1
|
Tian Y, Li L, Wu L, Xu Q, Li Y, Pan H, Bing T, Bai X, Finko AV, Li Z, Bian J. Recent Developments in 14-3-3 Stabilizers for Regulating Protein-Protein Interactions: An Update. J Med Chem 2025; 68:2124-2146. [PMID: 39902774 DOI: 10.1021/acs.jmedchem.4c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
14-3-3 proteins play a crucial role in the regulation of protein-protein interactions, impacting various cellular processes and disease mechanisms. Recent advancements have led to the development of stabilizers that enhance the binding of 14-3-3 proteins to clients, presenting promising therapeutic potentials. This perspective provides an updated overview of the latest developments in the field of 14-3-3 stabilizers, with a focus on their design, synthesis, and biological evaluation. We discuss the structural basis for the interaction between 14-3-3 proteins and their ligands, highlighting key modifications that enhance binding affinity and selectivity. Additionally, we explore the therapeutic applications of 14-3-3 stabilizers across major therapeutic areas such as cancer, metabolic disorders, and neurodegenerative diseases. By summarizing recent research findings and technological advancements, this perspective aims to shed light on the current state of 14-3-3 stabilizer developments and outline future directions for optimizing these compounds as effective therapeutic agents.
Collapse
Affiliation(s)
- Yucheng Tian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Longjing Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liuyi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qianqian Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yaojie Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huawei Pan
- ICE Bioscience, Bldg 15, Yd 18, Kechuang 13th St, Etown, Tongzhou Dist, Beijing 100176, China
| | - Tiejun Bing
- ICE Bioscience, Bldg 15, Yd 18, Kechuang 13th St, Etown, Tongzhou Dist, Beijing 100176, China
| | - Xiumei Bai
- Department of Chemistry, Lomonosov Moscow State University (MSU), Moscow 119991, Russia
| | - Alexander V Finko
- Department of Chemistry, Lomonosov Moscow State University (MSU), Moscow 119991, Russia
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Oh A, Kimura R, Inoue S, Sato T, Hayashi Y, Sato A, Takahashi Y, Kinoshita T. Identification of a Novel Stomatal Opening Chemical, PP242, That Inhibits Early Abscisic Acid Signal Transduction in Guard Cells. PLANT & CELL PHYSIOLOGY 2025:pcaf013. [PMID: 39882944 DOI: 10.1093/pcp/pcaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
Plants control their stomatal apertures to optimize carbon dioxide uptake and water loss. Stomata open in response to light through the phosphorylation of the penultimate residue, Thr, of plasma membrane (PM) H+-ATPase in guard cells. Stomata close in response to drought and the phytohormone abscisic acid (ABA), and ABA suppresses the light-induced activation of PM H+-ATPase. However, the signaling pathways that regulate the stomatal aperture remain unclear. Previously, we identified a target of rapamycin (TOR) inhibitor, temsirolimus, to induce stomatal opening through chemical screening. In the present study, we further investigated other TOR inhibitors and identified PP242 as a novel stomatal opening chemical. PP242 induced stomatal opening even in the dark, as well as phosphorylation of the penultimate Thr of PM H+-ATPase in guard cells. Interestingly, PP242 completely suppressed ABA-induced stomatal closure, and inhibited ABA-induced activation of SNF1-related protein kinase 2s (SnRK2s), which are essential kinases for ABA signal transduction in guard cells. In vitro biochemical analysis revealed that PP242 did not directly inhibit SnRK2 but rather inhibited upstream ABA signaling components, specifically B3 clade Raf-like kinases. A quadruple mutant of B3 clade Raf-like kinases exhibited an open stoma phenotype that resembled the effect of PP242. However, PP242 still induced stomatal opening in this mutant, suggesting that PP242 also targets other guard cell components. Together, these results reveal that PP242 induces stomatal opening partly by inhibiting steady-state ABA signal transduction.
Collapse
Affiliation(s)
- Airi Oh
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Riku Kimura
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Shinpei Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Taiyo Sato
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yuki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yohei Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Sedlov IA, Sluchanko NN. The Big, Mysterious World of Plant 14-3-3 Proteins. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S1-S35. [PMID: 40164151 DOI: 10.1134/s0006297924603319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 04/02/2025]
Abstract
14-3-3 is a family of small regulatory proteins found exclusively in eukaryotic organisms. They selectively bind to phosphorylated molecules of partner proteins and regulate their functions. 14-3-3 proteins were first characterized in the mammalian brain approximately 60 years ago and then found in plants, 30 years later. The multifunctionality of 14-3-3 proteins is exemplified by their involvement in coordination of protein kinase cascades in animal brain and regulation of flowering, growth, metabolism, and immunity in plants. Despite extensive studies of this diverse and complex world of plant 14-3-3 proteins, our understanding of functions of these enigmatic molecules is fragmentary and unsystematic. The results of studies are often contradictory and many questions remain unanswered, including biochemical properties of 14-3-3 isoforms, structure of protein-protein complexes, and direct mechanisms by which 14-3-3 proteins influence the functions of their partners in plants. Although many plant genes coding for 14-3-3 proteins have been identified, the isoforms for in vivo and in vitro studies are often selected at random. This rather limited approach is partly due to an exceptionally large number and variety of 14-3-3 homologs in plants and erroneous a priori assumptions on the equivalence of certain isoforms. The accumulated results provide an extensive but rather fragmentary picture, which poses serious challenges for making global generalizations. This review is aimed to demonstrate the diversity and scope of studies of the functions of plant 14-3-3 proteins, as well as to identify areas that require further systematic investigation and close scientific attention.
Collapse
Affiliation(s)
- Ilya A Sedlov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
4
|
Xu X, Liu H, Praat M, Pizzio GA, Jiang Z, Driever SM, Wang R, Van De Cotte B, Villers SLY, Gevaert K, Leonhardt N, Nelissen H, Kinoshita T, Vanneste S, Rodriguez PL, van Zanten M, Vu LD, De Smet I. Stomatal opening under high temperatures is controlled by the OST1-regulated TOT3-AHA1 module. NATURE PLANTS 2025; 11:105-117. [PMID: 39613896 DOI: 10.1038/s41477-024-01859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Plants continuously respond to changing environmental conditions to prevent damage and maintain optimal performance. To regulate gas exchange with the environment and to control abiotic stress relief, plants have pores in their leaf epidermis, called stomata. Multiple environmental signals affect the opening and closing of these stomata. High temperatures promote stomatal opening (to cool down), and drought induces stomatal closing (to prevent water loss). Coinciding stress conditions may evoke conflicting stomatal responses, but the cellular mechanisms to resolve these conflicts are unknown. Here we demonstrate that the high-temperature-associated kinase TARGET OF TEMPERATURE 3 directly controls the activity of plasma membrane H+-ATPases to induce stomatal opening. OPEN STOMATA 1, which regulates stomatal closure to prevent water loss during drought stress, directly inactivates TARGET OF TEMPERATURE 3 through phosphorylation. Taken together, this signalling axis harmonizes stomatal opening and closing under high temperatures and/or drought. In the context of global climate change, understanding how different stress signals converge on stomatal regulation allows the development of climate-change-ready crops.
Collapse
Affiliation(s)
- Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Hongyan Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Myrthe Praat
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
- Green Biotechnology, Inholland University of Applied Sciences, Amsterdam, the Netherlands
| | - Gaston A Pizzio
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Zhang Jiang
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Steven Michiel Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, the Netherlands
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brigitte Van De Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Selwyn L Y Villers
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Nathalie Leonhardt
- Aix Marseille University, CEA, CNRS UMR7265, Bioscience and Biotechnology Institute of Aix Marseille, Saint-Paul-lez-Durance, France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa Nagoya, Japan
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Cryptobiotix SA, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
5
|
Lin Z, Zhu P, Gao L, Chen X, Li M, Wang Y, He J, Miao Y, Miao R. Recent Advances in Understanding the Regulatory Mechanism of Plasma Membrane H+-ATPase through the Brassinosteroid Signaling Pathway. PLANT & CELL PHYSIOLOGY 2024; 65:1515-1529. [PMID: 38372617 DOI: 10.1093/pcp/pcae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The polyhydroxylated steroid phytohormone brassinosteroid (BR) controls many aspects of plant growth, development and responses to environmental changes. Plasma membrane (PM) H+-ATPase, the well-known PM proton pump, is a central regulator in plant physiology, which mediates not only plant growth and development, but also adaptation to stresses. Recent studies highlight that PM H+-ATPase is at least partly regulated via the BR signaling. Firstly, the BR cell surface receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and multiple key components of BR signaling directly or indirectly influence PM H+-ATPase activity. Secondly, the SMALL AUXIN UP RNA (SAUR) gene family physically interacts with BRI1 to enhance organ development of Arabidopsis by activating PM H+-ATPase. Thirdly, RNA-sequencing (RNA-seq) assays showed that the expression of some SAUR genes is upregulated under the light or sucrose conditions, which is related to the phosphorylation state of the penultimate residue of PM H+-ATPase in a time-course manner. In this review, we describe the structural and functional features of PM H+-ATPase and summarize recent progress towards understanding the regulatory mechanism of PM H+-ATPase by BRs, and briefly introduce how PM H+-ATPase activity is modulated by its own biterminal regions and the post-translational modifications.
Collapse
Affiliation(s)
- Zhaoheng Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pan Zhu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liyang Gao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuanyi Chen
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijing Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhe Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junxian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Kiriyama H, Kinoshita SN, Hayashi Y, Honda R, Kasuga S, Kinoshita T, Irieda H, Ohkanda J. Fungal toxin fusicoccin enhances plant growth by upregulating 14-3-3 interaction with plasma membrane H +-ATPase. Sci Rep 2024; 14:23431. [PMID: 39379425 PMCID: PMC11461981 DOI: 10.1038/s41598-024-73979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Fusicoccin-A (FC-A) is a diterpene glucoside produced by a pathogenic fungus. Since its discovery, FC-A has been widely recognized as a phytotoxin that induces stomatal opening and leaf wilting, eventually leading to plant death. In this study, we present the first evidence that FC-A enhances plant growth by stabilizing the protein-protein interaction between plasma membrane (PM) H+-ATPase and 14-3-3 in guard cells. Long-term treatment of Arabidopsis plants with FC-A resulted in ~ 30% growth enhancement. Structurally similar fusicoccin-J (FC-J) showed a similar degree of growth-promotion activity as FC-A, whereas the more hydrophilic fusicoccin-H (FC-H) exhibited no effect on plant growth, indicating that the enhancement of plant growth observed with FC-A and FC-J involves upregulation of the protein-protein interaction between PM H+-ATPase and 14-3-3 in guard cells, which promotes stomatal opening and photosynthesis.
