1
|
Hu L, Xiao S, Sun J, Wang F, Yin G, Xu W, Cheng J, Du G, Chen J, Kang Z. Regulating cellular metabolism and morphology to achieve high-yield synthesis of hyaluronan with controllable molecular weights. Nat Commun 2025; 16:2076. [PMID: 40021631 PMCID: PMC11871322 DOI: 10.1038/s41467-025-56950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/06/2025] [Indexed: 03/03/2025] Open
Abstract
High-yield biosynthesis of hyaluronan (HA) with controllable molecular weights (MWs) remains challenging due to the poorly understood function of Class I HA synthase (HAS) and the metabolic imbalance between HA biosynthesis and cellular growth. Here, we systematically characterize HAS to identify crucial regions involved in HA polymerization, secretion, and MW control. We construct HAS mutants that achieve complete HA secretion and expand the MW range from 300 to 1400 kDa. By dynamically regulating UDP-glucose 6-dehydrogenase activity and applying an adaptive evolution approach, we recover cell normal growth with increased metabolic capacities. Final titers and productivities for high MW HA (500 kDa) and low MW HA (10 kDa) reach 45 g L-1 and 105 g L-1, 0.94 g L-1 h-1 and 1.46 g L-1 h-1, respectively. Our findings advance our understanding of HAS function and the interplay between cell metabolism and morphology, and provide a shape-guided engineering strategy to optimize microbial cell factories.
Collapse
Affiliation(s)
- Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, China
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Sen Xiao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Jieyu Sun
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Faying Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Guobin Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Wenjie Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Jianhua Cheng
- Institute of Future Food Technology, JITRI, Yixing, China
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
- The Science Center for Future Foods, Jiangnan University, Wuxi, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China.
- Institute of Future Food Technology, JITRI, Yixing, China.
| |
Collapse
|
2
|
Wang J, Wu Z, Cao L, Long F. Differential Regulation of Hyaluronan Synthesis by Three Isoforms of Hyaluronan Synthases in Mammalian Cells. Biomolecules 2024; 14:1567. [PMID: 39766274 PMCID: PMC11673962 DOI: 10.3390/biom14121567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Hyaluronan (HA) is one of the crucial components of the extracellular matrix in vertebrates and is synthesized by three hyaluronan synthases (HASs), namely HAS1, HAS2, and HAS3. The low expression level of HASs in normal keratinocytes and other various types of cells presents a recognized challenge, impeding biological and pathological research on their localization. In this study, the human proteins HAS1, HAS2, and HAS3 with fused maltose-binding protein (MBP) tags were successfully expressed at high levels and purified for the first time in HEK293F cells. The enzymatic properties of the three HAS proteins were further characterized and compared. A pulse-field gel electrophoresis analysis of the size distribution of the hyaluronan generated in vitro by the membrane proteins demonstrated that the three HAS isoforms generate HA polymer chains at different molecular masses. Kinetic studies demonstrated that the three HAS proteins differed in their catalytic efficiency and apparent Km values for the two substrates, UDP-GlcA and UDP-GlcNAc. Furthermore, the cellular hyaluronan secretion by the three isoenzymes was evaluated and quantified in the HEK 293T cells transfected with GFP-tagged HAS1-GFP, HAS2-GFP, and HAS3-GFP using an ELISA assay. These findings enhance our understanding of the membrane protein HASs in mammalian cells.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (J.W.); (Z.W.); (L.C.)
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhikun Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (J.W.); (Z.W.); (L.C.)
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Longtao Cao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (J.W.); (Z.W.); (L.C.)
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Feng Long
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (J.W.); (Z.W.); (L.C.)
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Rabelink TJ, Wang G, van der Vlag J, van den Berg BM. The roles of hyaluronan in kidney development, physiology and disease. Nat Rev Nephrol 2024; 20:822-832. [PMID: 39191935 DOI: 10.1038/s41581-024-00883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
The hyaluronan (HA) matrix in the tissue microenvironment is crucial for maintaining homeostasis by regulating inflammatory signalling, endothelial-mesenchymal transition and cell migration. During development, covalent modifications and osmotic swelling of HA create mechanical forces that initiate midgut rotation, vascular patterning and branching morphogenesis. Together with its main cell surface receptor, CD44, HA establishes a physicochemical scaffold at the cell surface that facilitates the interaction and clustering of growth factors and receptors that is required for normal physiology. High-molecular-weight HA, tumour necrosis factor-stimulated gene 6, pentraxin 3 and CD44 form a stable pericellular matrix that promotes tissue regeneration and reduces inflammation. By contrast, breakdown of high-molecular-weight HA into depolymerized fragments by hyaluronidases triggers inflammatory signalling, leukocyte migration and angiogenesis, contributing to tissue damage and fibrosis in kidney disease. Targeting HA metabolism is challenging owing to its dynamic regulation and tissue-specific functions. Nonetheless, modulating HA matrix functions by targeting its binding partners holds promise as a therapeutic strategy for restoring tissue homeostasis and mitigating pathological processes. Further research in this area is warranted to enable the development of novel therapeutic approaches for kidney and other diseases characterized by dysregulated HA metabolism.
