1
|
Awalt JK, Ooi ZK, Ashton TD, Mansouri M, Calic PPS, Zhou Q, Vasanthan S, Lee S, Loi K, Jarman KE, Penington JS, Qiu D, Zhang X, Lehane AM, Mao EY, Gancheva MR, Wilson DW, Giannangelo C, MacRaild CA, Creek DJ, Yeo T, Sheth T, Fidock DA, Churchyard A, Baum J, Famodimu MT, Delves MJ, Kristan M, Stewart L, Sutherland CJ, Coyle R, Jagoe H, Lee MCS, Chowdury M, de Koning-Ward TF, Baud D, Brand S, Jackson PF, Cowman AF, Dans MG, Sleebs BE. Optimization and Characterization of N-Acetamide Indoles as Antimalarials That Target PfATP4. J Med Chem 2025; 68:8933-8966. [PMID: 40228810 PMCID: PMC12035806 DOI: 10.1021/acs.jmedchem.5c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
To discover new antimalarials, a screen of the Janssen Jumpstarter library against Plasmodium falciparum uncovered the N-acetamide indole hit class. The structure-activity relationship of this chemotype was defined and culminated in the optimized frontrunner analog WJM664, which exhibited potent asexual stage activity and high metabolic stability. Resistant selection and whole-genome sequencing revealed mutations in PfATP4, which was validated as the target by showing that analogs exhibited reduced potency against parasites with resistance-conferring mutations in PfATP4, a metabolomic signature similar to that of the PfATP4 inhibitor KAE609, and inhibition of Na+-dependent ATPase activity consistent with on-target inhibition of PfATP4. WJM664 inhibited gamete development and blocked parasite transmission to mosquitoes but exhibited low efficacy in aPlasmodium berghei mouse model, which was attributed to ATP4 species differentiation and its moderate systemic exposure. Optimization of these attributes is required for N-acetamide indoles to be pursued for development as a curative and transmission-blocking therapy.
Collapse
Affiliation(s)
- Jon Kyle Awalt
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Zi Kang Ooi
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Trent D. Ashton
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Mahta Mansouri
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Petar P. S. Calic
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Qingmiao Zhou
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Santhya Vasanthan
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Serena Lee
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Katie Loi
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Kate E. Jarman
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Jocelyn S. Penington
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Deyun Qiu
- Research
School of Biology, Australian National University, Canberra 2601, Australia
| | - Xinxin Zhang
- Research
School of Biology, Australian National University, Canberra 2601, Australia
| | - Adele M. Lehane
- Research
School of Biology, Australian National University, Canberra 2601, Australia
| | - Emma Y. Mao
- Research
Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Maria R. Gancheva
- Research
Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Danny W. Wilson
- Research
Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Carlo Giannangelo
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville 3052, Australia
| | | | - Darren J. Creek
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville 3052, Australia
| | - Tomas Yeo
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
- Center
for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tanaya Sheth
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
- Center
for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A. Fidock
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
- Center
for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division
of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Alisje Churchyard
- Department
of Life Sciences, Imperial College London, South Kensington SW7 2AZ, U.K.
| | - Jake Baum
- Department
of Life Sciences, Imperial College London, South Kensington SW7 2AZ, U.K.
- School
of Biomedical Sciences, University of New
South Wales, Sydney 2031, Australia
| | | | - Michael J. Delves
- London School of
Hygiene and Tropical Medicine, London WC1E 7HT, U.K.
| | - Mojca Kristan
- London School of
Hygiene and Tropical Medicine, London WC1E 7HT, U.K.
| | - Lindsay Stewart
- London School of
Hygiene and Tropical Medicine, London WC1E 7HT, U.K.
| | | | - Rachael Coyle
- London School of
Hygiene and Tropical Medicine, London WC1E 7HT, U.K.
- Wellcome Sanger Institute, Wellcome Genome Campus Hinxton CB10 1SA, U.K.
| | - Hannah Jagoe
- London School of
Hygiene and Tropical Medicine, London WC1E 7HT, U.K.
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus Hinxton CB10 1SA, U.K.
- Wellcome
Centre for Anti-Infectives Research, Biological Chemistry and Drug
Discovery, University of Dundee, Dundee DD1 5EH, U.K.
| | - Mrittika Chowdury
- School
of Medicine, Deakin University, Waurn Ponds 3216, Australia
- Institute
for Mental and Physical Health and Clinical Translation, Deakin University, Geelong 3216, Australia
| | - Tania F. de Koning-Ward
- School
of Medicine, Deakin University, Waurn Ponds 3216, Australia
- Institute
for Mental and Physical Health and Clinical Translation, Deakin University, Geelong 3216, Australia
| | - Delphine Baud
- Medicines for Malaria Venture, Geneva 1215, Switzerland
| | - Stephen Brand
- Medicines for Malaria Venture, Geneva 1215, Switzerland
| | - Paul F. Jackson
- Emerging
Science & Innovation, Discovery Sciences, Janssen R&D LLC, La Jolla 92121, United States
| | - Alan F. Cowman
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Madeline G. Dans
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Brad E. Sleebs
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
2
|
Shadija N, Dass S, Xu W, Wang L, Ke H. Functionality of the V-type ATPase during asexual growth and development of Plasmodium falciparum. J Biol Chem 2024; 300:107608. [PMID: 39084459 PMCID: PMC11387698 DOI: 10.1016/j.jbc.2024.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Vacuolar type ATPases (V-type ATPases) are highly conserved hetero-multisubunit proton pumping machineries found in all eukaryotes. They utilize ATP hydrolysis to pump protons, acidifying intracellular or extracellular compartments, and are thus crucial for various biological processes. Despite their evolutionary conservation in malaria parasites, this proton pump remains understudied. To understand the localization and biological functions of Plasmodium falciparum V-type ATPase, we employed CRISPR/Cas9 to endogenously tag the subunit A of the V1 domain. V1A (PF3D7_1311900) was tagged with a triple hemagglutinin epitope and the TetR-DOZI-aptamer system for conditional expression under the regulation of anhydrotetracycline. Via immunofluorescence assays, we identified that V-type ATPase is expressed throughout the intraerythrocytic developmental cycle and is mainly localized to the digestive vacuole and parasite plasma membrane. Immuno-electron microscopy further revealed that V-type ATPase is also localized on secretory organelles in merozoites. Knockdown of V1A led to cytosolic pH imbalance and blockage of hemoglobin digestion in the digestive vacuole, resulting in an arrest of parasite development in the trophozoite-stage and, ultimately, parasite demise. Using bafilomycin A1, a specific inhibitor of V-type ATPases, we found that the P. falciparum V-type ATPase is likely involved in parasite invasion but is not critical for ring-stage development. Further, we detected a large molecular weight complex in blue native-PAGE (∼1.0 MDa), corresponding to the total molecular weights of V1 and Vo domains. Together, we show that V-type ATPase is localized to multiple subcellular compartments in P. falciparum, and its functionality throughout the asexual cycle varies depending on the parasite developmental stages.
Collapse
Affiliation(s)
- Neeta Shadija
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Swati Dass
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Wei Xu
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Liying Wang
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Springer E, Heimsch KC, Rahlfs S, Becker K, Przyborski JM. Real-time measurements of ATP dynamics via ATeams in Plasmodium falciparum reveal drug-class-specific response patterns. Antimicrob Agents Chemother 2024; 68:e0169023. [PMID: 38501806 PMCID: PMC11064498 DOI: 10.1128/aac.01690-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Malaria tropica, caused by the parasite Plasmodium falciparum (P. falciparum), remains one of the greatest public health burdens for humankind. Due to its pivotal role in parasite survival, the energy metabolism of P. falciparum is an interesting target for drug design. To this end, analysis of the central metabolite adenosine triphosphate (ATP) is of great interest. So far, only cell-disruptive or intensiometric ATP assays have been available in this system, with various drawbacks for mechanistic interpretation and partly inconsistent results. To address this, we have established fluorescent probes, based on Förster resonance energy transfer (FRET) and known as ATeam, for use in blood-stage parasites. ATeams are capable of measuring MgATP2- levels in a ratiometric manner, thereby facilitating in cellulo measurements of ATP dynamics in real-time using fluorescence microscopy and plate reader detection and overcoming many of the obstacles of established ATP analysis methods. Additionally, we established a superfolder variant of the ratiometric pH sensor pHluorin (sfpHluorin) in P. falciparum to monitor pH homeostasis and control for pH fluctuations, which may affect ATeam measurements. We characterized recombinant ATeam and sfpHluorin protein in vitro and stably integrated the sensors into the genome of the P. falciparum NF54attB cell line. Using these new tools, we found distinct sensor response patterns caused by several different drug classes. Arylamino alcohols increased and redox cyclers decreased ATP; doxycycline caused first-cycle cytosol alkalization; and 4-aminoquinolines caused aberrant proteolysis. Our results open up a completely new perspective on drugs' mode of action, with possible implications for target identification and drug development.
Collapse
Affiliation(s)
- Eric Springer
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Kim C. Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Jude M. Przyborski
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| |
Collapse
|
4
|
Lindblom JR, Zhang X, Lehane AM. A pH Fingerprint Assay to Identify Inhibitors of Multiple Validated and Potential Antimalarial Drug Targets. ACS Infect Dis 2024; 10:1185-1200. [PMID: 38499199 PMCID: PMC11019546 DOI: 10.1021/acsinfecdis.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
New drugs with novel modes of action are needed to safeguard malaria treatment. In recent years, millions of compounds have been tested for their ability to inhibit the growth of asexual blood-stage Plasmodium falciparum parasites, resulting in the identification of thousands of compounds with antiplasmodial activity. Determining the mechanisms of action of antiplasmodial compounds informs their further development, but remains challenging. A relatively high proportion of compounds identified as killing asexual blood-stage parasites show evidence of targeting the parasite's plasma membrane Na+-extruding, H+-importing pump, PfATP4. Inhibitors of PfATP4 give rise to characteristic changes in the parasite's internal [Na+] and pH. Here, we designed a "pH fingerprint" assay that robustly identifies PfATP4 inhibitors while simultaneously allowing the detection of (and discrimination between) inhibitors of the lactate:H+ transporter PfFNT, which is a validated antimalarial drug target, and the V-type H+ ATPase, which was suggested as a possible target of the clinical candidate ZY19489. In our pH fingerprint assays and subsequent secondary assays, ZY19489 did not show evidence for the inhibition of pH regulation by the V-type H+ ATPase, suggesting that it has a different mode of action in the parasite. The pH fingerprint assay also has the potential to identify protonophores, inhibitors of the acid-loading Cl- transporter(s) (for which the molecular identity(ies) remain elusive), and compounds that act through inhibition of either the glucose transporter PfHT or glycolysis. The pH fingerprint assay therefore provides an efficient starting point to match a proportion of antiplasmodial compounds with their mechanisms of action.
Collapse
Affiliation(s)
| | | | - Adele M. Lehane
- Research School of Biology, Australian National University, Canberra, Australian Capital
Territory 2600, Australia
| |
Collapse
|
5
|
Docampo R. Advances in the cellular biology, biochemistry, and molecular biology of acidocalcisomes. Microbiol Mol Biol Rev 2024; 88:e0004223. [PMID: 38099688 PMCID: PMC10966946 DOI: 10.1128/mmbr.00042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
SUMMARYAcidocalcisomes are organelles conserved during evolution and closely related to the so-called volutin granules of bacteria and archaea, to the acidocalcisome-like vacuoles of yeasts, and to the lysosome-related organelles of animal species. All these organelles have in common their acidity and high content of polyphosphate and calcium. They are characterized by a variety of functions from storage of phosphorus and calcium to roles in Ca2+ signaling, osmoregulation, blood coagulation, and inflammation. They interact with other organelles through membrane contact sites or by fusion, and have several enzymes, pumps, transporters, and channels.
