1
|
Deal C, De Wannemaeker L, De Mey M. Towards a rational approach to promoter engineering: understanding the complexity of transcription initiation in prokaryotes. FEMS Microbiol Rev 2024; 48:fuae004. [PMID: 38383636 PMCID: PMC10911233 DOI: 10.1093/femsre/fuae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
Promoter sequences are important genetic control elements. Through their interaction with RNA polymerase they determine transcription strength and specificity, thereby regulating the first step in gene expression. Consequently, they can be targeted as elements to control predictability and tuneability of a genetic circuit, which is essential in applications such as the development of robust microbial cell factories. This review considers the promoter elements implicated in the three stages of transcription initiation, detailing the complex interplay of sequence-specific interactions that are involved, and highlighting that DNA sequence features beyond the core promoter elements work in a combinatorial manner to determine transcriptional strength. In particular, we emphasize that, aside from promoter recognition, transcription initiation is also defined by the kinetics of open complex formation and promoter escape, which are also known to be highly sequence specific. Significantly, we focus on how insights into these interactions can be manipulated to lay the foundation for a more rational approach to promoter engineering.
Collapse
Affiliation(s)
- Cara Deal
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| | - Lien De Wannemaeker
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| |
Collapse
|
2
|
Turecka K, Firczuk M, Werel W. Alteration of the -35 and -10 sequences and deletion the upstream sequence of the -35 region of the promoter A1 of the phage T7 in dsDNA confirm the contribution of non-specific interactions with E. coli RNA polymerase to the transcription initiation process. Front Mol Biosci 2024; 10:1335409. [PMID: 38259683 PMCID: PMC10800924 DOI: 10.3389/fmolb.2023.1335409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Transcription initiation is a multi-step process, in which the RNA polymerase holoenzyme binds to the specific promoter sequences to form a closed complex, which, through intermediate stages, isomerizes into an open complex capable of initiating the productive phase of transcription. The aim of this work was to determine the contribution of the -10 and -35 regions of the promoter, as well as the role of non-specific interactions, in the binding of RNA polymerase and the formation of an active initiation complex capable of transcription. Therefore, fragments of promoter DNA, derived from the strong promoter A1 of the phage T7, containing completely and partially altered elements -35 and -10, and devoid of an upstream region, were constructed using genetic engineering methods. Functional analyses of modified promoter fragments were carried out, checking their ability to form binary complexes with Escherichia coli RNA polymerase (RNAP) and the efficiency of converting binary complexes into triple complexes characteristic of the productive phase of transcription. The obtained results suggest that, in relation to the A1 promoter of the T7 phage, the most important role of the -35 region is carrying the open complex through the next phases of transcription initiation. The weakening of specific impacts within the region -35 is a reason for the defect associated with the transformation of the open complex, formed by a DNA fragment containing the completely altered -35 region, into elongation and the impairment of RNA synthesis. This leads to breaking contacts with the RNA polymerase holoenzyme, and destabilization and disintegration of the complex in the initial phase of productive transcription. This confirms the hypothesis of the so-called stressed intermediate state associated with the stage of transition from the open complex to the elongation complex. The experiments carried out in this work confirm also that the process of promoter localization and recognition, as well as the formation of binary complexes, is sequential in nature, and that the region located upstream of the -35 hexamer, and the hexamer itself, plays here an additive role.
Collapse
Affiliation(s)
- Katarzyna Turecka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Władysław Werel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
3
|
Kim D, Tracey J, Becerra Flores M, Chaudhry K, Nasim R, Correa-Medina A, Knipling L, Chen Q, Stibitz S, Jenkins LM, Moon K, Cardozo T, Hinton D. Conformational change of the Bordetella response regulator BvgA accompanies its activation of the B. pertussis virulence gene fhaB. Comput Struct Biotechnol J 2022; 20:6431-6442. [DOI: 10.1016/j.csbj.2022.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022] Open
|
4
|
Wang Q, Zhu G, Lin C, Lin P, Chen H, He R, Huang Y, Yang S, Ye J. Vimentin affects colorectal cancer proliferation, invasion, and migration via regulated by activator protein 1. J Cell Physiol 2021; 236:7591-7604. [PMID: 34041752 DOI: 10.1002/jcp.30402] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/08/2022]
Abstract
Uncontrolled recurrence and metastasis are important reasons for the high mortality rate of malignant tumors. Vimentin is positively correlated with the degree of malignancy of cancer cells. Vimentin is also highly expressed in colorectal cancer (CRC) cells and plays a critical role in the metastasis and prognosis of CRC. However, the molecular mechanism of vimentin in the progression of CRC is incompletely understood. Therefore, the most active regions (nucleotides: 785-1085 nt) of the vimentin promoter in CRC were identified using luciferase experiments. By transcription factor sequence search and mutation analysis, the activator protein 1 (AP-1) binding site in the region of 785-1085 nt was confirmed. The vimentin promoter activity was enhanced by overexpression of AP-1. The electrophoretic mobility shift assay and chromatin immunoprecipitation assay showed that the binding site was recognized by AP-1. By cell proliferation assay, colony-forming assay, scratch-wound assay, cell migration assay, and cell invasion assay, we demonstrated that the AP-1 overexpression increased CRC cell proliferation, migration, and invasion. However, when vimentin was knocked down by vimentin small hairpin RNA in the CRC cell of AP-1 overexpression, this trend disappeared. Animal experiments and immunohistochemistry showed that AP-1 promoted tumor growth by regulating the vimentin gene. In summary, AP-1 affected metastasis, invasion of CRC cells in vitro, and tumor growth in vivo by activating the vimentin promoter. This study might provide new insights into the molecular mechanisms of the development of CRC and provide potential therapeutic targets for CRC.