Collapse
Affiliation(s)
- Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| | - Gangqi Wang
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Ebrahimi T, Keramati M, Khodabakhsh F, Cohan RA. Enzyme variants in biosynthesis and biological assessment of different molecular weight hyaluronan. AMB Express 2024; 14:56. [PMID: 38730188 PMCID: PMC11087452 DOI: 10.1186/s13568-024-01713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
In the present study, low- and high-molecular-weight hyaluronic acids (LMW-HA and HMW-HA) were synthesized in vitro by truncated Streptococcus equisimilis hyaluronan synthases (SeHAS). The enzyme kinetic parameters were determined for each enzyme variant. The MW, structure, dispersity, and biological activity of polymers were determined by electrophoresis, FTIR spectroscopy, carbazole, cell proliferation, and cell migration assay, respectively. The specific activities were calculated as 7.5, 6.8, 4.9, and 2.8 µgHA µgenzyme-1 min-1 for SeHAS, HAS123, HAS23, and HASIntra, respectively. The results revealed SeHAS produced a polydisperse HMW-HA (268 kDa), while HAS123 and HAS23 produced a polydisperse LMW-HA (< 30 kDa). Interestingly, HASIntra produced a low-disperse LMW-HA. Kinetics studies revealed the truncated variants displayed increased Km values for two substrates when compared to the wild-type enzyme. Biological assessments indicated all LMW-HAs showed a dose-dependent proliferation activity on endothelial cells (ECs), whereas HMW-HAs exhibited an inhibitory effect. Also, LMW-HAs had the highest cell migration effect at 10 µg/mL, while at 200 µg/mL, both LMW- and HMW-HAs postponed the healing recovery rate. The study elucidated that the transmembrane domains (TMDs) of SeHAS affect the enzyme kinetics, HA-titer, HA-size, and HA-dispersity. These findings open new insight into the rational engineering of SeHAS to produce size-defined HA.
Collapse
Affiliation(s)
- Tahereh Ebrahimi
- New Technologies Research Group, Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Keramati
- New Technologies Research Group, Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran.
| | - Farnaz Khodabakhsh
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Ahangari Cohan
- New Technologies Research Group, Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Wang D, Hu L, Xu R, Zhang W, Xiong H, Wang Y, Du G, Kang Z. Production of different molecular weight glycosaminoglycans with microbial cell factories. Enzyme Microb Technol 2023; 171:110324. [PMID: 37742407 DOI: 10.1016/j.enzmictec.2023.110324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
Glycosaminoglycans (GAGs) are naturally occurring acidic polysaccharides with wide applications in pharmaceuticals, cosmetics, and health foods. The diverse biological activities and physiological functions of GAGs are closely associated with their molecular weights and sulfation patterns. Except for the non-sulfated hyaluronan which can be synthesized naturally by group A Streptococcus, all the other GAGs such as heparin and chondroitin sulfate are mainly acquired from animal tissues. Microbial cell factories provide a more effective platform for the production of structurally homogeneous GAGs. Enhancing the production efficiency of polysaccharides, accurately regulating the GAGs molecular weight, and effectively controlling the sulfation degree of GAGs represent the major challenges of developing GAGs microbial cell factories. Several enzymatic, metabolic engineering, and synthetic biology strategies have been developed to tackle these obstacles and push forward the industrialization of biotechnologically produced GAGs. This review summarizes the recent advances in the construction of GAGs synthesis cell factories, regulation of GAG molecular weight, and modification of GAGs chains. Furthermore, the challenges and prospects for future research in this field are also discussed.
Collapse
Affiliation(s)
- Daoan Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Haibo Xiong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
6
|
Rykov SV, Battalova IY, Mironov AS. Construction of Recombinant Bacillus subtilis Strains Producing Hyaluronic Acid. RUSS J GENET+ 2022; 58:507-527. [DOI: 10.1134/s1022795422050088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/04/2025]
|
7
|
Ma Y, Qiu Y, Yu C, Li S, Xu H. Design and construction of a Bacillus amyloliquefaciens cell factory for hyaluronic acid synthesis from Jerusalem artichoke inulin. Int J Biol Macromol 2022; 205:410-418. [PMID: 35202630 DOI: 10.1016/j.ijbiomac.2022.02.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 11/05/2022]
Abstract
Hyaluronic acid (HA), a high-value biomacromolecule, has wide applications in medical, cosmetic and food fields. Currently, employing the safe-grade microorganisms for de novo biosynthesis of HA from renewable substrates has become a promising alternative. In this study, we established a Bacillus amyloliquefaciens strain as platform for HA production from Jerusalem artichoke inulin. Firstly, the different HA and UDP-GlcUA synthase genes were introduced into B. amyloliquefaciens to construct the HA synthesis pathway. Secondly, the byproduct polysaccharides were removed by knocking sacB and epsA-O using CRISPR/Cas9n system, resulting in a 13% increase in HA production. Finally, 2.89 g/L HA with a high molecular weight of 1.5 MDa was obtained after optimizing fermentation conditions and adding osmotic agents. This study demonstrates the engineered B. amyloliquefaciens can effectively synthesize HA with Jerusalem artichoke inulin and provides a green route for HA production.