Collapse
Affiliation(s)
- Roberto Docampo
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Solebo O, Ling L, Nwankwo I, Zhou J, Fu TM, Ke H. Plasmodium falciparum utilizes pyrophosphate to fuel an essential proton pump in the ring stage and the transition to trophozoite stage. PLoS Pathog 2023; 19:e1011818. [PMID: 38048362 PMCID: PMC10732439 DOI: 10.1371/journal.ppat.1011818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
During asexual growth and replication cycles inside red blood cells, the malaria parasite Plasmodium falciparum primarily relies on glycolysis for energy supply, as its single mitochondrion performs little or no oxidative phosphorylation. Post merozoite invasion of a host red blood cell, the ring stage lasts approximately 20 hours and was traditionally thought to be metabolically quiescent. However, recent studies have shown that the ring stage is active in several energy-costly processes, including gene transcription, protein translation, protein export, and movement inside the host cell. It has remained unclear whether a low glycolytic flux alone can meet the energy demand of the ring stage over a long period post invasion. Here, we demonstrate that the metabolic by-product pyrophosphate (PPi) is a critical energy source for the development of the ring stage and its transition to the trophozoite stage. During early phases of the asexual development, the parasite utilizes Plasmodium falciparum vacuolar pyrophosphatase 1 (PfVP1), an ancient pyrophosphate-driven proton pump, to export protons across the parasite plasma membrane. Conditional deletion of PfVP1 leads to a delayed ring stage that lasts nearly 48 hours and a complete blockage of the ring-to-trophozoite transition before the onset of parasite death. This developmental arrest can be partially rescued by an orthologous vacuolar pyrophosphatase from Arabidopsis thaliana, but not by the soluble pyrophosphatase from Saccharomyces cerevisiae, which lacks proton pumping activities. Since proton-pumping pyrophosphatases have been evolutionarily lost in human hosts, the essentiality of PfVP1 suggests its potential as an antimalarial drug target. A drug target of the ring stage is highly desired, as current antimalarials have limited efficacy against this stage.
Collapse
Affiliation(s)
- Omobukola Solebo
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Liqin Ling
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ikechukwu Nwankwo
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Anand A, Chandana M, Ghosh S, Das R, Singh N, Vaishalli PM, Gantasala NP, Padmanaban G, Nagaraj VA. Significance of Plasmodium berghei Amino Acid Transporter 1 in Food Vacuole Functionality and Its Association with Cerebral Pathogenesis. Microbiol Spectr 2023; 11:e0494322. [PMID: 36976018 PMCID: PMC10101031 DOI: 10.1128/spectrum.04943-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The food vacuole plays a central role in the blood stage of parasite development by digesting host hemoglobin acquired from red blood cells and detoxifying the host heme released during hemoglobin digestion into hemozoin. Blood-stage parasites undergo periodic schizont bursts, releasing food vacuoles containing hemozoin. Clinical studies in malaria-infected patients and in vivo animal studies have shown the association of hemozoin with disease pathogenesis and abnormal host immune responses in malaria. Here, we perform a detailed in vivo characterization of putative Plasmodium berghei amino acid transporter 1 localized in the food vacuole to understand its significance in the malaria parasite. We show that the targeted deletion of amino acid transporter 1 in Plasmodium berghei leads to a swollen food vacuole phenotype with the accumulation of host hemoglobin-derived peptides. Plasmodium berghei amino acid transporter 1-knockout parasites produce less hemozoin, and the hemozoin crystals display a thin morphology compared with wild-type parasites. The knockout parasites show reduced sensitivity to chloroquine and amodiaquine by showing recrudescence. More importantly, mice infected with the knockout parasites are protected from cerebral malaria and display reduced neuronal inflammation and cerebral complications. Genetic complementation of the knockout parasites restores the food vacuole morphology with hemozoin levels similar to that of wild-type parasites, causing cerebral malaria in the infected mice. The knockout parasites also show a significant delay in male gametocyte exflagellation. Our findings highlight the significance of amino acid transporter 1 in food vacuole functionality and its association with malaria pathogenesis and gametocyte development. IMPORTANCE Food vacuoles of the malaria parasite are involved in the degradation of red blood cell hemoglobin. The amino acids derived from hemoglobin degradation support parasite growth, and the heme released is detoxified into hemozoin. Antimalarials such as quinolines target hemozoin formation in the food vacuole. Food vacuole transporters transport hemoglobin-derived amino acids and peptides from the food vacuole to the parasite cytosol. Such transporters are also associated with drug resistance. Here, we show that the deletion of amino acid transporter 1 in Plasmodium berghei leads to swollen food vacuoles with the accumulation of hemoglobin-derived peptides. The transporter-deleted parasites generate less hemozoin with thin crystal morphology and show reduced sensitivity to quinolines. Mice infected with transporter-deleted parasites are protected from cerebral malaria. There is also a delay in male gametocyte exflagellation, affecting transmission. Our findings uncover the functional significance of amino acid transporter 1 in the life cycle of the malaria parasite.
Collapse
Affiliation(s)
- Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Nalini Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Pradeep Mini Vaishalli
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | | |
Collapse
|
8
|
Ashton TD, Dans MG, Favuzza P, Ngo A, Lehane AM, Zhang X, Qiu D, Chandra Maity B, De N, Schindler KA, Yeo T, Park H, Uhlemann AC, Churchyard A, Baum J, Fidock DA, Jarman KE, Lowes KN, Baud D, Brand S, Jackson PF, Cowman AF, Sleebs BE. Optimization of 2,3-Dihydroquinazolinone-3-carboxamides as Antimalarials Targeting PfATP4. J Med Chem 2023; 66:3540-3565. [PMID: 36812492 PMCID: PMC10009754 DOI: 10.1021/acs.jmedchem.2c02092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
There is an urgent need to populate the antimalarial clinical portfolio with new candidates because of resistance against frontline antimalarials. To discover new antimalarial chemotypes, we performed a high-throughput screen of the Janssen Jumpstarter library against the Plasmodium falciparum asexual blood-stage parasite and identified the 2,3-dihydroquinazolinone-3-carboxamide scaffold. We defined the SAR and found that 8-substitution on the tricyclic ring system and 3-substitution of the exocyclic arene produced analogues with potent activity against asexual parasites equivalent to clinically used antimalarials. Resistance selection and profiling against drug-resistant parasite strains revealed that this antimalarial chemotype targets PfATP4. Dihydroquinazolinone analogues were shown to disrupt parasite Na+ homeostasis and affect parasite pH, exhibited a fast-to-moderate rate of asexual kill, and blocked gametogenesis, consistent with the phenotype of clinically used PfATP4 inhibitors. Finally, we observed that optimized frontrunner analogue WJM-921 demonstrates oral efficacy in a mouse model of malaria.
Collapse
Affiliation(s)
- Trent D Ashton
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Madeline G Dans
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Paola Favuzza
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Anna Ngo
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra 2601, Australia
| | - Xinxin Zhang
- Research School of Biology, Australian National University, Canberra 2601, Australia
| | - Deyun Qiu
- Research School of Biology, Australian National University, Canberra 2601, Australia
| | | | - Nirupam De
- TCG Lifesciences Pvt. Ltd., Saltlake Sec-V, Kolkata 700091, West Bengal, India
| | - Kyra A Schindler
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Heekuk Park
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Anne-Catrin Uhlemann
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ U.K
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ U.K.,School of Biomedical Sciences, University of New South Wales, Sydney 2031, Australia
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States.,Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Kate E Jarman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Kym N Lowes
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Delphine Baud
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Stephen Brand
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Paul F Jackson
- Global Public Health, Janssen R&D LLC, La Jolla, California 92121, United States
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
9
|
Tewari SG, Elahi R, Kwan B, Rajaram K, Bhatnagar S, Reifman J, Prigge ST, Vaidya AB, Wallqvist A. Metabolic responses in blood-stage malaria parasites associated with increased and decreased sensitivity to PfATP4 inhibitors. Malar J 2023; 22:56. [PMID: 36788578 PMCID: PMC9930341 DOI: 10.1186/s12936-023-04481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Spiroindolone and pyrazoleamide antimalarial compounds target Plasmodium falciparum P-type ATPase (PfATP4) and induce disruption of intracellular Na+ homeostasis. Recently, a PfATP4 mutation was discovered that confers resistance to a pyrazoleamide while increasing sensitivity to a spiroindolone. Transcriptomic and metabolic adaptations that underlie this seemingly contradictory response of P. falciparum to sublethal concentrations of each compound were examined to understand the different cellular accommodation to PfATP4 disruptions. METHODS A genetically engineered P. falciparum Dd2 strain (Dd2A211V) carrying an Ala211Val (A211V) mutation in PfATP4 was used to identify metabolic adaptations associated with the mutation that results in decreased sensitivity to PA21A092 (a pyrazoleamide) and increased sensitivity to KAE609 (a spiroindolone). First, sublethal doses of PA21A092 and KAE609 causing substantial reduction (30-70%) in Dd2A211V parasite replication were identified. Then, at this sublethal dose of PA21A092 (or KAE609), metabolomic and transcriptomic data were collected during the first intraerythrocytic developmental cycle. Finally, the time-resolved data were integrated with a whole-genome metabolic network model of P. falciparum to characterize antimalarial-induced physiological adaptations. RESULTS Sublethal treatment with PA21A092 caused significant (p < 0.001) alterations in the abundances of 91 Plasmodium gene transcripts, whereas only 21 transcripts were significantly altered due to sublethal treatment with KAE609. In the metabolomic data, a substantial alteration (≥ fourfold) in the abundances of carbohydrate metabolites in the presence of either compound was found. The estimated rates of macromolecule syntheses between the two antimalarial-treated conditions were also comparable, except for the rate of lipid synthesis. A closer examination of parasite metabolism in the presence of either compound indicated statistically significant differences in enzymatic activities associated with synthesis of phosphatidylcholine, phosphatidylserine, and phosphatidylinositol. CONCLUSION The results of this study suggest that malaria parasites activate protein kinases via phospholipid-dependent signalling in response to the ionic perturbation induced by the Na+ homeostasis disruptor PA21A092. Therefore, targeted disruption of phospholipid signalling in PA21A092-resistant parasites could be a means to block the emergence of resistance to PA21A092.
Collapse
Affiliation(s)
- Shivendra G Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Bobby Kwan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Suyash Bhatnagar
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Akhil B Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA.
| |
Collapse
|
10
|
Mohring F, van Schalkwyk DA, Henrici RC, Blasco B, Leroy D, Sutherland CJ, Moon RW. Cation ATPase (ATP4) Orthologue Replacement in the Malaria Parasite Plasmodium knowlesi Reveals Species-Specific Responses to ATP4-Targeting Drugs. mBio 2022; 13:e0117822. [PMID: 36190127 PMCID: PMC9600963 DOI: 10.1128/mbio.01178-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Several unrelated classes of antimalarial compounds developed against Plasmodium falciparum target a parasite-specific P-type ATP-dependent Na+ pump, PfATP4. We have previously shown that other malaria parasite species infecting humans are less susceptible to these compounds. Here, we generated a series of transgenic Plasmodium knowlesi orthologue replacement (OR) lines in which the endogenous pkatp4 locus was replaced by a recodonized P. knowlesi atp4 (pkatp4) coding region or the orthologous coding region from P. falciparum, Plasmodium malariae, Plasmodium ovale subsp. curtisi, or Plasmodium vivax. Each OR transgenic line displayed a similar growth pattern to the parental P. knowlesi line. We found significant orthologue-specific differences in parasite susceptibility to three chemically unrelated ATP4 inhibitors, but not to comparator drugs, among the P. knowlesi OR lines. The PfATP4OR transgenic line of P. knowlesi was significantly more susceptible than our control PkATP4OR line to three ATP4 inhibitors: cipargamin, PA21A092, and SJ733. The PvATP4OR and PmATP4OR lines were similarly susceptible to the control PkATP4OR line, but the PocATP4OR line was significantly less susceptible to all ATP4 inhibitors than the PkATP4OR line. Cipargamin-induced inhibition of Na+ efflux was also significantly greater with the P. falciparum orthologue of ATP4. This confirms that species-specific susceptibility differences previously observed in ex vivo studies of human isolates are partly or wholly enshrined in the primary amino acid sequences of the respective ATP4 orthologues and highlights the need to monitor efficacy of investigational malaria drugs against multiple species. P. knowlesi is now established as an important in vitro model for studying drug susceptibility in non-falciparum malaria parasites. IMPORTANCE Effective drugs are vital to minimize the illness and death caused by malaria. Development of new drugs becomes ever more urgent as drug resistance emerges. Among promising compounds now being developed to treat malaria are several unrelated molecules that each inhibit the same protein in the malaria parasite-ATP4. Here, we exploited the genetic tractability of P. knowlesi to replace its own ATP4 genes with orthologues from five human-infective species to understand the drug susceptibility differences among these parasites. We previously estimated the susceptibility to ATP4-targeting drugs of each species using clinical samples from malaria patients. These estimates closely matched those of the corresponding "hybrid" P. knowlesi parasites carrying introduced ATP4 genes. Thus, species-specific ATP4 inhibitor efficacy is directly determined by the sequence of the gene. Our novel approach to understanding cross-species susceptibility/resistance can strongly support the effort to develop antimalarials that effectively target all human malaria parasite species.