Collapse
Affiliation(s)
- Qin Wang
- Department of Gastrointestinal Surgery 2 Section, Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Penghang Lin
- Department of Gastrointestinal Surgery 2 Section, Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Hui Chen
- Department of Gastrointestinal Surgery 2 Section, Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Ruofan He
- Department of Gastrointestinal Surgery 2 Section, Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yongjian Huang
- Department of Gastrointestinal Surgery 2 Section, Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shugang Yang
- Department of Gastrointestinal Surgery 2 Section, Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Hook-Barnard IG, Hinton DM. Transcription Initiation by Mix and Match Elements: Flexibility for Polymerase Binding to Bacterial Promoters. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacterial RNA polymerase is composed of a core of subunits (β β′, α1, α2, ω), which have RNA synthesizing activity, and a specificity factor (σ), which identifies the start of transcription by recognizing and binding to sequence elements within promoter DNA. Four core promoter consensus sequences, the –10 element, the extended –10 (TGn) element, the –35 element, and the UP elements, have been known for many years; the importance of a nontemplate G at position -5 has been recognized more recently. However, the functions of these elements are not the same. The AT-rich UP elements, the –35 elements (–35TTGACA–30), and the extended –10 (15TGn–13) are recognized as double-stranded binding elements, whereas the –5 nontemplate G is recognized in the context of single-stranded DNA at the transcription bubble. Furthermore, the –10 element (–12TATAAT–7) is recognized as both double-stranded DNA for the T:A bp at position –12 and as nontemplate, single-stranded DNA from positions –11 to –7. The single-stranded sequences at positions –11 to –7 as well as the –5 contribute to later steps in transcription initiation that involve isomerization of polymerase and separation of the promoter DNA around the transcription start site. Recent work has demonstrated that the double-stranded elements may be used in various combinations to yield an effective promoter. Thus, while some minimal number of contacts is required for promoter function, polymerase allows the elements to be mixed and matched. Interestingly, which particular elements are used does not appear to fundamentally alter the transcription bubble generated in the stable complex. In this review, we discuss the multiple steps involved in forming a transcriptionally competent polymerase/promoter complex, and we examine what is known about polymerase recognition of core promoter elements. We suggest that considering promoter elements according to their involvement in early (polymerase binding) or later (polymerase isomerization) steps in transcription initiation rather than simply from their match to conventional promoter consensus sequences is a more instructive form of promoter classification.
Collapse
Affiliation(s)
- India G. Hook-Barnard
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8 Room 2A-13, Bethesda, MD 20892-0830
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8 Room 2A-13, Bethesda, MD 20892-0830
| |
Collapse
|
6
|
James TD, Cardozo T, Abell LE, Hsieh ML, Jenkins LMM, Jha SS, Hinton DM. Visualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase. Nucleic Acids Res 2016; 44:7974-88. [PMID: 27458207 PMCID: PMC5027511 DOI: 10.1093/nar/gkw656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/05/2016] [Indexed: 11/13/2022] Open
Abstract
The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called σ appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the σ70 subunit of RNAP. We have developed a holistic, structure-based model for σ appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /σ70 Region 4, the N-terminal domain of MotA [MotANTD], and the C-terminal domain of MotA [MotACTD]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects σ, and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the β subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs σ appropriation.
Collapse
Affiliation(s)
- Tamara D James
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York University School of Medicine, 180 Varick Street, Room 637, New York, NY 10014, USA
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York University School of Medicine, 180 Varick Street, Room 637, New York, NY 10014, USA
| | - Lauren E Abell
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa M Miller Jenkins
- Collaborative Protein Technology Resource, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saheli S Jha
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Molecular Mechanisms of Transcription Initiation at gal Promoters and their Multi-Level Regulation by GalR, CRP and DNA Loop. Biomolecules 2015; 5:2782-807. [PMID: 26501343 PMCID: PMC4693257 DOI: 10.3390/biom5042782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/25/2015] [Indexed: 11/16/2022] Open
Abstract
Studying the regulation of transcription of the gal operon that encodes the amphibolic pathway of d-galactose metabolism in Escherichia coli discerned a plethora of principles that operate in prokaryotic gene regulatory processes. In this chapter, we have reviewed some of the more recent findings in gal that continues to reveal unexpected but important mechanistic details. Since the operon is transcribed from two overlapping promoters, P1 and P2, regulated by common regulatory factors, each genetic or biochemical experiment allowed simultaneous discernment of two promoters. Recent studies range from genetic, biochemical through biophysical experiments providing explanations at physiological, mechanistic and single molecule levels. The salient observations highlighted here are: the axiom of determining transcription start points, discovery of a new promoter element different from the known ones that influences promoter strength, occurrence of an intrinsic DNA sequence element that overrides the transcription elongation pause created by a DNA-bound protein roadblock, first observation of a DNA loop and determination its trajectory, and piggybacking proteins and delivering to their DNA target.
Collapse
|
8
|
James T, Hsieh ML, Knipling L, Hinton D. Determining the Architecture of a Protein-DNA Complex by Combining FeBABE Cleavage Analyses, 3-D Printed Structures, and the ICM Molsoft Program. Methods Mol Biol 2015; 1334:29-40. [PMID: 26404142 DOI: 10.1007/978-1-4939-2877-4_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Determining the structure of a protein-DNA complex can be difficult, particularly if the protein does not bind tightly to the DNA, if there are no homologous proteins from which the DNA binding can be inferred, and/or if only portions of the protein can be crystallized. If the protein comprises just a part of a large multi-subunit complex, other complications can arise such as the complex being too large for NMR studies, or it is not possible to obtain the amounts of protein and nucleic acids needed for crystallographic analyses. Here, we describe a technique we used to map the position of an activator protein relative to the DNA within a large transcription complex. We determined the position of the activator on the DNA from data generated using activator proteins that had been conjugated at specific residues with the chemical cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). These analyses were combined with 3-D models of the available structures of portions of the activator protein and B-form DNA to obtain a 3-D picture of the protein relative to the DNA. Finally, the Molsoft program was used to refine the position, revealing the architecture of the protein-DNA within the transcription complex.
Collapse
Affiliation(s)
- Tamara James
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8A, Room 2A13, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Meng-Lun Hsieh
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8A, Room 2A13, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Leslie Knipling
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8A, Room 2A13, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Deborah Hinton
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8A, Room 2A13, 8 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Differential role of base pairs on gal promoters strength. J Mol Biol 2014; 427:792-806. [PMID: 25543084 DOI: 10.1016/j.jmb.2014.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/16/2014] [Accepted: 12/18/2015] [Indexed: 11/23/2022]
Abstract
Sequence alignments of promoters in prokaryotes postulated that the frequency of occurrence of a base pair at a given position of promoter elements reflects its contribution to intrinsic promoter strength. We directly assessed the contribution of the four base pairs in each position in the intrinsic promoter strength by keeping the context constant in Escherichia coli cAMP-CRP (cAMP receptor protein) regulated gal promoters by in vitro transcription assays. First, we show that base pair frequency within known consensus elements correlates well with promoter strength. Second, we observe some substitutions upstream of the ex-10 TG motif that are important for promoter function. Although the galP1 and P2 promoters overlap, only three positions where substitutions inactivated both promoters were found. We propose that RNA polymerase binds to the -12T base pair as part of double-stranded DNA while opening base pairs from -11A to +3 to form the single-stranded transcription bubble DNA during isomerization. The cAMP-CRP complex rescued some deleterious substitutions in the promoter region. The base pair roles and their flexibilities reported here for E. coli gal promoters may help construction of synthetic promoters in gene circuitry experiments in which overlapping promoters with differential controls may be warranted.
