-protein interactions, including substrates for enzymes, and discover the F-actin capping protein (CapZ) as a target of the Legionella effector RavB during infection. Structural and biochemical studies indicate that RavB allosterically binds CapZ and decaps actin, thus functionally mimicking eukaryotic CapZ interacting proteins. Collectively, our results establish SidBait as a reliable tool for identifying targets of small molecules and proteins.
Collapse
Affiliation(s)
- James S. Ye
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abir Majumdar
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brenden C. Park
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miles H. Black
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ting-Sung Hsieh
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Osinski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kelly A. Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kartik Kulkarni
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jacinth Naidoo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Neal M. Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Margaret M. Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Joseph M. Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Diana R. Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincent S. Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
2
|
Brown CN, Bayer KU. Studying CaMKII: Tools and standards. Cell Rep 2024; 43:113982. [PMID: 38517893 PMCID: PMC11088445 DOI: 10.1016/j.celrep.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a ubiquitous mediator of cellular Ca2+ signals with both enzymatic and structural functions. Here, we briefly introduce the complex regulation of CaMKII and then provide a comprehensive overview of the expanding toolbox to study CaMKII. Beyond a variety of distinct mutants, these tools now include optical methods for measurement and manipulation, with the latter including light-induced inhibition, stimulation, and sequestration. Perhaps most importantly, there are now three mechanistically distinct classes of specific CaMKII inhibitors, and their combined use enables the interrogation of CaMKII functions in a manner that is powerful and sophisticated yet also accessible. This review aims to provide guidelines for the interpretation of the results obtained with these tools, with careful consideration of their direct and indirect effects.
Collapse
Affiliation(s)
- Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Karl Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Nguyen BV, Özden C, Dong K, Torres-Ocampo AP, Dziedzic N, Flaherty D, Huang J, Sankura S, Abromson NL, Tomchick DR, Chen J, Garman SC, Stratton MM. A domain-swapped CaMKII conformation facilitates linker-mediated allosteric regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.586494. [PMID: 38585726 PMCID: PMC10996533 DOI: 10.1101/2024.03.24.586494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Ca2+ signaling plays a key role in physiological processes such as memory formation and cardiac function. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is the primary kinase that responds to Ca2+ inputs in these cells. There are four CaMKII paralogs in mammals which are alternatively spliced in the variable linker region to create upwards of 70 different variants. In this study, we systematically studied different linker regions and determined that the position of charged residues within the linker region modulates the Ca2+/CaM sensitivity of the holoenzyme. We present an X-ray crystal structure of full-length CaMKIIδ that shows a domain-swapped conformation of the subunits within the dodecameric holoenzyme. In this structure, the kinase domain of one subunit is docked onto the hub domain of a different subunit, providing an additional interface within the holoenzyme. Mutations at the equatorial and lateral interfaces revealed that the kinase-hub interaction dissociates as the hub-hub interfaces are disturbed, which led alterations in the stoichiometry of CaMKII holoenzyme and Ca2+/CaM sensitivity. Molecular dynamics simulations of linker-containing domain-swapped and non-domain-swapped CaMKIIs reveal that the domain-swapped configuration facilitates an interaction between the calmodulin binding domain and the variable linker region, such that dynamic electrostatic forces between charges on these segments can modulate the equilibrium between the compact and extended conformational states of the holoenzyme. Small angle X-ray scattering data confirms that a negatively charged linker CaMKII holoenzyme adopts a more compact conformation compared to a positively charged linker. These data support a model where patches of charged linker residues interact with the calmodulin binding domain to allosterically regulate sensitivity to Ca2+/CaM. Our findings provide a new framework for understanding CaMKII structure and allosteric regulation by the variable linker region in Ca2+-sensitive cells.
Collapse
Affiliation(s)
- Bao V. Nguyen
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Chemistry-Biology Interface Training Program, University of Massachusetts, Amherst, MA 01003, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Can Özden
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Kairong Dong
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Ana P. Torres-Ocampo
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Chemistry-Biology Interface Training Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Noelle Dziedzic
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Chemistry-Biology Interface Training Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Daniel Flaherty
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Jian Huang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Saketh Sankura
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Nikki Lyn Abromson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Diana R. Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Scott C Garman
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Rigter PMF, de Konink C, Dunn MJ, Proietti Onori M, Humberson JB, Thomas M, Barnes C, Prada CE, Weaver KN, Ryan TD, Caluseriu O, Conway J, Calamaro E, Fong CT, Wuyts W, Meuwissen M, Hordijk E, Jonkers CN, Anderson L, Yuseinova B, Polonia S, Beysen D, Stark Z, Savva E, Poulton C, McKenzie F, Bhoj E, Bupp CP, Bézieau S, Mercier S, Blevins A, Wentzensen IM, Xia F, Rosenfeld JA, Hsieh TC, Krawitz PM, Elbracht M, Veenma DCM, Schulman H, Stratton MM, Küry S, van Woerden GM. Role of CAMK2D in neurodevelopment and associated conditions. Am J Hum Genet 2024; 111:364-382. [PMID: 38272033 PMCID: PMC10870144 DOI: 10.1016/j.ajhg.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes-CAMK2A, CAMK2B, CAMK2G, and CAMK2D-of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now. Here we show that CAMK2D plays an important role in neurodevelopment not only in mice but also in humans. We identified eight individuals harboring heterozygous variants in CAMK2D who display symptoms of intellectual disability, delayed speech, behavioral problems, and dilated cardiomyopathy. The majority of the variants tested lead to a gain of function (GoF), which appears to cause both neurological problems and dilated cardiomyopathy. In contrast, loss-of-function (LoF) variants appear to induce only neurological symptoms. Together, we describe a cohort of individuals with neurodevelopmental disorders and cardiac anomalies, harboring pathogenic variants in CAMK2D, confirming an important role for the CAMK2D isozyme in both heart and brain function.
Collapse
Affiliation(s)
- Pomme M F Rigter
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Charlotte de Konink
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Matthew J Dunn
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Martina Proietti Onori
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Jennifer B Humberson
- Pediatric Specialty Care, University of Virginia Health, Charlottesville, VA 22903, USA
| | - Matthew Thomas
- Division of Genetics, Department of Pediatrics, University of Virginia Children's, Charlottesville, VA 22903, USA
| | - Caitlin Barnes
- Division of Genetics, Department of Pediatrics, University of Virginia Children's, Charlottesville, VA 22903, USA
| | - Carlos E Prada
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Fundacion Cardiovascular de Colombia, Bucaramanga, Colombia
| | - K Nicole Weaver
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Thomas D Ryan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; Stollery Children's Hospital, Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Jennifer Conway
- Stollery Children's Hospital, Department of Pediatrics, Division of Pediatric Cardiology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Emily Calamaro
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Chin-To Fong
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Wim Wuyts
- Department of Medical Genetics, University of Antwerp and University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, University of Antwerp and University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Eva Hordijk
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Carsten N Jonkers
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Lucas Anderson
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Berfin Yuseinova
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Sarah Polonia
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Diane Beysen
- Department of Paediatric Neurology, University Hospital of Antwerp, 2650 Edegem, Belgium; Department of Translational Neurosciences, University of Antwerp, 2650 Edegem, Belgium
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Australian Genomics, Melbourne, VIC 3052, Australia
| | - Elena Savva
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Cathryn Poulton
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA 6008, Australia
| | - Fiona McKenzie
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA 6008, Australia; School of Paediatrics and Child Health, University of Western Australia, Perth, WA 6009, Australia
| | - Elizabeth Bhoj
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Caleb P Bupp
- Corewell Health & Helen DeVos Children's Hospital, Grand Rapids, MI 49503, USA
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | | | - Ingrid M Wentzensen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, 53127 Bonn, Germany
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, 53127 Bonn, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Danielle C M Veenma
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; Sophia Children's Hospital, Erasmus Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Howard Schulman
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305, USA; Panorama Research Institute, Sunnyvale, CA 94089, USA
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Sébastien Küry
- Corewell Health & Helen DeVos Children's Hospital, Grand Rapids, MI 49503, USA; Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France.
| | - Geeske M van Woerden
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands; Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands.
| |
Collapse
|
5
|
Venkat A, Watterson G, Byrne DP, O'Boyle B, Shrestha S, Gravel N, Fairweather EE, Daly LA, Bunn C, Yeung W, Aggarwal I, Katiyar S, Eyers CE, Eyers PA, Kannan N. Mechanistic and evolutionary insights into isoform-specific 'supercharging' in DCLK family kinases. eLife 2023; 12:RP87958. [PMID: 37883155 PMCID: PMC10602587 DOI: 10.7554/elife.87958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Catalytic signaling outputs of protein kinases are dynamically regulated by an array of structural mechanisms, including allosteric interactions mediated by intrinsically disordered segments flanking the conserved catalytic domain. The doublecortin-like kinases (DCLKs) are a family of microtubule-associated proteins characterized by a flexible C-terminal autoregulatory 'tail' segment that varies in length across the various human DCLK isoforms. However, the mechanism whereby these isoform-specific variations contribute to unique modes of autoregulation is not well understood. Here, we employ a combination of statistical sequence analysis, molecular dynamics simulations, and in vitro mutational analysis to define hallmarks of DCLK family evolutionary divergence, including analysis of splice variants within the DCLK1 sub-family, which arise through alternative codon usage and serve to 'supercharge' the inhibitory potential of the DCLK1 C-tail. We identify co-conserved motifs that readily distinguish DCLKs from all other calcium calmodulin kinases (CAMKs), and a 'Swiss Army' assembly of distinct motifs that tether the C-terminal tail to conserved ATP and substrate-binding regions of the catalytic domain to generate a scaffold for autoregulation through C-tail dynamics. Consistently, deletions and mutations that alter C-terminal tail length or interfere with co-conserved interactions within the catalytic domain alter intrinsic protein stability, nucleotide/inhibitor binding, and catalytic activity, suggesting isoform-specific regulation of activity through alternative splicing. Our studies provide a detailed framework for investigating kinome-wide regulation of catalytic output through cis-regulatory events mediated by intrinsically disordered segments, opening new avenues for the design of mechanistically divergent DCLK1 modulators, stabilizers, or degraders.
Collapse
Affiliation(s)
- Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Grace Watterson
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Dominic P Byrne
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Brady O'Boyle
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Safal Shrestha
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Nathan Gravel
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Emma E Fairweather
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Leonard A Daly
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
- Centre for Proteome Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Claire Bunn
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Wayland Yeung
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Ishan Aggarwal
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Samiksha Katiyar
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Claire E Eyers
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
- Centre for Proteome Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Patrick A Eyers
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Natarajan Kannan
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| |
Collapse
|
6
|
Nicoll RA, Schulman H. Synaptic memory and CaMKII. Physiol Rev 2023; 103:2877-2925. [PMID: 37290118 PMCID: PMC10642921 DOI: 10.1152/physrev.00034.2022] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
- Panorama Research Institute, Sunnyvale, California, United States
| |
Collapse
|
7
|
Tullis JE, Larsen ME, Rumian NL, Freund RK, Boxer EE, Brown CN, Coultrap SJ, Schulman H, Aoto J, Dell'Acqua ML, Bayer KU. LTP induction by structural rather than enzymatic functions of CaMKII. Nature 2023; 621:146-153. [PMID: 37648853 PMCID: PMC10482691 DOI: 10.1038/s41586-023-06465-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
Learning and memory are thought to require hippocampal long-term potentiation (LTP), and one of the few central dogmas of molecular neuroscience that has stood undisputed for more than three decades is that LTP induction requires enzymatic activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII)1-3. However, as we delineate here, the experimental evidence is surprisingly far from conclusive. All previous interventions inhibiting enzymatic CaMKII activity and LTP4-8 also interfere with structural CaMKII roles, in particular binding to the NMDA-type glutamate receptor subunit GluN2B9-14. Thus, we here characterized and utilized complementary sets of new opto-/pharmaco-genetic tools to distinguish between enzymatic and structural CaMKII functions. Several independent lines of evidence demonstrated LTP induction by a structural function of CaMKII rather than by its enzymatic activity. The sole contribution of kinase activity was autoregulation of this structural role via T286 autophosphorylation, which explains why this distinction has been elusive for decades. Directly initiating the structural function in a manner that circumvented this T286 role was sufficient to elicit robust LTP, even when enzymatic CaMKII activity was blocked.
Collapse
Affiliation(s)
- Jonathan E Tullis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew E Larsen
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicole L Rumian
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ronald K Freund
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emma E Boxer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Steven J Coultrap
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
8
|
Chen X, Cai Q, Zhou J, Pleasure SJ, Schulman H, Zhang M, Nicoll RA. CaMKII autophosphorylation but not downstream kinase activity is required for synaptic memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554912. [PMID: 37662326 PMCID: PMC10473743 DOI: 10.1101/2023.08.25.554912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
CaMKII plays a critical role in long-term potentiation (LTP), a well-established model for learning and memory through the enhancement of synaptic transmission. Biochemical studies indicate that CaMKII catalyzes a phosphotransferase (kinase) reaction of both itself (autophosphorylation) and of multiple downstream target proteins. However, whether either type of phosphorylation plays any role in the synaptic enhancing action of CaMKII remains hotly contested. We have designed a series of experiments to define the minimal requirements for the synaptic enhancement by CaMKII. We find that autophosphorylation of T286 and further binding of CaMKII to the GluN2B subunit are required both for initiating LTP and for its maintenance (synaptic memory). Once bound to the NMDA receptor, the synaptic action of CaMKII occurs in the absence of kinase activity. Thus, autophosphorylation, together with binding to the GluN2B subunit, are the only two requirements for CaMKII in synaptic memory.