Collapse
Affiliation(s)
- Franziska Mohring
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Donelly A. van Schalkwyk
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ryan C. Henrici
- Center for Global Health, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Colin J. Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- UK Health Security Agency Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robert W. Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
11
|
Jiang X. An overview of the Plasmodium falciparum hexose transporter and its therapeutic interventions. Proteins 2022; 90:1766-1778. [PMID: 35445447 PMCID: PMC9790349 DOI: 10.1002/prot.26351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/30/2022]
Abstract
Despite intense elimination efforts, human malaria, caused by the infection of five Plasmodium species, remains the deadliest parasitic disease in the world. Even worse, with the emergence and spreading of the first-line drug-resistant Plasmodium parasites, therapeutic interventions based on novel plasmodial drug targets are more necessary than ever. Given that the blood-stage parasites primarily rely on glycolysis for their energy supply, blocking glucose uptake, the rate-limiting step of ATP generation, was considered a promising approach to kill these parasites. To achieve this goal, characterization of the plasmodial hexose transporter and development of selective inhibitors have been pursued for decades. Here, we review the identification and characterization of the Plasmodium falciparum hexose transporter (PfHT1) and summarize current advances in its inhibitor development.
Collapse
Affiliation(s)
- Xin Jiang
- School of Biotechnology and Biomolecular Sciencesthe University of New South WalesSydneyNew South Wales
| |
Collapse
|
12
|
Tye MA, Payne NC, Johansson C, Singh K, Santos SA, Fagbami L, Pant A, Sylvester K, Luth MR, Marques S, Whitman M, Mota MM, Winzeler EA, Lukens AK, Derbyshire ER, Oppermann U, Wirth DF, Mazitschek R. Elucidating the path to Plasmodium prolyl-tRNA synthetase inhibitors that overcome halofuginone resistance. Nat Commun 2022; 13:4976. [PMID: 36008486 PMCID: PMC9403976 DOI: 10.1038/s41467-022-32630-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
The development of next-generation antimalarials that are efficacious against the human liver and asexual blood stages is recognized as one of the world's most pressing public health challenges. In recent years, aminoacyl-tRNA synthetases, including prolyl-tRNA synthetase, have emerged as attractive targets for malaria chemotherapy. We describe the development of a single-step biochemical assay for Plasmodium and human prolyl-tRNA synthetases that overcomes critical limitations of existing technologies and enables quantitative inhibitor profiling with high sensitivity and flexibility. Supported by this assay platform and co-crystal structures of representative inhibitor-target complexes, we develop a set of high-affinity prolyl-tRNA synthetase inhibitors, including previously elusive aminoacyl-tRNA synthetase triple-site ligands that simultaneously engage all three substrate-binding pockets. Several compounds exhibit potent dual-stage activity against Plasmodium parasites and display good cellular host selectivity. Our data inform the inhibitor requirements to overcome existing resistance mechanisms and establish a path for rational development of prolyl-tRNA synthetase-targeted anti-malarial therapies.
Collapse
Affiliation(s)
- Mark A Tye
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Catrine Johansson
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kritika Singh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sofia A Santos
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Lọla Fagbami
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Akansha Pant
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Madeline R Luth
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Sofia Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Udo Oppermann
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
13
|
Catalytic Properties of Caseinolytic Protease Subunit of Plasmodium knowlesi and Its Inhibition by a Member of δ-Lactone, Hyptolide. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123787. [PMID: 35744912 PMCID: PMC9228282 DOI: 10.3390/molecules27123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
The caseinolytic protease (Clp) system plays an essential role in the protein homeostasis of the malaria parasite, particularly at the stage of apicoplast development. The inhibition of this protein is known to have a lethal effect on the parasite and is therefore considered an interesting avenue for antimalaria drugs discovery. The catalytic activity of the Clp system is modulated by its proteolytic subunit (ClpP), which belongs to the serine protease family member and is therefore extensively studied for further inhibitors development. Among many inhibitors, the group of β-lactone is known to be a specific inhibitor for ClpP. Nevertheless, other groups of lactones have never been studied. This study aims to characterize the catalytic properties of ClpP of Plasmodium knowlesi (Pk-ClpP) and the inhibition properties of a δ-lactone hyptolide against this protein. Accordingly, a codon-optimized synthetic gene encoding Pk-ClpP was expressed in Escherichia coli BL21(DE3) and purified under a single step of Ni2+-affinity chromatography, yielding a 2.20 mg from 1 L culture. Meanwhile, size-exclusion chromatography indicated that Pk-ClpP migrated primarily as homoheptameric with a size of 205 kDa. The specific activity of pure Pk-ClpP was 0.73 U µg-1, with a catalytic efficiency kcat/KM of 0.05 µM-1 s-1, with optimum temperature and pH of 50 °C and 7.0-7.5, respectively. Interestingly, hyptolide, a member of δ-lactone, was shown to inhibit Pk-ClpP with an IC50 value of 17.36 ± 1.44 nM. Structural homology modelling, secondary structure prediction, and far-UV CD spectra revealed that helical structures dominate this protein. In addition, the structural homology modeling showed that this protein forms a barrel-shaped homoheptamer. Docking simulation revealed that the inhibition was found to be a competitive inhibition in which hyptolide was able to dock into the catalytic site and block the substrate. The competitiveness of hyptolide is due to the higher binding affinity of this molecule than the substrate.
Collapse
|
14
|
Monteiro Júnior JC, Krüger A, Palmisano G, Wrenger C. Transporter-Mediated Solutes Uptake as Drug Target in Plasmodium falciparum. Front Pharmacol 2022; 13:845841. [PMID: 35370717 PMCID: PMC8965513 DOI: 10.3389/fphar.2022.845841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Malaria remains a public health problem with still more than half a million deaths annually. Despite ongoing efforts of many countries, malaria elimination has been difficult due to emerging resistances against most traditional drugs, including artemisinin compounds - the most potent antimalarials currently available. Therefore, the discovery and development of new drugs with novel mechanisms of action to circumvent resistances is urgently needed. In this sense, one of the most promising areas is the exploration of transport proteins. Transporters mediate solute uptake for intracellular parasite proliferation and survival. Targeting transporters can exploit these processes to eliminate the parasite. Here, we focus on transporters of the Plasmodium falciparum-infected red blood cell studied as potential biological targets and discuss published drugs directed at them.
Collapse
Affiliation(s)
- Júlio César Monteiro Júnior
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Arne Krüger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Tse EG, Aithani L, Anderson M, Cardoso-Silva J, Cincilla G, Conduit GJ, Galushka M, Guan D, Hallyburton I, Irwin BWJ, Kirk K, Lehane AM, Lindblom JCR, Lui R, Matthews S, McCulloch J, Motion A, Ng HL, Öeren M, Robertson MN, Spadavecchio V, Tatsis VA, van Hoorn WP, Wade AD, Whitehead TM, Willis P, Todd MH. An Open Drug Discovery Competition: Experimental Validation of Predictive Models in a Series of Novel Antimalarials. J Med Chem 2021; 64:16450-16463. [PMID: 34748707 DOI: 10.1021/acs.jmedchem.1c00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Open Source Malaria (OSM) consortium is developing compounds that kill the human malaria parasite, Plasmodium falciparum, by targeting PfATP4, an essential ion pump on the parasite surface. The structure of PfATP4 has not been determined. Here, we describe a public competition created to develop a predictive model for the identification of PfATP4 inhibitors, thereby reducing project costs associated with the synthesis of inactive compounds. Competition participants could see all entries as they were submitted. In the final round, featuring private sector entrants specializing in machine learning methods, the best-performing models were used to predict novel inhibitors, of which several were synthesized and evaluated against the parasite. Half possessed biological activity, with one featuring a motif that the human chemists familiar with this series would have dismissed as "ill-advised". Since all data and participant interactions remain in the public domain, this research project "lives" and may be improved by others.
Collapse
Affiliation(s)
- Edwin G Tse
- School of Pharmacy, University College London, London WC1N 1AX, U.K
| | - Laksh Aithani
- Exscientia Ltd., The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, U.K
| | - Mark Anderson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Jonathan Cardoso-Silva
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2B 4BG, U.K
| | | | - Gareth J Conduit
- Intellegens Ltd., Eagle Labs, Chesterton Road, Cambridge CB4 3AZ, U.K.,Theory of Condensed Matter Group, Cavendish Laboratories, University of Cambridge, Cambridge CB3 0HE, U.K
| | | | - Davy Guan
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Irene Hallyburton
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Benedict W J Irwin
- Theory of Condensed Matter Group, Cavendish Laboratories, University of Cambridge, Cambridge CB3 0HE, U.K.,Optibrium Ltd. Blenheim House, Denny End Road, Cambridge CB25 9QE, U.K
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Julia C R Lindblom
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Raymond Lui
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Slade Matthews
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - James McCulloch
- Kellerberrin, 6 Wharf Rd, Balmain, Sydney, NSW 2041, Australia
| | - Alice Motion
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ho Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan Kansas 66506, United States
| | - Mario Öeren
- Optibrium Ltd. Blenheim House, Denny End Road, Cambridge CB25 9QE, U.K
| | - Murray N Robertson
- Strathclyde Institute Of Pharmacy And Biomedical Sciences, University of Strathclyde, Glasgow G4 ORE, U.K
| | | | - Vasileios A Tatsis
- Exscientia Ltd., The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, U.K
| | - Willem P van Hoorn
- Exscientia Ltd., The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, U.K
| | - Alexander D Wade
- Theory of Condensed Matter Group, Cavendish Laboratories, University of Cambridge, Cambridge CB3 0HE, U.K
| | | | - Paul Willis
- Medicines for Malaria Venture, PO Box 1826, 20 rte de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Matthew H Todd
- School of Pharmacy, University College London, London WC1N 1AX, U.K
| |
Collapse
|
16
|
Identifying the major lactate transporter of Toxoplasma gondii tachyzoites. Sci Rep 2021; 11:6787. [PMID: 33762657 PMCID: PMC7991638 DOI: 10.1038/s41598-021-86204-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/10/2021] [Indexed: 11/09/2022] Open
Abstract
Toxoplasma gondii and Plasmodium falciparum parasites both extrude l-lactate, a byproduct of glycolysis. The P. falciparum Formate Nitrite Transporter, PfFNT, mediates l-lactate transport across the plasma membrane of P. falciparum parasites and has been validated as a drug target. The T. gondii genome encodes three FNTs that have been shown to transport l-lactate, and which are proposed to be the targets of several inhibitors of T. gondii proliferation. Here, we show that each of the TgFNTs localize to the T. gondii plasma membrane and are capable of transporting l-lactate across it, with TgFNT1 making the primary contribution to l-lactate transport during the disease-causing lytic cycle of the parasite. We use the Xenopus oocyte expression system to provide direct measurements of l-lactate transport via TgFNT1. We undertake a genetic analysis of the importance of the tgfnt genes for parasite proliferation, and demonstrate that all three tgfnt genes can be disrupted individually and together without affecting the lytic cycle under in vitro culture conditions. Together, our experiments identify the major lactate transporter in the disease causing stage of T. gondii, and reveal that this transporter is not required for parasite proliferation, indicating that TgFNTs are unlikely to be targets for anti-Toxoplasma drugs.