Collapse
|
10
|
Hsieh ML, James TD, Knipling L, Waddell MB, White S, Hinton DM. Architecture of the bacteriophage T4 activator MotA/promoter DNA interaction during sigma appropriation. J Biol Chem 2013; 288:27607-27618. [PMID: 23902794 DOI: 10.1074/jbc.m113.475434] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Gene expression can be regulated through factors that direct RNA polymerase to the correct promoter sequence at the correct time. Bacteriophage T4 controls its development in this way using phage proteins that interact with host RNA polymerase. Using a process called σ appropriation, the T4 co-activator AsiA structurally remodels the σ(70) subunit of host RNA polymerase, while a T4 activator, MotA, engages the C terminus of σ(70) and binds to a DNA promoter element, the MotA box. Structures for the N-terminal (NTD) and C-terminal (CTD) domains of MotA are available, but no structure exists for MotA with or without DNA. We report the first molecular map of the MotA/DNA interaction within the σ-appropriated complex, which we obtained by using the cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). We conjugated surface-exposed, single cysteines in MotA with FeBABE and performed cleavage reactions in the context of stable transcription complexes. The DNA cleavage sites were analyzed using ICM Molsoft software and three-dimensional physical models of MotA(NTD), MotA(CTD), and the DNA to investigate shape complementarity between the protein and the DNA and to position MotA on the DNA. We found that the unusual "double wing" motif present within MotA(CTD) resides in the major groove of the MotA box. In addition, we have used surface plasmon resonance to show that MotA alone is in a very dynamic equilibrium with the MotA element. Our results demonstrate the utility of fine resolution FeBABE mapping to determine the architecture of protein-DNA complexes that have been recalcitrant to traditional structure analyses.
Collapse
Affiliation(s)
- Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Tamara D James
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892; Structural Biology Program, Sackler Institute, New York University Langone Medical Center, New York, New York 10016
| | - Leslie Knipling
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Stephen White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
11
|
Singh SS, Grainger DC. H-NS can facilitate specific DNA-binding by RNA polymerase in AT-rich gene regulatory regions. PLoS Genet 2013; 9:e1003589. [PMID: 23818873 PMCID: PMC3688479 DOI: 10.1371/journal.pgen.1003589] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Extremely AT-rich DNA sequences present a challenging template for specific recognition by RNA polymerase. In bacteria, this is because the promoter -10 hexamer, the major DNA element recognised by RNA polymerase, is itself AT-rich. We show that Histone-like Nucleoid Structuring (H-NS) protein can facilitate correct recognition of a promoter by RNA polymerase in AT-rich gene regulatory regions. Thus, at the Escherichia coli ehxCABD operon, RNA polymerase is unable to distinguish between the promoter -10 element and similar overlapping sequences. This problem is resolved in native nucleoprotein because the overlapping sequences are masked by H-NS. Our work provides mechanistic insight into nucleoprotein structure and its effect on protein-DNA interactions in prokaryotic cells.
Collapse
Affiliation(s)
- Shivani S. Singh
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David C. Grainger
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Prabha S, China A, Rao DN, Nagaraja V. WITHDRAWN: Stimulation of the Mycobacterium tuberculosis transcription elongation by MtbMfd. Tuberculosis (Edinb) 2011:S1472-9792(11)00213-7. [PMID: 22129656 DOI: 10.1016/j.tube.2011.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 11/20/2022]
Abstract
This article has been withdrawn at the request of the author(s). The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Swayam Prabha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
13
|
Redefining Escherichia coli σ(70) promoter elements: -15 motif as a complement of the -10 motif. J Bacteriol 2011; 193:6305-14. [PMID: 21908667 DOI: 10.1128/jb.05947-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classical elements of σ(70) bacterial promoters include the -35 element ((-35)TTGACA(-30)), the -10 element ((-12)TATAAT(-7)), and the extended -10 element ((-15)TG(-14)). Although the -35 element, the extended -10 element, and the upstream-most base in the -10 element ((-12)T) interact with σ(70) in double-stranded DNA (dsDNA) form, the downstream bases in the -10 motif ((-11)ATAAT(-7)) are responsible for σ(70)-single-stranded DNA (ssDNA) interactions. In order to directly reflect this correspondence, an extension of the extended -10 element to a so-called -15 element ((-15)TGnT(-12)) has been recently proposed. I investigated here the sequence specificity of the proposed -15 element and its relationship to other promoter elements. I found a previously undetected significant conservation of (-13)G and a high degeneracy at (-15)T. I therefore defined the -15 element as a degenerate motif, which, together with the conserved stretch of sequence between -15 and -12, allows treating this element analogously to -35 and -10 elements. Furthermore, the strength of the -15 element inversely correlates with the strengths of the -35 element and -10 element, whereas no such complementation between other promoter elements was found. Despite the direct involvement of -15 element in σ(70)-dsDNA interactions, I found a significantly stronger tendency of this element to complement weak -10 elements that are involved in σ(70)-ssDNA interactions. This finding is in contrast to the established view, according to which the -15 element provides a sufficient number of σ(70)-dsDNA interactions, and suggests that the main parameter determining a functional promoter is the overall promoter strength.
Collapse
|
14
|
Decker KB, Chen Q, Hsieh ML, Boucher P, Stibitz S, Hinton DM. Different requirements for σ Region 4 in BvgA activation of the Bordetella pertussis promoters P(fim3) and P(fhaB). J Mol Biol 2011; 409:692-709. [PMID: 21536048 PMCID: PMC3141349 DOI: 10.1016/j.jmb.2011.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 12/31/2022]
Abstract
Bordetella pertussis BvgA is a global response regulator that activates virulence genes, including adhesin-encoding fim3 and fhaB. At the fhaB promoter, P(fhaB), a BvgA binding site lies immediately upstream of the -35 promoter element recognized by Region 4 of the σ subunit of RNA polymerase (RNAP). We demonstrate that σ Region 4 is required for BvgA activation of P(fhaB), a hallmark of Class II activation. In contrast, the promoter-proximal BvgA binding site at P(fim3) includes the -35 region, which is composed of a tract of cytosines that lacks specific sequence information. We demonstrate that σ Region 4 is not required for BvgA activation at P(fim3). Nonetheless, Region 4 mutations that impair its typical interactions with core and with the -35 DNA affect P(fim3) transcription. Hydroxyl radical cleavage using RNAP with σD581C-FeBABE positions Region 4 near the -35 region of P(fim3); cleavage using RNAP with α276C-FeBABE or α302C-FeBABE also positions an α subunit C-terminal domain within the -35 region, on a different helical face from the promoter-proximal BvgA~P dimer. Our results suggest that the -35 region of P(fim3) accommodates a BvgA~P dimer, an α subunit C-terminal domain, and σ Region 4. Molecular modeling suggests how BvgA, σ Region 4, and α might coexist within this DNA in a conformation that suggests a novel mechanism of activation.