Collapse
|
9
|
Venkat A, Watterson G, Byrne DP, O’Boyle B, Shrestha S, Gravel N, Fairweather EE, Daly LA, Bunn C, Yeung W, Aggarwal I, Katiyar S, Eyers CE, Eyers PA, Kannan N. Mechanistic and evolutionary insights into isoform-specific 'supercharging' in DCLK family kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534689. [PMID: 37034755 PMCID: PMC10081240 DOI: 10.1101/2023.03.29.534689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Catalytic signaling outputs of protein kinases are dynamically regulated by an array of structural mechanisms, including allosteric interactions mediated by intrinsically disordered segments flanking the conserved catalytic domain. The Doublecortin Like Kinases (DCLKs) are a family of microtubule-associated proteins characterized by a flexible C-terminal autoregulatory 'tail' segment that varies in length across the various human DCLK isoforms. However, the mechanism whereby these isoform-specific variations contribute to unique modes of autoregulation is not well understood. Here, we employ a combination of statistical sequence analysis, molecular dynamics simulations and in vitro mutational analysis to define hallmarks of DCLK family evolutionary divergence, including analysis of splice variants within the DCLK1 sub-family, which arise through alternative codon usage and serve to 'supercharge' the inhibitory potential of the DCLK1 C-tail. We identify co-conserved motifs that readily distinguish DCLKs from all other Calcium Calmodulin Kinases (CAMKs), and a 'Swiss-army' assembly of distinct motifs that tether the C-terminal tail to conserved ATP and substrate-binding regions of the catalytic domain to generate a scaffold for auto-regulation through C-tail dynamics. Consistently, deletions and mutations that alter C-terminal tail length or interfere with co-conserved interactions within the catalytic domain alter intrinsic protein stability, nucleotide/inhibitor-binding, and catalytic activity, suggesting isoform-specific regulation of activity through alternative splicing. Our studies provide a detailed framework for investigating kinome-wide regulation of catalytic output through cis-regulatory events mediated by intrinsically disordered segments, opening new avenues for the design of mechanistically-divergent DCLK1 modulators, stabilizers or degraders.
Collapse
Affiliation(s)
- Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Grace Watterson
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Dominic P. Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Brady O’Boyle
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Safal Shrestha
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Emma E. Fairweather
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Leonard A. Daly
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Claire Bunn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Ishan Aggarwal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Samiksha Katiyar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Claire E. Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Patrick A. Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Tolmacheva ER, Shubina J, Kochetkova TO, Ushakova LV, Bokerija EL, Vasiliev GS, Mikhaylovskaya GV, Atapina EE, Zaretskaya NV, Sukhikh GT, Rebrikov DV, Trofimov DY. CAMK2D De Novo Missense Variant in Patient with Syndromic Neurodevelopmental Disorder: A Case Report. Genes (Basel) 2023; 14:1177. [PMID: 37372357 DOI: 10.3390/genes14061177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Intellectual disability with developmental delay is the most common developmental disorder. However, this diagnosis is rarely associated with congenital cardiomyopathy. In the current report, we present the case of a patient suffering from dilated cardiomyopathy and developmental delay. METHODS Neurological pathology in a newborn was diagnosed immediately after birth, and the acquisition of psychomotor skills lagged behind by 3-4 months during the first year of life. WES analysis of the proband did not reveal a causal variant, so the search was extended to trio. RESULTS Trio sequencing revealed a de novo missense variant in the CAMK2D gene (p.Arg275His), that is, according to the OMIM database and available literature, not currently associated with any specific inborn disease. The expression of Ca2+/calmodulin-dependent protein kinase II delta (CaMKIIδ) protein is known to be increased in the heart tissues from patients with dilated cardiomyopathy. The functional effect of the CaMKIIδ Arg275His mutant was recently reported; however, no specific mechanism of its pathogenicity was proposed. A structural analysis and comparison of available three-dimensional structures of CaMKIIδ confirmed the probable pathogenicity of the observed missense variant. CONCLUSIONS We suggest that the CaMKIIδ Arg275His variant is highly likely the cause of dilated cardiomyopathy and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ekaterina R Tolmacheva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Jekaterina Shubina
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Taisiya O Kochetkova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Lubov' V Ushakova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Ekaterina L Bokerija
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Grigory S Vasiliev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Galina V Mikhaylovskaya
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Ekaterina E Atapina
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Nadezhda V Zaretskaya
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Denis V Rebrikov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Dmitriy Yu Trofimov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| |
Collapse
|
11
|
Griem-Krey N, Clarkson AN, Wellendorph P. CaMKIIα as a Promising Drug Target for Ischemic Grey Matter. Brain Sci 2022; 12:1639. [PMID: 36552099 PMCID: PMC9775128 DOI: 10.3390/brainsci12121639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of Ca2+-dependent signaling pathways in various cell types throughout the body. Its neuronal isoform CaMKIIα (alpha) centrally integrates physiological but also pathological glutamate signals directly downstream of glutamate receptors and has thus emerged as a target for ischemic stroke. Previous studies provided evidence for the involvement of CaMKII activity in ischemic cell death by showing that CaMKII inhibition affords substantial neuroprotection. However, broad inhibition of this central kinase is challenging because various essential physiological processes like synaptic plasticity rely on intact CaMKII regulation. Thus, specific strategies for targeting CaMKII after ischemia are warranted which would ideally only interfere with pathological activity of CaMKII. This review highlights recent advances in the understanding of how ischemia affects CaMKII and how pathospecific pharmacological targeting of CaMKII signaling could be achieved. Specifically, we discuss direct targeting of CaMKII kinase activity with peptide inhibitors versus indirect targeting of the association (hub) domain of CaMKIIα with analogues of γ-hydroxybutyrate (GHB) as a potential way to achieve more specific pharmacological modulation of CaMKII activity after ischemia.
Collapse
Affiliation(s)
- Nane Griem-Krey
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9016, New Zealand
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Liu J, Tao M, Zhao W, Song Q, Yang X, Li M, Zhang Y, Xiu D, Zhang Z. Calcium Channel α2δ1 is Essential for Pancreatic Tumor-Initiating Cells through Sequential Phosphorylation of PKM2. Cell Mol Gastroenterol Hepatol 2022; 15:373-392. [PMID: 36244646 PMCID: PMC9791133 DOI: 10.1016/j.jcmgh.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND & AIMS Tumor-initiating cells (TICs) drive pancreatic cancer tumorigenesis, therapeutic resistance, and metastasis. However, TICs are highly plastic and heterogenous, which impede the robust identification and targeted therapy of such a population. The aim of this study is to identify the surface marker and therapeutic target for pancreatic TICs. METHODS We isolated voltage-gated calcium channel α2δ1 subunit (isoform 5)-positive subpopulation from pancreatic cancer cell lines and freshly resected primary tissues by fluorescence-activated cell sorting and evaluated their TIC properties by spheroid formation and tumorigenic assays. Coimmunoprecipitation was used to identify the direct substrate of CaMKⅡδ. RESULTS We demonstrate that the voltage-gated calcium channel α2δ1 subunit (isoform 5) marks a subpopulation of pancreatic TICs with the highest TIC frequency among the known pancreatic TIC markers tested. Furthermore, α2δ1 is functionally sufficient and indispensable to promote TIC properties by mediating Ca2+ influx, which activates CaMKⅡδ to directly phosphorylate PKM2 at T454 that results in subsequent phosphorylation at Y105 to translocate into nucleus, enhancing the stem-like properties. Interestingly, blocking α2δ1 with its specific antibody has remarkably therapeutic effects on pancreatic cancer xenografts by reducing TICs. CONCLUSIONS α2δ1 promotes pancreatic TIC properties through sequential phosphorylation of PKM2 mediated by CaMKⅡδ, and targeting α2δ1 provides a therapeutic strategy against TICs for pancreatic cancer.
Collapse
Affiliation(s)
- Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China; Department of Pharmacology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Ming Tao
- Department of General Surgery, Peking University Third Hospital, Beijing, P.R. China
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Qingru Song
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Xiaodan Yang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Meng Li
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Yanhua Zhang
- Department of Pharmacology, Peking University Cancer Hospital and Institute, Beijing, P.R. China.
| | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, Beijing, P.R. China.
| | - Zhiqian Zhang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China.
| |
Collapse
|
13
|
Özden C, Sloutsky R, Mitsugi T, Santos N, Agnello E, Gaubitz C, Foster J, Lapinskas E, Esposito EA, Saneyoshi T, Kelch BA, Garman SC, Hayashi Y, Stratton MM. CaMKII binds both substrates and activators at the active site. Cell Rep 2022; 40:111064. [PMID: 35830796 PMCID: PMC9336311 DOI: 10.1016/j.celrep.2022.111064] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/04/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a signaling protein required for long-term memory. When activated by Ca2+/CaM, it sustains activity even after the Ca2+ dissipates. In addition to the well-known autophosphorylation-mediated mechanism, interaction with specific binding partners also persistently activates CaMKII. A long-standing model invokes two distinct S and T sites. If an interactor binds at the T-site, then it will preclude autoinhibition and allow substrates to be phosphorylated at the S site. Here, we specifically test this model with X-ray crystallography, molecular dynamics simulations, and biochemistry. Our data are inconsistent with this model. Co-crystal structures of four different activators or substrates show that they all bind to a single continuous site across the kinase domain. We propose a mechanistic model where persistent CaMKII activity is facilitated by high-affinity binding partners that kinetically compete with autoinhibition by the regulatory segment to allow substrate phosphorylation.
Collapse
Affiliation(s)
- Can Özden
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Roman Sloutsky
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Tomohiro Mitsugi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Nicholas Santos
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Emily Agnello
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Christl Gaubitz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Joshua Foster
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Emily Lapinskas
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Takeo Saneyoshi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Brian A Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Scott C Garman
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
14
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
15
|
Dwyer BK, Veenma DCM, Chang K, Schulman H, Van Woerden GM. Case Report: Developmental Delay and Acute Neuropsychiatric Episodes Associated With a de novo Mutation in the CAMK2B Gene (c.328G>A p.Glu110Lys). Front Pharmacol 2022; 13:794008. [PMID: 35620293 PMCID: PMC9127182 DOI: 10.3389/fphar.2022.794008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/21/2022] [Indexed: 11/27/2022] Open
Abstract
Mutations in the genes encoding calcium/calmodulin dependent protein kinase II (CAMK2) isoforms cause a newly recognized neurodevelopmental disorder (ND), for which the full clinical spectrum has yet to be described. Here we report the detailed description of a child with a de novo gain of function (GoF) mutation in the gene Ca/Calmodulin dependent protein kinase 2 beta (CAMK2B c.328G > A p.Glu110Lys) who presents with developmental delay and periodic neuropsychiatric episodes. The episodes manifest as encephalopathy with behavioral changes, headache, loss of language and loss of complex motor coordination. Additionally, we provide an overview of the effect of different medications used to try to alleviate the symptoms. We show that medications effective for mitigating the child’s neuropsychiatric symptoms may have done so by decreasing CAMK2 activity and associated calcium signaling; whereas medications that appeared to worsen the symptoms may have done so by increasing CAMK2 activity and associated calcium signaling. We hypothesize that by classifying CAMK2 mutations as “gain of function” or “loss of function” based on CAMK2 catalytic activity, we may be able to guide personalized empiric treatment regimens tailored to specific CAMK2 mutations. In the absence of sufficient patients for traditional randomized controlled trials to establish therapeutic efficacy, this approach may provide a rational approach to empiric therapy for physicians treating patients with dysregulated CAMK2 and associated calcium signaling.