Collapse
Grants
- 22K19106 Japan Society for the Promotion of Science
- 19K05992 Japan Society for the Promotion of Science
- 20H05687 Japan Society for the Promotion of Science
- 20H04769 Ministry of Education, Culture, Sports, Science and Technology
- 20H05910 Ministry of Education, Culture, Sports, Science and Technology
- LEADER Ministry of Education, Culture, Sports, Science and Technology
- University Research Administration Fund Shinshu University
- 2021 Japan Society for Bioscience, Biotechnology, and Agrochemistry
Collapse
Affiliation(s)
- Hironaru Kiriyama
- Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, 399-4598, Nagano, Japan
| | - Satoru N Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Yuki Hayashi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Rikako Honda
- Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, 399-4598, Nagano, Japan
| | - Shigemitsu Kasuga
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Hiroki Irieda
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
- Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minami- Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Junko Ohkanda
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan.
- Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minami- Minowa, Kami-Ina, Nagano, 399-4598, Japan.
| |
Collapse
|
7
|
Zeng H, Chen H, Zhang M, Ding M, Xu F, Yan F, Kinoshita T, Zhu Y. Plasma membrane H +-ATPases in mineral nutrition and crop improvement. TRENDS IN PLANT SCIENCE 2024; 29:978-994. [PMID: 38582687 DOI: 10.1016/j.tplants.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/08/2024]
Abstract
Plasma membrane H+-ATPases (PMAs) pump H+ out of the cytoplasm by consuming ATP to generate a membrane potential and proton motive force for the transmembrane transport of nutrients into and out of plant cells. PMAs are involved in nutrient acquisition by regulating root growth, nutrient uptake, and translocation, as well as the establishment of symbiosis with arbuscular mycorrhizas. Under nutrient stresses, PMAs are activated to pump more H+ and promote organic anion excretion, thus improving nutrient availability in the rhizosphere. Herein we review recent progress in the physiological functions and the underlying molecular mechanisms of PMAs in the efficient acquisition and utilization of various nutrients in plants. We also discuss perspectives for the application of PMAs in improving crop production and quality.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
| | - Huiying Chen
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Maoxing Zhang
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan 528000, China
| | - Ming Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 4660824, Japan.
| | - Yiyong Zhu
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Zhao CR, You ZL, Bai L. Fungal Plasma Membrane H +-ATPase: Structure, Mechanism, and Drug Discovery. J Fungi (Basel) 2024; 10:273. [PMID: 38667944 PMCID: PMC11051447 DOI: 10.3390/jof10040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The fungal plasma membrane H+-ATPase (Pma1) pumps protons out of the cell to maintain the transmembrane electrochemical gradient and membrane potential. As an essential P-type ATPase uniquely found in fungi and plants, Pma1 is an attractive antifungal drug target. Two recent Cryo-EM studies on Pma1 have revealed its hexameric architecture, autoinhibitory and activation mechanisms, and proton transport mechanism. These structures provide new perspectives for the development of antifungal drugs targeting Pma1. In this article, we review the history of Pma1 structure determination, the latest structural insights into Pma1, and drug discoveries targeting Pma1.
Collapse
Affiliation(s)
- Chao-Ran Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Zi-Long You
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Lin Bai
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| |
Collapse
|
9
|
Havshøi NW, Nielsen J, Fuglsang AT. The mechanism behind tenuazonic acid-mediated inhibition of plant plasma membrane H +-ATPase and plant growth. J Biol Chem 2024; 300:107167. [PMID: 38490436 PMCID: PMC11002603 DOI: 10.1016/j.jbc.2024.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
The increasing prevalence of herbicide-resistant weeds has led to a search for new herbicides that target plant growth processes differing from those targeted by current herbicides. In recent years, some studies have explored the use of natural compounds from microorganisms as potential new herbicides. We previously demonstrated that tenuazonic acid (TeA) from the phytopathogenic fungus Stemphylium loti inhibits the plant plasma membrane (PM) H+-ATPase, representing a new target for herbicides. In this study, we further investigated the mechanism by which TeA inhibits PM H+-ATPase and the effect of the toxin on plant growth using Arabidopsis thaliana. We also studied the biochemical effects of TeA on the PM H+-ATPases from spinach (Spinacia oleracea) and A. thaliana (AHA2) by examining PM H+-ATPase activity under different conditions and in different mutants. Treatment with 200 μM TeA-induced cell necrosis in larger plants and treatment with 10 μM TeA almost completely inhibited cell elongation and root growth in seedlings. We show that the isoleucine backbone of TeA is essential for inhibiting the ATPase activity of the PM H+-ATPase. Additionally, this inhibition depends on the C-terminal domain of AHA2, and TeA binding to PM H+-ATPase requires the Regulatory Region I of the C-terminal domain in AHA2. TeA likely has a higher binding affinity toward PM H+-ATPase than the phytotoxin fusicoccin. Finally, our findings show that TeA retains the H+-ATPase in an inhibited state, suggesting that it could act as a lead compound for creating new herbicides targeting the PM H+-ATPase.
Collapse
Affiliation(s)
- Nanna Weise Havshøi
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - John Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
10
|
Sena F, Kunze R. The K + transporter NPF7.3/NRT1.5 and the proton pump AHA2 contribute to K + transport in Arabidopsis thaliana under K + and NO 3- deficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1287843. [PMID: 38046603 PMCID: PMC10690419 DOI: 10.3389/fpls.2023.1287843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023]
Abstract
Nitrate (NO3 -) and potassium (K+) are distributed in plants via short and long-distance transport. These two pathways jointly regulate NO3 - and K+ levels in all higher plants. The Arabidopsis thaliana transporter NPF7.3/NRT1.5 is responsible for loading NO3 - and K+ from root pericycle cells into the xylem vessels, facilitating the long-distance transport of NO3 - and K+ to shoots. In this study, we demonstrate a protein-protein interaction of NPF7.3/NRT1.5 with the proton pump AHA2 in the plasma membrane by split ubiquitin and bimolecular complementation assays, and we show that a conserved glycine residue in a transmembrane domain of NPF7.3/NRT1.5 is crucial for the interaction. We demonstrate that AHA2 together with NRT1.5 affects the K+ level in shoots, modulates the root architecture, and alters extracellular pH and the plasma membrane potential. We hypothesize that NRT1.5 and AHA2 interaction plays a role in maintaining the pH gradient and membrane potential across the root pericycle cell plasma membrane during K+ and/or NO3 - transport.
Collapse
Affiliation(s)
- Florencia Sena
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Laboratorio de Bioquímica, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Reinhard Kunze
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Palmgren M. P-type ATPases: Many more enigmas left to solve. J Biol Chem 2023; 299:105352. [PMID: 37838176 PMCID: PMC10654040 DOI: 10.1016/j.jbc.2023.105352] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
P-type ATPases constitute a large ancient super-family of primary active pumps that have diverse substrate specificities ranging from H+ to phospholipids. The significance of these enzymes in biology cannot be overstated. They are structurally related, and their catalytic cycles alternate between high- and low-affinity conformations that are induced by phosphorylation and dephosphorylation of a conserved aspartate residue. In the year 1988, all P-type sequences available by then were analyzed and five major families, P1 to P5, were identified. Since then, a large body of knowledge has accumulated concerning the structure, function, and physiological roles of members of these families, but only one additional family, P6 ATPases, has been identified. However, much is still left to be learned. For each family a few remaining enigmas are presented, with the intention that they will stimulate interest in continued research in the field. The review is by no way comprehensive and merely presents personal views with a focus on evolution.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
12
|
Li J, Yang Y. How do plants maintain pH and ion homeostasis under saline-alkali stress? FRONTIERS IN PLANT SCIENCE 2023; 14:1217193. [PMID: 37915515 PMCID: PMC10616311 DOI: 10.3389/fpls.2023.1217193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Salt and alkaline stresses often occur together, severely threatening plant growth and crop yields. Salt stress induces osmotic stress, ionic stress, and secondary stresses, such as oxidative stress. Plants under saline-alkali stress must develop suitable mechanisms for adapting to the combined stress. Sustained plant growth requires maintenance of ion and pH homeostasis. In this review, we focus on the mechanisms of ion and pH homeostasis in plant cells under saline-alkali stress, including regulation of ion sensing, ion uptake, ion exclusion, ion sequestration, and ion redistribution among organs by long-distance transport. We also discuss outstanding questions in this field.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Yongqing Yang
- College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Paweletz LC, Holtbrügge SL, Löb M, De Vecchis D, Schäfer LV, Günther Pomorski T, Justesen BH. Anionic Phospholipids Stimulate the Proton Pumping Activity of the Plant Plasma Membrane P-Type H +-ATPase. Int J Mol Sci 2023; 24:13106. [PMID: 37685912 PMCID: PMC10488199 DOI: 10.3390/ijms241713106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The activity of membrane proteins depends strongly on the surrounding lipid environment. Here, we characterize the lipid stimulation of the plant plasma membrane H+-ATPase Arabidopsis thaliana H+-ATPase isoform 2 (AHA2) upon purification and reconstitution into liposomes of defined lipid compositions. We show that the proton pumping activity of AHA2 is stimulated by anionic phospholipids, especially by phosphatidylserine. This activation was independent of the cytoplasmic C-terminal regulatory domain of the pump. Molecular dynamics simulations revealed several preferential contact sites for anionic phospholipids in the transmembrane domain of AHA2. These contact sites are partially conserved in functionally different P-type ATPases from different organisms, suggesting a general regulation mechanism by the membrane lipid environment. Our findings highlight the fact that anionic lipids play an important role in the control of H+-ATPase activity.
Collapse
Affiliation(s)
- Laura C. Paweletz
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
| | - Simon L. Holtbrügge
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (S.L.H.); (D.D.V.)
| | - Malina Löb
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
| | - Dario De Vecchis
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (S.L.H.); (D.D.V.)
| | - Lars V. Schäfer
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (S.L.H.); (D.D.V.)