Collapse
Affiliation(s)
- Yanqin Ma
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Caiyuan Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
8
|
Manfrão-Netto JHC, Queiroz EB, de Oliveira Junqueira AC, Gomes AMV, Gusmão de Morais D, Paes HC, Parachin NS. Genetic strategies for improving hyaluronic acid production in recombinant bacterial culture. J Appl Microbiol 2021; 132:822-840. [PMID: 34327773 DOI: 10.1111/jam.15242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
Hyaluronic acid (HA) is a biopolymer of repeating units of glucuronic acid and N-acetylglucosamine. Its market was valued at USD 8.9 billion in 2019. Traditionally, HA has been obtained from rooster comb-like animal tissues and fermentative cultures of attenuated pathogenic streptococci. Various attempts have been made to engineer a safe micro-organism for HA synthesis; however, the HA titres obtained from these attempts are in general still lower than those achieved by natural, pathogenic producers. In this scenario, ways to increase HA molecule length and titres in already constructed strains are gaining attention in the last years, but no recent publication has reviewed the main genetic strategies applied to improve HA production on heterologous hosts. In light of that, we hereby compile the advances made in the engineering of micro-organisms to improve HA synthesis.
Collapse
Affiliation(s)
- João H C Manfrão-Netto
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Enzo Bento Queiroz
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Ana C de Oliveira Junqueira
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Antônio M V Gomes
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Daniel Gusmão de Morais
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil.,Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Hugo Costa Paes
- Clinical Medicine Division, University of Brasília Medical School, Brasília, Brazil
| | - Nádia Skorupa Parachin
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil.,Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
9
|
York A, Lloyd AJ, Del Genio CI, Shearer J, Hinxman KJ, Fritz K, Fulop V, Dowson CG, Khalid S, Roper DI. Structure-based modeling and dynamics of MurM, a Streptococcus pneumoniae penicillin resistance determinant present at the cytoplasmic membrane. Structure 2021; 29:731-742.e6. [PMID: 33740396 PMCID: PMC8280954 DOI: 10.1016/j.str.2021.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Branched Lipid II, required for the formation of indirectly crosslinked peptidoglycan, is generated by MurM, a protein essential for high-level penicillin resistance in the human pathogen Streptococcus pneumoniae. We have solved the X-ray crystal structure of Staphylococcus aureus FemX, an isofunctional homolog, and have used this as a template to generate a MurM homology model. Using this model, we perform molecular docking and molecular dynamics to examine the interaction of MurM with the phospholipid bilayer and the membrane-embedded Lipid II substrate. Our model suggests that MurM is associated with the major membrane phospholipid cardiolipin, and experimental evidence confirms that the activity of MurM is enhanced by this phospholipid and inhibited by its direct precursor phosphatidylglycerol. The spatial association of pneumococcal membrane phospholipids and their impact on MurM activity may therefore be critical to the final architecture of peptidoglycan and the expression of clinically relevant penicillin resistance in this pathogen.
Collapse
Affiliation(s)
- Anna York
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Adrian J Lloyd
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Charo I Del Genio
- Centre for Fluid and Complex Systems, School of Computing, Electronics and Mathematics, University of Coventry, West Midlands CV1 5FB, UK
| | - Jonathan Shearer
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| | - Karen J Hinxman
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Konstantin Fritz
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Vilmos Fulop
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Christopher G Dowson
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, UK.
| | - David I Roper
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Qiu Y, Ma Y, Huang Y, Li S, Xu H, Su E. Current advances in the biosynthesis of hyaluronic acid with variable molecular weights. Carbohydr Polym 2021; 269:118320. [PMID: 34294332 DOI: 10.1016/j.carbpol.2021.118320] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022]
Abstract
Hyaluronic acid (HA) is a naturally formed acidic mucopolysaccharide, with excellent moisturising properties and used widely in the medicine, cosmetics, and food industries. The industrial production of specific molecular weight HA has become imperative. Different biological activities and physiological functions of HA mainly depend on the degree of polymerisation. This article reviews the research status and development prospects of the green biosynthesis and molecular weight regulation of HA. There is an application-based prerequisite of specific molecular weight of HA that could be regulated either during the fermentation process or via a controlled HA degradation process. This work provides an important theoretical basis for the downstream efficient production of diversified HA, which will further accelerate the research applications of HA and provide a good scientific basis and method reference for the study of the molecular weight regulation of similar biopolymers.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; Yangzhou Rixing Bio-Tech Co., Ltd., Yangzhou 225601, PR China.
| | - Yanqin Ma
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
11
|
Pan NC, Baldo C, Pereira HCB, Vignoli JA, Celligoi MAPC. Perspectives of microbial hyaluronic acid utilization in wound healing. MICROBIAL BIOTECHNOLOGY IN FOOD AND HEALTH 2021:227-250. [DOI: 10.1016/b978-0-12-819813-1.00009-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Gunasekaran V, D G, V P. Role of membrane proteins in bacterial synthesis of hyaluronic acid and their potential in industrial production. Int J Biol Macromol 2020; 164:1916-1926. [PMID: 32791275 DOI: 10.1016/j.ijbiomac.2020.08.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan polymer found in various parts of human body and is required for functions like lubrication, water homeostasis etc. Hyaluronic acid is mostly produced industrially by bacterial fermentation for pharmaceutical and cosmetic applications. This review discusses on the role of membrane proteins involved in synthesis and transport of bacterial HA, since HA is a transmembrane product. The different types of membrane proteins involved, their transcriptional control in wild type bacteria and the expression of those proteins in various recombinant hosts have been discussed. The role of phospholipids and metal ions on membrane proteins activity, HA yield and size of HA have also been discussed. Today with an estimated market of US$ 8.3 billion and which is expected to grow to US$ 15.25 billion in 2026, it is essential to increase the efficiency of the industrial HA production process. So this review also proposes on how those membrane proteins and cellular mechanisms like the transcriptional control can be utilised to develop efficient industrial strains that enhance the yield and size of HA produced.