Collapse
Affiliation(s)
- Bonnie K Dwyer
- Department of Maternal Fetal Medicine and Genetics, Palo Alto Medical Foundation, Mountain View, CA, United States
| | - Danielle C M Veenma
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,ENCORE Expertise Center, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Kiki Chang
- University of Texas Houston Health Science Center, Houston, TX, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA, United States.,Panorama Research Institute, Sunnyvale, CA, United States
| | - Geeske M Van Woerden
- ENCORE Expertise Center, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
16
|
Carlson CR, Aronsen JM, Bergan-Dahl A, Moutty MC, Lunde M, Lunde PK, Jarstadmarken H, Wanichawan P, Pereira L, Kolstad TRS, Dalhus B, Subramanian H, Hille S, Christensen G, Müller OJ, Nikolaev V, Bers DM, Sjaastad I, Shen X, Louch WE, Klussmann E, Sejersted OM. AKAP18δ Anchors and Regulates CaMKII Activity at Phospholamban-SERCA2 and RYR. Circ Res 2022; 130:27-44. [PMID: 34814703 PMCID: PMC9500498 DOI: 10.1161/circresaha.120.317976] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The sarcoplasmic reticulum (SR) Ca2+-ATPase 2 (SERCA2) mediates Ca2+ reuptake into SR and thereby promotes cardiomyocyte relaxation, whereas the ryanodine receptor (RYR) mediates Ca2+ release from SR and triggers contraction. Ca2+/CaMKII (CaM [calmodulin]-dependent protein kinase II) regulates activities of SERCA2 through phosphorylation of PLN (phospholamban) and RYR through direct phosphorylation. However, the mechanisms for CaMKIIδ anchoring to SERCA2-PLN and RYR and its regulation by local Ca2+ signals remain elusive. The objective of this study was to investigate CaMKIIδ anchoring and regulation at SERCA2-PLN and RYR. METHODS A role for AKAP18δ (A-kinase anchoring protein 18δ) in CaMKIIδ anchoring and regulation was analyzed by bioinformatics, peptide arrays, cell-permeant peptide technology, immunoprecipitations, pull downs, transfections, immunoblotting, proximity ligation, FRET-based CaMKII activity and ELISA-based assays, whole cell and SR vesicle fluorescence imaging, high-resolution microscopy, adenovirus transduction, adenoassociated virus injection, structural modeling, surface plasmon resonance, and alpha screen technology. RESULTS Our results show that AKAP18δ anchors and directly regulates CaMKIIδ activity at SERCA2-PLN and RYR, via 2 distinct AKAP18δ regions. An N-terminal region (AKAP18δ-N) inhibited CaMKIIδ through binding of a region homologous to the natural CaMKII inhibitor peptide and the Thr17-PLN region. AKAP18δ-N also bound CaM, introducing a second level of control. Conversely, AKAP18δ-C, which shares homology to neuronal CaMKIIα activator peptide (N2B-s), activated CaMKIIδ by lowering the apparent Ca2+ threshold for kinase activation and inducing CaM trapping. While AKAP18δ-C facilitated faster Ca2+ reuptake by SERCA2 and Ca2+ release through RYR, AKAP18δ-N had opposite effects. We propose a model where the 2 unique AKAP18δ regions fine-tune Ca2+-frequency-dependent activation of CaMKIIδ at SERCA2-PLN and RYR. CONCLUSIONS AKAP18δ anchors and functionally regulates CaMKII activity at PLN-SERCA2 and RYR, indicating a crucial role of AKAP18δ in regulation of the heartbeat. To our knowledge, this is the first protein shown to enhance CaMKII activity in heart and also the first AKAP (A-kinase anchoring protein) reported to anchor a CaMKII isoform, defining AKAP18δ also as a CaM-KAP.
Collapse
Affiliation(s)
- Cathrine R. Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo Norway,Department of Pharmacology, Oslo University Hospital, Norway
| | - Anna Bergan-Dahl
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Marie Christine Moutty
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Per Kristian Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Hilde Jarstadmarken
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pimthanya Wanichawan
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Laetitia Pereira
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Terje RS Kolstad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Bjørn Dalhus
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway,Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Susanne Hille
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany,Department of Internal Medicine III, University of Kiel, Kiel, Germany
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Oliver J. Müller
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany,Department of Internal Medicine III, University of Kiel, Kiel, Germany
| | - Viacheslav Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Donald M. Bers
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ole M. Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Ding C, Wu Y, Dabas H, Hammarlund M. Activation of the CaMKII-Sarm1-ASK1-p38 MAP kinase pathway protects against axon degeneration caused by loss of mitochondria. eLife 2022; 11:73557. [PMID: 35285800 PMCID: PMC8920508 DOI: 10.7554/elife.73557] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial defects are tightly linked to axon degeneration, yet the underlying cellular mechanisms remain poorly understood. In Caenorhabditis elegans, PVQ axons that lack mitochondria degenerate spontaneously with age. Using an unbiased genetic screen, we found that cell-specific activation of CaMKII/UNC-43 suppresses axon degeneration due to loss of mitochondria. Unexpectedly, CaMKII/UNC-43 activates the conserved Sarm1/TIR-1-ASK1/NSY-1-p38 MAPK pathway and eventually the transcription factor CEBP-1 to protect against degeneration. In addition, we show that disrupting a trafficking complex composed of calsyntenin/CASY-1, Mint/LIN-10, and kinesin suppresses axon degeneration. Further analysis indicates that disruption of this trafficking complex activates the CaMKII-Sarm1-MAPK pathway through L-type voltage-gated calcium channels. Our findings identify CaMKII as a pivot point between mitochondrial defects and axon degeneration, describe how it is regulated, and uncover a surprising neuroprotective role for the Sarm1-p38 MAPK pathway in this context.
Collapse
Affiliation(s)
- Chen Ding
- Department of Neuroscience, Yale University School of MedicineNew HavenUnited States
| | - Youjun Wu
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Hadas Dabas
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Marc Hammarlund
- Department of Neuroscience, Yale University School of MedicineNew HavenUnited States,Department of Genetics, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
18
|
Fu CH, Han XY, Tong L, Nie PY, Hu YD, Ji LL. miR-142 downregulation alleviates the impairment of spatial learning and memory, reduces the level of apoptosis, and upregulates the expression of pCaMKII and BAI3 in the hippocampus of APP/PS1 transgenic mice. Behav Brain Res 2021; 414:113485. [PMID: 34302879 DOI: 10.1016/j.bbr.2021.113485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/20/2021] [Accepted: 07/17/2021] [Indexed: 01/20/2023]
Abstract
MicroRNA-142-5p (miR-142-5p) has been found to be dysregulated in several neurodegenerative disorders. However, little is known about the involvement of miR-142-5p in Alzheimer's disease (AD). Brain angiogenesis inhibitor 3 (BAI3), which belongs to the adhesion-G protein-coupled receptor subgroup, contributes to a variety of neuropsychiatric disorders. Despite its very high expression in neurons, the role of BAI3 in AD remains elusive, and its mechanism at the cellular and molecular levels needs to be further elucidated. The current study sought to investigate whether miR-142-5p influenced BAI3 expression and neuronal synaptotoxicity induced by Aβ, both in APP/PS1 transgenic mice and a cellular model of Alzheimer's disease. Altered expression of miR-142-5p was found in the hippocampus of AD mice. Inhibition of miR-142 could upregulate BAI3 expression, enhance neuronal viability and prevent neurons from undergoing apoptosis. In addition, the reduction of phosphorylation of Synapsin I and calcium/calmodulin-dependent protein kinase II (CaMKII), as well as the expression of PSD-95 in the hippocampus of APP/PS1 transgenic mice, were significantly restored by inhibiting miR-142. Meanwhile, the levels of Aβ1-42, β-APP, BACE-1 and PS-1 in cultured neurons were detected, and the effects of inhibiting miR-142 on spatial learning and memory were also observed. Interestingly, we found that BAI3, an important regulator of excitatory synapses, was a potential target gene of miR-142-5p. Collectively, our findings suggest that miR-142 inhibition can alleviate the impairment of spatial learning and memory, reduce the level of apoptosis, and upregulate the expression of pCaMKII and BAI3 in the hippocampus of APP/PS1 transgenic mice; thus, appropriate interference of miR-142 may provide a potential therapeutic approach to rescue cognitive dysfunction in AD patients.
Collapse
Affiliation(s)
- Chang-Hai Fu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xue-Yan Han
- Department of Neurology, Seventh People's Hospital of Jinan City, Jinan, China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Peng-Yin Nie
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yue-Dong Hu
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
19
|
The Calcium/Calmodulin-Dependent Kinases II and IV as Therapeutic Targets in Neurodegenerative and Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:ijms22094307. [PMID: 33919163 PMCID: PMC8122486 DOI: 10.3390/ijms22094307] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
CaMKII and CaMKIV are calcium/calmodulin-dependent kinases playing a rudimentary role in many regulatory processes in the organism. These kinases attract increasing interest due to their involvement primarily in memory and plasticity and various cellular functions. Although CaMKII and CaMKIV are mostly recognized as the important cogs in a memory machine, little is known about their effect on mood and role in neuropsychiatric diseases etiology. Here, we aimed to review the structure and functions of CaMKII and CaMKIV, as well as how these kinases modulate the animals’ behavior to promote antidepressant-like, anxiolytic-like, and procognitive effects. The review will help in the understanding of the roles of the above kinases in the selected neurodegenerative and neuropsychiatric disorders, and this knowledge can be used in future drug design.
Collapse
|
20
|
Proietti Onori M, van Woerden GM. Role of calcium/calmodulin-dependent kinase 2 in neurodevelopmental disorders. Brain Res Bull 2021; 171:209-220. [PMID: 33774142 DOI: 10.1016/j.brainresbull.2021.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/28/2023]
Abstract
Neurodevelopmental disorders are a complex and heterogeneous group of neurological disorders characterized by their early-onset and estimated to affect more than 3% of children worldwide. The rapid advancement of sequencing technologies in the past years allowed the identification of hundreds of variants in several different genes causing neurodevelopmental disorders. Between those, new variants in the Calcium/calmodulin dependent protein kinase II (CAMK2) genes were recently linked to intellectual disability. Despite many years of research on CAMK2, this proves for the first time that this well-known and highly conserved molecule plays an important role in the human brain. In this review, we give an overview of the identified CAMK2 variants, and we speculate on potential mechanisms through which dysfunctions in CAMK2 result in neurodevelopmental disorders. Additionally, we discuss how the identification of CAMK2 variants might result in new exciting discoveries regarding the function of CAMK2 in the human brain.
Collapse
Affiliation(s)
- Martina Proietti Onori
- Department of Neuroscience, Erasmus MC, Rotterdam, 3015 GD, the Netherlands; The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, 3015 GD, the Netherlands
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus MC, Rotterdam, 3015 GD, the Netherlands; The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, 3015 GD, the Netherlands.
| |
Collapse
|
21
|
Shen W, Jin L, Zhu A, Lin Y, Pan G, Zhou S, Cheng J, Zhang J, Tu F, Liu C, Xie Q, Chen X. Treadmill exercise enhances synaptic plasticity in the ischemic penumbra of MCAO mice by inducing the expression of Camk2a via CYFIP1 upregulation. Life Sci 2021; 270:119033. [PMID: 33497737 DOI: 10.1016/j.lfs.2021.119033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
AIMS Physical exercise is beneficial to the recovery of patients with ischemic stroke. However, the underlying mechanism by which exercise promotes dendritic remodeling and synaptic plasticity is still obscure. This study explored the mechanism by which treadmill exercise enhances synaptic plasticity and dendritic remodeling in the ischemic penumbra. MAIN METHODS A middle cerebral artery occlusion (MCAO) model was generated in C57BL/6 mice, and lentivirus-mediated cytoplasmic FMRP-associated protein 1 (CYFIP1) shRNA expression was utilized to confirm the role of CYFIP1 in the exercise-induced increase in synaptic plasticity and dendritic remodeling. Neurological deficits were measured using the Zea Longa scale. Hematoxylin-eosin (H&E) staining and Nissl staining were performed to assess cerebral ischemic injury. Golgi-Cox staining was used to observe changes in dendritic remodeling and synaptic plasticity. Transmission electron microscopy (TEM) was performed to observe the synaptic ultrastructure. Molecular mechanisms were explored using immunofluorescence staining and western blotting. KEY FINDINGS Treadmill training enhanced synaptic plasticity in the penumbra. Additionally, we observed significant increases in the expression of CYFIP1 and calcium/calmodulin-dependent kinase 2a (Camk2a); enhanced neurological recovery and a decreased infarct volume. However, the injection of a lentivirus containing CYFIP1 shRNA into the lateral ventricle exerted negative effects on synaptic plasticity. Moreover, the exercise-induced neuroprotective effects were abolished by lentivirus-mediated CYFIP1 shRNA expression, consistent with the downregulation of Camk2a expression and the deterioration of neurological function. SIGNIFICANCE Treadmill training enhances synaptic plasticity and dendritic remodeling in the ischemic penumbra by inducing the expression of Camk2a via upregulation of CYFIP1.
Collapse
Affiliation(s)
- Weimin Shen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Lingqin Jin
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Anqi Zhu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Yao Lin
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Guoyuan Pan
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Shanshan Zhou
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingyan Cheng
- The Second Hospital Affiliated to Anhui University of Chinese Medicine, No.300, Shouchun Road, Hefei, Anhui, China
| | - Jieqiong Zhang
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Fengxia Tu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Chan Liu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Qingfeng Xie
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China.
| | - Xiang Chen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China.
| |
Collapse
|
22
|
Seaborne RA, Sharples AP. The Interplay Between Exercise Metabolism, Epigenetics, and Skeletal Muscle Remodeling. Exerc Sport Sci Rev 2020; 48:188-200. [PMID: 32658040 DOI: 10.1249/jes.0000000000000227] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We explore work from within the field of skeletal muscle and across the broader field of molecular biology, to propose that the link between exercise and skeletal muscle adaptation lies in the interplay between metabolism and epigenetics. Future investigations into such an interaction are crucial to advance our understanding of the beneficial effects of exercise on performance and health.