Collapse
Affiliation(s)
- Kimberly B. Decker
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qing Chen
- Division of Bacterial, Parasitic, and Allergenic Products, Center For Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | - Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip Boucher
- Division of Bacterial, Parasitic, and Allergenic Products, Center For Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | - Scott Stibitz
- Division of Bacterial, Parasitic, and Allergenic Products, Center For Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Abstract
Spo0A, a classical two-component-type response regulator in Bacillus subtilis, binds to a specific DNA sequence found in many promoters to repress or activate the transcription of over 100 genes. On the spoIIG promoter, one of the Spo0A binding sites, centered at position -40, overlaps a consensus -35 element that may also interact with region 4 of the sigma A (sigma(A)) subunit of RNA polymerase. Molecular modeling corroborated by genetic evidence led us to propose that the binding of Spo0A to this site repositions sigma(A) region 4 on the promoter. Therefore, we used a chemical nuclease, p-bromoacetamidobenzyl-EDTA-Fe, that was covalently tethered to a single cysteine in region 4 of sigma(A) to map the position of sigma(A) on the promoter. The results indicated that in the absence of Spo0A, sigma(A) region 4 of the RNA polymerase was located near the -35 element sequence centered at position -40. However, in the presence of Spo0A, sigma(A) region 4 was displaced downstream from the -35 element by 4 bp. These and other results support the model in which the binding of Spo0A to the spoIIG promoter stimulates promoter utilization by repositioning prebound RNA polymerase and stabilizing the repositioned RNA polymerase-promoter complex at a new position that aligns sigma(A) region 2 with the -10 region sequences of the promoter, thus facilitating open complex formation.
Collapse
|
16
|
Depardieu F, Courvalin P, Kolb A. Binding sites of VanRB and sigma70 RNA polymerase in the vanB vancomycin resistance operon of Enterococcus faecium BM4524. Mol Microbiol 2005; 57:550-64. [PMID: 15978084 DOI: 10.1111/j.1365-2958.2005.04706.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The vanB operon of Enterococcus faecium BM4524 which confers inducible resistance to vancomycin is composed of the vanR(B)S(B) gene encoding a two-component regulatory system and the vanY(B)WH(B)BX(B) resistance genes that are transcribed from promoters P(RB) and P(YB) respectively. In this study, primer extension revealed transcription start sites at 13 and 48 bp upstream from the start codon of vanR(B) and vanY(B), respectively, that allowed identification of -10 and -35 promoter motifs. The VanR(B) protein was overproduced in Escherichia coli, purified and phosphorylated (VanR(B)-P) non-enzymically with acetylphosphate. VanR(B)-P and VanR(B) specifically bound to P(RB) and P(YB) promoters. VanR(B) bound at a single site at position -32.5 upstream from the P(RB) transcriptional start site and at two sites at positions -33.5 and -55.5 upstream from that of P(YB). The proximal VanR(B) binding site overlapped the -35 region of both promoters. VanR(B) was converted from a monomer to a dimer upon acetylphosphate treatment. VanR(B)-P had higher affinity than VanR(B) for its targets and appeared more efficient than VanR(B) in promoting open complex formation with P(RB) and P(YB). In the absence of regulator, E. coli RNA polymerase was able to interact with P(RB) but not with P(YB). Phosphorylation of VanR(B) significantly increased promoter interaction with RNA polymerase and led to an extended and modified footprint. In vitro transcription assays showed that VanR(B)-P activates P(YB) more strongly than P(RB). Analysis of the protected regions revealed one copy of a 21 bp sequence in the P(RB) promoter and two copies in the P(YB) promoter which may serve as recognition sites for VanR(B) and VanR(B)-P binding that are required for transcriptional activation and expression of vancomycin resistance.
Collapse
Affiliation(s)
- Florence Depardieu
- Unité des Agents Antibactériens, URA-CNRS 2172, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | | | | |
Collapse
|
17
|
Thouvenot B, Charpentier B, Branlant C. The strong efficiency of the Escherichia coli gapA P1 promoter depends on a complex combination of functional determinants. Biochem J 2005; 383:371-82. [PMID: 15250823 PMCID: PMC1134079 DOI: 10.1042/bj20040792] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Escherichia coli multi-promoter region of the gapA gene ensures a high level of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) production under various growth conditions. In the exponential phase of growth, gapA mRNAs are mainly initiated at the highly efficient gapA P1 promoter. In the present study, by using site-directed mutagenesis and chemical probing of the RPo (open complex) formed by Esigma70 (holoenzyme associated with sigma70) RNAP (RNA polymerase) at promoter gapA P1, we show that this promoter is an extended -10 promoter that needs a -35 sequence for activity. The -35 sequence compensates for the presence of a suboptimal -10 hexamer. A tract of thymine residues in the spacer region, which is responsible for a DNA distortion, is also required for efficient activity. We present the first chemical probing of an RPo formed at a promoter needing both a -10 extension and a -35 sequence. It reveals a complex array of RNAP-DNA interactions. In agreement with the fact that residue A-11 in the non-template strand is flipped out in a protein pocket in previously studied RPos, the corresponding A residue in gapA P1 promoter is protected in RPo and is essential for activity. However, in contrast with some of the previous findings on RPos formed at other promoters, the -12 A:T pair is opened. Strong contacts with RNAP occur both with the -35 sequence and the TG extension, so that the sigma4 and sigma2 domains may simultaneously contact the promoter DNA. RNAP-DNA interactions were also detected immediately downstream of the -35 hexamer and in a more distal upstream segment, reflecting a wrapping of RNAP by the core and upstream promoter DNA. Altogether, the data reveal that promoter gapA P1 is a very efficient promoter sharing common properties with both extended -10 and non-extended -10 promoters.
Collapse
Affiliation(s)
- Benoit Thouvenot
- Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Boulevard des Aiguillettes, Faculté des Sciences et Techniques, BP 239, 54506 Vandoeuvre-les-Nancy cedex, France
| | - Bruno Charpentier
- Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Boulevard des Aiguillettes, Faculté des Sciences et Techniques, BP 239, 54506 Vandoeuvre-les-Nancy cedex, France
- To whom correspondence should be addressed (email )
| | - Christiane Branlant
- Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Boulevard des Aiguillettes, Faculté des Sciences et Techniques, BP 239, 54506 Vandoeuvre-les-Nancy cedex, France
| |
Collapse
|
18
|
Westblade LF, Ilag LL, Powell AK, Kolb A, Robinson CV, Busby SJW. Studies of the Escherichia coli Rsd-sigma70 complex. J Mol Biol 2004; 335:685-92. [PMID: 14687566 DOI: 10.1016/j.jmb.2003.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Escherichia coli Rsd protein was previously identified on the basis of its binding to the RNA polymerase sigma(70) subunit. The Rsd-sigma(70) complex has been studied using different methods. Our data show that Rsd associates with sigma(70) to form a complex with a stoichiometry of 1:1. Alanine scanning and deletion mutagenesis were used to locate regions of sigma(70) that are required for the formation of the Rsd-sigma(70) complex.