Collapse
Affiliation(s)
| | - Gowdhaman D
- Biomass conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India
| | - Ponnusami V
- Biomass conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India.
| |
Collapse
|
13
|
Intracellular hyaluronan: Importance for cellular functions. Semin Cancer Biol 2020; 62:20-30. [DOI: 10.1016/j.semcancer.2019.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
|
14
|
Wei W, Faubel JL, Selvakumar H, Kovari DT, Tsao J, Rivas F, Mohabir AT, Krecker M, Rahbar E, Hall AR, Filler MA, Washburn JL, Weigel PH, Curtis JE. Self-regenerating giant hyaluronan polymer brushes. Nat Commun 2019; 10:5527. [PMID: 31797934 PMCID: PMC6892876 DOI: 10.1038/s41467-019-13440-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 11/08/2019] [Indexed: 12/25/2022] Open
Abstract
Tailoring interfaces with polymer brushes is a commonly used strategy to create functional materials for numerous applications. Existing methods are limited in brush thickness, the ability to generate high-density brushes of biopolymers, and the potential for regeneration. Here we introduce a scheme to synthesize ultra-thick regenerating hyaluronan polymer brushes using hyaluronan synthase. The platform provides a dynamic interface with tunable brush heights that extend up to 20 microns - two orders of magnitude thicker than standard brushes. The brushes are easily sculpted into micropatterned landscapes by photo-deactivation of the enzyme. Further, they provide a continuous source of megadalton hyaluronan or they can be covalently-stabilized to the surface. Stabilized brushes exhibit superb resistance to biofilms, yet are locally digested by fibroblasts. This brush technology provides opportunities in a range of arenas including regenerating tailorable biointerfaces for implants, wound healing or lubrication as well as fundamental studies of the glycocalyx and polymer physics.
Collapse
Affiliation(s)
- Wenbin Wei
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jessica L Faubel
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hemaa Selvakumar
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Petit H. Parker Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Daniel T Kovari
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Joanna Tsao
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Felipe Rivas
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amar T Mohabir
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michelle Krecker
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Elaheh Rahbar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Adam R Hall
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michael A Filler
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jennifer L Washburn
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Paul H Weigel
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jennifer E Curtis
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.
- Petit H. Parker Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
15
|
Mohan N, Pavan SS, Achar A, Swaminathan N, Sivaprakasam S. Calorespirometric investigation of Streptococcus zooepidemicus metabolism: Thermodynamics of anabolic payload contribution by growth and hyaluronic acid synthesis. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Schulte S, Doss SS, Jeeva P, Ananth M, Blank LM, Jayaraman G. Exploiting the diversity of streptococcal hyaluronan synthases for the production of molecular weight–tailored hyaluronan. Appl Microbiol Biotechnol 2019; 103:7567-7581. [DOI: 10.1007/s00253-019-10023-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/28/2022]
|
17
|
A hyaluronan-based polysaccharide peptide generated by a genetically modified Streptococcus zooepidemicus. Carbohydr Res 2019; 478:25-32. [DOI: 10.1016/j.carres.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/01/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
|
18
|
Malke H. Genetics and Pathogenicity Factors of Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0002-2017. [PMID: 30873932 PMCID: PMC11590425 DOI: 10.1128/microbiolspec.gpp3-0002-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 12/17/2022] Open
Abstract
Of the eight phylogenetic groups comprising the genus Streptococcus, Lancefield group C and G streptococci (GCS and GGS, resp.) occupy four of them, including the Pyogenic, Anginosus, and Mitis groups, and one Unnamed group so far. These organisms thrive as opportunistic commensals in both humans and animals but may also be associated with clinically serious infections, often resembling those due to their closest genetic relatives, the group A streptoccci (GAS). Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 12 species, several of which being subdivided into subspecies. This review summarizes these advances, citing 264 early and recent references. It focuses on the molecular structure and genetic regulation of clinically important proteins associated with the cell wall, cytoplasmic membrane and extracellular environment. The article also addresses the question of how, based on the current knowledge, basic research and translational medicine might proceed to further advance our understanding of these multifaceted organisms. Particular emphasis in this respect is placed on streptokinase as the protein determining the host specificity of infection and the Rsh-mediated stringent response with its potential for supporting bacterial survival under nutritional stress conditions.