Collapse
|
23
|
Cisneros IE, Ghorpade A, Borgmann K. Methamphetamine Activates Trace Amine Associated Receptor 1 to Regulate Astrocyte Excitatory Amino Acid Transporter-2 via Differential CREB Phosphorylation During HIV-Associated Neurocognitive Disorders. Front Neurol 2020; 11:593146. [PMID: 33324330 PMCID: PMC7724046 DOI: 10.3389/fneur.2020.593146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Methamphetamine (METH) use, referred to as methamphetamine use disorder (MUD), results in neurocognitive decline, a characteristic shared with HIV-associated neurocognitive disorders (HAND). MUD exacerbates HAND partly through glutamate dysregulation. Astrocyte excitatory amino acid transporter (EAAT)-2 is responsible for >90% of glutamate uptake from the synaptic environment and is significantly decreased with METH and HIV-1. Our previous work demonstrated astrocyte trace amine associated receptor (TAAR) 1 to be involved in EAAT-2 regulation. Astrocyte EAAT-2 is regulated at the transcriptional level by cAMP responsive element binding (CREB) protein and NF-κB, transcription factors activated by cAMP, calcium and IL-1β. Second messengers, cAMP and calcium, are triggered by TAAR1 activation, which is upregulated by IL-1β METH-mediated increases in these second messengers and signal transduction pathways have not been shown to directly decrease astrocyte EAAT-2. We propose CREB activation serves as a master regulator of EAAT-2 transcription, downstream of METH-induced TAAR1 activation. To investigate the temporal order of events culminating in CREB activation, genetically encoded calcium indicators, GCaMP6s, were used to visualize METH-induced calcium signaling in primary human astrocytes. RNA interference and pharmacological inhibitors targeting or blocking cAMP-dependent protein kinase A and calcium/calmodulin kinase II confirmed METH-induced regulation of EAAT-2 and resultant glutamate clearance. Furthermore, we investigated METH-mediated CREB phosphorylation at both serine 133 and 142, the co-activator and co-repressor forms, respectively. Overall, this work revealed METH-induced differential CREB phosphorylation is a critical regulator for EAAT-2 function and may thus serve as a mechanistic target for the attenuation of METH-induced excitotoxicity in the context of HAND.
Collapse
Affiliation(s)
- Irma E Cisneros
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kathleen Borgmann
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
24
|
Liu C, Liu H, Luo Y, Lu T, Fu X, Cui S, Zhu S, Hou Y. The extracellular calcium-sensing receptor promotes porcine egg activation via calcium/calmodulin-dependent protein kinase II. Mol Reprod Dev 2020; 87:598-606. [PMID: 32017318 DOI: 10.1002/mrd.23322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022]
Abstract
Extracellular calcium is required for intracellular Ca2+ oscillations needed for egg activation, but the regulatory mechanism is still poorly understood. The present study was designed to demonstrate the function of calcium-sensing receptor (CASR), which could recognize extracellular calcium as first messenger, during porcine egg activation. CASR expression was markedly upregulated following egg activation. Functionally, the addition of CASR agonist NPS R-568 significantly enhanced pronuclear formation rate, while supplementation of CASR antagonist NPS2390 compromised egg activation. There was no change in NPS R-568 group compared with control group when the egg activation was performed without extracellular calcium addition. The addition of NPS2390 precluded the activation-dependent [Ca2+ ]i rise. When egg activation was conducted in intracellular Ca2+ chelator BAPTA-AM and NPS R-568 containing medium, CASR function was abolished. Meanwhile, CASR activation increased the level of the [Ca2+ ]i effector p-CAMKII, and the presence of KN-93, an inhibitor of CAMKII, significantly reduced the CASR-mediated increasement of pronuclear formation rate. Furthermore, the increase of CASR expression following activation was reversed by inhibiting CAMKII activity, supporting a positive feedback loop between CAMKII and CASR. Altogether, these findings provide a new pathway of egg activation about CASR, as the extracellular Ca2+ effector, promotes egg activation via its downstream effector and upstream regulator CAMKII.
Collapse
Affiliation(s)
- Cong Liu
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Huage Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Luo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tengfei Lu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sheng Cui
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shien Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Ottesen AH, Carlson CR, Eken OS, Sadredini M, Myhre PL, Shen X, Dalhus B, Laver DR, Lunde PK, Kurola J, Lunde M, Hoff JE, Godang K, Sjaastad I, Pettilä V, Stridsberg M, Lehnart SE, Edwards AG, Lunde IG, Omland T, Stokke MK, Christensen G, Røsjø H, Louch WE. Secretoneurin Is an Endogenous Calcium/Calmodulin-Dependent Protein Kinase II Inhibitor That Attenuates Ca 2+-Dependent Arrhythmia. Circ Arrhythm Electrophysiol 2020; 12:e007045. [PMID: 30943765 DOI: 10.1161/circep.118.007045] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Circulating SN (secretoneurin) concentrations are increased in patients with myocardial dysfunction and predict poor outcome. Because SN inhibits CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) activity, we hypothesized that upregulation of SN in patients protects against cardiomyocyte mechanisms of arrhythmia. METHODS Circulating levels of SN and other biomarkers were assessed in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT; n=8) and in resuscitated patients after ventricular arrhythmia-induced cardiac arrest (n=155). In vivo effects of SN were investigated in CPVT mice (RyR2 [ryanodine receptor 2]-R2474S) using adeno-associated virus-9-induced overexpression. Interactions between SN and CaMKIIδ were mapped using pull-down experiments, mutagenesis, ELISA, and structural homology modeling. Ex vivo actions were tested in Langendorff hearts and effects on Ca2+ homeostasis examined by fluorescence (fluo-4) and patch-clamp recordings in isolated cardiomyocytes. RESULTS SN levels were elevated in patients with CPVT and following ventricular arrhythmia-induced cardiac arrest. In contrast to NT-proBNP (N-terminal pro-B-type natriuretic peptide) and hs-TnT (high-sensitivity troponin T), circulating SN levels declined after resuscitation, as the risk of a new arrhythmia waned. Myocardial pro-SN expression was also increased in CPVT mice, and further adeno-associated virus-9-induced overexpression of SN attenuated arrhythmic induction during stress testing with isoproterenol. Mechanistic studies mapped SN binding to the substrate binding site in the catalytic region of CaMKIIδ. Accordingly, SN attenuated isoproterenol induced autophosphorylation of Thr287-CaMKIIδ in Langendorff hearts and inhibited CaMKIIδ-dependent RyR phosphorylation. In line with CaMKIIδ and RyR inhibition, SN treatment decreased Ca2+ spark frequency and dimensions in cardiomyocytes during isoproterenol challenge, and reduced the incidence of Ca2+ waves, delayed afterdepolarizations, and spontaneous action potentials. SN treatment also lowered the incidence of early afterdepolarizations during isoproterenol; an effect paralleled by reduced magnitude of L-type Ca2+ current. CONCLUSIONS SN production is upregulated in conditions with cardiomyocyte Ca2+ dysregulation and offers compensatory protection against cardiomyocyte mechanisms of arrhythmia, which may underlie its putative use as a biomarker in at-risk patients.
Collapse
Affiliation(s)
- Anett H Ottesen
- Division of Medicine, Akershus University Hospital, Lørenskog, Norway (A.H.O., P.L.M., J.E.H., T.O., H.R.).,Institute for Experimental Medical Research (A.H.O., C.R.C., O.S.E., M. Sadredini, X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., M.K.S., G.C., W.E.L.), Oslo University Hospital, Norway.,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway
| | - Cathrine R Carlson
- Institute for Experimental Medical Research (A.H.O., C.R.C., O.S.E., M. Sadredini, X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., M.K.S., G.C., W.E.L.), Oslo University Hospital, Norway.,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway
| | - Olav Søvik Eken
- Institute for Experimental Medical Research (A.H.O., C.R.C., O.S.E., M. Sadredini, X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., M.K.S., G.C., W.E.L.), Oslo University Hospital, Norway.,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway
| | - Mani Sadredini
- Institute for Experimental Medical Research (A.H.O., C.R.C., O.S.E., M. Sadredini, X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., M.K.S., G.C., W.E.L.), Oslo University Hospital, Norway.,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway
| | - Peder L Myhre
- Division of Medicine, Akershus University Hospital, Lørenskog, Norway (A.H.O., P.L.M., J.E.H., T.O., H.R.).,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research (A.H.O., C.R.C., O.S.E., M. Sadredini, X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., M.K.S., G.C., W.E.L.), Oslo University Hospital, Norway.,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway
| | - Bjørn Dalhus
- Department for Microbiology, Clinic for Laboratory Medicine (B.D.), Oslo University Hospital, Norway.,Department for Medical Biochemistry, Institute for Clinical Medicine (B.D.), University of Oslo, Norway
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (D.R.L.)
| | - Per Kristian Lunde
- Institute for Experimental Medical Research (A.H.O., C.R.C., O.S.E., M. Sadredini, X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., M.K.S., G.C., W.E.L.), Oslo University Hospital, Norway.,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway
| | - Jouni Kurola
- Division of Intensive Care Medicine, Kuopio University Hospital, Finland (J.K.)
| | - Marianne Lunde
- Institute for Experimental Medical Research (A.H.O., C.R.C., O.S.E., M. Sadredini, X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., M.K.S., G.C., W.E.L.), Oslo University Hospital, Norway.,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway
| | - Jon Erik Hoff
- Division of Medicine, Akershus University Hospital, Lørenskog, Norway (A.H.O., P.L.M., J.E.H., T.O., H.R.)
| | - Kristin Godang
- Section of Specialized Endocrinology, Department of Endocrinology (K.G.), Oslo University Hospital, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research (A.H.O., C.R.C., O.S.E., M. Sadredini, X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., M.K.S., G.C., W.E.L.), Oslo University Hospital, Norway.,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway.,K.G. Jebsen Center for Cardiac Research (I.S., G.C., W.E.L.), University of Oslo, Norway
| | - Ville Pettilä
- Division of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki & Helsinki University Hospital, Finland (V.P.)
| | - Mats Stridsberg
- Department of Medical Sciences, Uppsala University, Sweden (M. Stridsberg)
| | - Stephan E Lehnart
- Heart Research Center Goettingen, University Medicine Center Goettingen, Germany (S.E.L.)
| | - Andrew G Edwards
- Institute for Experimental Medical Research (A.H.O., C.R.C., O.S.E., M. Sadredini, X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., M.K.S., G.C., W.E.L.), Oslo University Hospital, Norway.,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway.,Simula Research Laboratory, Fornebu, Norway (A.G.E)
| | - Ida G Lunde
- Institute for Experimental Medical Research (A.H.O., C.R.C., O.S.E., M. Sadredini, X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., M.K.S., G.C., W.E.L.), Oslo University Hospital, Norway.,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway
| | - Torbjørn Omland
- Division of Medicine, Akershus University Hospital, Lørenskog, Norway (A.H.O., P.L.M., J.E.H., T.O., H.R.).,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway
| | - Mathis K Stokke
- Institute for Experimental Medical Research (A.H.O., C.R.C., O.S.E., M. Sadredini, X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., M.K.S., G.C., W.E.L.), Oslo University Hospital, Norway.,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research (A.H.O., C.R.C., O.S.E., M. Sadredini, X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., M.K.S., G.C., W.E.L.), Oslo University Hospital, Norway.,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway.,K.G. Jebsen Center for Cardiac Research (I.S., G.C., W.E.L.), University of Oslo, Norway
| | - Helge Røsjø
- Division of Medicine, Akershus University Hospital, Lørenskog, Norway (A.H.O., P.L.M., J.E.H., T.O., H.R.).,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research (A.H.O., C.R.C., O.S.E., M. Sadredini, X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., M.K.S., G.C., W.E.L.), Oslo University Hospital, Norway.,Center for Heart Failure Research (A.H.O., C.R.C., O.S.E., M. Sadredini, P.L.M., X.S., P.K.L., M.L., I.S., A.G.E., I.G.L., T.O., M.K.S., G.C., H.R., W.E.L.), University of Oslo, Norway.,K.G. Jebsen Center for Cardiac Research (I.S., G.C., W.E.L.), University of Oslo, Norway
| |
Collapse
|
26
|
Conformational coupling by trans-phosphorylation in calcium calmodulin dependent kinase II. PLoS Comput Biol 2019; 15:e1006796. [PMID: 31150387 PMCID: PMC6576796 DOI: 10.1371/journal.pcbi.1006796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/17/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
The calcium calmodulin-dependent protein kinase II (CaMKII) is a dodecameric holoenzyme important for encoding memory. Its activation, triggered by binding of calcium-calmodulin, persists autonomously after calmodulin dissociation. One (receiver) kinase captures and subsequently phosphorylates the regulatory domain peptide of a donor kinase forming a chained dimer as the first stage of autonomous activation. Protein dynamics simulations examined the conformational changes triggered by dimer formation and phosphorylation, aimed to provide a molecular rationale for human mutations that result in learning disabilities. Ensembles generated from X-ray crystal structures were characterized by network centrality and community analysis. Mutual information related collective motions to local fragment dynamics encoded with a structural alphabet. Implicit solvent tCONCOORD conformational ensembles revealed the dynamic architecture of inactive kinase domains was co-opted in the activated dimer but the network hub shifted from the nucleotide binding cleft to the captured peptide. Explicit solvent molecular dynamics (MD) showed nucleotide and substrate binding determinants formed coupled nodes in long-range signal relays between regulatory peptides in the dimer. Strain in the extended captured peptide was balanced by reduced flexibility of the receiver kinase C-lobe core. The relays were organized around a hydrophobic patch between the captured peptide and a key binding helix. The human mutations aligned along the relays. Thus, these mutations could disrupt the allosteric network alternatively, or in addition, to altered binding affinities. Non-binding protein sectors distant from the binding sites mediated the allosteric signalling; providing possible targets for inhibitor design. Phosphorylation of the peptide modulated the dielectric of its binding pocket to strengthen the patch, non-binding sectors, domain interface and temporal correlations between parallel relays. These results provide the molecular details underlying the reported positive kinase cooperativity to enrich the discussion on how autonomous activation by phosphorylation leads to long-term behavioural effects. Protein kinases play central roles in intracellular signalling. Auto-phosphorylation by bound nucleotide typically precedes phosphate transfer to multiple substrates. Protein conformational changes are central to kinase function, altering binding affinities to change cellular location and shunt from one signal pathway to another. In the brain, the multi-subunit kinase, CaMKII is activated by calcium-calmodulin upon calcium jumps produced by synaptic stimulation. Auto-transphosphorylation of a regulatory peptide enables the kinase to remain activated and mediate long-term behavioural effects after return to basal calcium levels. A database of mutated residues responsible for these effects is difficult to reconcile solely with impaired nucleotide or substrate binding. Therefore, we have computationally generated interaction networks to map the conformational plasticity of the kinase domains where most mutations localize. The network generated from the atomic structure of a phosphorylated dimer resolves protein sectors based on their collective motions. The sectors link nucleotide and substrate binding sites in self-reinforcing relays between regulatory peptides. The self-reinforcement is strengthened by phosphorylation consistent with the reported positive cooperativity of kinase activity with calcium-calmodulin concentration. The network gives a better match with the mutations and, in addition, reveals target sites for drug development.