Collapse
Affiliation(s)
- Lars F Westblade
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Lacour S, Kolb A, Landini P. Nucleotides from -16 to -12 determine specific promoter recognition by bacterial sigmaS-RNA polymerase. J Biol Chem 2003; 278:37160-8. [PMID: 12853450 DOI: 10.1074/jbc.m305281200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alternative sigma factor sigmaS, mainly active in stationary phase of growth, recognizes in vitro a -10 promoter sequence almost identical to the one for the main sigma factor, sigma70, thus raising the problem of how specific promoter recognition by sigmaS-RNA polymerase (EsigmaS) is achieved in vivo. We investigated the promoter features involved in selective recognition by EsigmaS at the strictly sigmaS-dependent aidB promoter. We show that the presence of a C nucleotide as first residue of the aidB -10 sequence (-12C), instead of the T nucleotide canonical for sigma70-dependent promoters, is the major determinant for selective recognition by EsigmaS. The presence of the -12C does not allow formation of an open complex fully proficient in transcription initiation by Esigma70. The role of -12C as specific determinant for promoter recognition by EsigmaS was confirmed by sequence analysis of known EsigmaS-dependent promoters as well as site-directed mutagenesis at the promoters of the csgB and sprE genes. We propose that EsigmaS, unlike Esigma70, can recognize both C and T as the first nucleotide in the -10 sequence. Additional promoter features such as the presence of a C nucleotide at position -13, contributing to open complex formation by EsigmaS, and a TG motif found at the unusual -16/-15 location, possibly contributing to initial binding to the promoter, also represent important factors for sigmaS-dependent transcription. We propose a new sequence, TG(N)0-2CCATA(c/a)T, as consensus -10 sequence for promoters exclusively recognized by EsigmaS.
Collapse
Affiliation(s)
- Stephan Lacour
- Swiss Federal Institute of Environmental Technology (EAWAG), Uberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | | | | |
Collapse
|
20
|
Sanderson A, Mitchell JE, Minchin SD, Busby SJW. Substitutions in the Escherichia coli RNA polymerase sigma70 factor that affect recognition of extended -10 elements at promoters. FEBS Lett 2003; 544:199-205. [PMID: 12782316 DOI: 10.1016/s0014-5793(03)00500-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous work has shown that the base sequence of the DNA segment immediately upstream of the -10 hexamer at bacterial promoters (the extended -10 element) can make a significant contribution to promoter strength. Guided by recently published structural information, we used alanine scanning and suppression mutagenesis of Region 2.4 and Region 3.0 of the Escherichia coli RNA polymerase sigma(70) subunit to identify amino acid sidechains that play a role in recognition of this element. Our study shows that changes in these regions of the sigma(70) subunit can affect the recognition of different extended -10 element sequences.
Collapse
|
21
|
Meares CF, Datwyler SA, Schmidt BD, Owens J, Ishihama A. Principles and methods of affinity cleavage in studying transcription. Methods Enzymol 2003; 371:82-106. [PMID: 14712693 DOI: 10.1016/s0076-6879(03)71006-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Claude F Meares
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616-5295, USA
| | | | | | | | | |
Collapse
|
22
|
Mukhopadhyay J, Mekler V, Kortkhonjia E, Kapanidis AN, Ebright YW, Ebright RH. Fluorescence resonance energy transfer (FRET) in analysis of transcription-complex structure and function. Methods Enzymol 2003; 371:144-59. [PMID: 14712697 DOI: 10.1016/s0076-6879(03)71010-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jayanta Mukhopadhyay
- Waksman Institute, Howard Hughes Medical Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
23
|
Hengge-Aronis R. Stationary phase gene regulation: what makes an Escherichia coli promoter sigmaS-selective? Curr Opin Microbiol 2002; 5:591-5. [PMID: 12457703 DOI: 10.1016/s1369-5274(02)00372-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The general stress sigma factor sigma(S) and the vegetative sigma(70) are highly related and recognise the same core promoter elements. Nevertheless, they clearly control different sets of genes in vivo. Recent studies have demonstrated that Esigma(S) selectivity is based on modular combinations of several sequence and structural features of a promoter, to which also trans-acting factors can strongly contribute. These results throw novel light on the details of transcription initiation, as well as on the co-evolution of sigma factors and their cognate promoter sequences.
Collapse
Affiliation(s)
- Regine Hengge-Aronis
- Institute of Biology, Microbiology, Freie Universität Berlin, Königin-Luise-Strasse12-16, Berlin, Germany.
| |
Collapse
|
24
|
Abstract
The effect on transcription initiation by the extended -10 motif (5'-TRTG(n)-3'), positioned upstream of the -10 region, was investigated using a series of base substitution mutations in the alpha-amylase promoter (amyP). The extended -10 motif, previously referred to as the -16 region, is found frequently in Gram-positive bacterial promoters and several extended -10 promoters from Escherichia coli. The inhibitory effects of the non-productive promoter site (amyP2), which overlaps the upstream region of amyP, were eliminated by mutagenesis of the -35 region and the TRTG motif of amyP2. Removal by mutagenesis of the competitive effects of amyP2 resulted in a reduced dependence of amyP on the TRTG motif. In the absence of the second promoter, mutations in the TRTG motif of amyP destabilized the open complex and prevented the maintenance of open complexes at low temperatures. The open complex half-life was up to 26-fold shorter in the mutant TRTG motif promoters than in the wild-type promoter. We demonstrate that the amyP TRTG motif dramatically stabilizes the open complex intermediate during transcription initiation. Even though the open complex is less stable in the mutant promoters, the region of melted DNA is the same in the wild-type and mutant promoters. However, upon addition of the first three nucleotides, which trap RNAP (RNA polymerase) in a stable initiating complex, the melted DNA region contracts at the 5'-end in a TRTG motif promoter mutant but not at the wild-type promoter, indicating that the motif contributes to maintaining DNA-strand separation.