Collapse
Affiliation(s)
- Horst Malke
- Friedrich Schiller University Jena, Faculty of Biology and Pharmacy, D-07743 Jena, Germany, and University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73190
| |
Collapse
|
19
|
Westbrook AW, Ren X, Oh J, Moo-Young M, Chou CP. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metab Eng 2018; 47:401-413. [PMID: 29698777 DOI: 10.1016/j.ymben.2018.04.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/03/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
Abstract
Hyaluronic acid (HA) is a high-value biopolymer that is produced in large scales using attenuated strains ofgroup C streptococci. However, due to the pathogenicity and fastidious nature of these bacteria, the development of bioprocesses for HA production centered on robust 'Generally Recognized as Safe (GRAS)' organisms, such as Bacillus subtilis, is of increased interest. Here, we report metabolic engineering of novel B. subtilis strains in which the carbon flux has been partially diverted from central metabolism, i.e. the pentose phosphate pathway (PPP) and glycolysis, into HA biosynthesis. First, an improved base strain of B. subtilis was engineered for more effective HA production with less susceptibility to catabolite repression when expressing genes from a xylose-inducible promoter. Subsequently, Clustered Regularly Interspaced Palindromic Repeats interference (CRISPRi) was applied to reduce the expression of individual pfkA or zwf in the base strain, leading to substantial improvements to the HA titer with a concomitant decrease in the molecular weight (MW). On the other hand, multiplexed repression of both pfkA and zwf expression resulted in increases to the HA titer of up to 108% and enhancements to the MW, compared to the base strain. Moreover, the addition of exogenous HA monomers, i.e. glucuronic acid (GlcUA) and N-acetyl-glucosamine (GlcNAc), to B. subtilis cultures markedly improved the HA MW but decreased the HA titer, providing insights into the mechanism of HA biosynthesis by streptococcal hyaluronan synthase (SeHAS) in B. subtilis. Our study demonstrates the successful application of metabolic engineering strategies to establish B. subtilis as an effective platform for high-level HA production.
Collapse
Affiliation(s)
- Adam W Westbrook
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 5B6
| | - Xiang Ren
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 5B6
| | - Jaewon Oh
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 5B6
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 5B6
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 5B6.
| |
Collapse
|
20
|
Enhancing fructosylated chondroitin production in Escherichia coli K4 by balancing the UDP-precursors. Metab Eng 2018; 47:314-322. [PMID: 29654832 DOI: 10.1016/j.ymben.2018.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/27/2018] [Accepted: 04/11/2018] [Indexed: 11/23/2022]
Abstract
Microbial production of chondroitin and chondroitin-like polysaccharides from renewable feedstock is a promising and sustainable alternative to extraction from animal tissues. In this study, we attempted to improve production of fructosylated chondroitin in Escherichia coli K4 by balancing intracellular levels of the precursors UDP-GalNAc and UDP-GlcA. To this end, we deleted pfkA to favor the production of Fru-6-P. Then, we identified rate-limiting enzymes in the synthesis of UDP-precursors. Third, UDP-GalNAc synthesis, UDP-GlcA synthesis, and chondroitin polymerization were combinatorially optimized by altering the expression of relevant enzymes. The ratio of intracellular UDP-GalNAc to UDP-GlcA increased from 0.17 in the wild-type strain to 1.05 in a 30-L fed-batch culture of the engineered strain. Titer and productivity of fructosylated chondroitin also increased to 8.43 g/L and 227.84 mg/L/h; the latter represented the highest productivity level achieved to date.
Collapse
|
21
|
Blackburn MR, Hubbard C, Kiessling V, Bi Y, Kloss B, Tamm LK, Zimmer J. Distinct reaction mechanisms for hyaluronan biosynthesis in different kingdoms of life. Glycobiology 2018; 28:108-121. [PMID: 29190396 PMCID: PMC6192386 DOI: 10.1093/glycob/cwx096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022] Open
Abstract
Hyaluronan (HA) is an acidic high molecular weight cell surface polysaccharide ubiquitously expressed by vertebrates, some pathogenic bacteria and even viruses. HA modulates many essential physiological processes and is implicated in numerous pathological conditions ranging from autoimmune diseases to cancer. In various pathogens, HA functions as a non-immunogenic surface polymer that reduces host immune responses. It is a linear polymer of strictly alternating glucuronic acid and N-acetylglucosamine units synthesized by HA synthase (HAS), a membrane-embedded family-2 glycosyltransferase. The enzyme synthesizes HA and secretes the polymer through a channel formed by its own membrane-integrated domain. To reveal how HAS achieves these tasks, we determined the biologically functional units of bacterial and viral HAS in a lipid bilayer environment by co-immunoprecipitation, single molecule fluorescence photobleaching, and site-specific cross-linking analyses. Our results demonstrate that bacterial HAS functions as an obligate homo-dimer with two functional HAS copies required for catalytic activity. In contrast, the viral enzyme, closely related to vertebrate HAS, functions as a monomer. Using site-specific cross-linking, we identify the dimer interface of bacterial HAS and show that the enzyme uses a reaction mechanism distinct from viral HAS that necessitates a dimeric assembly.