Collapse
|
27
|
Marks CR, Shonesy BC, Wang X, Stephenson JR, Niswender CM, Colbran RJ. Activated CaMKII α Binds to the mGlu 5 Metabotropic Glutamate Receptor and Modulates Calcium Mobilization. Mol Pharmacol 2018; 94:1352-1362. [PMID: 30282777 PMCID: PMC6207916 DOI: 10.1124/mol.118.113142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/19/2018] [Indexed: 01/03/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and metabotropic glutamate receptor 5 (mGlu5) are critical signaling molecules in synaptic plasticity and learning/memory. Here, we demonstrate that mGlu5 is present in CaMKIIα complexes isolated from mouse forebrain. Further in vitro characterization showed that the membrane-proximal region of the C-terminal domain (CTD) of mGlu5a directly interacts with purified Thr286-autophosphorylated (activated) CaMKIIα However, the binding of CaMKIIα to this CTD fragment is reduced by the addition of excess Ca2+/calmodulin or by additional CaMKIIα autophosphorylation at non-Thr286 sites. Furthermore, in vitro binding of CaMKIIα is dependent on a tribasic residue motif Lys-Arg-Arg (KRR) at residues 866-868 of the mGlu5a-CTD, and mutation of this motif decreases the coimmunoprecipitation of CaMKIIα with full-length mGlu5a expressed in heterologous cells by about 50%. The KRR motif is required for two novel functional effects of coexpressing constitutively active CaMKIIα with mGlu5a in heterologous cells. First, cell-surface biotinylation studies showed that CaMKIIα increases the surface expression of mGlu5a Second, using Ca2+ fluorimetry and single-cell Ca2+ imaging, we found that CaMKIIα reduces the initial peak of mGlu5a-mediated Ca2+ mobilization by about 25% while doubling the relative duration of the Ca2+ signal. These findings provide new insights into the physical and functional coupling of these key regulators of postsynaptic signaling.
Collapse
Affiliation(s)
- Christian R Marks
- Departments of Molecular Physiology and Biophysics (C.R.M., B.C.S., J.R.S., R.J.C.) and Pharmacology (C.M.N.), Vanderbilt Brain Institute (X.W., R.J.C.), Vanderbilt Kennedy Center for Research on Human Development (C.M.N., R.J.C.), and Vanderbilt Center for Neuroscience Drug Discovery (C.M.N.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Brian C Shonesy
- Departments of Molecular Physiology and Biophysics (C.R.M., B.C.S., J.R.S., R.J.C.) and Pharmacology (C.M.N.), Vanderbilt Brain Institute (X.W., R.J.C.), Vanderbilt Kennedy Center for Research on Human Development (C.M.N., R.J.C.), and Vanderbilt Center for Neuroscience Drug Discovery (C.M.N.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Xiaohan Wang
- Departments of Molecular Physiology and Biophysics (C.R.M., B.C.S., J.R.S., R.J.C.) and Pharmacology (C.M.N.), Vanderbilt Brain Institute (X.W., R.J.C.), Vanderbilt Kennedy Center for Research on Human Development (C.M.N., R.J.C.), and Vanderbilt Center for Neuroscience Drug Discovery (C.M.N.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jason R Stephenson
- Departments of Molecular Physiology and Biophysics (C.R.M., B.C.S., J.R.S., R.J.C.) and Pharmacology (C.M.N.), Vanderbilt Brain Institute (X.W., R.J.C.), Vanderbilt Kennedy Center for Research on Human Development (C.M.N., R.J.C.), and Vanderbilt Center for Neuroscience Drug Discovery (C.M.N.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Colleen M Niswender
- Departments of Molecular Physiology and Biophysics (C.R.M., B.C.S., J.R.S., R.J.C.) and Pharmacology (C.M.N.), Vanderbilt Brain Institute (X.W., R.J.C.), Vanderbilt Kennedy Center for Research on Human Development (C.M.N., R.J.C.), and Vanderbilt Center for Neuroscience Drug Discovery (C.M.N.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Roger J Colbran
- Departments of Molecular Physiology and Biophysics (C.R.M., B.C.S., J.R.S., R.J.C.) and Pharmacology (C.M.N.), Vanderbilt Brain Institute (X.W., R.J.C.), Vanderbilt Kennedy Center for Research on Human Development (C.M.N., R.J.C.), and Vanderbilt Center for Neuroscience Drug Discovery (C.M.N.), Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
28
|
Proietti Onori M, Koopal B, Everman DB, Worthington JD, Jones JR, Ploeg MA, Mientjes E, van Bon BW, Kleefstra T, Schulman H, Kushner SA, Küry S, Elgersma Y, van Woerden GM. The intellectual disability-associated CAMK2G p.Arg292Pro mutation acts as a pathogenic gain-of-function. Hum Mutat 2018; 39:2008-2024. [PMID: 30184290 PMCID: PMC6240363 DOI: 10.1002/humu.23647] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 01/28/2023]
Abstract
The abundantly expressed calcium/calmodulin-dependent protein kinase II (CAMK2), alpha (CAMK2A), and beta (CAMK2B) isoforms are essential for learning and memory formation. Recently, a de novo candidate mutation (p.Arg292Pro) in the gamma isoform of CAMK2 (CAMK2G) was identified in a patient with severe intellectual disability (ID), but the mechanism(s) by which this mutation causes ID is unknown. Here, we identified a second, unrelated individual, with a de novo CAMK2G p.Arg292Pro mutation, and used in vivo and in vitro assays to assess the impact of this mutation on CAMK2G and neuronal function. We found that knockdown of CAMK2G results in inappropriate precocious neuronal maturation. We further found that the CAMK2G p.Arg292Pro mutation acts as a highly pathogenic gain-of-function mutation, leading to increased phosphotransferase activity and impaired neuronal maturation as well as impaired targeting of the nuclear CAMK2G isoform. Silencing the catalytic site of the CAMK2G p.Arg292Pro protein reversed the pathogenic effect of the p.Arg292Pro mutation on neuronal maturation, without rescuing its nuclear targeting. Taken together, our results reveal an indispensable function of CAMK2G in neurodevelopment and indicate that the CAMK2G p.Arg292Pro protein acts as a pathogenic gain-of-function mutation, through constitutive activity toward cytosolic targets, rather than impaired targeting to the nucleus.
Collapse
Affiliation(s)
- Martina Proietti Onori
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Balwina Koopal
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | | | - Melissa A Ploeg
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Edwin Mientjes
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bregje W van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
| | | | - Steven A Kushner
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, Nantes, France.,l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Ype Elgersma
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
29
|
Nookala AR, Schwartz DC, Chaudhari NS, Glazyrin A, Stephens EB, Berman NEJ, Kumar A. Methamphetamine augment HIV-1 Tat mediated memory deficits by altering the expression of synaptic proteins and neurotrophic factors. Brain Behav Immun 2018; 71:37-51. [PMID: 29729322 PMCID: PMC6003882 DOI: 10.1016/j.bbi.2018.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 01/06/2023] Open
Abstract
Methamphetamine (METH) abuse is common among individuals infected with HIV-1 and has been shown to affect HIV replication and pathogenesis. These HIV-1 infected individuals also exhibit greater neuronal injury and higher cognitive decline. HIV-1 proteins, specifically gp120 and HIV-1 Tat, have been earlier shown to affect neurocognition. HIV-1 Tat, a viral protein released early during HIV-1 replication, contributes to HIV-associated neurotoxicity through various mechanisms including production of pro-inflammatory cytokines, reactive oxygen species and dysregulation of neuroplasticity. However, the combined effect of METH and HIV-1 Tat on neurocognition and its potential effect on neuroplasticity mechanisms remains largely unknown. Therefore, the present study was undertaken to investigate the combined effect of METH and HIV-1 Tat on behavior and on the expression of neuroplasticity markers by utilizing Doxycycline (DOX)-inducible HIV-1 Tat (1-86) transgenic mice. Expression of Tat in various brain regions of these mice was confirmed by RT-PCR. The mice were administered with an escalating dose of METH (0.1 mg/kg to 6 mg/kg, i.p) over a 7-day period, followed by 6 mg/kg, i.p METH twice a day for four weeks. After three weeks of METH administration, Y maze and Morris water maze assays were performed to determine the effect of Tat and METH on working and spatial memory, respectively. Compared with controls, working memory was significantly decreased in Tat mice that were administered METH. Moreover, significant deficits in spatial memory were also observed in Tat-Tg mice that were administered METH. A significant reduction in the protein expressions of synapsin 1, synaptophysin, Arg3.1, PSD-95, and BDNF in different brain regions were also observed. Expression levels of Calmodulin kinase II (CaMKII), a marker of synaptodendritic integrity, were also significantly decreased in HIV-1 Tat mice that were treated with METH. Together, this data suggests that METH enhances HIV-1 Tat-induced memory deficits by reducing the expression of pre- and postsynaptic proteins and neuroplasticity markers, thus providing novel insights into the molecular mechanisms behind neurocognitive impairments in HIV-infected amphetamine users.
Collapse
Affiliation(s)
- Anantha Ram Nookala
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Daniel C. Schwartz
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Nitish S. Chaudhari
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Alexy Glazyrin
- Department of Pathology, School of Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Edward B. Stephens
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nancy E. J. Berman
- Department of Anatomy and Cell biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
30
|
Calmodulin shuttling mediates cytonuclear signaling to trigger experience-dependent transcription and memory. Nat Commun 2018; 9:2451. [PMID: 29934532 PMCID: PMC6015085 DOI: 10.1038/s41467-018-04705-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Learning and memory depend on neuronal plasticity originating at the synapse and requiring nuclear gene expression to persist. However, how synapse-to-nucleus communication supports long-term plasticity and behavior has remained elusive. Among cytonuclear signaling proteins, γCaMKII stands out in its ability to rapidly shuttle Ca2+/CaM to the nucleus and thus activate CREB-dependent transcription. Here we show that elimination of γCaMKII prevents activity-dependent expression of key genes (BDNF, c-Fos, Arc), inhibits persistent synaptic strengthening, and impairs spatial memory in vivo. Deletion of γCaMKII in adult excitatory neurons exerts similar effects. A point mutation in γCaMKII, previously uncovered in a case of intellectual disability, selectively disrupts CaM sequestration and CaM shuttling. Remarkably, this mutation is sufficient to disrupt gene expression and spatial learning in vivo. Thus, this specific form of cytonuclear signaling plays a key role in learning and memory and contributes to neuropsychiatric disease. Activity-dependent gene expression is thought to involve translocation of Ca2+/calmodulin (CaM) to the nucleus. Here, the authors examine a translocation-deficient mutant of γCaMKII, a Ca2+/CaM shuttle protein, to show that translocation of Ca2+/CaM is required for memory and synaptic plasticity.
Collapse
|
31
|
Chia PH, Zhong FL, Niwa S, Bonnard C, Utami KH, Zeng R, Lee H, Eskin A, Nelson SF, Xie WH, Al-Tawalbeh S, El-Khateeb M, Shboul M, Pouladi MA, Al-Raqad M, Reversade B. A homozygous loss-of-function CAMK2A mutation causes growth delay, frequent seizures and severe intellectual disability. eLife 2018; 7:e32451. [PMID: 29784083 PMCID: PMC5963920 DOI: 10.7554/elife.32451] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/30/2018] [Indexed: 12/02/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CAMK2) plays fundamental roles in synaptic plasticity that underlies learning and memory. Here, we describe a new recessive neurodevelopmental syndrome with global developmental delay, seizures and intellectual disability. Using linkage analysis and exome sequencing, we found that this disease maps to chromosome 5q31.1-q34 and is caused by a biallelic germline mutation in CAMK2A. The missense mutation, p.His477Tyr is located in the CAMK2A association domain that is critical for its function and localization. Biochemically, the p.His477Tyr mutant is defective in self-oligomerization and unable to assemble into the multimeric holoenzyme.In vivo, CAMK2AH477Y failed to rescue neuronal defects in C. elegans lacking unc-43, the ortholog of human CAMK2A. In vitro, neurons derived from patient iPSCs displayed profound synaptic defects. Together, our data demonstrate that a recessive germline mutation in CAMK2A leads to neurodevelopmental defects in humans and suggest that dysfunctional CAMK2 paralogs may contribute to other neurological disorders.