Collapse
Affiliation(s)
- Martin I Voskuil
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, E. B. Fred Hall, 53706, Madison, WI, USA
| | | |
Collapse
|
25
|
Abstract
Promoter escape is the last stage of transcription initiation when RNA polymerase, having initiated de novo phosphodiester bond synthesis, must begin to relinquish its hold on promoter DNA and advance to downstream regions (DSRs) of the template. In vitro, this process is marked by the release of high levels of abortive transcripts at most promoters, reflecting the high instability of initial transcribing complexes (ITCs) and indicative of the existence of barriers to the escape process. The high abortive initiation level is the result of the existence of unproductive ITCs that carry out repeated initiation and abortive release without escaping the promoter. The formation of unproductive ITCs is a widespread phenomenon, but it occurs to different extent on different promoters. Quantitative analysis of promoter mutations suggests that the extent and pattern of abortive initiation and promoter escape is determined by the sequence of promoter elements, both in the promoter recognition region (PRR) and the initial transcribed sequence (ITS). A general correlation has been found that the stronger the promoter DNA-polymerase interaction, the poorer the ability of RNA polymerase to escape the promoter. In gene regulation, promoter escape can be the rate-limiting step for transcription initiation. An increasing number of regulatory proteins are known to exert their control at this step. Examples are discussed with an emphasis on the diverse mechanisms involved. At the molecular level, the X-ray crystal structures of RNA polymerase and its various transcription complexes provide the framework for understanding the functional data on abortive initiation and promoter escape. Based on structural and biochemical evidence, a mechanism for abortive initiation and promoter escape is described.
Collapse
Affiliation(s)
- Lilian M Hsu
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA.
| |
Collapse
|
26
|
Park JS, Marr MT, Roberts JW. E. coli Transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 2002; 109:757-67. [PMID: 12086674 DOI: 10.1016/s0092-8674(02)00769-9] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription and DNA repair are coupled in E. coli by the Mfd protein, which dissociates transcription elongation complexes blocked at nonpairing lesions and mediates recruitment of DNA repair proteins. We show that Mfd influences the elongation state of RNA polymerase (RNAP); transcription complexes that have reverse translocated into the backtracked position, a potentially important intermediate in RNA proofreading and repair, are restored to the forward position by the activity of Mfd, and arrested complexes are rescued into productive elongation. Mfd may act through a translocase activity that rewinds upstream DNA, leading either to translocation or to release of RNA polymerase when the enzyme active site cannot continue elongation.
Collapse
Affiliation(s)
- Joo-Seop Park
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
27
|
Vassylyev DG, Sekine SI, Laptenko O, Lee J, Vassylyeva MN, Borukhov S, Yokoyama S. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature 2002; 417:712-9. [PMID: 12000971 DOI: 10.1038/nature752] [Citation(s) in RCA: 635] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In bacteria, the binding of a single protein, the initiation factor sigma, to a multi-subunit RNA polymerase core enzyme results in the formation of a holoenzyme, the active form of RNA polymerase essential for transcription initiation. Here we report the crystal structure of a bacterial RNA polymerase holoenzyme from Thermus thermophilus at 2.6 A resolution. In the structure, two amino-terminal domains of the sigma subunit form a V-shaped structure near the opening of the upstream DNA-binding channel of the active site cleft. The carboxy-terminal domain of sigma is near the outlet of the RNA-exit channel, about 57 A from the N-terminal domains. The extended linker domain forms a hairpin protruding into the active site cleft, then stretching through the RNA-exit channel to connect the N- and C-terminal domains. The holoenzyme structure provides insight into the structural organization of transcription intermediate complexes and into the mechanism of transcription initiation.
Collapse
Affiliation(s)
- Dmitry G Vassylyev
- Cellular Signaling Laboratory, RIKEN Harima Institute at Spring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Mekler V, Kortkhonjia E, Mukhopadhyay J, Knight J, Revyakin A, Kapanidis AN, Niu W, Ebright YW, Levy R, Ebright RH. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 2002; 108:599-614. [PMID: 11893332 DOI: 10.1016/s0092-8674(02)00667-0] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have used systematic fluorescence resonance energy transfer and distance-constrained docking to define the three-dimensional structures of bacterial RNA polymerase holoenzyme and the bacterial RNA polymerase-promoter open complex in solution. The structures provide a framework for understanding sigma(70)-(RNA polymerase core), sigma(70)-DNA, and sigma(70)-RNA interactions. The positions of sigma(70) regions 1.2, 2, 3, and 4 are similar in holoenzyme and open complex. In contrast, the position of sigma(70) region 1.1 differs dramatically in holoenzyme and open complex. In holoenzyme, region 1.1 is located within the active-center cleft, apparently serving as a "molecular mimic" of DNA, but, in open complex, region 1.1 is located outside the active center cleft. The approach described here should be applicable to the analysis of other nanometer-scale complexes.
Collapse
Affiliation(s)
- Vladimir Mekler
- Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Qi D, Tann CM, Haring D, Distefano MD. Generation of new enzymes via covalent modification of existing proteins. Chem Rev 2001; 101:3081-111. [PMID: 11710063 DOI: 10.1021/cr000059o] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D Qi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
30
|
Mukhopadhyay J, Kapanidis AN, Mekler V, Kortkhonjia E, Ebright YW, Ebright RH. Translocation of sigma(70) with RNA polymerase during transcription: fluorescence resonance energy transfer assay for movement relative to DNA. Cell 2001; 106:453-63. [PMID: 11525731 DOI: 10.1016/s0092-8674(01)00464-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using fluorescence resonance energy transfer, we show that, in the majority of transcription complexes, sigma(70) is not released from RNA polymerase upon transition from initiation to elongation, but, instead, remains associated with RNA polymerase and translocates with RNA polymerase. The results argue against the presumption that there are necessary subunit-composition differences, and corresponding necessary mechanistic differences, in initiation and elongation. The methods of this report should be generalizable to monitor movement of any molecule relative to any nucleic acid.
Collapse
Affiliation(s)
- J Mukhopadhyay
- Howard Hughes Medical Institute, Waksman Institute, Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
31
|
Marr MT, Datwyler SA, Meares CF, Roberts JW. Restructuring of an RNA polymerase holoenzyme elongation complex by lambdoid phage Q proteins. Proc Natl Acad Sci U S A 2001; 98:8972-8. [PMID: 11481468 PMCID: PMC55358 DOI: 10.1073/pnas.161253298] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2001] [Indexed: 11/18/2022] Open
Abstract
The structure of an intermediate in the initiation to elongation transition of Escherichia coli RNA polymerase has been visualized through region-specific DNA cleavage by the hydroxyl radical reagent FeBABE. FeBABE was tethered to specific sites of the final sigma(70) subunit and incorporated into two specialized paused elongation complexes that obligatorily retain the final sigma(70) initiation subunit and are targets for modification by lambdoid phage late gene antiterminators. The FeBABE cleavage pattern reveals structures similar to open complex, except for notable changes to region 3 of final sigma(70) that might reflect the presence of stably bound transcript. Binding of the antiterminator protein Q displaces the reactivity of FeBABE conjugated to region 4 of final sigma(70), suggesting that final sigma(70) subunit rearrangement is a step in conversion of RNAP to the antiterminating form.