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Bo Højen Justesen
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
| |
Collapse
|
14
|
Xie W, Liu S, Gao H, Wu J, Liu D, Kinoshita T, Huang CF. PP2C.D phosphatase SAL1 positively regulates aluminum resistance via restriction of aluminum uptake in rice. PLANT PHYSIOLOGY 2023; 192:1498-1516. [PMID: 36823690 PMCID: PMC10231357 DOI: 10.1093/plphys/kiad122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Aluminum (Al) toxicity represents a primary constraint for crop production in acidic soils. Rice (Oryza sativa) is a highly Al-resistant species; however, the molecular mechanisms underlying its high Al resistance are still not fully understood. Here, we identified SAL1 (SENSITIVE TO ALUMINUM 1), which encodes a plasma membrane (PM)-localized PP2C.D phosphatase, as a crucial regulator of Al resistance using a forward genetic screen. SAL1 was found to interact with and inhibit the activity of PM H+-ATPases, and mutation of SAL1 increased PM H+-ATPase activity and Al uptake, causing hypersensitivity to internal Al toxicity. Furthermore, knockout of NRAT1 (NRAMP ALUMINUM TRANSPORTER 1) encoding an Al uptake transporter in a sal1 background rescued the Al-sensitive phenotype of sal1, revealing that coordination of Al accumulation in the cell, wall and symplasm is critical for Al resistance in rice. By contrast, we found that mutations of PP2C.D phosphatase-encoding genes in Arabidopsis (Arabidopsis thaliana) enhanced Al resistance, which was attributed to increased malate secretion. Our results reveal the importance of PP2C.D phosphatases in Al resistance and the different strategies used by rice and Arabidopsis to defend against Al toxicity.
Collapse
Affiliation(s)
- Wenxiang Xie
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huiling Gao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Dilin Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Chao-Feng Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Rui H, Ashton KS, Min J, Wang C, Potts PR. Protein-protein interfaces in molecular glue-induced ternary complexes: classification, characterization, and prediction. RSC Chem Biol 2023; 4:192-215. [PMID: 36908699 PMCID: PMC9994104 DOI: 10.1039/d2cb00207h] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
Molecular glues are a class of small molecules that stabilize the interactions between proteins. Naturally occurring molecular glues are present in many areas of biology where they serve as central regulators of signaling pathways. Importantly, several clinical compounds act as molecular glue degraders that stabilize interactions between E3 ubiquitin ligases and target proteins, leading to their degradation. Molecular glues hold promise as a new generation of therapeutic agents, including those molecular glue degraders that can redirect the protein degradation machinery in a precise way. However, rational discovery of molecular glues is difficult in part due to the lack of understanding of the protein-protein interactions they stabilize. In this review, we summarize the structures of known molecular glue-induced ternary complexes and the interface properties. Detailed analysis shows different mechanisms of ternary structure formation. Additionally, we also review computational approaches for predicting protein-protein interfaces and highlight the promises and challenges. This information will ultimately help inform future approaches for rational molecular glue discovery.
Collapse
Affiliation(s)
- Huan Rui
- Center for Research Acceleration by Digital Innovation, Amgen Research Thousand Oaks CA 91320 USA
| | - Kate S Ashton
- Medicinal Chemistry, Amgen Research Thousand Oaks CA 91320 USA
| | - Jaeki Min
- Induced Proximity Platform, Amgen Research Thousand Oaks CA 91320 USA
| | - Connie Wang
- Digital, Technology & Innovation, Amgen Thousand Oaks CA 91320 USA
| | | |
Collapse
|
16
|
Cui M, Li Y, Li J, Yin F, Chen X, Qin L, Wei L, Xia G, Liu S. Ca 2+-dependent TaCCD1 cooperates with TaSAUR215 to enhance plasma membrane H +-ATPase activity and alkali stress tolerance by inhibiting PP2C-mediated dephosphorylation of TaHA2 in wheat. MOLECULAR PLANT 2023; 16:571-587. [PMID: 36681864 DOI: 10.1016/j.molp.2023.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/10/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Alkali stress is a major constraint for crop production in many regions of saline-alkali land. However, little is known about the mechanisms through which wheat responds to alkali stress. In this study, we identified a calcium ion-binding protein from wheat, TaCCD1, which is critical for regulating the plasma membrane (PM) H+-ATPase-mediated alkali stress response. PM H+-ATPase activity is closely related to alkali tolerance in the wheat variety Shanrong 4 (SR4). We found that two D-clade type 2C protein phosphatases, TaPP2C.D1 and TaPP2C.D8 (TaPP2C.D1/8), negatively modulate alkali stress tolerance by dephosphorylating the penultimate threonine residue (Thr926) of TaHA2 and thereby inhibiting PM H+-ATPase activity. Alkali stress induces the expression of TaCCD1 in SR4, and TaCCD1 interacts with TaSAUR215, an early auxin-responsive protein. These responses are both dependent on calcium signaling triggered by alkali stress. TaCCD1 enhances the inhibitory effect of TaSAUR215 on TaPP2C.D1/8 activity, thereby promoting the activity of the PM H+-ATPase TaHA2 and alkali stress tolerance in wheat. Functional and genetic analyses verified the effects of these genes in response to alkali stress, indicating that TaPP2C.D1/8 function downstream of TaSAUR215 and TaCCD1. Collectively, this study uncovers a new signaling pathway that regulates wheat responses to alkali stress, in which Ca2+-dependent TaCCD1 cooperates with TaSAUR215 to enhance PM H+-ATPase activity and alkali stress tolerance by inhibiting TaPP2C.D1/8-mediated dephosphorylation of PM H+-ATPase TaHA2 in wheat.
Collapse
Affiliation(s)
- Minghan Cui
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Yanping Li
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Jianhang Li
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Fengxiang Yin
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Xiangyu Chen
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Lumin Qin
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Lin Wei
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Shuwei Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China.
| |
Collapse
|
17
|
Song P, Yang Z, Guo C, Han R, Wang H, Dong J, Kang D, Guo Y, Yang S, Li J. 14-3-3 proteins regulate photomorphogenesis by facilitating light-induced degradation of PIF3. THE NEW PHYTOLOGIST 2023; 237:140-159. [PMID: 36110045 DOI: 10.1111/nph.18494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
14-3-3s are highly conserved phosphopeptide-binding proteins that play important roles in various developmental and signaling pathways in plants. However, although protein phosphorylation has been proven to be a key mechanism for regulating many pivotal components of the light signaling pathway, the role of 14-3-3 proteins in photomorphogenesis remains largely obscure. PHYTOCHROME-INTERACTING FACTOR3 (PIF3) is an extensively studied transcription factor repressing photomorphogenesis, and it is well-established that upon red (R) light exposure, photo-activated phytochrome B (phyB) interacts with PIF3 and induces its rapid phosphorylation and degradation. PHOTOREGULATORY PROTEIN KINASES (PPKs), a family of nuclear protein kinases, interact with phyB and PIF3 in R light and mediate multisite phosphorylation of PIF3 in vivo. Here, we report that two members of the 14-3-3 protein family, 14-3-3λ and κ, bind to a serine residue in the bHLH domain of PIF3 that can be phosphorylated by PPKs, and act as key positive regulators of R light-induced photomorphogenesis. Moreover, 14-3-3λ and κ preferentially interact with photo-activated phyB and promote the phyB-PIF3-PPK complex formation, thereby facilitating phyB-induced phosphorylation and degradation of PIF3 upon R light exposure. Together, our data demonstrate that 14-3-3λ and κ work in close concert with the phyB-PIF3 module to regulate light signaling in Arabidopsis.
Collapse
Affiliation(s)
- Pengyu Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zidan Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Can Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Run Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Huaichang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Dong
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Dingming Kang
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
18
|
Michalak A, Wdowikowska A, Janicka M. Plant Plasma Membrane Proton Pump: One Protein with Multiple Functions. Cells 2022; 11:cells11244052. [PMID: 36552816 PMCID: PMC9777500 DOI: 10.3390/cells11244052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In plants, the plasma membrane proton pump (PM H+-ATPase) regulates numerous transport-dependent processes such as growth, development, basic physiology, and adaptation to environmental conditions. This review explores the multifunctionality of this enzyme in plant cells. The abundance of several PM H+-ATPase isogenes and their pivotal role in energizing transport in plants have been connected to the phenomena of pleiotropy. The multifunctionality of PM H+-ATPase is a focal point of numerous studies unraveling the molecular mechanisms of plant adaptation to adverse environmental conditions. Furthermore, PM H+-ATPase is a key element in plant defense mechanisms against pathogen attack; however, it also functions as a target for pathogens that enable plant tissue invasion. Here, we provide an extensive review of the PM H+-ATPase as a multitasking protein in plants. We focus on the results of recent studies concerning PM H+-ATPase and its role in plant growth, physiology, and pathogenesis.
Collapse
|
19
|
He J, Gu L, Tan Q, Wang Y, Hui F, He X, Chang P, Gong D, Sun Q. Genome-wide analysis and identification of the PEBP genes of Brassica juncea var. Tumida. BMC Genomics 2022; 23:535. [PMID: 35870881 PMCID: PMC9308242 DOI: 10.1186/s12864-022-08767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Phosphatidylethanolamine-binding protein (PEBP) is widely present in animals, plants, and microorganisms. Plant PEBP genes are mainly involved in flowering transition and nutritional growth. These genes have been studied in several plants; however, to the best of our knowledge, no studies have explored them in Brassica juncea var. tumida. This study identified and characterized the entire PEBP gene family of Brassica juncea var. tumida.
Results
A total of 21 PEBP genes were identified from Brassica juncea var. tumida. Through phylogenetic analysis, the 21 corresponding proteins were classified into the following four clusters: TERMINAL FLOWER 1 (TFL1)-like proteins (n = 8), MOTHER OF FT AND TFL1 (MFT)-like proteins (n = 5), FLOWERING LOCUS T (FT)-like proteins (n = 6), and ybhB-like proteins (n = 2). A total of 18 genes contained four exons and had similar gene structures in each subfamily except BjMFT1, BjPYBHB1, and Arabidopsis thaliana CENTRORADIALIS homolog of Brassica juncea var. tumida (BjATC1). In the analysis of conserved motif composition, the BjPEBP genes exhibited similar characteristics, except for BjFT3, BjMFT1, BjPYBHB1, BjPYBHB2, and BjATC1. The BjPEBP promoter includes multiple cis-acting elements such as the G-box and I-box elements that respond to light, ABRE and GARE-motif elements that respond to hormones, and MBSI and CAT-box elements that are associated with plant growth and development. Analysis of RNA-Seq data revealed that the expression of a few BjPEBP genes may be associated with the development of a tumorous stem. The results of qRT–PCR showed that BjTFL1 and BjPYBHB1 were highly expressed in the flower tissue, BjFT1 and BjATC1 were mainly expressed in the root, and BjMFT4 were highly detected in the stem. The results of yeast two-hybrid screening suggested that BjFT interacts with Bj14-3-3. These results indicate that BjFT is involved in flowering regulation.