Collapse
|
17
|
Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV Pandemic Response Box. Nat Commun 2021; 12:269. [PMID: 33431834 PMCID: PMC7801607 DOI: 10.1038/s41467-020-20629-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Chemical matter is needed to target the divergent biology associated with the different life cycle stages of Plasmodium. Here, we report the parallel de novo screening of the Medicines for Malaria Venture (MMV) Pandemic Response Box against Plasmodium asexual and liver stage parasites, stage IV/V gametocytes, gametes, oocysts and as endectocides. Unique chemotypes were identified with both multistage activity or stage-specific activity, including structurally diverse gametocyte-targeted compounds with potent transmission-blocking activity, such as the JmjC inhibitor ML324 and the antitubercular clinical candidate SQ109. Mechanistic investigations prove that ML324 prevents histone demethylation, resulting in aberrant gene expression and death in gametocytes. Moreover, the selection of parasites resistant to SQ109 implicates the druggable V-type H+-ATPase for the reduced sensitivity. Our data therefore provides an expansive dataset of compounds that could be redirected for antimalarial development and also point towards proteins that can be targeted in multiple parasite life cycle stages. Here, Reader et al. screen the Medicines for Malaria Venture Pandemic Response Box in parallel against Plasmodiumasexual and liver stage parasites, stage IV/V gametocytes, gametes, oocysts and as endectocides. They identify two potent transmission-blocking drugs: a histone demethylase inhibitor ML324 and the antitubercular SQ109.
Collapse
|
18
|
Harguindey S, Alfarouk K, Polo Orozco J, Fais S, Devesa J. Towards an Integral Therapeutic Protocol for Breast Cancer Based upon the New H +-Centered Anticancer Paradigm of the Late Post-Warburg Era. Int J Mol Sci 2020; 21:E7475. [PMID: 33050492 PMCID: PMC7589677 DOI: 10.3390/ijms21207475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
A brand new approach to the understanding of breast cancer (BC) is urgently needed. In this contribution, the etiology, pathogenesis, and treatment of this disease is approached from the new pH-centric anticancer paradigm. Only this unitarian perspective, based upon the hydrogen ion (H+) dynamics of cancer, allows for the understanding and integration of the many dualisms, confusions, and paradoxes of the disease. The new H+-related, wide-ranging model can embrace, from a unique perspective, the many aspects of the disease and, at the same time, therapeutically interfere with most, if not all, of the hallmarks of cancer known to date. The pH-related armamentarium available for the treatment of BC reviewed here may be beneficial for all types and stages of the disease. In this vein, we have attempted a megasynthesis of traditional and new knowledge in the different areas of breast cancer research and treatment based upon the wide-ranging approach afforded by the hydrogen ion dynamics of cancer. The concerted utilization of the pH-related drugs that are available nowadays for the treatment of breast cancer is advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Department of Pharmacology, Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
19
|
Molbaek K, Tejada M, Ricke CH, Scharff-Poulsen P, Ellekvist P, Helix-Nielsen C, Kumar N, Klaerke DA, Pedersen PA. Purification and initial characterization of Plasmodium falciparum K + channels, PfKch1 and PfKch2 produced in Saccharomyces cerevisiae. Microb Cell Fact 2020; 19:183. [PMID: 32957994 PMCID: PMC7507820 DOI: 10.1186/s12934-020-01437-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Resistance towards known antimalarial drugs poses a significant problem, urging for novel drugs that target vital proteins in the malaria parasite Plasmodium falciparum. However, recombinant production of malaria proteins is notoriously difficult. To address this, we have investigated two putative K+ channels, PfKch1 and PfKch2, identified in the P. falciparum genome. We show that PfKch1 and PfKch2 and a C-terminally truncated version of PfKch1 (PfKch11−1094) could indeed be functionally expressed in vivo, since a K+-uptake deficient Saccharomyces cerevisiae strain was complemented by the P. falciparum cDNAs. PfKch11−1094-GFP and GFP-PfKch2 fusion proteins were overexpressed in yeast, purified and reconstituted in lipid bilayers to determine their electrophysiological activity. Single channel conductance amounted to 16 ± 1 pS for PfKch11−1094-GFP and 28 ± 2 pS for GFP-PfKch2. We predicted regulator of K+-conductance (RCK) domains in the C-terminals of both channels, and we accordingly measured channel activity in the presence of Ca2+.
Collapse
Affiliation(s)
- Karen Molbaek
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Maria Tejada
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Christina Hoeier Ricke
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Peter Scharff-Poulsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Peter Ellekvist
- Medical Department, Herlev-Gentofte Hospital, Herlev, 2730, Denmark
| | - Claus Helix-Nielsen
- Aquaporin A/S, Kgs Lyngby, 2800, Denmark.,Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, 2800, Denmark.,University of Maribor, Laboratory for Water Biophysics and Membrane Technology, Maribor, 2000, Slovenia
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington DC, 20052-0066, USA
| | - Dan A Klaerke
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark.
| | | |
Collapse
|
20
|
Guo J, Chen B, Yu Y, Cheng B, Ju Y, Tang J, Cai Z, Gu Q, Xu J, Zhou H. Structure-guided optimization and mechanistic study of a class of quinazolinone-threonine hybrids as antibacterial ThrRS inhibitors. Eur J Med Chem 2020; 207:112848. [PMID: 32980741 DOI: 10.1016/j.ejmech.2020.112848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 09/12/2020] [Indexed: 11/20/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are an attractive class of antibacterial drug targets due to their essential roles in protein translation. While most traditional aaRS inhibitors target the binding pockets of substrate amino acids and/or ATP, we recently developed a class of novel tRNA-amino acid dual-site inhibitors including inhibitor 3 ((2S,3R)-2-amino-N-((E)-4-(6,7-dichloro-4-oxoquinazolin-3(4H)-yl)but-2-en-1-yl)-3-hydroxybutanamide) against threonyl-tRNA synthetase (ThrRS). Here, the binding modes and structure-activity relationships (SARs) of these inhibitors were analyzed by the crystal structures of Salmonella enterica ThrRS (SeThrRS) in complex with three of them. Based on the cocrystal structures, twelve quinazolinone-threonine hybrids were designed and synthesized, and their affinities, enzymatic inhibitory activities, and cellular potencies were evaluated. The best derivative 8g achieved a Kd value of 0.40 μM, an IC50 value of 0.50 μM against SeThrRS and MIC values of 16-32 μg/mL against the tested bacterial strains. The cocrystal structure of the SeThrRS-8g complex revealed that 8g induced a bended conformation for Met332 by forming hydrophobic interactions, which better mimicked the binding of tRNAThr to ThrRS. Moreover, the inhibitory potency of 8g was less impaired than a reported ATP competitive inhibitor at high concentrations of ATP, supporting our hypothesis that tRNA site inhibitors are likely superior to ATP site inhibitors in vivo, where ATP typically reaches millimolar concentrations.
Collapse
Affiliation(s)
- Junsong Guo
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bingyi Chen
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying Yu
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bao Cheng
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yingchen Ju
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jieyu Tang
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhengjun Cai
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jun Xu
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huihao Zhou
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Bar Routaray C, Bhor R, Bai S, Kadam NS, Jagtap S, Doshi PJ, Sundar S, Sawant S, Kulkarni MJ, Pai K. SWATH-MS based quantitative proteomics analysis to evaluate the antileishmanial effect of Commiphora wightii- Guggul and Amphotericin B on a clinical isolate of Leishmania donovani. J Proteomics 2020; 223:103800. [DOI: 10.1016/j.jprot.2020.103800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
|
22
|
Martin RE. The transportome of the malaria parasite. Biol Rev Camb Philos Soc 2019; 95:305-332. [PMID: 31701663 DOI: 10.1111/brv.12565] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Membrane transport proteins, also known as transporters, control the movement of ions, nutrients, metabolites, and waste products across the membranes of a cell and are central to its biology. Proteins of this type also serve as drug targets and are key players in the phenomenon of drug resistance. The malaria parasite has a relatively reduced transportome, with only approximately 2.5% of its genes encoding transporters. Even so, assigning functions and physiological roles to these proteins, and ascertaining their contributions to drug action and drug resistance, has been very challenging. This review presents a detailed critique and synthesis of the disruption phenotypes, protein subcellular localisations, protein functions (observed or predicted), and links to antimalarial drug resistance for each of the parasite's transporter genes. The breadth and depth of the gene disruption data are particularly impressive, with at least one phenotype determined in the parasite's asexual blood stage for each transporter gene, and multiple phenotypes available for 76% of the genes. Analysis of the curated data set revealed there to be relatively little redundancy in the Plasmodium transportome; almost two-thirds of the parasite's transporter genes are essential or required for normal growth in the asexual blood stage of the parasite, and this proportion increased to 78% when the disruption phenotypes available for the other parasite life stages were included in the analysis. These observations, together with the finding that 22% of the transportome is implicated in the parasite's resistance to existing antimalarials and/or drugs within the development pipeline, indicate that transporters are likely to serve, or are already serving, as drug targets. Integration of the different biological and bioinformatic data sets also enabled the selection of candidates for transport processes known to be essential for parasite survival, but for which the underlying proteins have thus far remained undiscovered. These include potential transporters of pantothenate, isoleucine, or isopentenyl diphosphate, as well as putative anion-selective channels that may serve as the pore component of the parasite's 'new permeation pathways'. Other novel insights into the parasite's biology included the identification of transporters for the potential development of antimalarial treatments, transmission-blocking drugs, prophylactics, and genetically attenuated vaccines. The syntheses presented herein set a foundation for elucidating the functions and physiological roles of key members of the Plasmodium transportome and, ultimately, to explore and realise their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rowena E Martin
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
23
|
Baragaña B, Forte B, Choi R, Nakazawa Hewitt S, Bueren-Calabuig JA, Pisco JP, Peet C, Dranow DM, Robinson DA, Jansen C, Norcross NR, Vinayak S, Anderson M, Brooks CF, Cooper CA, Damerow S, Delves M, Dowers K, Duffy J, Edwards TE, Hallyburton I, Horst BG, Hulverson MA, Ferguson L, Jiménez-Díaz MB, Jumani RS, Lorimer DD, Love MS, Maher S, Matthews H, McNamara CW, Miller P, O'Neill S, Ojo KK, Osuna-Cabello M, Pinto E, Post J, Riley J, Rottmann M, Sanz LM, Scullion P, Sharma A, Shepherd SM, Shishikura Y, Simeons FRC, Stebbins EE, Stojanovski L, Straschil U, Tamaki FK, Tamjar J, Torrie LS, Vantaux A, Witkowski B, Wittlin S, Yogavel M, Zuccotto F, Angulo-Barturen I, Sinden R, Baum J, Gamo FJ, Mäser P, Kyle DE, Winzeler EA, Myler PJ, Wyatt PG, Floyd D, Matthews D, Sharma A, Striepen B, Huston CD, Gray DW, Fairlamb AH, Pisliakov AV, Walpole C, Read KD, Van Voorhis WC, Gilbert IH. Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proc Natl Acad Sci U S A 2019; 116:7015-7020. [PMID: 30894487 PMCID: PMC6452685 DOI: 10.1073/pnas.1814685116] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Malaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stage Plasmodium falciparum and Cryptosporidium parvum in cell-culture studies. Target deconvolution in P. falciparum has shown that cladosporin inhibits lysyl-tRNA synthetase (PfKRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of both PfKRS1 and C. parvum KRS (CpKRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED90 = 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology between PfKRS1 and CpKRS. This series of compounds inhibit CpKRS and C. parvum and Cryptosporidium hominis in culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds for PfKRS1 and CpKRS vs. (human) HsKRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis.