Collapse
Affiliation(s)
- Matthew R Blackburn
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Caitlin Hubbard
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yunchen Bi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Brian Kloss
- Center on Membrane Protein Production and Analysis (COMPPÅ), New York Structural Biology Center (NYSBC), 89 Convent Avenue, New York, NY 10027, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| |
Collapse
|
22
|
Madhoolika B, Anil Kumar NV, Balaji S. In vitro analysis of 4-methylumbelliferone as a sole carbon source for Lactobacillus helveticus 2126. Lett Appl Microbiol 2017; 65:249-255. [PMID: 28667752 DOI: 10.1111/lam.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 11/30/2022]
Abstract
In the recent years, 4-methylumbelliferone (4-MU) has been gaining importance, both as an anti-cancer agent and as a dietary supplement. The aim of this study was to determine the effectiveness of 4-MU as a carbon source for potential probiotic bacteria Lactobacillus helveticus 2126. For this purpose, a series of plate assays and infrared spectroscopy (FTIR) were used for 4-MU before and after the treatment with L. helveticus 2126. The plate assays indicated an initial inhibition followed by utilization of 4-MU that stimulated bacterial growth. A significant shift was observed in the FTIR peaks, which also have suggested possible extracellular activity of the bacteria for 4-MU utilization. SIGNIFICANCE AND IMPACT OF THE STUDY 4-Methylumbelliferone (4-MU) is a widely used chloretic and is currently under research for treating colon cancer. Preliminary studies suggest that it has the potential to be used as an effective and sustainable prebiotic for the human microbiome, as it can be naturally obtained from plants. This manuscript describes the effectiveness of 4-MU as a carbon source for the probiotic bacteria Lactobacillus helveticus. Our study also suggests the role of bacterial superoxide dismutase in transforming 4-MU as a possible prebiotic for the human microbiome.
Collapse
Affiliation(s)
- B Madhoolika
- Department of Biotechnology, Manipal Institute of Technology, Manipal University, Manipal, India
| | - N V Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal, India
| | - S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal University, Manipal, India
| |
Collapse
|
23
|
Baggenstoss BA, Harris EN, Washburn JL, Medina AP, Nguyen L, Weigel PH. Hyaluronan synthase control of synthesis rate and hyaluronan product size are independent functions differentially affected by mutations in a conserved tandem B-X7-B motif. Glycobiology 2016; 27:154-164. [PMID: 27558839 DOI: 10.1093/glycob/cww089] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 01/27/2023] Open
Abstract
Hyaluronan synthases (HAS) normally make large (>MDa) hyaluronan (HA) products. Smaller HA fragments (e.g. 100-400 kDa) produced in vivo are associated with inflammation and cell signaling by HA receptors that bind small, but not large, HA. Although HA fragments can arise from breakdown by hyaluronidases, HAS might also be regulated directly to synthesize small HA. Here we examined the Streptococcus equisimilis HAS (SeHAS) C-terminus, which contains a tandem B-X7-B motif (K398-X7-R406-X7-K414), by testing the effects of 27 site-specific scanning mutations and 7 C-terminal truncations on HA synthesis activity and weight-average mass. Although HAS enzymes cannot be HA-binding proteins, these motifs are highly conserved within the Class I HAS family. Fifteen Arg406 mutants made large MDa HA (86-110% wildtype size), with specific activities from 70% to 177% of wildtype. In contrast, 10 of 12 Lys398 mutants made HA that was 8-14% of wildtype size (≤250-480 kDa), with specific activities from 14% to 64% of wildtype. Four nearly inactive (2% wildtype activity) C-terminal truncation mutants made MDa HA (56-71% wildtype). The results confirm earlier findings with Cys-mutants [Weigel PH, Baggenstoss BA. 2012. Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines. Glycobiology 22:1302-1310] that HAS uses two independent activities to control HA size and HA synthesis rate; these are two separate functions. We conclude that HAS regulatory modifications that alter tandem B-X7-B motif conformation could mimic these mutagenesis-induced effects, allowing HAS in vivo to make small HA directly. The results also support a model in which the tandem-motif region is part of the intra-HAS pore and interacts directly with HA.
Collapse
Affiliation(s)
- Bruce A Baggenstoss
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Edward N Harris
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer L Washburn
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andria P Medina
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Long Nguyen
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Paul H Weigel
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
24
|
Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab Eng 2016; 35:21-30. [DOI: 10.1016/j.ymben.2016.01.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 12/14/2022]
|
25
|
Hyaluronan Synthase: The Mechanism of Initiation at the Reducing End and a Pendulum Model for Polysaccharide Translocation to the Cell Exterior. Int J Cell Biol 2015; 2015:367579. [PMID: 26472958 PMCID: PMC4581545 DOI: 10.1155/2015/367579] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/14/2015] [Indexed: 12/05/2022] Open
Abstract
Hyaluronan (HA) biosynthesis has been studied for over six decades, but our understanding of the biochemical details of how HA synthase (HAS) assembles HA is still incomplete. Class I family members include mammalian and streptococcal HASs, the focus of this review, which add new intracellular sugar-UDPs at the reducing end of growing hyaluronyl-UDP chains. HA-producing cells typically create extracellular HA coats (capsules) and also secrete HA into the surrounding space. Since HAS contains multiple transmembrane domains and is lipid-dependent, we proposed in 1999 that it creates an intraprotein HAS-lipid pore through which a growing HA-UDP chain is translocated continuously across the cell membrane to the exterior. We review here the evidence for a synthase pore-mediated polysaccharide translocation process and describe a possible mechanism (the Pendulum Model) and potential energy sources to drive this ATP-independent process. HA synthases also synthesize chitin oligosaccharides, which are created by cleavage of novel oligo-chitosyl-UDP products. The synthesis of chitin-UDP oligomers by HAS confirms the reducing end mechanism for sugar addition during HA assembly by streptococcal and mammalian Class I enzymes. These new findings indicate the possibility that HA biosynthesis is initiated by the ability of HAS to use chitin-UDP oligomers as self-primers.