Conclusions
To the best of our knowledge, this study is the first to perform a genome-wide analysis of PEBP genes family in Brassica juncea var. tumida. The findings of this study may help improve the yield and molecular breeding of Brassica juncea var. tumida.
Collapse
|
20
|
The evolution of plant proton pump regulation via the R domain may have facilitated plant terrestrialization. Commun Biol 2022; 5:1312. [PMID: 36446861 PMCID: PMC9708826 DOI: 10.1038/s42003-022-04291-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Plasma membrane (PM) H+-ATPases are the electrogenic proton pumps that export H+ from plant and fungal cells to acidify the surroundings and generate a membrane potential. Plant PM H+-ATPases are equipped with a C‑terminal autoinhibitory regulatory (R) domain of about 100 amino acid residues, which could not be identified in the PM H+-ATPases of green algae but appeared fully developed in immediate streptophyte algal predecessors of land plants. To explore the physiological significance of this domain, we created in vivo C-terminal truncations of autoinhibited PM H+‑ATPase2 (AHA2), one of the two major isoforms in the land plant Arabidopsis thaliana. As more residues were deleted, the mutant plants became progressively more efficient in proton extrusion, concomitant with increased expansion growth and nutrient uptake. However, as the hyperactivated AHA2 also contributed to stomatal pore opening, which provides an exit pathway for water and an entrance pathway for pests, the mutant plants were more susceptible to biotic and abiotic stresses, pathogen invasion and water loss, respectively. Taken together, our results demonstrate that pump regulation through the R domain is crucial for land plant fitness and by controlling growth and nutrient uptake might have been necessary already for the successful water-to-land transition of plants.
Collapse
|
21
|
Overexpression of a Plasma Membrane H +-ATPase Gene OSA1 Stimulates the Uptake of Primary Macronutrients in Rice Roots. Int J Mol Sci 2022; 23:ijms232213904. [PMID: 36430382 PMCID: PMC9697395 DOI: 10.3390/ijms232213904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Plasma membrane (PM) H+-ATPase is a master enzyme involved in various plant physiological processes, such as stomatal movements in leaves and nutrient uptake and transport in roots. Overexpression of Oryza sativa PM H+-ATPase 1 (OSA1) has been known to increase NH4+ uptake in rice roots. Although electrophysiological and pharmacological experiments have shown that the transport of many substances is dependent on the proton motive force provided by PM H+-ATPase, the exact role of PM H+-ATPase on the uptake of nutrients in plant roots, especially for the primary macronutrients N, P, and K, is still largely unknown. Here, we used OSA1 overexpression lines (OSA1-oxs) and gene-knockout osa1 mutants to investigate the effect of modulation of PM H+-ATPase on the absorption of N, P, and K nutrients through the use of a nutrient-exhaustive method and noninvasive microtest technology (NMT) in rice roots. Our results showed that under different concentrations of P and K, the uptake rates of P and K were enhanced in OSA1-oxs; by contrast, the uptake rates of P and K were significantly reduced in roots of osa1 mutants when compared with wild-type. In addition, the net influx rates of NH4+ and K+, as well as the efflux rate of H+, were enhanced in OSA1-oxs and suppressed in osa1 mutants under low concentration conditions. In summary, this study indicated that overexpression of OSA1 stimulated the uptake rate of N, P, and K and promoted flux rates of cations (i.e., H+, NH4+, and K+) in rice roots. These results may provide a novel insight into improving the coordinated utilization of macronutrients in crop plants.
Collapse
|
22
|
Thurairajah B, Hudson AJ, Doveston RG. Contemporary biophysical approaches for studying 14-3-3 protein-protein interactions. Front Mol Biosci 2022; 9:1043673. [PMID: 36425654 PMCID: PMC9679655 DOI: 10.3389/fmolb.2022.1043673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 06/28/2024] Open
Abstract
14-3-3 proteins are a family of regulatory hubs that function through a vast network of protein-protein interactions. Their dysfunction or dysregulation is implicated in a wide range of diseases, and thus they are attractive drug targets, especially for molecular glues that promote protein-protein interactions for therapeutic intervention. However, an incomplete understanding of the molecular mechanisms that underpin 14-3-3 function hampers progress in drug design and development. Biophysical methodologies are an essential element of the 14-3-3 analytical toolbox, but in many cases have not been fully exploited. Here, we present a contemporary review of the predominant biophysical techniques used to study 14-3-3 protein-protein interactions, with a focus on examples that address key questions and challenges in the 14-3-3 field.
Collapse
Affiliation(s)
| | | | - Richard G. Doveston
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
23
|
Lardon R, Trinh HK, Xu X, Vu LD, Van De Cotte B, Pernisová M, Vanneste S, De Smet I, Geelen D. Histidine kinase inhibitors impair shoot regeneration in Arabidopsis thaliana via cytokinin signaling and SAM patterning determinants. FRONTIERS IN PLANT SCIENCE 2022; 13:894208. [PMID: 36684719 PMCID: PMC9847488 DOI: 10.3389/fpls.2022.894208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/27/2022] [Indexed: 06/17/2023]
Abstract
Reversible protein phosphorylation is a post-translational modification involved in virtually all plant processes, as it mediates protein activity and signal transduction. Here, we probe dynamic protein phosphorylation during de novo shoot organogenesis in Arabidopsis thaliana. We find that application of three kinase inhibitors in various time intervals has different effects on root explants. Short exposures to the putative histidine (His) kinase inhibitor TCSA during the initial days on shoot induction medium (SIM) are detrimental for regeneration in seven natural accessions. Investigation of cytokinin signaling mutants, as well as reporter lines for hormone responses and shoot markers, suggests that TCSA impedes cytokinin signal transduction via AHK3, AHK4, AHP3, and AHP5. A mass spectrometry-based phosphoproteome analysis further reveals profound deregulation of Ser/Thr/Tyr phosphoproteins regulating protein modification, transcription, vesicle trafficking, organ morphogenesis, and cation transport. Among TCSA-responsive factors are prior candidates with a role in shoot apical meristem patterning, such as AGO1, BAM1, PLL5, FIP37, TOP1ALPHA, and RBR1, as well as proteins involved in polar auxin transport (e.g., PIN1) and brassinosteroid signaling (e.g., BIN2). Putative novel regeneration determinants regulated by TCSA include RD2, AT1G52780, PVA11, and AVT1C, while NAIP2, OPS, ARR1, QKY, and aquaporins exhibit differential phospholevels on control SIM. LC-MS/MS data are available via ProteomeXchange with identifier PXD030754.
Collapse
Affiliation(s)
- Robin Lardon
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Hoang Khai Trinh
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Biotechnology Research and Development Institute, Can Tho University, Can Tho, Vietnam
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Brigitte Van De Cotte
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Markéta Pernisová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Steffen Vanneste
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon, South Korea
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Danny Geelen
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Karcz W, Burdach Z. The effect of DC electric field on the elongation growth, proton extrusion and membrane potential of Zea mays L. coleoptile cells; a laboratory study. BMC PLANT BIOLOGY 2022; 22:389. [PMID: 35922781 PMCID: PMC9347068 DOI: 10.1186/s12870-022-03778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In this study, we investigated the effect of an electric field, with an intensity similar to that of the Earth's field, on plant cells growth. The molecular mechanism underlying this effect remains unclear. RESULTS It was found that the electric field, depending on the applied voltage, its duration and the polarization of the maize seedlings, stimulated or inhibited the growth of the seedling organs (root, mesocotyl and coleoptile). Moreover, it was also noticed that the gravitropic response of maize seedlings was inhibited at all voltages studied. Simultaneous measurements of growth and external medium pH show that auxin(IAA, indole-3-acetic acid)- and fusicoccin(FC)-induced elongation growth and proton extrusion of maize coleoptile segments were significantly inhibited at higher voltages. The ionic current flowing through the single coleoptile segment during voltage application was 1.7-fold lower in segments treated with cation channel blocker tetraethylammonium chloride (TEA-Cl) and 1.4-fold higher with IAA compared to the control. The electrophysiological experiments show that the electric field caused the depolarization of the membrane potential of parenchymal coleoptile cells, which was not reversible over 120 min. CONCLUSION It is suggested that a DC electric field inhibits the plasma membrane H+ pump activity and K+ uptake through voltage-dependent, inwardly rectifying ZMK1 channels (Zea mays K+ channel 1). The data presented here are discussed, taking into account the "acid growth hypothesis" of the auxin action and the mechanism of gravitropic response induction.
Collapse
Affiliation(s)
- Waldemar Karcz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska St, 40-032, Katowice, Poland.
| | - Zbigniew Burdach
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska St, 40-032, Katowice, Poland
| |
Collapse
|
25
|
Wang ZF, Xie ZM, Tan YL, Li JY, Wang FL, Pei D, Li Z, Guo Y, Gong Z, Wang Y. Receptor-like protein kinase BAK1 promotes K+ uptake by regulating H+-ATPase AHA2 under low potassium stress. PLANT PHYSIOLOGY 2022; 189:2227-2243. [PMID: 35604103 PMCID: PMC9342980 DOI: 10.1093/plphys/kiac237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/01/2022] [Indexed: 05/25/2023]
Abstract
Potassium (K+) is one of the essential macronutrients for plant growth and development. However, the available K+ concentration in soil is relatively low. Plant roots can perceive low K+ (LK) stress, then enhance high-affinity K+ uptake by activating H+-ATPases in root cells, but the mechanisms are still unclear. Here, we identified the receptor-like protein kinase Brassinosteroid Insensitive 1-Associated Receptor Kinase 1 (BAK1) that is involved in LK response by regulating the Arabidopsis (Arabidopsis thaliana) plasma membrane H+-ATPase isoform 2 (AHA2). The bak1 mutant showed leaf chlorosis phenotype and reduced K+ content under LK conditions, which was due to the decline of K+ uptake capacity. BAK1 could directly interact with the AHA2 C terminus and phosphorylate T858 and T881, by which the H+ pump activity of AHA2 was enhanced. The bak1 aha2 double mutant also displayed a leaf chlorosis phenotype that was similar to their single mutants. The constitutively activated form AHA2Δ98 and phosphorylation-mimic form AHA2T858D or AHA2T881D could complement the LK sensitive phenotypes of both aha2 and bak1 mutants. Together, our data demonstrate that BAK1 phosphorylates AHA2 and enhances its activity, which subsequently promotes K+ uptake under LK conditions.