Collapse
Affiliation(s)
| | - Franklin Lei Zhong
- Institute of Medical BiologyImmunosSingapore
- Institute of Molecular and Cell BiologyProteosSingapore
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | | | - Kagistia Hana Utami
- Translational Laboratory in Genetic MedicineAgency for Science, Technology and ResearchSingaporeSingapore
| | - Ruizhu Zeng
- Translational Laboratory in Genetic MedicineAgency for Science, Technology and ResearchSingaporeSingapore
| | - Hane Lee
- Department of Pathology and Laboratory MedicineDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Department of Human GeneticsDavid Geffen School of Medicine University of California, Los AngelesLos AngelesUnited States
| | - Ascia Eskin
- Department of Pathology and Laboratory MedicineDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Department of Human GeneticsDavid Geffen School of Medicine University of California, Los AngelesLos AngelesUnited States
| | - Stanley F Nelson
- Department of Pathology and Laboratory MedicineDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Department of Human GeneticsDavid Geffen School of Medicine University of California, Los AngelesLos AngelesUnited States
| | | | - Samah Al-Tawalbeh
- Queen Rania Paediatric HospitalKing Hussein Medical Centre, Royal Medical ServicesAmmanJordan
| | | | | | - Mahmoud A Pouladi
- Translational Laboratory in Genetic MedicineAgency for Science, Technology and ResearchSingaporeSingapore
- Department of Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Mohammed Al-Raqad
- Queen Rania Paediatric HospitalKing Hussein Medical Centre, Royal Medical ServicesAmmanJordan
| | - Bruno Reversade
- Institute of Medical BiologyImmunosSingapore
- Institute of Molecular and Cell BiologyProteosSingapore
- Department of PaediatricsNational University of SingaporeSingaporeSingapore
- Medical Genetics DepartmentKoç University School of MedicineIstanbulTurkey
| |
Collapse
|
32
|
Akita T, Aoto K, Kato M, Shiina M, Mutoh H, Nakashima M, Kuki I, Okazaki S, Magara S, Shiihara T, Yokochi K, Aiba K, Tohyama J, Ohba C, Miyatake S, Miyake N, Ogata K, Fukuda A, Matsumoto N, Saitsu H. De novo variants in CAMK2A and CAMK2B cause neurodevelopmental disorders. Ann Clin Transl Neurol 2018; 5:280-296. [PMID: 29560374 PMCID: PMC5846454 DOI: 10.1002/acn3.528] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 11/29/2022] Open
Abstract
Objective α (CAMK2A) and β (CAMK2B) isoforms of Calcium/calmodulin‐dependent protein kinase II (CaMKII) play a pivotal role in neuronal plasticity and in learning and memory processes in the brain. Here, we explore the possible involvement of α‐ and β‐CaMKII variants in neurodevelopmental disorders. Methods Whole‐exome sequencing was performed for 976 individuals with intellectual disability, developmental delay, and epilepsy. The effect of CAMK2A and CAMK2B variants on CaMKII structure and firing of neurons was evaluated by computational structural analysis, immunoblotting, and electrophysiological analysis. Results We identified a total of five de novo CAMK2A and CAMK2B variants in three and two individuals, respectively. Seizures were common to three individuals with CAMK2A variants. Using a minigene splicing assay, we demonstrated that a splice site variant caused skipping of exon 11 leading to an in‐frame deletion of the regulatory segment of CaMKIIα. By structural analysis, four missense variants are predicted to impair the interaction between the kinase domain and the regulatory segment responsible for the autoinhibition of its kinase activity. The Thr286/Thr287 phosphorylation as a result of release from autoinhibition was increased in three mutants when the mutants were stably expressed in Neuro‐2a neuroblastoma cells. Expression of a CaMKIIα mutant in primary hippocampal neurons significantly increased A‐type K+ currents, which facilitated spike repolarization of single action potentials. Interpretation Our data highlight the importance of CaMKIIα and CaMKIIβ and their autoinhibitory regulation in human brain function, and suggest the enhancement of A‐type K+ currents as a possible pathophysiological basis.
Collapse
Affiliation(s)
- Tenpei Akita
- Department of Neurophysiology Hamamatsu University School of Medicine 1-20-1 Handayama, Higashi-ku Hamamatsu 431-3192 Japan
| | - Kazushi Aoto
- Department of Biochemistry Hamamatsu University School of Medicine 1-20-1 Handayama, Higashi-ku Hamamatsu 431-3192 Japan
| | - Mitsuhiro Kato
- Department of Pediatrics Showa University School of Medicine 1-5-8 Hatanodai, Shinagawa-ku Tokyo 142-8666 Japan
| | - Masaaki Shiina
- Department of Biochemistry Yokohama City University Graduate School of Medicine 3-9 Fukuura, Kanazawa-ku Yokohama 236-0004 Japan
| | - Hiroki Mutoh
- Department of Neurophysiology Hamamatsu University School of Medicine 1-20-1 Handayama, Higashi-ku Hamamatsu 431-3192 Japan
| | - Mitsuko Nakashima
- Department of Biochemistry Hamamatsu University School of Medicine 1-20-1 Handayama, Higashi-ku Hamamatsu 431-3192 Japan.,Department of Human Genetics Graduate School of Medicine Yokohama City University 3-9 Fukuura, Kanazawa-ku Yokohama 236-0004 Japan
| | - Ichiro Kuki
- Department of Pediatric Neurology Pediatric Medical Care Center Osaka City General Hospital 2-13-22 Miyakojimahondori, Miyakojima-ku Osaka 534-0021 Japan
| | - Shin Okazaki
- Department of Pediatric Neurology Pediatric Medical Care Center Osaka City General Hospital 2-13-22 Miyakojimahondori, Miyakojima-ku Osaka 534-0021 Japan
| | - Shinichi Magara
- Department of Pediatrics Epilepsy Center Nishi-Niigata Chuo National Hospital 1-14-1 Masago, Nishi-ku Niigata 950-2085 Japan
| | - Takashi Shiihara
- Department of Neurology Gunma Children's Medical Center 779 Shimohakoda, Hokkitsu-machi Shibukawa Gunma 377-8577 Japan
| | - Kenji Yokochi
- Department of Pediatric Neurology Seirei-Mikatahara General Hospital 3453 Mikatahara-cho, Kita-ku Hamamatsu 433-8558 Japan.,Department of Pediatrics Toyohashi Municipal Hospital, Toyohashi 50 Hachikennishi, Aotake-cho Toyohashi 441-8570 Japan
| | - Kaori Aiba
- Department of Pediatrics Toyohashi Municipal Hospital, Toyohashi 50 Hachikennishi, Aotake-cho Toyohashi 441-8570 Japan
| | - Jun Tohyama
- Department of Pediatrics Epilepsy Center Nishi-Niigata Chuo National Hospital 1-14-1 Masago, Nishi-ku Niigata 950-2085 Japan
| | - Chihiro Ohba
- Department of Human Genetics Graduate School of Medicine Yokohama City University 3-9 Fukuura, Kanazawa-ku Yokohama 236-0004 Japan
| | - Satoko Miyatake
- Department of Human Genetics Graduate School of Medicine Yokohama City University 3-9 Fukuura, Kanazawa-ku Yokohama 236-0004 Japan
| | - Noriko Miyake
- Department of Human Genetics Graduate School of Medicine Yokohama City University 3-9 Fukuura, Kanazawa-ku Yokohama 236-0004 Japan
| | - Kazuhiro Ogata
- Department of Biochemistry Yokohama City University Graduate School of Medicine 3-9 Fukuura, Kanazawa-ku Yokohama 236-0004 Japan
| | - Atsuo Fukuda
- Department of Neurophysiology Hamamatsu University School of Medicine 1-20-1 Handayama, Higashi-ku Hamamatsu 431-3192 Japan
| | - Naomichi Matsumoto
- Department of Human Genetics Graduate School of Medicine Yokohama City University 3-9 Fukuura, Kanazawa-ku Yokohama 236-0004 Japan
| | - Hirotomo Saitsu
- Department of Biochemistry Hamamatsu University School of Medicine 1-20-1 Handayama, Higashi-ku Hamamatsu 431-3192 Japan
| |
Collapse
|
33
|
Ottesen AH, Carlson CR, Louch WE, Dahl MB, Sandbu RA, Johansen RF, Jarstadmarken H, Bjørås M, Høiseth AD, Brynildsen J, Sjaastad I, Stridsberg M, Omland T, Christensen G, Røsjø H. Glycosylated Chromogranin A in Heart Failure: Implications for Processing and Cardiomyocyte Calcium Homeostasis. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.116.003675. [PMID: 28209766 DOI: 10.1161/circheartfailure.116.003675] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 01/11/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Chromogranin A (CgA) levels have previously been found to predict mortality in heart failure (HF), but currently no information is available regarding CgA processing in HF and whether the CgA fragment catestatin (CST) may directly influence cardiomyocyte function. METHODS AND RESULTS CgA processing was characterized in postinfarction HF mice and in patients with acute HF, and the functional role of CST was explored in experimental models. Myocardial biopsies from HF, but not sham-operated mice, demonstrated high molecular weight CgA bands. Deglycosylation treatment attenuated high molecular weight bands, induced a mobility shift, and increased shorter CgA fragments. Adjusting for established risk indices and biomarkers, circulating CgA levels were found to be associated with mortality in patients with acute HF, but not in patients with acute exacerbation of chronic obstructive pulmonary disease. Low CgA-to-CST conversion was also associated with increased mortality in acute HF, thus, supporting functional relevance of impaired CgA processing in cardiovascular disease. CST was identified as a direct inhibitor of CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) activity, and CST reduced CaMKIIδ-dependent phosphorylation of phospholamban and the ryanodine receptor 2. In line with CaMKIIδ inhibition, CST reduced Ca2+ spark and wave frequency, reduced Ca2+ spark dimensions, increased sarcoplasmic reticulum Ca2+ content, and augmented the magnitude and kinetics of cardiomyocyte Ca2+ transients and contractions. CONCLUSIONS CgA-to-CST conversion in HF is impaired because of hyperglycosylation, which is associated with clinical outcomes in acute HF. The mechanism for increased mortality may be dysregulated cardiomyocyte Ca2+ handling because of reduced CaMKIIδ inhibition.
Collapse
Affiliation(s)
- Anett Hellebø Ottesen
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Cathrine R Carlson
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - William E Louch
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Mai Britt Dahl
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Ragnhild A Sandbu
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Rune Forstrøm Johansen
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Hilde Jarstadmarken
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Magnar Bjørås
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Arne Didrik Høiseth
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Jon Brynildsen
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Ivar Sjaastad
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Mats Stridsberg
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Torbjørn Omland
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Geir Christensen
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Helge Røsjø
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.).
| |
Collapse
|
34
|
Hirata Y, Takahashi M, Kudoh Y, Kano K, Kawana H, Makide K, Shinoda Y, Yabuki Y, Fukunaga K, Aoki J, Noguchi T, Matsuzawa A. trans-Fatty acids promote proinflammatory signaling and cell death by stimulating the apoptosis signal-regulating kinase 1 (ASK1)-p38 pathway. J Biol Chem 2017; 292:8174-8185. [PMID: 28360100 DOI: 10.1074/jbc.m116.771519] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/29/2017] [Indexed: 12/14/2022] Open
Abstract
Food-borne trans-fatty acids (TFAs) are mainly produced as byproducts during food manufacture. Recent epidemiological studies have revealed that TFA consumption is a major risk factor for various disorders, including atherosclerosis. However, the underlying mechanisms in this disease etiology are largely unknown. Here we have shown that TFAs potentiate activation of apoptosis signal-regulating kinase 1 (ASK1) induced by extracellular ATP, a damage-associated molecular pattern leaked from injured cells. Major food-associated TFAs such as elaidic acid (EA), linoelaidic acid, and trans-vaccenic acid, but not their corresponding cis isomers, dramatically enhanced extracellular ATP-induced apoptosis, accompanied by elevated activation of the ASK1-p38 pathway in a macrophage-like cell line, RAW264.7. Moreover, knocking out the ASK1-encoding gene abolished EA-mediated enhancement of apoptosis. We have reported previously that extracellular ATP induces apoptosis through the ASK1-p38 pathway activated by reactive oxygen species generated downstream of the P2X purinoceptor 7 (P2X7). However, here we show that EA did not increase ATP-induced reactive oxygen species generation but, rather, augmented the effects of calcium/calmodulin-dependent kinase II-dependent ASK1 activation. These results demonstrate that TFAs promote extracellular ATP-induced apoptosis by targeting ASK1 and indicate novel TFA-associated pathways leading to inflammatory signal transduction and cell death that underlie the pathogenesis and progression of TFA-induced atherosclerosis. Our study thus provides insight into the pathogenic mechanisms of and proposes potential therapeutic targets for these TFA-related disorders.