Collapse
Affiliation(s)
- M T Marr
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
32
|
Jishage M, Dasgupta D, Ishihama A. Mapping of the Rsd contact site on the sigma 70 subunit of Escherichia coli RNA polymerase. J Bacteriol 2001; 183:2952-6. [PMID: 11292818 PMCID: PMC99515 DOI: 10.1128/jb.183.9.2952-2956.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Accepted: 02/20/2001] [Indexed: 11/20/2022] Open
Abstract
Rsd (regulator of sigma D) is an anti-sigma factor for the Escherichia coli RNA polymerase sigma(70) subunit. The contact site of Rsd on sigma(70) was analyzed after mapping of the contact-dependent cleavage sites by Rsd-tethered iron-p-bromoacetamidobenzyl EDTA and by analysis of the complex formation between Ala-substituted sigma(70) and Rsd. Results indicate that the Rsd contact site is located downstream of the promoter -35 recognition helix-turn-helix motif within region 4, overlapping with the regions involved in interaction with both core enzyme and sigma(70) contact transcription factors.
Collapse
Affiliation(s)
- M Jishage
- National Institute of Genetics, Department of Molecular Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
33
|
Abstract
It is clear that multiple sites of interaction exist between sigmas and core subunits, likely reflecting the changing pattern of interactions that occur sequentially during the complex process of holoenzyme formation, open promoter formation, and initiation of transcription. Recent studies have revealed that a major site of interaction of Escherichia coli sigma factors is the amino acid 260-309 coiled-coil region of the beta' subunit of core RNA polymerase. This region of beta' interacts with region 2.1-2.2 of sigma(70). Binding of this region of beta' to sigma(70) triggers a conformational change in sigma that allows it to bind to a -10 nontemplate promoter DNA strand oligonucleotide.
Collapse
Affiliation(s)
- R R Burgess
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1400 University Avenue, Madison, WI 53706, USA.
| | | |
Collapse
|
34
|
Wigneshweraraj SR, Chaney MK, Ishihama A, Buck M. Regulatory sequences in sigma 54 localise near the start of DNA melting. J Mol Biol 2001; 306:681-701. [PMID: 11243780 DOI: 10.1006/jmbi.2000.4393] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription initiation by the enhancer-dependent sigma(54) RNA polymerase holoenzyme is positively regulated after promoter binding. The promoter DNA melting process is subject to activation by an enhancer-bound activator protein with nucleoside triphosphate hydrolysis activity. Tethered iron chelate probes attached to amino and carboxyl-terminal domains of sigma(54) were used to map sigma(54)-DNA interaction sites. The two domains localise to form a centre over the -12 promoter region. The use of deletion mutants of sigma(54) suggests that amino-terminal and carboxyl-terminal sequences are both needed for the centre to function. Upon activation, the relationship between the centre and promoter DNA changes. We suggest that the activator re-organises the centre to favour stable open complex formation through adjustments in sigma(54)-DNA contact and sigma(54) conformation. The centre is close to the active site of the RNA polymerase and includes sigma(54) regulatory sequences needed for DNA melting upon activation. This contrasts systems where activators recruit RNA polymerase to promoter DNA, and the protein and DNA determinants required for activation localise away from promoter sequences closely associated with the start of DNA melting.
Collapse
Affiliation(s)
- S R Wigneshweraraj
- Department of Biology, Imperial College of Science Technology and Medicine, Imperial College Road, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
35
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Ojangu EL, Tover A, Teras R, Kivisaar M. Effects of combination of different -10 hexamers and downstream sequences on stationary-phase-specific sigma factor sigma(S)-dependent transcription in Pseudomonas putida. J Bacteriol 2000; 182:6707-13. [PMID: 11073916 PMCID: PMC111414 DOI: 10.1128/jb.182.23.6707-6713.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2000] [Accepted: 09/12/2000] [Indexed: 11/20/2022] Open
Abstract
The main sigma factor activating gene expression, necessary in stationary phase and under stress conditions, is sigma(S). In contrast to other minor sigma factors, RNA polymerase holoenzyme containing sigma(S) (Esigma(S)) recognizes a number of promoters which are also recognized by that containing sigma(70) (Esigma(70)). We have previously shown that transposon Tn4652 can activate silent genes in starving Pseudomonas putida cells by creating fusion promoters during transposition. The sequence of the fusion promoters is similar to the sigma(70)-specific promoter consensus. The -10 hexameric sequence and the sequence downstream from the -10 element differ among these promoters. We found that transcription from the fusion promoters is stationary phase specific. Based on in vivo experiments carried out with wild-type and rpoS-deficient mutant P. putida, the effect of sigma(S) on transcription from the fusion promoters was established only in some of these promoters. The importance of the sequence of the -10 hexamer has been pointed out in several published papers, but there is no information about whether the sequences downstream from the -10 element can affect sigma(S)-dependent transcription. Combination of the -10 hexameric sequences and downstream sequences of different fusion promoters revealed that sigma(S)-specific transcription from these promoters is not determined by the -10 hexameric sequence only. The results obtained in this study indicate that the sequence of the -10 element influences sigma(S)-specific transcription in concert with the sequence downstream from the -10 box.
Collapse
Affiliation(s)
- E L Ojangu
- Department of Genetics, Institute of Molecular and Cell Biology, Estonian Biocentre and Tartu University, 51010 Tartu, Estonia
| | | | | | | |
Collapse
|
37
|
Naryshkin N, Revyakin A, Kim Y, Mekler V, Ebright RH. Structural organization of the RNA polymerase-promoter open complex. Cell 2000; 101:601-11. [PMID: 10892647 DOI: 10.1016/s0092-8674(00)80872-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have used systematic site-specific protein-DNA photocrosslinking to define interactions between bacterial RNA polymerase (RNAP) and promoter DNA in the catalytically competent RNAP-promoter open complex (RPo). We have mapped more than 100 distinct crosslinks between individual segments of RNAP subunits and individual phosphates of promoter DNA. The results provide a comprehensive description of protein-DNA interactions in RPo, permit construction of a detailed model for the structure of RPo, and permit analysis of effects of a transcriptional activator on the structure of RPo.