Collapse
Affiliation(s)
- Zhi-Fang Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhong-Mei Xie
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ya-Lan Tan
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jia-Ying Li
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Feng-Liu Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dan Pei
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | | |
Collapse
|
26
|
The molecular mechanism of plasma membrane H +-ATPases in plant responses to abiotic stress. J Genet Genomics 2022; 49:715-725. [PMID: 35654346 DOI: 10.1016/j.jgg.2022.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022]
Abstract
Plasma membrane H+-ATPases (PM H+-ATPases) are critical proton pumps that export protons from the cytoplasm to the apoplast. The resulting proton gradient and difference in electrical potential energize various secondary active transport events. PM H+-ATPases play essential roles in plant growth, development, and stress responses. In this review, we focus on recent studies of the mechanism of PM H+-ATPases in response to abiotic stresses in plants, such as salt and high pH, temperature, drought, light, macronutrient deficiency, acidic soil and aluminum stress, as well as heavy metal toxicity. Moreover, we discuss remaining outstanding questions about how PM H+-ATPases contribute to abiotic stress responses.
Collapse
|
27
|
Primo C, Navarre C, Chaumont F, André B. Plasma membrane H +-ATPases promote TORC1 activation in plant suspension cells. iScience 2022; 25:104238. [PMID: 35494253 PMCID: PMC9046228 DOI: 10.1016/j.isci.2022.104238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022] Open
Abstract
The TORC1 (Target of Rapamycin Complex 1) kinase complex plays a pivotal role in controlling cell growth in probably all eukaryotic species. The signals and mechanisms regulating TORC1 have been intensely studied in mammals but those of fungi and plants are much less known. We have previously reported that the yeast plasma membrane H+-ATPase Pma1 promotes TORC1 activation when stimulated by cytosolic acidification or nutrient-uptake-coupled H+ influx. Furthermore, a homologous plant H+-ATPase can substitute for yeast Pma1 to promote this H+-elicited TORC1 activation. We here report that TORC1 activity in Nicotiana tabacum BY-2 cells is also strongly influenced by the activity of plasma membrane H+-ATPases. In particular, stimulation of H+-ATPases by fusicoccin activates TORC1, and this response is also observed in cells transferred to a nutrient-free and auxin-free medium. Our results suggest that plant H+-ATPases, known to be regulated by practically all factors controlling cell growth, contribute to TOR signaling. Isolation of a tobacco BY-2 cell line suitable for analyzing TOR signaling Activation of plasma membrane H+-ATPases in BY-2 suspension cells elicits TOR signaling TOR signaling upon H+-ATPase activation also occurs in the absence of nutrients and auxin
Collapse
Affiliation(s)
- Cecilia Primo
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Biopark, B-6041 Gosselies, Belgium
| | - Catherine Navarre
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Biopark, B-6041 Gosselies, Belgium
| |
Collapse
|
28
|
Abstract
H+-ATPases, including the phosphorylated intermediate-type (P-type) and vacuolar-type (V-type) H+-ATPases, are important ATP-driven proton pumps that generate membrane potential and provide proton motive force for secondary active transport. P- and V-type H+-ATPases have distinct structures and subcellular localizations and play various roles in growth and stress responses. A P-type H+-ATPase is mainly regulated at the posttranslational level by phosphorylation and dephosphorylation of residues in its autoinhibitory C terminus. The expression and activity of both P- and V-type H+-ATPases are highly regulated by hormones and environmental cues. In this review, we summarize the recent advances in understanding of the evolution, regulation, and physiological roles of P- and V-type H+-ATPases, which coordinate and are involved in plant growth and stress adaptation. Understanding the different roles and the regulatory mechanisms of P- and V-type H+-ATPases provides a new perspective for improving plant growth and stress tolerance by modulating the activity of H+-ATPases, which will mitigate the increasing environmental stress conditions associated with ongoing global climate change.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Weifeng Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| |
Collapse
|
29
|
Huang Y, Wang W, Yu H, Peng J, Hu Z, Chen L. The role of 14-3-3 proteins in plant growth and response to abiotic stress. PLANT CELL REPORTS 2022; 41:833-852. [PMID: 34773487 DOI: 10.1007/s00299-021-02803-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The 14-3-3 proteins widely exist in almost all plant species. They specifically recognize and interact with phosphorylated target proteins, including protein kinases, phosphatases, transcription factors and functional proteins, offering an array of opportunities for 14-3-3s to participate in the signal transduction processes. 14-3-3s are multigene families and can form homo- and heterodimers, which confer functional specificity of 14-3-3 proteins. They are widely involved in regulating biochemical and cellular processes and plant growth and development, including cell elongation and division, seed germination, vegetative and reproductive growth, and seed dormancy. They mediate plant response to environmental stresses such as salt, alkaline, osmotic, drought, cold and other abiotic stresses, partially via hormone-related signalling pathways. Although many studies have reviewed the function of 14-3-3 proteins, recent research on plant 14-3-3s has achieved significant advances. Here, we provide a comprehensive overview of the fundamental properties of 14-3-3 proteins and systematically summarize and dissect the emerging advances in understanding the roles of 14-3-3s in plant growth and development and abiotic stress responses. Some ambiguous questions about the roles of 14-3-3s under environmental stresses are reviewed. Interesting questions related to plant 14-3-3 functions that remain to be elucidated are also discussed.
Collapse
Affiliation(s)
- Ye Huang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenshu Wang
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan, 430345, China
| | - Hua Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhua Peng
- Huazhi Biotech Co., Ltd., Changsha, 410125, China
| | - Zhengrong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Pertl-Obermeyer H, Gimeno A, Kuchler V, Servili E, Huang S, Fang H, Lang V, Sydow K, Pöckl M, Schulze WX, Obermeyer G. pH modulates interaction of 14-3-3 proteins with pollen plasma membrane H+ ATPases independently from phosphorylation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:168-181. [PMID: 34467995 DOI: 10.1093/jxb/erab387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Pollen grains transport the sperm cells through the style tissue via a fast-growing pollen tube to the ovaries where fertilization takes place. Pollen tube growth requires a precisely regulated network of cellular as well as molecular events including the activity of the plasma membrane H+ ATPase, which is known to be regulated by reversible protein phosphorylation and subsequent binding of 14-3-3 isoforms. Immunodetection of the phosphorylated penultimate threonine residue of the pollen plasma membrane H+ ATPase (LilHA1) of Lilium longiflorum pollen revealed a sudden increase in phosphorylation with the start of pollen tube growth. In addition to phosphorylation, pH modulated the binding of 14-3-3 isoforms to the regulatory domain of the H+ ATPase, whereas metabolic components had only small effects on 14-3-3 binding, as tested with in vitro assays using recombinant 14-3-3 isoforms and phosphomimicking substitutions of the threonine residue. Consequently, local H+ influxes and effluxes as well as pH gradients in the pollen tube tip are generated by localized regulation of the H+ ATPase activity rather than by heterogeneous localized distribution in the plasma membrane.
Collapse
Affiliation(s)
- Heidi Pertl-Obermeyer
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- MorphoPhysics, Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria
| | - Ana Gimeno
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Verena Kuchler
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Evrim Servili
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- Inst. Recherche Experimentale & Clinique, University of Louvain, Ave. Hippocrate, Woluwe-Saint Lambert, Belgium
| | - Shuai Huang
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- Southern University of Science and Technology, Shenzen, PR China
| | - Han Fang
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- Spinal Chord Injury & Tissue Regeneration Centre, Paracelsus Medical University, Strubergasse, Salzburg, Austria
| | - Veronika Lang
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- STRATEC GmbH, Sonystraße 20, Anif, Austria
| | - Katharina Sydow
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Magdalena Pöckl
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Waltraud X Schulze
- Plant Systems Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Gerhard Obermeyer
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| |
Collapse
|
31
|
Fuglsang AT, Palmgren M. Proton and calcium pumping P-type ATPases and their regulation of plant responses to the environment. PLANT PHYSIOLOGY 2021; 187:1856-1875. [PMID: 35235671 PMCID: PMC8644242 DOI: 10.1093/plphys/kiab330] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/23/2021] [Indexed: 05/10/2023]
Abstract
Plant plasma membrane H+-ATPases and Ca2+-ATPases maintain low cytoplasmic concentrations of H+ and Ca2+, respectively, and are essential for plant growth and development. These low concentrations allow plasma membrane H+-ATPases to function as electrogenic voltage stats, and Ca2+-ATPases as "off" mechanisms in Ca2+-based signal transduction. Although these pumps are autoregulated by cytoplasmic concentrations of H+ and Ca2+, respectively, they are also subject to exquisite regulation in response to biotic and abiotic events in the environment. A common paradigm for both types of pumps is the presence of terminal regulatory (R) domains that function as autoinhibitors that can be neutralized by multiple means, including phosphorylation. A picture is emerging in which some of the phosphosites in these R domains appear to be highly, nearly constantly phosphorylated, whereas others seem to be subject to dynamic phosphorylation. Thus, some sites might function as major switches, whereas others might simply reduce activity. Here, we provide an overview of the relevant transport systems and discuss recent advances that address their relation to external stimuli and physiological adaptations.
Collapse
Affiliation(s)
- Anja T Fuglsang
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Michael Palmgren
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Author for communication:
| |
Collapse
|
32
|
Lin W, Zhou X, Tang W, Takahashi K, Pan X, Dai J, Ren H, Zhu X, Pan S, Zheng H, Gray WM, Xu T, Kinoshita T, Yang Z. TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature 2021; 599:278-282. [PMID: 34707287 PMCID: PMC8549421 DOI: 10.1038/s41586-021-03976-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
The phytohormone auxin controls many processes in plants, at least in part through its regulation of cell expansion1. The acid growth hypothesis has been proposed to explain auxin-stimulated cell expansion for five decades, but the mechanism that underlies auxin-induced cell-wall acidification is poorly characterized. Auxin induces the phosphorylation and activation of the plasma membrane H+-ATPase that pumps protons into the apoplast2, yet how auxin activates its phosphorylation remains unclear. Here we show that the transmembrane kinase (TMK) auxin-signalling proteins interact with plasma membrane H+-ATPases, inducing their phosphorylation, and thereby promoting cell-wall acidification and hypocotyl cell elongation in Arabidopsis. Auxin induced interactions between TMKs and H+-ATPases in the plasma membrane within seconds, as well as TMK-dependent phosphorylation of the penultimate threonine residue on the H+-ATPases. Our genetic, biochemical and molecular evidence demonstrates that TMKs directly phosphorylate plasma membrane H+-ATPase and are required for auxin-induced H+-ATPase activation, apoplastic acidification and cell expansion. Thus, our findings reveal a crucial connection between auxin and plasma membrane H+-ATPase activation in regulating apoplastic pH changes and cell expansion through TMK-based cell surface auxin signalling.