Collapse
Affiliation(s)
| | | | | | - Kuniyuki Kano
- Laboratory of Molecular and Cellular Biochemistry; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, 100-0004 Tokyo, Japan
| | | | | | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, 980-8578 Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, 980-8578 Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, 980-8578 Sendai, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, 100-0004 Tokyo, Japan
| | | | | |
Collapse
|
35
|
Kulasiri D, Liang J, He Y, Samarasinghe S. Global sensitivity analysis of a model related to memory formation in synapses: Model reduction based on epistemic parameter uncertainties and related issues. J Theor Biol 2017; 419:116-136. [PMID: 28189671 DOI: 10.1016/j.jtbi.2017.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 11/28/2022]
Abstract
We investigate the epistemic uncertainties of parameters of a mathematical model that describes the dynamics of CaMKII-NMDAR complex related to memory formation in synapses using global sensitivity analysis (GSA). The model, which was published in this journal, is nonlinear and complex with Ca2+ patterns with different level of frequencies as inputs. We explore the effects of parameter on the key outputs of the model to discover the most sensitive ones using GSA and partial ranking correlation coefficient (PRCC) and to understand why they are sensitive and others are not based on the biology of the problem. We also extend the model to add presynaptic neurotransmitter vesicles release to have action potentials as inputs of different frequencies. We perform GSA on this extended model to show that the parameter sensitivities are different for the extended model as shown by PRCC landscapes. Based on the results of GSA and PRCC, we reduce the original model to a less complex model taking the most important biological processes into account. We validate the reduced model against the outputs of the original model. We show that the parameter sensitivities are dependent on the inputs and GSA would make us understand the sensitivities and the importance of the parameters. A thorough phenomenological understanding of the relationships involved is essential to interpret the results of GSA and hence for the possible model reduction.
Collapse
Affiliation(s)
- Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Molecular Biosciences Department, Lincoln University, Christchurch, New Zealand.
| | - Jingyi Liang
- Centre for Advanced Computational Solutions (C-fACS), Molecular Biosciences Department, Lincoln University, Christchurch, New Zealand
| | - Yao He
- Centre for Advanced Computational Solutions (C-fACS), Molecular Biosciences Department, Lincoln University, Christchurch, New Zealand
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Molecular Biosciences Department, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
36
|
Zhu L, Almaça J, Dadi PK, Hong H, Sakamoto W, Rossi M, Lee RJ, Vierra NC, Lu H, Cui Y, McMillin SM, Perry NA, Gurevich VV, Lee A, Kuo B, Leapman RD, Matschinsky FM, Doliba NM, Urs NM, Caron MG, Jacobson DA, Caicedo A, Wess J. β-arrestin-2 is an essential regulator of pancreatic β-cell function under physiological and pathophysiological conditions. Nat Commun 2017; 8:14295. [PMID: 28145434 PMCID: PMC5296650 DOI: 10.1038/ncomms14295] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 12/15/2016] [Indexed: 01/06/2023] Open
Abstract
β-arrestins are critical signalling molecules that regulate many fundamental physiological functions including the maintenance of euglycemia and peripheral insulin sensitivity. Here we show that inactivation of the β-arrestin-2 gene, barr2, in β-cells of adult mice greatly impairs insulin release and glucose tolerance in mice fed with a calorie-rich diet. Both glucose and KCl-induced insulin secretion and calcium responses were profoundly reduced in β-arrestin-2 (barr2) deficient β-cells. In human β-cells, barr2 knockdown abolished glucose-induced insulin secretion. We also show that the presence of barr2 is essential for proper CAMKII function in β-cells. Importantly, overexpression of barr2 in β-cells greatly ameliorates the metabolic deficits displayed by mice consuming a high-fat diet. Thus, our data identify barr2 as an important regulator of β-cell function, which may serve as a new target to improve β-cell function.
Collapse
Affiliation(s)
- Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Prasanna K. Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Hao Hong
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wataru Sakamoto
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Regina J. Lee
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Nicholas C. Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Huiyan Lu
- Mouse Transgenic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Sara M. McMillin
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Nicole A. Perry
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Bryan Kuo
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, Bethesda, Maryland 20892, USA
| | - Richard D. Leapman
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, Bethesda, Maryland 20892, USA
| | - Franz M. Matschinsky
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennslvania 19104, USA
| | - Nicolai M. Doliba
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennslvania 19104, USA
| | - Nikhil M. Urs
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|
37
|
Pardutz A, Hoyk Z, Varga H, Vecsei L, Schoenen J. Oestrogen-Modulated Increase of Calmodulin-Dependent Protein Kinase II (CamKII) in Rat Spinal Trigeminal Nucleus After Systemic Nitroglycerin. Cephalalgia 2016; 27:46-53. [PMID: 17212683 DOI: 10.1111/j.1468-2982.2006.01244.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Migraine can be triggered by systemic administration of the nitric oxide (NO) donor nitroglycerin (NTG) and by abrupt falls in plasma oestradiol. Calmodulin-dependent protein kinase II (CamKII) present in superficial dorsal horns is thought to play a role in sensitization of central nociceptors, a phenomen present in migraineurs. We therefore examined in rats the expression of CamKII in the caudal trigeminal nucleus (TNC) after subcutaneous NTG (10 mg/kg) and its modulation by oestrogen. In male rats and in ovariectomized females, after 4 h NTG increased significantly CamKII expression in the superficial layers of TNC, but not in the upper thoracic spinal cord. NTG had no effect on CamKII expression in oestradiol-treated ovariectomized animals. Thus NTG, i.e. NO, selectively enhances CamKII in the rat TNC and oestradiol blocks this effect. These data may help to understand the mechanisms by which NO triggers migraine attacks and oestrogens influence migraine severity.
Collapse
Affiliation(s)
- A Pardutz
- Research Centre for Cellular & Molecular Neurobiology, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
38
|
Haws HJ, McNeil MA, Hansen MDH. Control of cell mechanics by RhoA and calcium fluxes during epithelial scattering. Tissue Barriers 2016; 4:e1187326. [PMID: 27583192 DOI: 10.1080/21688370.2016.1187326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/25/2016] [Accepted: 05/01/2016] [Indexed: 12/17/2022] Open
Abstract
Epithelial tissues use adherens junctions to maintain tight interactions and coordinate cellular activities. Adherens junctions are remodeled during epithelial morphogenesis, including instances of epithelial-mesenchymal transition, or EMT, wherein individual cells detach from the tissue and migrate as individual cells. EMT has been recapitulated by growth factor induction of epithelial scattering in cell culture. In culture systems, cells undergo a highly reproducible series of cell morphology changes, most notably cell spreading followed by cellular compaction and cell migration. These morphology changes are accompanied by striking actin rearrangements. The current evidence suggests that global changes in actomyosin-based cellular contractility, first a loss of contractility during spreading and its activation during cell compaction, are the main drivers of epithelial scattering. In this review, we focus on how spreading and contractility might be controlled during epithelial scattering. While we propose a central role for RhoA, which is well known to control cellular contractility in multiple systems and whose role in epithelial scattering is well accepted, we suggest potential roles for additional cellular systems whose role in epithelial cell biology has been less well documented. In particular, we propose critical roles for vesicle recycling, calcium channels, and calcium-dependent kinases.
Collapse
Affiliation(s)
- Hillary J Haws
- Physiology and Developmental Biology, Brigham Young University , Provo, UT, USA
| | - Melissa A McNeil
- Physiology and Developmental Biology, Brigham Young University , Provo, UT, USA
| | - Marc D H Hansen
- Physiology and Developmental Biology, Brigham Young University , Provo, UT, USA
| |
Collapse
|
39
|
Nguyen TA, Sarkar P, Veetil JV, Davis KA, Puhl HL, Vogel SS. Covert Changes in CaMKII Holoenzyme Structure Identified for Activation and Subsequent Interactions. Biophys J 2016; 108:2158-70. [PMID: 25954874 DOI: 10.1016/j.bpj.2015.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/18/2015] [Accepted: 03/10/2015] [Indexed: 11/29/2022] Open
Abstract
Between 8 to 14 calcium-calmodulin (Ca(2+)/CaM) dependent protein kinase-II (CaMKII) subunits form a complex that modulates synaptic activity. In living cells, the autoinhibited holoenzyme is organized as catalytic-domain pairs distributed around a central oligomerization-domain core. The functional significance of catalytic-domain pairing is not known. In a provocative model, catalytic-domain pairing was hypothesized to prevent ATP access to catalytic sites. If correct, kinase-activity would require catalytic-domain pair separation. Simultaneous homo-FRET and fluorescence correlation spectroscopy was used to detect structural changes correlated with kinase activation under physiological conditions. Saturating Ca(2+)/CaM triggered Threonine-286 autophosphorylation and a large increase in CaMKII holoenzyme hydrodynamic volume without any appreciable change in catalytic-domain pair proximity or subunit stoichiometry. An alternative hypothesis is that two appropriately positioned Threonine-286 interaction-sites (T-sites), each located on the catalytic-domain of a pair, are required for holoenzyme interactions with target proteins. Addition of a T-site ligand, in the presence of Ca(2+)/CaM, elicited a large decrease in catalytic-domain homo-FRET, which was blocked by mutating the T-site (I205K). Apparently catalytic-domain pairing is altered to allow T-site interactions.
Collapse
Affiliation(s)
- Tuan A Nguyen
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Pabak Sarkar
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jithesh V Veetil
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Kaitlin A Davis
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Henry L Puhl
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S Vogel
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland.
| |
Collapse
|
40
|
Mesubi OO, Anderson ME. Atrial remodelling in atrial fibrillation: CaMKII as a nodal proarrhythmic signal. Cardiovasc Res 2016; 109:542-57. [PMID: 26762270 DOI: 10.1093/cvr/cvw002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
CaMKII is a serine-threonine protein kinase that is abundant in myocardium. Emergent evidence suggests that CaMKII may play an important role in promoting atrial fibrillation (AF) by targeting a diverse array of proteins involved in membrane excitability, cell survival, calcium homeostasis, matrix remodelling, inflammation, and metabolism. Furthermore, CaMKII inhibition appears to protect against AF in animal models and correct proarrhythmic, defective intracellular Ca(2+) homeostasis in fibrillating human atrial cells. This review considers current concepts and evidence from animal and human studies on the role of CaMKII in AF.
Collapse
Affiliation(s)
- Olurotimi O Mesubi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Medicine, The Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 9026, Baltimore, MD 21287, USA
| | - Mark E Anderson
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Medicine, The Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 9026, Baltimore, MD 21287, USA Department of Physiology and the Program in Cellular and Molecular Medicine, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Ca(2+) permeation and/or binding to CaV1.1 fine-tunes skeletal muscle Ca(2+) signaling to sustain muscle function. Skelet Muscle 2015; 5:4. [PMID: 25717360 PMCID: PMC4340672 DOI: 10.1186/s13395-014-0027-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/11/2014] [Indexed: 11/13/2022] Open
Abstract
Background Ca2+ influx through CaV1.1 is not required for skeletal muscle excitation-contraction coupling, but whether Ca2+ permeation through CaV1.1 during sustained muscle activity plays a functional role in mammalian skeletal muscle has not been assessed. Methods We generated a mouse with a Ca2+ binding and/or permeation defect in the voltage-dependent Ca2+ channel, CaV1.1, and used Ca2+ imaging, western blotting, immunohistochemistry, proximity ligation assays, SUnSET analysis of protein synthesis, and Ca2+ imaging techniques to define pathways modulated by Ca2+ binding and/or permeation of CaV1.1. We also assessed fiber type distributions, cross-sectional area, and force frequency and fatigue in isolated muscles. Results Using mice with a pore mutation in CaV1.1 required for Ca2+ binding and/or permeation (E1014K, EK), we demonstrate that CaV1.1 opening is coupled to CaMKII activation and refilling of sarcoplasmic reticulum Ca2+ stores during sustained activity. Decreases in these Ca2+-dependent enzyme activities alter downstream signaling pathways (Ras/Erk/mTORC1) that lead to decreased muscle protein synthesis. The physiological consequences of the permeation and/or Ca2+ binding defect in CaV1.1 are increased fatigue, decreased fiber size, and increased Type IIb fibers. Conclusions While not essential for excitation-contraction coupling, Ca2+ binding and/or permeation via the CaV1.1 pore plays an important modulatory role in muscle performance. Electronic supplementary material The online version of this article (doi:10.1186/s13395-014-0027-1) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Grimes MT, Powell M, Gutierrez SM, Darby-King A, Harley CW, McLean JH. Epac activation initiates associative odor preference memories in the rat pup. ACTA ACUST UNITED AC 2015; 22:74-82. [PMID: 25593293 PMCID: PMC4341366 DOI: 10.1101/lm.037101.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Here we examine the role of the exchange protein directly activated by cAMP (Epac) in β-adrenergic-dependent associative odor preference learning in rat pups. Bulbar Epac agonist (8-pCPT-2-O-Me-cAMP, or 8-pCPT) infusions, paired with odor, initiated preference learning, which was selective for the paired odor. Interestingly, pairing odor with Epac activation produced both short-term (STM) and long-term (LTM) odor preference memories. Training using β-adrenergic-activation paired with odor recruited rapid and transient ERK phosphorylation consistent with a role for Epac activation in normal learning. An ERK antagonist prevented intermediate-term memory (ITM) and LTM, but not STM. Epac agonist infusions induced ERK phosphorylation in the mitral cell layer, in the inner half of the dendritic external plexiform layer, in the glomeruli and, patchily, among granule cells. Increased CREB phosphorylation in the mitral and granule cell layers was also seen. Simultaneous blockade of both ERK and CREB pathways prevented any long-term β-adrenergic activated odor preference memory, while LTM deficits associated with blocking only one pathway were prevented by stronger β-adrenergic activation. These results suggest that Epac and PKA play parallel and independent, as well as likely synergistic, roles in creating cAMP-dependent associative memory in rat pups. They further implicate a novel ERK-independent pathway in the mediation of STM by Epac.