Collapse
|
26
|
Cimini D, Carlino E, Giovane A, Argenzio O, Dello Iacono I, De Rosa M, Schiraldi C. Engineering a branch of the UDP-precursor biosynthesis pathway enhances the production of capsular polysaccharide in Escherichia coli O5:K4:H4. Biotechnol J 2015; 10:1307-15. [PMID: 26153362 DOI: 10.1002/biot.201400602] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/27/2015] [Accepted: 07/02/2015] [Indexed: 11/06/2022]
Abstract
Escherichia coli K4 produces a capsule with a chemical structure that resembles chondroitin, a molecule with established chondro protective properties. The endogenous genes pgm and galU are involved in the biosynthesis of UDP-glucose which is a critical intermediate in carbohydrate metabolism and biochemical precursor of UDP-glucuronic acid. Together with UDP-N-acetylgalactosamine, UDP-glucuronic acid is used as sugar donor for capsule biosynthesis. The aim of the study was to evaluate how a change in the pathways leading to UDP-glucuronic acid biosynthesis affected capsular polysaccharide production. One additional copy of pgm and galU was introduced in E. coli K4 and in the previously described recombinant strain EcK4r3. A microbioreactor was used to analyse strain performance with parallel batch experiments, demonstrating increased polysaccharide concentrations and providing data that are comparable to those obtained in larger fermenters. Further experiments on a glutamine enriched medium showed an additional 45% increase of capsule production, maybe indicating the need to balance both branches leading to polymer biosynthesis in order to maximize yields. In the effort towards the establishment of a feasible bio-chondroitin production process this study provides information on how the availability of sugar precursors impacts polysaccharide biosynthesis in E. coli K4, a complex unexplored aspect of a multifaceted process.
Collapse
Affiliation(s)
- Donatella Cimini
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Naples, Italy.
| | - Elisabetta Carlino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Naples, Italy
| | - Alfonso Giovane
- Department of Biochemistry Biophisics and General Pathology, Second University of Naples, Naples, Italy
| | - Ottavia Argenzio
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Naples, Italy
| | - Ileana Dello Iacono
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Naples, Italy
| | - Mario De Rosa
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Naples, Italy.
| |
Collapse
|
27
|
Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6:496. [PMID: 26074894 PMCID: PMC4443731 DOI: 10.3389/fmicb.2015.00496] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications.
Collapse
Affiliation(s)
- Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Bernd Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyPalmerston North, New Zealand
| |
Collapse
|
28
|
Chen WY, Marcellin E, Steen JA, Nielsen LK. The role of hyaluronic acid precursor concentrations in molecular weight control in Streptococcus zooepidemicus. Mol Biotechnol 2014; 56:147-56. [PMID: 23903961 DOI: 10.1007/s12033-013-9690-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The biosynthetic pathway responsible for the production of hyaluronic acid (HA) has been thoroughly studied; however, many aspects remain elusive regarding the mechanisms that control molecular weight (MW). Previously, we demonstrated a positive correlation between MW and the concentration of the HA precursor sugar UDP-N acetylglucosamine (UDP-GlcNAc). To further investigate the role of UDP-GlcNAc in MW control, we increased the intracellular concentration of this monomer using both feeding strategies and genetic engineering approaches. Feeding cells glucosamine dramatically increased intracellular levels of UDP-GlcNAc, but unexpectedly, produced HA of a lower MW. This was subsequently attributed to an equally dramatic decrease in the level of the other HA precursor sugar UDP-glucuronic acid (UDP-GlcUA). Feeding cells a mixture of glucose and GlcNAc addressed this imbalance of precursor sugars, leading to an increase in both UDP-GlcNAc and UDP-GlcUA; however, no significant increase in MW was observed. Despite the increase in UDP-sugars, RNA sequencing identified no increase in the expression of the genes involved in production of HA. Returning to genetic engineering approaches to examine UDP-GlcNAc and MW, genes known to contribute to the production of UDP-GlcNAc were over-expressed, both individually and together. Using this approach, UDP-GlcNAc and MW increased. At lower levels of UDP-GlcNAc, the positive correlation between UDP-GlcNAc levels and MW was maintained, however this relationship stalled at higher concentrations of UDP-GlcNAc. Taken together, these results suggest that while optimising HA precursor levels using feeding or genetic engineering approaches can improve HA MW, there is a point at which excess availability of precursors is no longer advantageous. Once precursor concentrations are addressed, it would seem that other uncharacterised factor(s) (e.g. rate of HA synthesis) also contribute to HA MW control.