Collapse
Affiliation(s)
- Wenwei Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA
| | - Xiang Zhou
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA
| | - Wenxin Tang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Koji Takahashi
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Xue Pan
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA
| | - Jiawei Dai
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Ren
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, USA
| | - Xiaoyue Zhu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songqin Pan
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, USA
| | - Tongda Xu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Zhenbiao Yang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA.
| |
Collapse
|
33
|
Ding M, Zhang M, Zeng H, Hayashi Y, Zhu Y, Kinoshita T. Molecular basis of plasma membrane H +-ATPase function and potential application in the agricultural production. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:10-16. [PMID: 34607207 DOI: 10.1016/j.plaphy.2021.09.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/11/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Increase of crop yield is always the desired goal, manipulation of genes in relation to plant growth is a shortcut to promote crop yield. The plasma membrane (PM) H+-ATPase is the plant master enzyme; the energy yielded by ATP hydrolysis pumps H+ out of cells, establishes the membrane potential, maintains pH homeostasis and provides the proton-motive force required for transmembrane transport of many materials. PM H+-ATPase is involved in root nutrient uptake, epidermal stomatal opening, phloem sucrose loading and unloading, and hypocotyl cell elongation. In this review, we summarize the recent progresses in roles of PM H+-ATPase in nutrient uptake and light-induced stomatal opening and discuss the pivotal role of PM H+-ATPase in crop yield improvement and its potential application in agricultural production by modulating the expression of PM H+-ATPase in crops.
Collapse
Affiliation(s)
- Ming Ding
- Plant Physiology Laboratory of Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Maoxing Zhang
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuki Hayashi
- Plant Physiology Laboratory of Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yiyong Zhu
- College of Resource and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Toshinori Kinoshita
- Plant Physiology Laboratory of Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|
34
|
The Surprising Story of Fusicoccin: A Wilt-Inducing Phytotoxin, a Tool in Plant Physiology and a 14-3-3-Targeted Drug. Biomolecules 2021; 11:biom11091393. [PMID: 34572605 PMCID: PMC8470340 DOI: 10.3390/biom11091393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Fusicoccin is the α glucoside of a carbotricyclic diterpene, produced by the fungus Phomopsis amygdali (previously classified as Fusicoccum amygdali), the causal agent of almond and peach canker disease. A great interest in this molecule started when it was discovered that it brought about an irreversible stomata opening of higher plants, thereby inducing the wilting of their leaves. Since then, several studies were carried out to elucidate its biological activity, biosynthesis, structure, structure-activity relationships and mode of action. After sixty years of research and more than 1800 published articles, FC is still the most studied phytotoxin and one of the few whose mechanism of action has been elucidated in detail. The ability of FC to stimulate several fundamental plant processes depends on its ability to activate the plasma membrane H+-ATPase, induced by eliciting the association of 14-3-3 proteins, a class of regulatory molecules widespread in eukaryotes. This discovery renewed interest in FC and prompted more recent studies aimed to ascertain the ability of the toxin to influence the interaction between 14-3-3 proteins and their numerous client proteins in animals, involved in the regulation of basic cellular processes and in the etiology of different diseases, including cancer. This review covers the different aspects of FC research partially treated in different previous reviews, starting from its discovery in 1964, with the aim to outline the extraordinary pathway which led this very uncommon diterpenoid to evolve from a phytotoxin into a tool in plant physiology and eventually into a 14-3-3-targeted drug.
Collapse
|
35
|
Ponce-Pineda IG, Carmona-Salazar L, Saucedo-García M, Cano-Ramírez D, Morales-Cedillo F, Peña-Moral A, Guevara-García ÁA, Sánchez-Nieto S, Gavilanes-Ruíz M. MPK6 Kinase Regulates Plasma Membrane H +-ATPase Activity in Cold Acclimation. Int J Mol Sci 2021; 22:6338. [PMID: 34199294 PMCID: PMC8232009 DOI: 10.3390/ijms22126338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cold and freezing stresses severely affect plant growth, development, and survival rate. Some plant species have evolved a process known as cold acclimation, in which plants exposed to temperatures above 0 °C trigger biochemical and physiological changes to survive freezing. During this response, several signaling events are mediated by transducers, such as mitogen activated protein kinase (MAPK) cascades. Plasma membrane H+-ATPase is a key enzyme for the plant cell life under regular and stress conditions. Using wild type and mpk3 and mpk6 knock out mutants in Arabidopsis thaliana, we explored the transcriptional, translational, and 14-3-3 protein regulation of the plasma membrane H+-ATPase activity under the acclimation process. The kinetic analysis revealed a differential profiling of the H+-ATPase activity depending on the presence or absence of MPK3 or MPK6 under non-acclimated or acclimated conditions. Negative regulation of the plasma membrane H+-ATPase activity was found to be exerted by MPK3 in non-acclimated conditions and by MPK6 in acclimated conditions, describing a novel form of regulation of this master ATPase. The MPK6 regulation involved changes in plasma membrane fluidity. Moreover, our results indicated that MPK6 is a critical regulator in the process of cold acclimation that leads to freezing tolerance and further survival.
Collapse
Affiliation(s)
- Ilian Giordano Ponce-Pineda
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Laura Carmona-Salazar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Mariana Saucedo-García
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Avenida Universidad Km. 1, Rancho Universitario, Tulancingo-Santiago Tulantepec, Tulancingo, Hidalgo 43600, Mexico;
| | - Dora Cano-Ramírez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Francisco Morales-Cedillo
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Araceli Peña-Moral
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico;
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Marina Gavilanes-Ruíz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| |
Collapse
|
36
|
Polak M, Karcz W. Fusicoccin (FC)-Induced Rapid Growth, Proton Extrusion and Membrane Potential Changes in Maize ( Zea mays L.) Coleoptile Cells: Comparison to Auxin Responses. Int J Mol Sci 2021; 22:ijms22095017. [PMID: 34065110 PMCID: PMC8125996 DOI: 10.3390/ijms22095017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
The fungal toxin fusicoccin (FC) induces rapid cell elongation, proton extrusion and plasma membrane hyperpolarization in maize coleoptile cells. Here, these three parameters were simultaneously measured using non-abraded and non-peeled segments with the incubation medium having access to their lumen. The dose–response curve for the FC-induced growth was sigmoidal shaped with the maximum at 10−6 M over 10 h. The amplitudes of the rapid growth and proton extrusion were significantly higher for FC than those for indole-3-acetic acid (IAA). The differences between the membrane potential changes that were observed in the presence of FC and IAA relate to the permanent membrane hyperpolarization for FC and transient hyperpolarization for IAA. It was also found that the lag times of the rapid growth, proton extrusion and membrane hyperpolarization were shorter for FC compared to IAA. At 30 °C, the biphasic kinetics of the IAA-induced growth rate could be changed into a monophasic (parabolic) one, which is characteristic for FC-induced rapid growth. It has been suggested that the rates of the initial phase of the FC- and IAA-induced growth involve two common mechanisms that consist of the proton pumps and potassium channels whose contribution to the action of both effectors on the rapid growth is different.
Collapse
|
37
|
Jiang H, Ma QJ, Zhong MS, Gao HN, Li YY, Hao YJ. The apple palmitoyltransferase MdPAT16 influences sugar content and salt tolerance via an MdCBL1-MdCIPK13-MdSUT2.2 pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:689-705. [PMID: 33548154 DOI: 10.1111/tpj.15191] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 05/21/2023]
Abstract
Protein S-acyltransferases (PATs) are a category of eukaryotic transmembrane proteins that mediate the S-acylation of their target proteins. S-acylation, commonly known as palmitoylation, is a reversible protein modification that regulates the membrane association and function of target proteins. However, the functions and mechanisms of PATs in apple (Malus domestica) remain poorly understood. In this study, an MdPAT family member, MdPAT16, was identified and shown to have palmitoyltransferase activity. We demonstrated that this gene responds to salt stress and that its expression improves plant salt stress resistance. In addition, its overexpression significantly promotes the accumulation of soluble sugars. The same phenotypes were observed in transgenic tissue culture seedlings, transgenic roots, and Arabidopsis thaliana that ectopically expressed MdPAT16. MdPAT16 was shown to interact with MdCBL1 and stabilize MdCBL1 protein levels through palmitoylation. The N-terminal sequence of MdCBL1 contains a palmitoylation site, and its N-terminal deletion led to changes in MdCBL1 protein stability and subcellular localization. The phenotypes of MdCBL1 transgenic roots and transiently injected apple fruits were fully consistent with the sugar accumulation phenotype of MdPAT16. Mutation of the palmitoylation site interfered with this phenotype. These findings suggest that MdPAT16 palmitoylates its downstream target proteins, improving their stability. This may be a missing link in the plant salt stress response pathway and have an important impact on fruit quality.
Collapse
Affiliation(s)
- Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi-Jun Ma
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ming-Shuang Zhong
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
38
|
Hayashi M, Palmgren M. The quest for the central players governing pollen tube growth and guidance. PLANT PHYSIOLOGY 2021; 185:682-693. [PMID: 33793904 PMCID: PMC8133568 DOI: 10.1093/plphys/kiaa092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 05/02/2023]
Abstract
Recent insights into the mechanism of pollen tube growth and guidance point to the importance of H+ dynamics, which are regulated by the plasma membrane H+-ATPase.