Collapse
Affiliation(s)
- Beatriz Baragaña
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Ryan Choi
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA 98109
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109
| | - Stephen Nakazawa Hewitt
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA 98109
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109
| | - Juan A Bueren-Calabuig
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - João Pedro Pisco
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Caroline Peet
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - David M Dranow
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA 98109
- Beryllium Discovery Corp., Bainbridge Island, WA 98110
| | - David A Robinson
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Chimed Jansen
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Neil R Norcross
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Sumiti Vinayak
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602
| | - Mark Anderson
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Carrie F Brooks
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602
| | - Sebastian Damerow
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Michael Delves
- Department of Life Sciences, Imperial College, South Kensington, SW7 2AZ London, United Kingdom
| | - Karen Dowers
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - James Duffy
- Medicines for Malaria Venture, 1215 Geneva 15, Switzerland
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA 98109
- Beryllium Discovery Corp., Bainbridge Island, WA 98110
| | - Irene Hallyburton
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Benjamin G Horst
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA 98109
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109
| | - Matthew A Hulverson
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109
| | - Liam Ferguson
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | | | - Rajiv S Jumani
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Donald D Lorimer
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA 98109
- Beryllium Discovery Corp., Bainbridge Island, WA 98110
| | - Melissa S Love
- Biology Department, Calibr at Scripps Research, La Jolla, CA 92037
| | - Steven Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602
| | - Holly Matthews
- Department of Life Sciences, Imperial College, South Kensington, SW7 2AZ London, United Kingdom
| | - Case W McNamara
- Biology Department, Calibr at Scripps Research, La Jolla, CA 92037
| | - Peter Miller
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Sandra O'Neill
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Kayode K Ojo
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109
| | - Maria Osuna-Cabello
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Erika Pinto
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - John Post
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Jennifer Riley
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Matthias Rottmann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland
- Universität Basel, CH-4003 Basel, Switzerland
| | - Laura M Sanz
- Diseases of the Developing World, Global Health, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain
| | - Paul Scullion
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Arvind Sharma
- Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
| | - Sharon M Shepherd
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Yoko Shishikura
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Frederick R C Simeons
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Erin E Stebbins
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Laste Stojanovski
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Ursula Straschil
- Department of Life Sciences, Imperial College, South Kensington, SW7 2AZ London, United Kingdom
| | - Fabio K Tamaki
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Jevgenia Tamjar
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Leah S Torrie
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 12 201 Phnom Penh, Cambodia
| | - Benoît Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 12 201 Phnom Penh, Cambodia
| | - Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland
- Universität Basel, CH-4003 Basel, Switzerland
| | - Manickam Yogavel
- Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
| | - Fabio Zuccotto
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | | | - Robert Sinden
- Department of Life Sciences, Imperial College, South Kensington, SW7 2AZ London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College, South Kensington, SW7 2AZ London, United Kingdom
| | - Francisco-Javier Gamo
- Diseases of the Developing World, Global Health, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain
| | - Pascal Mäser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland
- Universität Basel, CH-4003 Basel, Switzerland
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602
| | - Elizabeth A Winzeler
- Skaggs School of Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA 98109
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA 98195
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195
| | - Paul G Wyatt
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - David Floyd
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - David Matthews
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Amit Sharma
- Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - David W Gray
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Alan H Fairlamb
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
- Physics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Chris Walpole
- Structural Genomics Consortium, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Kevin D Read
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Wesley C Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA 98109
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109
| | - Ian H Gilbert
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom;
| |
Collapse
|
24
|
Tse EG, Korsik M, Todd MH. The past, present and future of anti-malarial medicines. Malar J 2019; 18:93. [PMID: 30902052 PMCID: PMC6431062 DOI: 10.1186/s12936-019-2724-z] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/12/2019] [Indexed: 11/10/2022] Open
Abstract
Great progress has been made in recent years to reduce the high level of suffering caused by malaria worldwide. Notably, the use of insecticide-treated mosquito nets for malaria prevention and the use of artemisinin-based combination therapy (ACT) for malaria treatment have made a significant impact. Nevertheless, the development of resistance to the past and present anti-malarial drugs highlights the need for continued research to stay one step ahead. New drugs are needed, particularly those with new mechanisms of action. Here the range of anti-malarial medicines developed over the years are reviewed, beginning with the discovery of quinine in the early 1800s, through to modern day ACT and the recently-approved tafenoquine. A number of new potential anti-malarial drugs currently in development are outlined, along with a description of the hit to lead campaign from which it originated. Finally, promising novel mechanisms of action for these and future anti-malarial medicines are outlined.
Collapse
Affiliation(s)
- Edwin G Tse
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Marat Korsik
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Matthew H Todd
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia. .,School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom.
| |
Collapse
|
25
|
Lehane AM, Dennis ASM, Bray KO, Li D, Rajendran E, McCoy JM, McArthur HM, Winterberg M, Rahimi F, Tonkin CJ, Kirk K, van Dooren GG. Characterization of the ATP4 ion pump in Toxoplasma gondii. J Biol Chem 2019; 294:5720-5734. [PMID: 30723156 DOI: 10.1074/jbc.ra118.006706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
The Plasmodium falciparum ATPase PfATP4 is the target of a diverse range of antimalarial compounds, including the clinical drug candidate cipargamin. PfATP4 was originally annotated as a Ca2+ transporter, but recent evidence suggests that it is a Na+ efflux pump, extruding Na+ in exchange for H+ Here we demonstrate that ATP4 proteins belong to a clade of P-type ATPases that are restricted to apicomplexans and their closest relatives. We employed a variety of genetic and physiological approaches to investigate the ATP4 protein of the apicomplexan Toxoplasma gondii, TgATP4. We show that TgATP4 is a plasma membrane protein. Knockdown of TgATP4 had no effect on resting pH or Ca2+ but rendered parasites unable to regulate their cytosolic Na+ concentration ([Na+]cyt). PfATP4 inhibitors caused an increase in [Na+]cyt and a cytosolic alkalinization in WT but not TgATP4 knockdown parasites. Parasites in which TgATP4 was knocked down or disrupted exhibited a growth defect, attributable to reduced viability of extracellular parasites. Parasites in which TgATP4 had been disrupted showed reduced virulence in mice. These results provide evidence for ATP4 proteins playing a key conserved role in Na+ regulation in apicomplexan parasites.
Collapse
Affiliation(s)
- Adele M Lehane
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia,
| | - Adelaide S M Dennis
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Katherine O Bray
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Dongdi Li
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Esther Rajendran
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - James M McCoy
- the Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia, and.,the Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hillary M McArthur
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Markus Winterberg
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Farid Rahimi
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher J Tonkin
- the Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia, and.,the Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kiaran Kirk
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia,
| | - Giel G van Dooren
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia,
| |
Collapse
|
26
|
Lawrence N, Dennis ASM, Lehane AM, Ehmann A, Harvey PJ, Benfield AH, Cheneval O, Henriques ST, Craik DJ, McMorran BJ. Defense Peptides Engineered from Human Platelet Factor 4 Kill Plasmodium by Selective Membrane Disruption. Cell Chem Biol 2018; 25:1140-1150.e5. [PMID: 30033131 DOI: 10.1016/j.chembiol.2018.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Abstract
Malaria is a serious threat to human health and additional classes of antimalarial drugs are greatly needed. The human defense protein, platelet factor 4 (PF4), has intrinsic antiplasmodial activity but also undesirable chemokine properties. We engineered a peptide containing the isolated PF4 antiplasmodial domain, which through cyclization, retained the critical structure of the parent protein. The peptide, cPF4PD, killed cultured blood-stage Plasmodium falciparum with low micromolar potency by specific disruption of the parasite digestive vacuole. Its mechanism of action involved selective penetration and accumulation inside the intraerythrocytic parasite without damaging the host cell or parasite membranes; it did not accumulate in uninfected cells. This selective activity was accounted for by observations of the peptide's specific binding and penetration of membranes with exposed negatively charged phospholipid headgroups. Our findings highlight the tremendous potential of the cPF4PD scaffold for developing antimalarial peptide drugs with a distinct and selective mechanism of action.
Collapse
Affiliation(s)
- Nicole Lawrence
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adelaide S M Dennis
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Adele M Lehane
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Anna Ehmann
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aurélie H Benfield
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Olivier Cheneval
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Brendan J McMorran
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
27
|
Rosling JEO, Ridgway MC, Summers RL, Kirk K, Lehane AM. Biochemical characterization and chemical inhibition of PfATP4-associated Na +-ATPase activity in Plasmodium falciparum membranes. J Biol Chem 2018; 293:13327-13337. [PMID: 29986883 DOI: 10.1074/jbc.ra118.003640] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
The antimalarial activity of chemically diverse compounds, including the clinical candidate cipargamin, has been linked to the ATPase PfATP4 in the malaria-causing parasite Plasmodium falciparum The characterization of PfATP4 has been hampered by the inability thus far to achieve its functional expression in a heterologous system. Here, we optimized a membrane ATPase assay to probe the function of PfATP4 and its chemical sensitivity. We found that cipargamin inhibited the Na+-dependent ATPase activity present in P. falciparum membranes from WT parasites and that its potency was reduced in cipargamin-resistant PfATP4-mutant parasites. The cipargamin-sensitive fraction of membrane ATPase activity was inhibited by all 28 of the compounds in the "Malaria Box" shown previously to disrupt ion regulation in P. falciparum in a cipargamin-like manner. This is consistent with PfATP4 being the direct target of these compounds. Characterization of the cipargamin-sensitive ATPase activity yielded data consistent with PfATP4 being a Na+ transporter that is sensitive to physiologically relevant perturbations of pH, but not of [K+] or [Ca2+]. With an apparent Km for ATP of 0.2 mm and an apparent Km for Na+ of 16-17 mm, the protein is predicted to operate at below its half-maximal rate under normal physiological conditions, allowing the rate of Na+ efflux to increase in response to an increase in cytosolic [Na+]. In membranes from a cipargamin-resistant PfATP4-mutant line, the apparent Km for Na+ is slightly elevated. Our study provides new insights into the biochemical properties and chemical sensitivity of an important new antimalarial drug target.
Collapse
Affiliation(s)
- James E O Rosling
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Melanie C Ridgway
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Robert L Summers
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kiaran Kirk
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Adele M Lehane
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
28
|
Dennis ASM, Rosling JEO, Lehane AM, Kirk K. Diverse antimalarials from whole-cell phenotypic screens disrupt malaria parasite ion and volume homeostasis. Sci Rep 2018; 8:8795. [PMID: 29892073 PMCID: PMC5995868 DOI: 10.1038/s41598-018-26819-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/14/2018] [Indexed: 11/17/2022] Open
Abstract
Four hundred structurally diverse drug-like compounds comprising the Medicines for Malaria Venture's 'Pathogen Box' were screened for their effect on a range of physiological parameters in asexual blood-stage malaria (Plasmodium falciparum) parasites. Eleven of these compounds were found to perturb parasite Na+, pH and volume in a manner consistent with inhibition of the putative Na+ efflux P-type ATPase PfATP4. All eleven compounds fell within the subset of 125 compounds included in the Pathogen Box on the basis of their having been identified as potent inhibitors of the growth of asexual blood-stage P. falciparum parasites. All eleven compounds inhibited the Na+-dependent ATPase activity of parasite membranes and showed reduced efficacy against parasites carrying mutations in PfATP4. This study increases the number of chemically diverse structures known to show a 'PfATP4-associated' phenotype, and adds to emerging evidence that a high proportion (7-9%) of the structurally diverse antimalarial compounds identified in whole cell phenotypic screens share the same mechanism of action, exerting their antimalarial effect via an interaction with PfATP4.