Collapse
Affiliation(s)
- Matthew T Grimes
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6 Canada
| | - Maria Powell
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6 Canada
| | - Sandra Mohammed Gutierrez
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6 Canada
| | - Andrea Darby-King
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6 Canada
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6 Canada
| | - John H McLean
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6 Canada
| |
Collapse
|
43
|
He Y, Kulasiri D, Samarasinghe S. Modelling the dynamics of CaMKII-NMDAR complex related to memory formation in synapses: the possible roles of threonine 286 autophosphorylation of CaMKII in long term potentiation. J Theor Biol 2014; 365:403-19. [PMID: 25446714 DOI: 10.1016/j.jtbi.2014.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
A synaptic protein, Ca(2+)/Calmodulin dependent protein kinase II (CaMKII), has complex state transitions and facilitates the emergence of long term potentiation (LTP), which is highly correlated to memory formation. Two of the state transitions are critical for LTP: (1) threonine 286 autophosphorylation of CaMKII; and (2) binding to N-methyl-d-aspartate receptor (NMDAR) in the postsynaptic density (PSD) to form CaMKII-NMDAR complex. Both of these state transitions retain the activity of CaMKII when the induction signal disappears which is very important for the long-lasting characteristics of LTP. However, the possible relationships between the state transitions in the emergence of LTP are not well understood. We develop a mathematical model of the formation of CaMKII-NMDAR complex with the full state transitions of CaMKII, including the autophosphorylation, based on ordinary differential equations. In addition, we formulate a probabilistic framework for the binding between CaMKII and NMDAR. The model gives accurate predictions of the behaviours of CaMKII in comparisons to the experimental observations. Using the model, we show that: (1) the formation of CaMKII-NMDAR complex is dependent not only on the binding affinity between CaMKII and NMDAR, but also on the translocation of CaMKII into PSD; and (2) the autophosphorylation is not a requirement for the formation of CaMKII-NMDAR complex, but is important for the rapid formation of CaMKII-NMDAR complex during LTP.
Collapse
Affiliation(s)
- Y He
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - D Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand.
| | - S Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
44
|
CaMKII oxidative activation and the pathogenesis of cardiac disease. J Mol Cell Cardiol 2014; 73:112-6. [PMID: 24530899 DOI: 10.1016/j.yjmcc.2014.02.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 12/22/2022]
Abstract
Calcium and redox signaling both play important roles in the pathogenesis of cardiac disease; although how these signals are integrated in the heart remains unclear. One putative sensor for both calcium and oxidative stress in the heart is CaMKII, a calcium activated kinase that has recently been shown to also be regulated by oxidation. Oxidative activation of CaMKII occurs in several models of cardiac disease, including myocardial injury and inflammation, excessive neurohumoral activation, atrial fibrillation, and sinus node dysfunction. Additionally, oxidative activation of CaMKII is suggested in subcellular domains where calcium and ROS signaling intersect, such as mitochondria. This review describes the mechanism of activation of CaMKII by oxidation, the cardiac diseases where oxidized CaMKII has been identified, and suggests contexts where oxidized CaMKII is likely to play an important role. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Collapse
|
45
|
Nair AG, Gutierrez-Arenas O, Eriksson O, Jauhiainen A, Blackwell KT, Kotaleski JH. Modeling intracellular signaling underlying striatal function in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 123:277-304. [PMID: 24560149 DOI: 10.1016/b978-0-12-397897-4.00013-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Striatum, which is the input nucleus of the basal ganglia, integrates cortical and thalamic glutamatergic inputs with dopaminergic afferents from the substantia nigra pars compacta. The combination of dopamine and glutamate strongly modulates molecular and cellular properties of striatal neurons and the strength of corticostriatal synapses. These actions are performed via intracellular signaling networks, containing several intertwined feedback loops. Understanding the role of dopamine and other neuromodulators requires the development of quantitative dynamical models for describing the intracellular signaling, in order to provide precise unambiguous descriptions and quantitative predictions. Building such models requires integration of data from multiple data sources containing information regarding the molecular interactions, the strength of these interactions, and the subcellular localization of the molecules. Due to the uncertainty, variability, and sparseness of these data, parameter estimation techniques are critical for inferring or constraining the unknown parameters, and sensitivity analysis evaluates which parameters are most critical for a given observed macroscopic behavior. Here, we briefly review the modeling approaches and tools that have been used to investigate biochemical signaling in the striatum, along with some of the models built around striatum. We also suggest a future direction for the development of such models from the, now becoming abundant, high-throughput data.
Collapse
Affiliation(s)
- Anu G Nair
- School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden
| | - Omar Gutierrez-Arenas
- School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden
| | - Olivia Eriksson
- Department of Numerical Analysis and Computer Science, Stockholm University, Stockholm, Sweden
| | - Alexandra Jauhiainen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kim T Blackwell
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Jeanette H Kotaleski
- School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
βIV-Spectrin and CaMKII facilitate Kir6.2 regulation in pancreatic beta cells. Proc Natl Acad Sci U S A 2013; 110:17576-81. [PMID: 24101510 DOI: 10.1073/pnas.1314195110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identified over a dozen years ago in the brain and pancreatic islet, βIV-spectrin is critical for the local organization of protein complexes throughout the nervous system. βIV-Spectrin targets ion channels and adapter proteins to axon initial segments and nodes of Ranvier in neurons, and βIV-spectrin dysfunction underlies ataxia and early death in mice. Despite advances in βIV-spectrin research in the nervous system, its role in pancreatic islet biology is unknown. Here, we report that βIV-spectrin serves as a multifunctional structural and signaling platform in the pancreatic islet. We report that βIV-spectrin directly associates with and targets the calcium/calmodulin-dependent protein kinase II (CaMKII) in pancreatic islets. In parallel, βIV-spectrin targets ankyrin-B and the ATP-sensitive potassium channel. Consistent with these findings, βIV-spectrin mutant mice lacking CaMKII- or ankyrin-binding motifs display selective loss of expression and targeting of key protein components, including CaMKIIδ. βIV-Spectrin-targeted CaMKII directly phosphorylates the inwardly-rectifying potassium channel, Kir6.2 (alpha subunit of KATP channel complex), and we identify the specific residue, Kir6.2 T224, responsible for CaMKII-dependent regulation of KATP channel function. CaMKII-dependent phosphorylation alters channel regulation resulting in KATP channel inhibition, a cellular phenotype consistent with aberrant insulin regulation. Finally, we demonstrate aberrant KATP channel phosphorylation in βIV-spectrin mutant mice. In summary, our findings establish a broader role for βIV-spectrin in regulation of cell membrane excitability in the pancreatic islet, define the pathway for CaMKII local control in pancreatic beta cells, and identify the mechanism for CaMKII-dependent regulation of KATP channels.
Collapse
|
47
|
Metabolic activation of CaMKII by coenzyme A. Mol Cell 2013; 52:325-39. [PMID: 24095281 DOI: 10.1016/j.molcel.2013.08.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/18/2013] [Accepted: 08/20/2013] [Indexed: 11/21/2022]
Abstract
Active metabolism regulates oocyte cell death via calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation of caspase-2, but the link between metabolic activity and CaMKII is poorly understood. Here we identify coenzyme A (CoA) as the key metabolic signal that inhibits Xenopus laevis oocyte apoptosis by directly activating CaMKII. We found that CoA directly binds to the CaMKII regulatory domain in the absence of Ca(2+) to activate CaMKII in a calmodulin-dependent manner. Furthermore, we show that CoA inhibits apoptosis not only in X. laevis oocytes but also in Murine oocytes. These findings uncover a direct mechanism of CaMKII regulation by metabolism and further highlight the importance of metabolism in preserving oocyte viability.
Collapse
|
48
|
Haolong C, Du N, Hongchao T, Yang Y, Wei Z, Hua Z, Wenliang Z, Lei S, Po T. Enterovirus 71 VP1 activates calmodulin-dependent protein kinase II and results in the rearrangement of vimentin in human astrocyte cells. PLoS One 2013; 8:e73900. [PMID: 24073199 PMCID: PMC3779202 DOI: 10.1371/journal.pone.0073900] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/23/2013] [Indexed: 12/30/2022] Open
Abstract
Enterovirus 71 (EV71) is one of the main causative agents of foot, hand and mouth disease. Its infection usually causes severe central nervous system diseases and complications in infected infants and young children. In the present study, we demonstrated that EV71 infection caused the rearrangement of vimentin in human astrocytoma cells. The rearranged vimentin, together with various EV71 components, formed aggresomes-like structures in the perinuclear region. Electron microscopy and viral RNA labeling indicated that the aggresomes were virus replication sites since most of the EV71 particles and the newly synthesized viral RNA were concentrated here. Further analysis revealed that the vimentin in the virus factories was serine-82 phosphorylated. More importantly, EV71 VP1 protein is responsible for the activation of calmodulin-dependent protein kinase II (CaMK-II) which phosphorylated the N-terminal domain of vimentin on serine 82. Phosphorylation of vimentin and the formation of aggresomes were required for the replication of EV71 since the latter was decreased markedly after phosphorylation was blocked by KN93, a CaMK-II inhibitor. Thus, as one of the consequences of CaMK-II activation, vimentin phosphorylation and rearrangement may support virus replication by playing a structural role for the formation of the replication factories. Collectively, this study identified the replication centers of EV71 in human astrocyte cells. This may help us understand the replication mechanism and pathogenesis of EV71 in human.
Collapse
Affiliation(s)
- Cong Haolong
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Ning Du
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- Graduate School of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Tian Hongchao
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yang Yang
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- Graduate School of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhang Wei
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- Graduate School of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhang Hua
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- Graduate School of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhang Wenliang
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- Graduate School of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Song Lei
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Tien Po
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
49
|
Kato KI, Iwamoto T, Kida S. Interactions between αCaMKII and calmodulin in living cells: conformational changes arising from CaM-dependent and -independent relationships. Mol Brain 2013; 6:37. [PMID: 23958294 PMCID: PMC3765210 DOI: 10.1186/1756-6606-6-37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND αCaMKII plays central and essential roles in long-term potentiation (LTP), learning and memory. αCaMKII is activated via binding with Ca²⁺/CaM in response to elevated Ca²⁺ concentration. Furthermore, prolonged increase in Ca²⁺ concentration leads to the auto-phosphorylation of αCaMKII at T286, maintaining the activation of αCaMKII even after Ca²⁺/CaM dissociation. Importantly, the active form of αCaMKII is thought to exhibit conformational change. In order to elucidate the relationships between the interaction of αCaMKII with CaM and the conformational change of αCaMKII, we generated molecular probes (YFP-αCaMKII with CFP-CaM and YFP-αCaMKII-CFP) and performed time-lapse imaging of the interaction with CaM and the conformational change, respectively, in living cells using FRET. RESULTS The interaction of YFP-αCaMKII with CFP-CaM and the conformational change of YFP-αCaMKII-CFP were induced simultaneously in response to increased concentrations of Ca²⁺. Consistent with previous predictions, high levels of Ca²⁺ signaling maintained the conformational change of YFP-αCaMKII-CFP at the time when CFP-CaM was released from YFP-αCaMKII. These observations indicated the transfer of αCaMKII conformational change from CaM-dependence to CaM-independence. Furthermore, analyses using αCaMKII mutants showed that phosphorylation at T286 and T305/306 played positive and negative roles, respectively, during in vivo interaction with CaM and further suggested that CaM-dependent and CaM-independent conformational changed forms displays similar but distinct structures. CONCLUSIONS Importantly, these structual differences between CaM-dependent and -independent forms of αCaMKII may exhibit differential functions for αCaMKII, such as interactions with other molecules required for LTP and memory. Our molecular probes could thus be used to identify therapeutic targets for cognitive disorders that are associated with the misregulation of αCaMKII.
Collapse
Affiliation(s)
- Ken-ichi Kato
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
| | | | | |
Collapse
|
50
|
Yan D, Jin Y. Regulation of DLK-1 kinase activity by calcium-mediated dissociation from an inhibitory isoform. Neuron 2013; 76:534-48. [PMID: 23141066 DOI: 10.1016/j.neuron.2012.08.043] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2012] [Indexed: 01/19/2023]
Abstract
MAPKKK dual leucine zipper-bearing kinases (DLKs) are regulators of synaptic development and axon regeneration. The mechanisms underlying their activation are not fully understood. Here, we show that C. elegans DLK-1 is activated by a Ca(2+)-dependent switch from inactive heteromeric to active homomeric protein complexes. We identify a DLK-1 isoform, DLK-1S, that shares identical kinase and leucine zipper domains with the previously described long isoform DLK-1L but acts to inhibit DLK-1 function by binding to DLK-1L. The switch between homo- or heteromeric DLK-1 complexes is influenced by Ca(2+) concentration. A conserved hexapeptide in the DLK-1L C terminus is essential for DLK-1 activity and is required for Ca(2+) regulation. The mammalian DLK-1 homolog MAP3K13 contains an identical C-terminal hexapeptide and can functionally complement dlk-1 mutants, suggesting that the DLK activation mechanism is conserved. The DLK activation mechanism is ideally suited for rapid and spatially controlled signal transduction in response to axonal injury and synaptic activity.
Collapse
Affiliation(s)
- Dong Yan
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|