Collapse
Affiliation(s)
- Maki Hayashi
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Michael Palmgren
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Author for communication:
| |
Collapse
|
39
|
Miao R, Yuan W, Wang Y, Garcia-Maquilon I, Dang X, Li Y, Zhang J, Zhu Y, Rodriguez PL, Xu W. Low ABA concentration promotes root growth and hydrotropism through relief of ABA INSENSITIVE 1-mediated inhibition of plasma membrane H +-ATPase 2. SCIENCE ADVANCES 2021; 7:7/12/eabd4113. [PMID: 33731345 PMCID: PMC7968848 DOI: 10.1126/sciadv.abd4113] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/29/2021] [Indexed: 05/10/2023]
Abstract
The hab1-1abi1-2abi2-2pp2ca-1 quadruple mutant (Qabi2-2) seedlings lacking key negative regulators of ABA signaling, namely, clade A protein phosphatases type 2C (PP2Cs), show more apoplastic H+ efflux in roots and display an enhanced root growth under normal medium or water stress medium compared to the wild type. The presence of low ABA concentration (0.1 micromolar), inhibiting PP2C activity via monomeric ABA receptors, enhances root apoplastic H+ efflux and growth of the wild type, resembling the Qabi2-2 phenotype in normal medium. Qabi2-2 seedlings also demonstrate increased hydrotropism compared to the wild type in obliquely-oriented hydrotropic experimental system, and asymmetric H+ efflux in root elongation zone is crucial for root hydrotropism. Moreover, we reveal that Arabidopsis ABA-insensitive 1, a key PP2C in ABA signaling, interacts directly with the C terminus of Arabidopsis plasma membrane H+-dependent adenosine triphosphatase 2 (AHA2) and dephosphorylates its penultimate threonine residue (Thr947), whose dephosphorylation negatively regulates AHA2.
Collapse
Affiliation(s)
- Rui Miao
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crops, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China.
| | - Wei Yuan
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crops, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China
| | - Yue Wang
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crops, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China
| | - Irene Garcia-Maquilon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Xiaolin Dang
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crops, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China
| | - Ying Li
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crops, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong
| | | | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Weifeng Xu
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crops, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China.
| |
Collapse
|
40
|
Wong JH, Klejchová M, Snipes SA, Nagpal P, Bak G, Wang B, Dunlap S, Park MY, Kunkel EN, Trinidad B, Reed JW, Blatt MR, Gray WM. SAUR proteins and PP2C.D phosphatases regulate H+-ATPases and K+ channels to control stomatal movements. PLANT PHYSIOLOGY 2021; 185:256-273. [PMID: 33631805 PMCID: PMC8133658 DOI: 10.1093/plphys/kiaa023] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/27/2020] [Indexed: 05/12/2023]
Abstract
Activation of plasma membrane (PM) H+-ATPase activity is crucial in guard cells to promote light-stimulated stomatal opening, and in growing organs to promote cell expansion. In growing organs, SMALL AUXIN UP RNA (SAUR) proteins inhibit the PP2C.D2, PP2C.D5, and PP2C.D6 (PP2C.D2/5/6) phosphatases, thereby preventing dephosphorylation of the penultimate phosphothreonine of PM H+-ATPases and trapping them in the activated state to promote cell expansion. To elucidate whether SAUR-PP2C.D regulatory modules also affect reversible cell expansion, we examined stomatal apertures and conductances of Arabidopsis thaliana plants with altered SAUR or PP2C.D activity. Here, we report that the pp2c.d2/5/6 triple knockout mutant plants and plant lines overexpressing SAUR fusion proteins exhibit enhanced stomatal apertures and conductances. Reciprocally, saur56 saur60 double mutants, lacking two SAUR genes normally expressed in guard cells, displayed reduced apertures and conductances, as did plants overexpressing PP2C.D5. Although altered PM H+-ATPase activity contributes to these stomatal phenotypes, voltage clamp analysis showed significant changes also in K+ channel gating in lines with altered SAUR and PP2C.D function. Together, our findings demonstrate that SAUR and PP2C.D proteins act antagonistically to facilitate stomatal movements through a concerted targeting of both ATP-dependent H+ pumping and channel-mediated K+ transport.
Collapse
Affiliation(s)
- Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
- Present address: Department of Biological Sciences, National University of Singapore, Singapore
| | - Martina Klejchová
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stephen A Snipes
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Punita Nagpal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Gwangbae Bak
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Bryan Wang
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Sonja Dunlap
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Mee Yeon Park
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Emma N Kunkel
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Brendan Trinidad
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Jason W Reed
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, UK
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
- Author for communication:
| |
Collapse
|
41
|
Dyla M, Kjærgaard M, Poulsen H, Nissen P. Structure and Mechanism of P-Type ATPase Ion Pumps. Annu Rev Biochem 2020; 89:583-603. [PMID: 31874046 DOI: 10.1146/annurev-biochem-010611-112801] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
P-type ATPases are found in all kingdoms of life and constitute a wide range of cation transporters, primarily for H+, Na+, K+, Ca2+, and transition metal ions such as Cu(I), Zn(II), and Cd(II). They have been studied through a wide range of techniques, and research has gained very significant insight on their transport mechanism and regulation. Here, we review the structure, function, and dynamics of P2-ATPases including Ca2+-ATPases and Na,K-ATPase. We highlight mechanisms of functional transitions that are associated with ion exchange on either side of the membrane and how the functional cycle is regulated by interaction partners, autoregulatory domains, and off-cycle states. Finally, we discuss future perspectives based on emerging techniques and insights.
Collapse
Affiliation(s)
- Mateusz Dyla
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Magnus Kjærgaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| |
Collapse
|
42
|
Abstract
The promotive effect of auxin on shoot cell expansion provided the bioassay used to isolate this central plant hormone nearly a century ago. While the mechanisms underlying auxin perception and signaling to regulate transcription have largely been elucidated, how auxin controls cell expansion is only now attaining molecular-level definition. The good news is that the decades-old acid growth theory invoking plasma membrane H+-ATPase activation is still useful. The better news is that a mechanistic framework has emerged, wherein Small Auxin Up RNA (SAUR) proteins regulate protein phosphatases to control H+-ATPase activity. In this review, we focus on rapid auxin effects, their relationship to H+-ATPase activation and other transporters, and dependence on TIR1/AFB signaling. We also discuss how some observations, such as near-instantaneous effects on ion transport and root growth, do not fit into a single, comprehensive explanation of how auxin controls cell expansion, and where more research is warranted.
Collapse
Affiliation(s)
- Minmin Du
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108, USA; ,
| | - Edgar P Spalding
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA;
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108, USA; ,
| |
Collapse
|
43
|
Liang C, Ma Y, Li L. Comparison of plasma membrane H +-ATPase response to acid rain stress between rice and soybean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6389-6400. [PMID: 31873880 DOI: 10.1007/s11356-019-07285-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Acid rain is a global environmental issue due to inhibiting severely plant growth and productivity. To discover the tolerant mechanism in plants under acid rain stress, we studied the difference in response of two crops (rice and soybean) to simulated acid rain (pH 5.0 ~ 2.5) at growth and physiological, biochemical and molecular levels during exposure and recovery periods by hydroponics. By analyzing the change in relative growth rate, chlorophyll content and plasma permeability in rice and soybean, we found that rice could tolerate acid rain above pH 3.0 whereas soybean could tolerate acid rain above pH 4.5. By RT-PCR analyses, immunoprecipitation and enzyme kinetics study, we observed that pH 4.5 acid rain promoted the transcriptional expression of H+-ATPase genes and the phosphorylation of H+-ATPase and increased H+-ATPase activity in the two crops for resisting acid stress. The increased degree in soybean was larger than that in rice. Acid rain at pH 3.0 still promoted the transcription regulation to maintain H+-ATPase activity higher in rice for resisting stress but caused irreversible inhibition on express of H+-ATPase and decreased H+-ATPase activity in soybean. All results suggest that the different tolerance in rice and soybean to acid rain stress could be associated with difference in plasma membrane H+-ATPase at transcriptional regulation, post-translational modification and the substrate affinity.
Collapse
Affiliation(s)
- Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Jiangnan University, Wuxi, 214122, China.
| | - Yongjia Ma
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lingrui Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
44
|
Cao Y, Zhang M, Liang X, Li F, Shi Y, Yang X, Jiang C. Natural variation of an EF-hand Ca 2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nat Commun 2020; 11:186. [PMID: 31924762 PMCID: PMC6954252 DOI: 10.1038/s41467-019-14027-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/11/2019] [Indexed: 12/26/2022] Open
Abstract
Sodium (Na+) toxicity is one of the major damages imposed on crops by saline-alkaline stress. Here we show that natural maize inbred lines display substantial variations in shoot Na+ contents and saline-alkaline (NaHCO3) tolerance, and reveal that ZmNSA1 (Na+Content under Saline-Alkaline Condition) confers shoot Na+ variations under NaHCO3 condition by a genome-wide association study. Lacking of ZmNSA1 promotes shoot Na+ homeostasis by increasing root Na+ efflux. A naturally occurred 4-bp deletion decreases the translation efficiency of ZmNSA1 mRNA, thus promotes Na+ homeostasis. We further show that, under saline-alkaline condition, Ca2+ binds to the EF-hand domain of ZmNSA1 then triggers its degradation via 26S proteasome, which in turn increases the transcripts levels of PM-H+-ATPases (MHA2 and MHA4), and consequently enhances SOS1 Na+/H+ antiporter-mediated root Na+ efflux. Our studies reveal the mechanism of Ca2+-triggered saline-alkaline tolerance and provide an important gene target for breeding saline-alkaline tolerant maize varieties. Saline-alkaline stress affects worldwide crops production, but the tolerance mechanisms have not been fully elucidated. Here, the authors show that EF-hand Ca2 + -binding-protein coding gene ZmNSA1 can regulate root H + efflux, Na + homeostasis, and saline-alkaline tolerance in maize.
Collapse
Affiliation(s)
- Yibo Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Xiaoyan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Fenrong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China.,Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China.,Laboratory of Agrobiotechnology and National Maize Improvement Center of China, MOA Key Lab of Maize Biology, China Agricultural University, Beijing, 100193, China
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China. .,Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China. .,Outstanding Discipline Program for the Universities in Beijing, Beijing, 100094, China.
| |
Collapse
|
45
|
Wang PH, Lee CE, Lin YS, Lee MH, Chen PY, Chang HC, Chang IF. The Glutamate Receptor-Like Protein GLR3.7 Interacts With 14-3-3ω and Participates in Salt Stress Response in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:1169. [PMID: 31632419 DOI: 10.3389/fpls.2019.01169/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/27/2019] [Indexed: 05/25/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) are ligand-gated cation channels that mediate fast excitatory neurotransmission in the mammalian central nervous system. In the model plant Arabidopsis thaliana, a family of 20 glutamate receptor-like proteins (GLRs) shares similarities to animal iGluRs in sequence and predicted secondary structure. However, the function of GLRs in plants is little known. In the present study, a serine site (Ser-860) of AtGLR3.7 phosphorylated by a calcium-dependent protein kinase (CDPK) was identified and confirmed by an in vitro kinase assay. Using a bimolecular fluorescence complementation and quartz crystal microbalance analyses, the physical interaction between AtGLR3.7 and the 14-3-3ω protein was confirmed. The mutation of Ser-860 to alanine abolished this interaction, indicating that Ser-860 is the 14-3-3ω binding site of AtGLR3.7. Compared with wild type, seed germination of the glr3.7-2 mutant was more sensitive to salt stress. However, the primary root growth of GLR3.7-S860A overexpression lines was less sensitive to salt stress than that of the wild-type line. In addition, the increase of cytosolic calcium ion concentration by salt stress was significantly lower in the glr3.7-2 mutant line than in the wild-type line. Moreover, association of 14-3-3 proteins to microsomal fractions was less in GLR3.7-S860A overexpression lines than in GLR3.7 overexpression line under 150 mM NaCl salt stress condition. Overall, our results indicated that GLR3.7 is involved in salt stress response in A. thaliana by affecting calcium signaling.