Collapse
Affiliation(s)
- Adelaide S M Dennis
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - James E O Rosling
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
29
|
Cell Swelling Induced by the Antimalarial KAE609 (Cipargamin) and Other PfATP4-Associated Antimalarials. Antimicrob Agents Chemother 2018; 62:AAC.00087-18. [PMID: 29555632 DOI: 10.1128/aac.00087-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/18/2018] [Indexed: 12/15/2022] Open
Abstract
For an increasing number of antimalarial agents identified in high-throughput phenotypic screens, there is evidence that they target PfATP4, a putative Na+ efflux transporter on the plasma membrane of the human malaria parasite Plasmodium falciparum For several such "PfATP4-associated" compounds, it has been noted that their addition to parasitized erythrocytes results in cell swelling. Here we show that six structurally diverse PfATP4-associated compounds, including the clinical candidate KAE609 (cipargamin), induce swelling of both isolated blood-stage parasites and intact parasitized erythrocytes. The swelling of isolated parasites is dependent on the presence of Na+ in the external environment and may be attributed to the osmotic consequences of Na+ uptake. The swelling of the parasitized erythrocyte results in an increase in its osmotic fragility. Countering cell swelling by increasing the osmolarity of the extracellular medium reduces the antiplasmodial efficacy of PfATP4-associated compounds, consistent with cell swelling playing a role in the antimalarial activity of this class of compounds.
Collapse
|
30
|
Rono MK, Nyonda MA, Simam JJ, Ngoi JM, Mok S, Kortok MM, Abdullah AS, Elfaki MM, Waitumbi JN, El-Hassan IM, Marsh K, Bozdech Z, Mackinnon MJ. Adaptation of Plasmodium falciparum to its transmission environment. Nat Ecol Evol 2017; 2:377-387. [PMID: 29255304 DOI: 10.1038/s41559-017-0419-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022]
Abstract
Success in eliminating malaria will depend on whether parasite evolution outpaces control efforts. Here, we show that Plasmodium falciparum parasites (the deadliest of the species causing human malaria) found in low-transmission-intensity areas have evolved to invest more in transmission to new hosts (reproduction) and less in within-host replication (growth) than parasites found in high-transmission areas. At the cellular level, this adaptation manifests as increased production of reproductive forms (gametocytes) early in the infection at the expense of processes associated with multiplication inside red blood cells, especially membrane transport and protein trafficking. At the molecular level, this manifests as changes in the expression levels of genes encoding epigenetic and translational machinery. Specifically, expression levels of the gene encoding AP2-G-the transcription factor that initiates reproduction-increase as transmission intensity decreases. This is accompanied by downregulation and upregulation of genes encoding HDAC1 and HDA1-two histone deacetylases that epigenetically regulate the parasite's replicative and reproductive life-stage programmes, respectively. Parasites in reproductive mode show increased reliance on the prokaryotic translation machinery found inside the plastid-derived organelles. Thus, our dissection of the parasite's adaptive regulatory architecture has identified new potential molecular targets for malaria control.
Collapse
Affiliation(s)
- Martin K Rono
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mary A Nyonda
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | | | - Joyce M Ngoi
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sachel Mok
- Columbia University Medical Center, New York, NY, USA
| | - Moses M Kortok
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Mohammed M Elfaki
- Department of Microbiology and Parasitology, Faculty of Medicine, Jazan University, Gizan, Jazan, Saudi Arabia
| | - John N Waitumbi
- Walter Reed Army Institute of Research/Kenya Medical Research Institute, Kisumu, Kenya
| | - Ibrahim M El-Hassan
- Faculty of Public Health and Tropical Medicine, Jazan University, Gizan, Jazan, Saudi Arabia
| | - Kevin Marsh
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | |
Collapse
|
31
|
Kissing S, Saftig P, Haas A. Vacuolar ATPase in phago(lyso)some biology. Int J Med Microbiol 2017; 308:58-67. [PMID: 28867521 DOI: 10.1016/j.ijmm.2017.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022] Open
Abstract
Many eukaryotic cells ingest extracellular particles in a process termed phagocytosis which entails the generation of a new intracellular compartment, the phagosome. Phagosomes change their composition over time and this maturation process culminates in their fusion with acidic, hydrolase-rich lysosomes. During the maturation process, degradation and, when applicable, killing of the cargo may ensue. Many of the events that are pathologically relevant depend on strong acidification of phagosomes by the 'vacuolar' ATPase (V-ATPase). This protein complex acidifies the lumen of some intracellular compartments at the expense of ATP hydrolysis. We discuss here the roles and importance of V-ATPase in intracellular trafficking, its distribution, inhibition and activities, its role in the defense against microorganisms and the counteractivities of pathogens.
Collapse
Affiliation(s)
- Sandra Kissing
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| | - Albert Haas
- Institut für Zellbiologie, Friedrich-Wilhelms-Universität Bonn, Ulrich-Haberland-Str. 61A, D-53121 Bonn, Germany.
| |
Collapse
|
32
|
Ellekvist P, Mlambo G, Kumar N, Klaerke DA. Functional characterization of malaria parasites deficient in the K + channel Kch2. Biochem Biophys Res Commun 2017; 493:690-696. [PMID: 28864420 DOI: 10.1016/j.bbrc.2017.08.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/28/2017] [Indexed: 11/17/2022]
Abstract
K+ channels are integral membrane proteins, which contribute to maintain vital parameters such as the cellular membrane potential and cell volume. Malaria parasites encode two K+ channel homologues, Kch1 and Kch2, which are well-conserved among members of the Plasmodium genus. In the rodent malaria parasite P. berghei, the functional significance of K+ channel homologue PbKch2 was studied using targeted gene knock-out. The knockout parasites were characterized in a mouse model in terms of growth-kinetics and infectivity in the mosquito vector. Furthermore, using a tracer-uptake technique with 86Rb+ as a K+ congener, the K+ transporting properties of the knockout parasites were assessed. RESULTS Genetic disruption of Kch2 did not grossly affect the phenotype in terms of asexual replication and pathogenicity in a mouse model. In contrast to Kch1-null parasites, Kch2-null parasites were fully capable of forming oocysts in female Anopheles stephensi mosquitoes. 86Rb+ uptake in Kch2-deficient blood-stage P. berghei parasites (Kch2-null) did not differ from that of wild-type (WT) parasites. About two-thirds of the 86Rb+ uptake in WT and in Kch2-null parasites could be inhibited by K+ channel blockers and could be inferred to the presence of functional Kch1 in Kch2 knockout parasites. Kch2 is therefore not required for transport of K+ in P. berghei and is not essential to mosquito-stage sporogonic development of the parasite.
Collapse
Affiliation(s)
- Peter Ellekvist
- Medical Department, Herlev & Gentofte Hospital, Copenhagen, Denmark.
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Baltimore, MD, United States
| | - Nirbhay Kumar
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Baltimore, MD, United States; Department of Tropical Medicine, Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, United States.
| | - Dan A Klaerke
- Department of Physiology and Biochemistry, IBHV, Faculty of Health & Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
33
|
Duffy S, Avery VM. Plasmodium falciparum in vitro continuous culture conditions: A comparison of parasite susceptibility and tolerance to anti-malarial drugs throughout the asexual intra-erythrocytic life cycle. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:295-302. [PMID: 28738214 PMCID: PMC5522918 DOI: 10.1016/j.ijpddr.2017.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 10/24/2022]
Abstract
The continuous culture of Plasmodium falciparum is often seen as a means to an end, that end being to probe the biology of the parasite in question, and ultimately for many in the malaria drug discovery arena, to identify means of killing the parasite in order to treat malaria. In vitro continuous culture of Plasmodium falciparum is a fundamental requirement when undertaking malaria research where the primary objectives utilise viable parasites of a desired lifecycle stage. This investigation, and resulting data, compared the impact culturing Plasmodium falciparum long term (4 months) in different environmental conditions had on experimental outcomes and thus conclusions. The example presented here focused specifically on the effect culture conditions had on the in vitro tolerance of Plasmodium falciparum to standard anti-malarial drugs, including artemisinin and lumefantrine. Historical data from an independent experiment for 3D7-ALB (5% O2) was also compared with that obtained from this study. We concluded that parasites cultured for several months in media supplemented with a serum substitute such as Albumax II® or within hyperoxic conditions (21% O2), demonstrate highly variable responses to artemisinin and lumefantrine but not all anti-malarial drugs, when compared to those cultured in human serum in combination with Albumax II® under normoxic conditions (5% O2) for the parasite.
Collapse
Affiliation(s)
- Sandra Duffy
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia.
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
34
|
Jamwal A, Yogavel M, Abdin MZ, Jain SK, Sharma A. Structural and Biochemical Characterization of Apicomplexan Inorganic Pyrophosphatases. Sci Rep 2017; 7:5255. [PMID: 28701714 PMCID: PMC5507929 DOI: 10.1038/s41598-017-05234-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/25/2017] [Indexed: 11/17/2022] Open
Abstract
Inorganic pyrophosphatases (PPase) participate in energy cycling and they are essential for growth and survival of organisms. Here we report extensive structural and functional characterization of soluble PPases from the human parasites Plasmodium falciparum (PfPPase) and Toxoplasma gondii (TgPPase). Our results show that PfPPase is a cytosolic enzyme whose gene expression is upregulated during parasite asexual stages. Cambialistic PfPPase actively hydrolyzes linear short chain polyphosphates like PPi, polyP3 and ATP in the presence of Zn2+. A remarkable new feature of PfPPase is the low complexity asparagine-rich N-terminal region that mediates its dimerization. Deletion of N-region has an unexpected and substantial effect on the stability of PfPPase domain, resulting in aggregation and significant loss of enzyme activity. Significantly, the crystal structures of PfPPase and TgPPase reveal unusual and unprecedented dimeric organizations and provide new fundamental insights into the variety of oligomeric assemblies possible in eukaryotic inorganic PPases.
Collapse
Affiliation(s)
- Abhishek Jamwal
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.,Department of Biotechnology, Jamia Hamdard, New Delhi, 110063, India
| | - Manickam Yogavel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Malik Z Abdin
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110063, India
| | - Swatantra K Jain
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110063, India.,Department of Biochemistry, Hamdard Institute of Medical Sciences, 110063, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
35
|
González-Bacerio J, Maluf SEC, Méndez Y, Pascual I, Florent I, Melo PMS, Budu A, Ferreira JC, Moreno E, Carmona AK, Rivera DG, Alonso Del Rivero M, Gazarini ML. KBE009: An antimalarial bestatin-like inhibitor of the Plasmodium falciparum M1 aminopeptidase discovered in an Ugi multicomponent reaction-derived peptidomimetic library. Bioorg Med Chem 2017; 25:4628-4636. [PMID: 28728898 DOI: 10.1016/j.bmc.2017.06.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
Malaria is a global human parasitic disease mainly caused by the protozoon Plasmodium falciparum. Increased parasite resistance to current drugs determines the relevance of finding new treatments against new targets. A novel target is the M1 alanyl-aminopeptidase from P. falciparum (PfA-M1), which is essential for parasite development in human erythrocytes and is inhibited by the pseudo-peptide bestatin. In this work, we used a combinatorial multicomponent approach to produce a library of peptidomimetics and screened it for the inhibition of recombinant PfA-M1 (rPfA-M1) and the in vitro growth of P. falciparum erythrocytic stages (3D7 and FcB1 strains). Dose-response studies with selected compounds allowed identifying the bestatin-based peptidomimetic KBE009 as a submicromolar rPfA-M1 inhibitor (Ki=0.4μM) and an in vitro antimalarial compound as potent as bestatin (IC50=18μM; without promoting erythrocyte lysis). At therapeutic-relevant concentrations, KBE009 is selective for rPfA-M1 over porcine APN (a model of these enzymes from mammals), and is not cytotoxic against HUVEC cells. Docking simulations indicate that this compound binds PfA-M1 without Zn2+ coordination, establishing mainly hydrophobic interactions and showing a remarkable shape complementarity with the active site of the enzyme. Moreover, KBE009 inhibits the M1-type aminopeptidase activity (Ala-7-amido-4-methylcoumarin substrate) in isolated live parasites with a potency similar to that of the antimalarial activity (IC50=82μM), strongly suggesting that the antimalarial effect is directly related to the inhibition of the endogenous PfA-M1. These results support the value of this multicomponent strategy to identify PfA-M1 inhibitors, and make KBE009 a promising hit for drug development against malaria.