Collapse
Affiliation(s)
- N Naryshkin
- Howard Hughes Medical Institute, Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
38
|
Burr T, Mitchell J, Kolb A, Minchin S, Busby S. DNA sequence elements located immediately upstream of the -10 hexamer in Escherichia coli promoters: a systematic study. Nucleic Acids Res 2000; 28:1864-70. [PMID: 10756184 PMCID: PMC103297 DOI: 10.1093/nar/28.9.1864] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have made a systematic study of how the activity of an Escherichia coli promoter is affected by the base sequence immediately upstream of the -10 hexamer. Starting with an activator-independent promoter, with a 17 bp spacing between the -10 and -35 hexamer elements, we constructed derivatives with all possible combinations of bases at positions -15 and -14. Promoter activity is greatest when the 'non-template' strand carries T and G at positions -15 and -14, respectively. Promoter activity can be further enhanced by a second T and G at positions -17 and -16, respectively, immediately upstream of the first 'TG motif'. Our results show that the base sequence of the DNA segment upstream of the -10 hexamer can make a significant contribution to promoter strength. Using published collections of characterised E.coli promoters, we have studied the frequency of occurrence of 'TG motifs' upstream of the promoters' -10 elements. We conclude that correctly placed 'TG motifs' are found at over 20% of E.coli promoters.
Collapse
Affiliation(s)
- T Burr
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
39
|
Bown JA, Kolb A, Meares CF, Ishihama A, Minchin SD, Busby SJ. Positioning of region 4 of the Escherichia coli RNA polymerase sigma(70) subunit by a transcription activator. J Bacteriol 2000; 182:2982-4. [PMID: 10781573 PMCID: PMC102013 DOI: 10.1128/jb.182.10.2982-2984.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A DNA cleavage reagent, specifically tethered to residue 581 of the Escherichia coli RNA polymerase sigma(70) subunit, has been used to investigate the location of sigma(70) region 4 in different complexes at the galp(1) promoter and the effect of the cyclic AMP receptor protein. The positions of DNA cleavage by the reagent are not affected by the cyclic AMP receptor protein. We conclude that transcription activation at the galp(1) promoter by the cyclic AMP receptor protein does not involve major conformation changes in or repositioning of sigma(70) region 4.
Collapse
Affiliation(s)
- J A Bown
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Fenton MS, Lee SJ, Gralla JD. Escherichia coli promoter opening and -10 recognition: mutational analysis of sigma70. EMBO J 2000; 19:1130-7. [PMID: 10698953 PMCID: PMC305651 DOI: 10.1093/emboj/19.5.1130] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/1999] [Revised: 12/22/1999] [Accepted: 01/10/2000] [Indexed: 11/14/2022] Open
Abstract
The opening of specific segments of DNA is required for most types of genetic readout, including sigma70-dependent transcription. To learn how this occurs, a series of single point mutations were introduced into sigma70 region 2. These were assayed for duplex DNA binding, DNA opening and DNA double strand-single strand fork junction binding. Band shift assays for closed complex formation implicated a series of arginine and aromatic residues within a minimal 26 amino acid region. Permanganate assays implicated two additional aromatic residues in DNA opening, known to form a parallel stack of the type that can accept a flipped-out base. Substitution for either of these aromatics had no effect on duplex probe recognition. However, when a single unpaired -11 nucleotide is added to the probe, the mutants fail to bind appropriately to give heparin resistance. A model for DNA opening is presented in which duplex recognition by regions 2.3, 2.4 and 2.5 of sigma positions the pair of aromatic amino acids, which then create the fork junction required for stable opening.
Collapse
Affiliation(s)
- M S Fenton
- Department of Chemistry, University of California, Los Angeles, PO Box 951569, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
41
|
Becker G, Klauck E, Hengge-Aronis R. The response regulator RssB, a recognition factor for sigmaS proteolysis in Escherichia coli, can act like an anti-sigmaS factor. Mol Microbiol 2000; 35:657-66. [PMID: 10672187 DOI: 10.1046/j.1365-2958.2000.01736.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
sigmaS (RpoS) is the master regulator of the general stress response in Escherichia coli. Several stresses increase cellular sigmaS levels by inhibiting proteolysis of sigmaS, which under non-stress conditions is a highly unstable protein. For this ClpXP-dependent degradation, the response regulator RssB acts as a recognition factor, with RssB affinity for sigmaS being modulated by phosphorylation. Here, we demonstrate that RssB can also act like an anti-sigma factor for sigmaS in vivo, i.e. RssB can inhibit the expression of sigmaS-dependent genes in the presence of high sigmaS levels. This becomes apparent when (i) the cellular RssB/sigmaS ratio is at least somewhat elevated and (ii) proteolysis is reduced (for example in stationary phase) or eliminated (for example in a clpP mutant). Two modes of inhibition of sigmaS by RssB can be distinguished. The 'catalytic' mode is observed in stationary phase cells with a substoichiometric RssB/sigmaS ratio, requires ClpP and therefore probably corresponds to sequestering of sigmaS to Clp protease (even though sigmaS is not degraded). The 'stoichiometric' mode occurs in clpP mutant cells upon overproduction of RssB to levels that are equal to those of sigmaS, and therefore probably involves binary complex formation between RssB and sigmaS. We also show that, under standard laboratory conditions, the cellular level of RssB is more than 20-fold lower than that of sigmaS and is not significantly controlled by stresses that upregulate sigmaS. We therefore propose that antisigma factor activity of RssB may play a role under not yet identified growth conditions (which may result in RssB induction), or that RssB is a former antisigma factor that during evolution was recruited to serve as a recognition factor for proteolysis.
Collapse
Affiliation(s)
- G Becker
- Department of Biology - Microbiology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195 Berlin, Germany
| | | | | |
Collapse
|
42
|
Becker G, Klauck E, Hengge-Aronis R. Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc Natl Acad Sci U S A 1999; 96:6439-44. [PMID: 10339606 PMCID: PMC26900 DOI: 10.1073/pnas.96.11.6439] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The degradation of the RpoS (sigmaS) subunit of RNA polymerase in Escherichia coli is a prime example of regulated proteolysis in prokaryotes. RpoS turnover depends on ClpXP protease, the response regulator RssB, and a hitherto uncharacterized "turnover element" within RpoS itself. Here we localize the turnover element to a small element (around the crucial amino acid lysine-173) directly downstream of the promoter-recognizing region 2.4 in RpoS. Its sequence as well as its location identify the turnover element as a unique proteolysis-promoting motif. This element is shown to be a site of interaction with RssB. Thus, RssB is functionally unique among response regulators as a direct recognition factor in ClpXP-dependent RpoS proteolysis. Binding of RssB to RpoS is stimulated by phosphorylation of the RssB receiver domain, suggesting that environmental stress affects RpoS proteolysis by modulating RssB affinity for RpoS. Initial evidence indicates that lysine-173 in RpoS, besides being essential of RpoS proteolysis, may play a role in promoter recognition. Thus the same region in RpoS is crucial for proteolysis as well as for activity as a transcription factor.
Collapse
Affiliation(s)
- G Becker
- Institute of Plant Physiology and Microbiology, Free University of Berlin, 14195 Berlin, Germany
| | | | | |
Collapse
|