Collapse
Affiliation(s)
- Po-Hsun Wang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Cheng-En Lee
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yi-Sin Lin
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Man-Hsuan Lee
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Pei-Yuan Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Hui-Chun Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
46
|
Haj Ahmad F, Wu XN, Stintzi A, Schaller A, Schulze WX. The Systemin Signaling Cascade As Derived from Time Course Analyses of the Systemin-responsive Phosphoproteome. Mol Cell Proteomics 2019; 18:1526-1542. [PMID: 31138643 PMCID: PMC6683004 DOI: 10.1074/mcp.ra119.001367] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/20/2019] [Indexed: 11/06/2022] Open
Abstract
Systemin is a small peptide with important functions in plant wound response signaling. Although the transcriptional responses of systemin action are well described, the signaling cascades involved in systemin perception and signal transduction at the protein level are poorly understood. Here we used a tomato cell suspension culture system to profile phosphoproteomic responses induced by systemin and its inactive Thr17Ala analog, allowing us to reconstruct a systemin-specific kinase/phosphatase signaling network. Our time-course analysis revealed early phosphorylation events at the plasma membrane, such as dephosphorylation of H+-ATPase, rapid phosphorylation of NADPH-oxidase and Ca2+-ATPase. Later responses involved transient phosphorylation of small GTPases, vesicle trafficking proteins and transcription factors. Based on a correlation analysis of systemin-induced phosphorylation profiles, we predicted substrate candidates for 44 early systemin-responsive kinases, which includes receptor kinases and downstream kinases such as MAP kinases, as well as nine phosphatases. We propose a regulatory module in which H+-ATPase LHA1 is rapidly de-phosphorylated at its C-terminal regulatory residue T955 by phosphatase PLL5, resulting in the alkalization of the growth medium within 2 mins of systemin treatment. We found the MAP kinase MPK2 to have increased phosphorylation level at its activating TEY-motif at 15 min post-treatment. The predicted interaction of MPK2 with LHA1 was confirmed by in vitro kinase assays, suggesting that the H+-ATPase LHA1 is re-activated by MPK2 later in the systemin response. Our data set provides a resource of proteomic events involved in systemin signaling that will be valuable for further in-depth functional studies in elucidation of systemin signaling cascades.
Collapse
Affiliation(s)
- Fatima Haj Ahmad
- ‡University of Hohenheim, Institute of Molecular Plant Physiology, 70593 Stuttgart, Germany
| | - Xu Na Wu
- ‡University of Hohenheim, Institute of Molecular Plant Physiology, 70593 Stuttgart, Germany
| | - Annick Stintzi
- ‡University of Hohenheim, Institute of Molecular Plant Physiology, 70593 Stuttgart, Germany
| | - Andreas Schaller
- ‡University of Hohenheim, Institute of Molecular Plant Physiology, 70593 Stuttgart, Germany
| | - Waltraud X Schulze
- ‡University of Hohenheim, Institute of Molecular Plant Physiology, 70593 Stuttgart, Germany.
| |
Collapse
|
47
|
Phosphorylation of 14-3-3ζ links YAP transcriptional activation to hypoxic glycolysis for tumorigenesis. Oncogenesis 2019; 8:31. [PMID: 31076568 PMCID: PMC6510816 DOI: 10.1038/s41389-019-0143-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/24/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Hypoxic microenvironment deregulates metabolic homeostasis in cancer cells albeit the underlying mechanisms involved in this process remain hitherto enigmatic. 14-3-3ζ/Yes-associated protein (YAP) axis plays a principal role in malignant transformation and tumor development. Here, we report that hypoxia disassembles 14-3-3ζ from YAP and thereby promotes YAP nuclear localization mediated by ERK2, which directly binds to the D-site of mitogen-activated protein kinase (MAPK) docking domain in 14-3-3ζ Leu98/100 and phosphorylates 14-3-3ζ at Ser37. When localizing in nucleus, YAP recruits at pyruvate kinase M2 (PKM2) gene promoter with hypoxia-inducible factor 1α (HIF-1α), for which PKM2 transcription is required. 14-3-3ζ Ser37 phosphorylation is instrumental for the hypoxia-induced glucose uptake, lactate production, and clonogenicity of pancreatic ductal adenocarcinoma (PDAC) cells, as well as tumorigenesis in mice. The 14-3-3ζ Ser37 phosphorylation positively correlates with p-ERK1/2 activity and HIF-1α expression in clinical samples from patients with PDAC and predicts unfavorable prognosis. Our findings underscore an appreciable linkage between YAP transcriptional activation and hypoxic glycolysis governed by ERK2-dependent 14-3-3ζ Ser37 phosphorylation for malignant progression of PDAC.
Collapse
|
48
|
Minami A, Takahashi K, Inoue SI, Tada Y, Kinoshita T. Brassinosteroid Induces Phosphorylation of the Plasma Membrane H+-ATPase during Hypocotyl Elongation in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:935-944. [PMID: 30649552 DOI: 10.1093/pcp/pcz005] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 05/19/2023]
Abstract
Brassinosteroids (BRs) are steroid phytohormones that regulate plant growth and development, and promote cell elongation at least in part via the acid-growth process. BRs have been suggested to induce cell elongation by the activating plasma membrane (PM) H+-ATPase. However, the mechanism by which BRs activate PM H+-ATPase has not been clarified. In this study, we investigated the effects of BR on hypocotyl elongation and the phosphorylation status of a penultimate residue, threonine, of PM H+-ATPase, which affects the activation, in the etiolated seedlings of Arabidopsis thaliana. Brassinolide (BL), an active endogenous BR, induced hypocotyl elongation, phosphorylation of the penultimate, threonine residue of PM H+-ATPase, and binding of the 14-3-3 protein to PM H+-ATPase in the endogenous BR-depleted seedlings. Changes in both BL-induced elongation and phosphorylation of PM H+-ATPase showed similar concentration dependency. BL did not induce phosphorylation of PM H+-ATPase in the BR receptor mutant bri1-6. In contrast, bikinin, a specific inhibitor of BIN2 that acts as a negative regulator of BR signaling, induced its phosphorylation. Furthermore, BL accumulated the transcripts of SMALL AUXIN UP RNA 9 (SAUR9) and SAUR19, which suppress dephosphorylation of the PM H+-ATPase penultimate residue by inhibiting D-clade type 2C protein phosphatase in the hypocotyls of etiolated seedlings. From these results, we conclude that BL-induced phosphorylation of PM H+-ATPase penultimate residue is mediated via the BRI1-BIN2 signaling pathway, together with the accumulation of SAURs during hypocotyl elongation.
Collapse
Affiliation(s)
- Anzu Minami
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Koji Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| | - Shin-Ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
49
|
Palmgren M, Morsomme P. The plasma membrane H + -ATPase, a simple polypeptide with a long history. Yeast 2019; 36:201-210. [PMID: 30447028 PMCID: PMC6590192 DOI: 10.1002/yea.3365] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 11/11/2022] Open
Abstract
The plasma membrane H+ -ATPase of fungi and plants is a single polypeptide of fewer than 1,000 residues that extrudes protons from the cell against a large electric and concentration gradient. The minimalist structure of this nanomachine is in stark contrast to that of the large multi-subunit FO F1 ATPase of mitochondria, which is also a proton pump, but under physiological conditions runs in the reverse direction to act as an ATP synthase. The plasma membrane H+ -ATPase is a P-type ATPase, defined by having an obligatory phosphorylated reaction cycle intermediate, like cation pumps of animal membranes, and thus, this pump has a completely different mechanism to that of FO F1 ATPases, which operates by rotary catalysis. The work that led to these insights in plasma membrane H+ -ATPases of fungi and plants has a long history, which is briefly summarized in this review.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology (LIBST)UCLouvainLouvain‐la‐NeuveBelgium
| |
Collapse
|
50
|
Yang Z, Wang C, Xue Y, Liu X, Chen S, Song C, Yang Y, Guo Y. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance. Nat Commun 2019; 10:1199. [PMID: 30867421 PMCID: PMC6416337 DOI: 10.1038/s41467-019-09181-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/20/2019] [Indexed: 11/09/2022] Open
Abstract
Calcium is a universal secondary messenger that triggers many cellular responses. However, it is unclear how a calcium signal is coordinately decoded by different calcium sensors, which in turn regulate downstream targets to fulfill a specific physiological function. Here we show that SOS2-LIKE PROTEIN KINASE5 (PKS5) can negatively regulate the Salt-Overly-Sensitive signaling pathway in Arabidopsis. PKS5 can interact with and phosphorylate SOS2 at Ser294, promote the interaction between SOS2 and 14-3-3 proteins, and repress SOS2 activity. However, salt stress promotes an interaction between 14-3-3 proteins and PKS5, repressing its kinase activity and releasing inhibition of SOS2. We provide evidence that 14-3-3 proteins bind to Ca2+, and that Ca2+ modulates 14-3-3-dependent regulation of SOS2 and PKS5 kinase activity. Our results suggest that a salt-induced calcium signal is decoded by 14-3-3 and SOS3/SCaBP8 proteins, which selectively activate/inactivate the downstream protein kinases SOS2 and PKS5 to regulate Na+ homeostasis by coordinately mediating plasma membrane Na+/H+ antiporter and H+-ATPase activity.
Collapse
Affiliation(s)
- Zhijia Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Chongwu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Yuan Xue
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xiao Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
| | - ChunPeng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, 475001, Kaifeng, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|