Collapse
Affiliation(s)
- Jorge González-Bacerio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.
| | - Sarah El Chamy Maluf
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Yanira Méndez
- Centro de Estudio de Productos Naturales, Facultad de Química, Universidad de La Habana, Zapata y G, 10400 La Habana, Cuba.
| | - Isel Pascual
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.
| | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes, (MCAM, UMR 7245), Sorbonne Universités, Muséum National Histoire Naturelle, CNRS, CP 52, 57 Rue Cuvier, 75005 Paris, France.
| | - Pollyana M S Melo
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Alexandre Budu
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Juliana C Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Ernesto Moreno
- Centro de Inmunología Molecular, Calle 15 esq. 216, Siboney, Playa, La Habana, Cuba; Universidad de Medellín, Carrera 87 #30-65, Medellín, Colombia.
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Daniel G Rivera
- Centro de Estudio de Productos Naturales, Facultad de Química, Universidad de La Habana, Zapata y G, 10400 La Habana, Cuba.
| | - Maday Alonso Del Rivero
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.
| | - Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, R. Silva Jardim, 136, 11015-020, Vila Mathias, Santos, São Paulo, Brazil.
| |
Collapse
|
36
|
Hapuarachchi SV, Cobbold SA, Shafik SH, Dennis ASM, McConville MJ, Martin RE, Kirk K, Lehane AM. The Malaria Parasite's Lactate Transporter PfFNT Is the Target of Antiplasmodial Compounds Identified in Whole Cell Phenotypic Screens. PLoS Pathog 2017; 13:e1006180. [PMID: 28178359 PMCID: PMC5298231 DOI: 10.1371/journal.ppat.1006180] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/11/2017] [Indexed: 11/19/2022] Open
Abstract
In this study the ‘Malaria Box’ chemical library comprising 400 compounds with antiplasmodial activity was screened for compounds that perturb the internal pH of the malaria parasite, Plasmodium falciparum. Fifteen compounds induced an acidification of the parasite cytosol. Two of these did so by inhibiting the parasite’s formate nitrite transporter (PfFNT), which mediates the H+-coupled efflux from the parasite of lactate generated by glycolysis. Both compounds were shown to inhibit lactate transport across the parasite plasma membrane, and the transport of lactate by PfFNT expressed in Xenopus laevis oocytes. PfFNT inhibition caused accumulation of lactate in parasitised erythrocytes, and swelling of both the parasite and parasitised erythrocyte. Long-term exposure of parasites to one of the inhibitors gave rise to resistant parasites with a mutant form of PfFNT that showed reduced inhibitor sensitivity. This study provides the first evidence that PfFNT is a druggable antimalarial target. The emergence and spread of Plasmodium falciparum strains resistant to leading antimalarial drugs has intensified the need to discover and develop drugs that kill the parasite via new mechanisms. Here we screened compounds that are known to inhibit P. falciparum growth for their effects on the pH inside the parasite. We identified fifteen compounds that decrease the pH inside the parasite, and determined the mechanism by which two of these, MMV007839 and MMV000972, disrupt pH and kill the parasite. The two compounds were found to inhibit the P. falciparum formate nitrite transporter (PfFNT), a transport protein that is located on the parasite surface and that serves to remove the waste product lactic acid from the parasite. The compounds inhibited both the H+-coupled transport of lactate across the parasite plasma membrane and the transport of lactate by PfFNT expressed in Xenopus oocytes. In addition to disrupting pH, PfFNT inhibition led to a build-up of lactate in the parasite-infected red blood cell and the swelling of both the parasite and the infected red blood cell. Exposing parasites to MMV007839 over a prolonged time period gave rise to resistant parasites with a mutant form of PfFNT that was less sensitive to the compound. This study validates PfFNT as a novel antimalarial drug target.
Collapse
Affiliation(s)
| | - Simon A Cobbold
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Adelaide S M Dennis
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Rowena E Martin
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
37
|
Richards SN, Nash MN, Baker ES, Webster MW, Lehane AM, Shafik SH, Martin RE. Molecular Mechanisms for Drug Hypersensitivity Induced by the Malaria Parasite's Chloroquine Resistance Transporter. PLoS Pathog 2016; 12:e1005725. [PMID: 27441371 PMCID: PMC4956231 DOI: 10.1371/journal.ppat.1005725] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/03/2016] [Indexed: 01/23/2023] Open
Abstract
Mutations in the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) confer resistance to chloroquine (CQ) and related antimalarials by enabling the protein to transport these drugs away from their targets within the parasite’s digestive vacuole (DV). However, CQ resistance-conferring isoforms of PfCRT (PfCRTCQR) also render the parasite hypersensitive to a subset of structurally-diverse pharmacons. Moreover, mutations in PfCRTCQR that suppress the parasite’s hypersensitivity to these molecules simultaneously reinstate its sensitivity to CQ and related drugs. We sought to understand these phenomena by characterizing the functions of PfCRTCQR isoforms that cause the parasite to become hypersensitive to the antimalarial quinine or the antiviral amantadine. We achieved this by measuring the abilities of these proteins to transport CQ, quinine, and amantadine when expressed in Xenopus oocytes and complemented this work with assays that detect the drug transport activity of PfCRT in its native environment within the parasite. Here we describe two mechanistic explanations for PfCRT-induced drug hypersensitivity. First, we show that quinine, which normally accumulates inside the DV and therewithin exerts its antimalarial effect, binds extremely tightly to the substrate-binding site of certain isoforms of PfCRTCQR. By doing so it likely blocks the normal physiological function of the protein, which is essential for the parasite’s survival, and the drug thereby gains an additional killing effect. In the second scenario, we show that although amantadine also sequesters within the DV, the parasite’s hypersensitivity to this drug arises from the PfCRTCQR-mediated transport of amantadine from the DV into the cytosol, where it can better access its antimalarial target. In both cases, the mutations that suppress hypersensitivity also abrogate the ability of PfCRTCQR to transport CQ, thus explaining why rescue from hypersensitivity restores the parasite’s sensitivity to this antimalarial. These insights provide a foundation for understanding clinically-relevant observations of inverse drug susceptibilities in the malaria parasite. In acquiring resistance to one drug, many pathogens and cancer cells become hypersensitive to other drugs. This phenomenon could be exploited to combat existing drug resistance and to delay the emergence of resistance to new drugs. However, much remains to be understood about the mechanisms that underlie drug hypersensitivity in otherwise drug-resistant microbes. Here, we describe two mechanisms by which the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) causes the malaria parasite to become hypersensitive to structurally-diverse drugs. First, we show that an antimalarial drug that normally exerts its killing effect within the parasite’s digestive vacuole is also able to bind extremely tightly to certain forms of PfCRT. This activity will block the natural, essential function of the protein and thereby provide the drug with an additional killing effect. The second mechanism arises when a cytosolic-acting drug that normally sequesters within the digestive vacuole is leaked back into the cytosol via PfCRT. In both cases, mutations that suppress hypersensitivity also abrogate the ability of PfCRT to transport chloroquine, thus explaining why rescue from hypersensitivity restores the parasite’s sensitivity to this antimalarial. These insights provide a foundation for understanding and exploiting the hypersensitivity of chloroquine-resistant parasites to several of the current antimalarials.
Collapse
Affiliation(s)
- Sashika N. Richards
- Research School of Biology, Australian National University, Canberra, Australia
| | - Megan N. Nash
- Research School of Biology, Australian National University, Canberra, Australia
| | - Eileen S. Baker
- Research School of Biology, Australian National University, Canberra, Australia
| | - Michael W. Webster
- Research School of Biology, Australian National University, Canberra, Australia
| | - Adele M. Lehane
- Research School of Biology, Australian National University, Canberra, Australia
| | - Sarah H. Shafik
- Research School of Biology, Australian National University, Canberra, Australia
| | - Rowena E. Martin
- Research School of Biology, Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
38
|
Abstract
Some hours after invading the erythrocytes of its human host, the malaria parasite Plasmodium falciparum induces an increase in the permeability of the erythrocyte membrane to monovalent ions. The resulting net influx of Na(+) and net efflux of K(+), down their respective concentration gradients, converts the erythrocyte cytosol from an initially high-K(+), low-Na(+) solution to a high-Na(+), low-K(+) solution. The intraerythrocytic parasite itself exerts tight control over its internal Na(+), K(+), Cl(-), and Ca(2+) concentrations and its intracellular pH through the combined actions of a range of membrane transport proteins. The molecular mechanisms underpinning ion regulation in the parasite are receiving increasing attention, not least because PfATP4, a P-type ATPase postulated to be involved in Na(+) regulation, has emerged as a potential antimalarial drug target, susceptible to inhibition by a wide range of chemically unrelated compounds.
Collapse
Affiliation(s)
- Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia;
| |
Collapse
|
39
|
Pandey K, Ferreira PE, Ishikawa T, Nagai T, Kaneko O, Yahata K. Ca(2+) monitoring in Plasmodium falciparum using the yellow cameleon-Nano biosensor. Sci Rep 2016; 6:23454. [PMID: 27006284 PMCID: PMC4804237 DOI: 10.1038/srep23454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/07/2016] [Indexed: 11/09/2022] Open
Abstract
Calcium (Ca(2+))-mediated signaling is a conserved mechanism in eukaryotes, including the human malaria parasite, Plasmodium falciparum. Due to its small size (<10 μm) measurement of intracellular Ca(2+) in Plasmodium is technically challenging, and thus Ca(2+) regulation in this human pathogen is not well understood. Here we analyze Ca(2+) homeostasis via a new approach using transgenic P. falciparum expressing the Ca(2+) sensor yellow cameleon (YC)-Nano. We found that cytosolic Ca(2+) concentration is maintained at low levels only during the intraerythrocytic trophozoite stage (30 nM), and is increased in the other blood stages (>300 nM). We determined that the mammalian SERCA inhibitor thapsigargin and antimalarial dihydroartemisinin did not perturb SERCA activity. The change of the cytosolic Ca(2+) level in P. falciparum was additionally detectable by flow cytometry. Thus, we propose that the developed YC-Nano-based system is useful to study Ca(2+) signaling in P. falciparum and is applicable for drug screening.
Collapse
Affiliation(s)
- Kishor Pandey
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Nepal Academy of Science and Technology (NAST), GPO Box: 3323, Khumaltar, Lalitpur, Nepal
| | - Pedro E. Ferreira
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- School of Biological Science, Nanyang Technological University, Singapore
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Takeshi Ishikawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
40
|
Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7. Proc Natl Acad Sci U S A 2016; 113:2080-5. [PMID: 26858419 DOI: 10.1073/pnas.1600459113] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography-MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs.
Collapse
|
41
|
Slavic K, Krishna S, Lahree A, Bouyer G, Hanson KK, Vera I, Pittman JK, Staines HM, Mota MM. A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium. Nat Commun 2016; 7:10403. [PMID: 26786069 PMCID: PMC4735874 DOI: 10.1038/ncomms10403] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 12/07/2015] [Indexed: 01/03/2023] Open
Abstract
Iron is an essential micronutrient but is also highly toxic. In yeast and plant cells, a key detoxifying mechanism involves iron sequestration into intracellular storage compartments, mediated by members of the vacuolar iron-transporter (VIT) family of proteins. Here we study the VIT homologue from the malaria parasites Plasmodium falciparum (PfVIT) and Plasmodium berghei (PbVIT). PfVIT-mediated iron transport in a yeast heterologous expression system is saturable (Km ∼ 14.7 μM), and selective for Fe(2+) over other divalent cations. PbVIT-deficient P. berghei lines (Pbvit(-)) show a reduction in parasite load in both liver and blood stages of infection in mice. Moreover, Pbvit(-) parasites have higher levels of labile iron in blood stages and are more sensitive to increased iron levels in liver stages, when compared with wild-type parasites. Our data are consistent with Plasmodium VITs playing a major role in iron detoxification and, thus, normal development of malaria parasites in their mammalian host.
Collapse
Affiliation(s)
- Ksenija Slavic
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sanjeev Krishna
- Institute for Infection & Immunity, St. George's, University of London, London SW17 0RE, UK
| | - Aparajita Lahree
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Guillaume Bouyer
- Institute for Infection & Immunity, St. George's, University of London, London SW17 0RE, UK
- Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 8227, Comparative Physiology of Erythrocytes, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Kirsten K. Hanson
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Present address: University of Texas at San Antonio, Department of Biology and STCEID, San Antonio, Texas 78249, USA
| | - Iset Vera
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Jon K. Pittman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Henry M. Staines
- Institute for Infection & Immunity, St. George's, University of London, London SW17 0RE, UK
| | - Maria M. Mota
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
42
|
Cobbold SA, Llinás M, Kirk K. Sequestration and metabolism of host cell arginine by the intraerythrocytic malaria parasite Plasmodium falciparum. Cell Microbiol 2016; 18:820-30. [PMID: 26633083 DOI: 10.1111/cmi.12552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/14/2015] [Accepted: 11/26/2015] [Indexed: 11/26/2022]
Abstract
Human erythrocytes have an active nitric oxide synthase, which converts arginine into citrulline and nitric oxide (NO). NO serves several important functions, including the maintenance of normal erythrocyte deformability, thereby ensuring efficient passage of the red blood cell through narrow microcapillaries. Here, we show that following invasion by the malaria parasite Plasmodium falciparum the arginine pool in the host erythrocyte compartment is sequestered and metabolized by the parasite. Arginine from the extracellular medium enters the infected cell via endogenous host cell transporters and is taken up by the intracellular parasite by a high-affinity cationic amino acid transporter at the parasite surface. Within the parasite arginine is metabolized into citrulline and ornithine. The uptake and metabolism of arginine by the parasite deprive the erythrocyte of the substrate required for NO production and may contribute to the decreased deformability of infected erythrocytes.
Collapse
Affiliation(s)
- Simon A Cobbold
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.,Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Manuel Llinás
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
43
|
van Niekerk DD, Penkler GP, du Toit F, Snoep JL. Targeting glycolysis in the malaria parasite Plasmodium falciparum. FEBS J 2016; 283:634-46. [PMID: 26648082 DOI: 10.1111/febs.13615] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UNLABELLED Glycolysis is the main pathway for ATP production in the malaria parasite Plasmodium falciparum and essential for its survival. Following a sensitivity analysis of a detailed kinetic model for glycolysis in the parasite, the glucose transport reaction was identified as the step whose activity needed to be inhibited to the least extent to result in a 50% reduction in glycolytic flux. In a subsequent inhibitor titration with cytochalasin B, we confirmed the model analysis experimentally and measured a flux control coefficient of 0.3 for the glucose transporter. In addition to the glucose transporter, the glucokinase and phosphofructokinase had high flux control coefficients, while for the ATPase a small negative flux control coefficient was predicted. In a broader comparative analysis of glycolytic models, we identified a weakness in the P. falciparum pathway design with respect to stability towards perturbations in the ATP demand. DATABASE The mathematical model described here has been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.bio.vu.nl/database/vanniekerk1. The SEEK-study including the experimental data set is available at DOI 10.15490/seek.1. INVESTIGATION 56 (http://dx.doi.org/10.15490/seek.1. INVESTIGATION 56).
Collapse
Affiliation(s)
- David D van Niekerk
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Gerald P Penkler
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa.,Molecular Cell Physiology, Vrije Universiteit Amsterdam, The Netherlands
| | - Francois du Toit
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Jacky L Snoep
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa.,Molecular Cell Physiology, Vrije Universiteit Amsterdam, The Netherlands.,MIB, University of Manchester, UK
| |
Collapse
|
44
|
Okombo J, Chibale K. Antiplasmodial drug targets: a patent review (2000 – 2013). Expert Opin Ther Pat 2015; 26:107-30. [DOI: 10.1517/13543776.2016.1113258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Deng X, Duffy SP, Myrand-Lapierre ME, Matthews K, Santoso AT, Du YL, Ryan KS, Ma H. Reduced deformability of parasitized red blood cells as a biomarker for anti-malarial drug efficacy. Malar J 2015; 14:428. [PMID: 26520795 PMCID: PMC4628286 DOI: 10.1186/s12936-015-0957-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/21/2015] [Indexed: 11/28/2022] Open
Abstract
Background Malaria remains a challenging and fatal infectious disease in developing nations and the urgency for the development of new drugs is even greater due to the rapid spread of anti-malarial drug resistance. While numerous parasite genetic, protein and metabolite biomarkers have been proposed for testing emerging anti-malarial compounds, they do not universally correspond with drug efficacy. The biophysical character of parasitized cells is a compelling alternative to these conventional biomarkers because parasitized erythrocytes become specifically rigidified and this effect is potentiated by anti-malarial compounds, such as chloroquine and artesunate. This biophysical biomarker is particularly relevant because of the mechanistic link between cell deformability and enhanced splenic clearance of parasitized erythrocytes. Methods Recently a microfluidic mechanism, called the multiplexed fluidic plunger that provides sensitive and rapid measurement of single red blood cell deformability was developed. Here it was systematically used to evaluate the deformability changes of late-stage trophozoite-infected red blood cells (iRBCs) after treatment with established clinical and pre-clinical anti-malarial compounds. Results It was found that rapid and specific iRBC rigidification was a universal outcome of all but one of these drug treatments. The greatest change in iRBC rigidity was observed for (+)-SJ733 and NITD246 spiroindolone compounds, which target the Plasmodium falciparum cation-transporting ATPase ATP4. As a proof-of-principle, compounds of the bisindole alkaloid class were screened, where cladoniamide A was identified based on rigidification of iRBCs and was found to have previously unreported anti-malarial activity with an IC50 lower than chloroquine. Conclusion These results demonstrate that rigidification of iRBCs may be used as a biomarker for anti-malarial drug efficacy, as well as for new drug screening. The novel anti-malarial properties of cladoniamide A were revealed in a proof-of-principle drug screen. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0957-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyan Deng
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - Simon P Duffy
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - Marie-Eve Myrand-Lapierre
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - Kerryn Matthews
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - Aline Teresa Santoso
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - Yi-Ling Du
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.
| | - Hongshen Ma
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada. .,Department of Urologic Science, University of British Columbia, Vancouver, BC, Canada. .,Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.
| |
Collapse
|
46
|
Spillman NJ, Kirk K. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:149-62. [PMID: 26401486 PMCID: PMC4559606 DOI: 10.1016/j.ijpddr.2015.07.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/28/2022]
Abstract
The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na(+) concentration and the plasma membrane P-type cation translocating ATPase 'PfATP4' has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's 'Malaria Box'. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na(+). Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field.
Collapse
Affiliation(s)
- Natalie Jane Spillman
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia ; Department of Medicine (Infectious Diseases), Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
47
|
Analysis, characterisation and expression of gill-expressed carbonic anhydrase genes in the freshwater crayfish Cherax quadricarinatus. Gene 2015; 564:176-87. [PMID: 25863177 DOI: 10.1016/j.gene.2015.03.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/27/2015] [Accepted: 03/19/2015] [Indexed: 12/31/2022]
Abstract
Changes in water quality parameters such as pH and salinity can have a significant effect on productivity of aquaculture species. Similarly, relative osmotic pressure influences various physiological processes and regulates expression of a number of osmoregulatory genes. Among those, carbonic anhydrase (CA) plays a key role in systemic acid-base balance and ion regulation. Redclaw crayfish (Cherax quadricarinatus) are unique in their ability to thrive in environments with naturally varied pH levels, suggesting unique adaptation to pH stress. To date, however, no studies have focused on identification and characterisation of CA or other osmoregulatory genes in C. quadricarinatus. Here, we analysed the redclaw gill transcriptome and characterized CA genes along with a number of other key osmoregulatory genes that were identified in the transcriptome. We also examined patterns of gene expression of these CA genes when exposed to three pH treatments. In total, 72,382,710 paired end Illumina reads were assembled into 36,128 contigs with an average length of 800bp. Approximately 37% of contigs received significant BLAST hits and 22% were assigned gene ontology terms. Three full length CA isoforms; cytoplasmic CA (ChqCAc), glycosyl-phosphatidylinositol-linked CA (ChqCAg), and β-CA (ChqCA-beta) as well as two partial CA gene sequences were identified. Both partial CA genes showed high similarity to ChqCAg and appeared to be duplicated from the ChqCAg. Full length coding sequences of Na(+)/K(+)-ATPase, V-type H(+)-ATPase, sarcoplasmic Ca(+)-ATPase, arginine kinase, calreticulin and Cl(-) channel protein 2 were also identified. Only the ChqCAc gene showed significant differences in expression across the three pH treatments. These data provide valuable information on the gill expressed CA genes and their expression patterns in freshwater crayfish. Overall our data suggest an important role for the ChqCAc gene in response to changes in pH and in systemic acid-base balance in freshwater crayfish.
Collapse
|
48
|
Triaminopyrimidine is a fast-killing and long-acting antimalarial clinical candidate. Nat Commun 2015; 6:6715. [PMID: 25823686 PMCID: PMC4389225 DOI: 10.1038/ncomms7715] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/20/2015] [Indexed: 01/24/2023] Open
Abstract
The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg−1 and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4–5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development. The emergence of resistant Plasmodium strains fuels the search for new antimalarials. Here, the authors present a new class of potent antimalarial compounds, the triaminopyrimidines, that display low toxicity and long half-life in animal models.
Collapse
|
49
|
A lactate and formate transporter in the intraerythrocytic malaria parasite, Plasmodium falciparum. Nat Commun 2015; 6:6721. [PMID: 25823844 DOI: 10.1038/ncomms7721] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/23/2015] [Indexed: 12/24/2022] Open
Abstract
The intraerythrocytic malaria parasite relies primarily on glycolysis to fuel its rapid growth and reproduction. The major byproduct of this metabolism, lactic acid, is extruded into the external medium. In this study, we show that the human malaria parasite Plasmodium falciparum expresses at its surface a member of the microbial formate-nitrite transporter family (PfFNT), which, when expressed in Xenopus laevis oocytes, transports both formate and lactate. The transport characteristics of PfFNT in oocytes (pH-dependence, inhibitor-sensitivity and kinetics) are similar to those of the transport of lactate and formate across the plasma membrane of mature asexual-stage P. falciparum trophozoites, consistent with PfFNT playing a major role in the efflux of lactate and hence in the energy metabolism of the intraerythrocytic parasite.
Collapse
|
50
|
Penkler G, du Toit F, Adams W, Rautenbach M, Palm DC, van Niekerk DD, Snoep JL. Construction and validation of a detailed kinetic model of glycolysis in Plasmodium falciparum. FEBS J 2015; 282:1481-511. [PMID: 25693925 DOI: 10.1111/febs.13237] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/07/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED The enzymes in the Embden-Meyerhof-Parnas pathway of Plasmodium falciparum trophozoites were kinetically characterized and their integrated activities analyzed in a mathematical model. For validation of the model, we compared model predictions for steady-state fluxes and metabolite concentrations of the hexose phosphates with experimental values for intact parasites. The model, which is completely based on kinetic parameters that were measured for the individual enzymes, gives an accurate prediction of the steady-state fluxes and intermediate concentrations. This is the first detailed kinetic model for glucose metabolism in P. falciparum, one of the most prolific malaria-causing protozoa, and the high predictive power of the model makes it a strong tool for future drug target identification studies. The modelling workflow is transparent and reproducible, and completely documented in the SEEK platform, where all experimental data and model files are available for download. DATABASE The mathematical models described in the present study have been submitted to the JWS Online Cellular Systems Modelling Database (http://jjj.bio.vu.nl/database/penkler). The investigation and complete experimental data set is available on SEEK (10.15490/seek.1. INVESTIGATION 56).
Collapse
Affiliation(s)
- Gerald Penkler
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa; Molecular Cell Physiology, Vrije Universiteit Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|