Collapse
Affiliation(s)
- Wendy Yiting Chen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | | | |
Collapse
|
29
|
Marcellin E, Steen JA, Nielsen LK. Insight into hyaluronic acid molecular weight control. Appl Microbiol Biotechnol 2014; 98:6947-56. [DOI: 10.1007/s00253-014-5853-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/03/2023]
|
30
|
Jeong E, Shim WY, Kim JH. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. J Biotechnol 2014; 185:28-36. [PMID: 24892811 DOI: 10.1016/j.jbiotec.2014.05.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 11/25/2022]
Abstract
The high molecular weight (>1 MDa) of hyaluronic acid (HA) is important for its biological functions. The reported limiting factors for the production of HA with high molecular weight (MW) by microbial fermentation are the insufficient HA precursor pool and cell growth inhibition. To overcome these issues, the Xenopus laevis xhasA2 and xhasB genes encoding hyaluronan synthase 2 (xhasA2) and UDP-glucose dehydrogenase (xhasB), were expressed in Pichia pastoris widely used for production of heterologous proteins. In this study, expression vectors containing various combination cassettes of HA pathway genes including xhasA2 and xhasB from X. laevis as well as UDP-glucose pyrophosphorylase (hasC), UDP-N-acetylglucosamine pyrophosphorylase (hasD) and phosphoglucose isomerase (hasE) from P. pastoris were constructed and tested. First, HA pathway genes were overexpressed using pAO815 and pGAPZB vectors, resulting in the production of 1.2 MDa HA polymers. Second, in order to decrease hyaluronan synthase expression a strong AOX1 promoter in the xhasA2 gene was replaced by a weak AOX2 promoter which increased the mean MW of HA to 2.1 MDa. Finally, the MW of HA polymer was further increased to 2.5 MDa by low-temperature cultivation (26 °C) which reduced cell growth inhibition. The yield of HA production by the P. pastoris recombinant strains in 1L of fermentation culture was 0.8-1.7 g/L.
Collapse
Affiliation(s)
- Euijoon Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Woo Yong Shim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jung Hoe Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
31
|
Kooy FK, Beeftink HH, Eppink MH, Tramper J, Eggink G, Boeriu CG. Kinetic and structural analysis of two transferase domains in Pasteurella multocida hyaluronan synthase. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Slabaugh E, Davis JK, Haigler CH, Yingling YG, Zimmer J. Cellulose synthases: new insights from crystallography and modeling. TRENDS IN PLANT SCIENCE 2014; 19:99-106. [PMID: 24139443 DOI: 10.1016/j.tplants.2013.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 05/10/2023]
Abstract
Detailed information about the structure and biochemical mechanisms of cellulose synthase (CelS) proteins remained elusive until a complex containing the catalytic subunit (BcsA) of CelS from Rhodobacter sphaeroides was crystalized. Additionally, a 3D structure of most of the cytosolic domain of a plant CelS (GhCESA1 from cotton, Gossypium hirsutum) was produced by computational modeling. This predicted structure contributes to our understanding of how plant CelS proteins may be similar and different as compared with BcsA. In this review, we highlight how these structures impact our understanding of the synthesis of cellulose and other extracellular polysaccharides. We show how the structures can be used to generate hypotheses for experiments testing mechanisms of glucan synthesis and translocation in plant CelS.
Collapse
Affiliation(s)
- Erin Slabaugh
- Department of Crop Science, North Carolina State University, Raleigh, NC, USA
| | - Jonathan K Davis
- Department of Crop Science, North Carolina State University, Raleigh, NC, USA.
| | - Candace H Haigler
- Department of Crop Science, North Carolina State University, Raleigh, NC, USA; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jochen Zimmer
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
33
|
Weigel PH, Padgett-McCue AJ, Baggenstoss BA. Methods for measuring Class I membrane-bound hyaluronan synthase activity. Methods Mol Biol 2013; 1022:229-247. [PMID: 23765666 DOI: 10.1007/978-1-62703-465-4_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Detecting and quantifying hyaluronan (HA) made by Class I HA synthase (HAS) and determining the level of activity of these membrane-bound enzymes is critical in studies to understand the normal biology of HA and how changes in HAS activity and HA levels or size are important in inflammatory and other diseases, tumorigenesis, and metastasis. Unlike the products made by the vast majority of glycosyltransferases, HA products are more complicated since they are made as a heterogeneous population of sizes spanning a broad mass range. Three radioactive and nonradioactive assay methods are described that can give the amount of HA made with or without information about the distribution of product sizes.
Collapse
Affiliation(s)
- Paul H Weigel
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, Oklahoma City, OK, USA
| | | | | |
Collapse
|
34
|
Kooy FK, Beeftink HH, Eppink MHM, Tramper J, Eggink G, Boeriu CG. Structural and functional evidence for two separate oligosaccharide binding sites of Pasteurella multocida hyaluronan synthase. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aer.2013.14011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Weigel PH, Baggenstoss BA. Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines. Glycobiology 2012; 22:1302-10. [PMID: 22745284 PMCID: PMC3425326 DOI: 10.1093/glycob/cws102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 11/12/2022] Open
Abstract
Streptococcus equisimilis hyaluronan (HA) synthase (SeHAS) contains four cysteines (C226, C262, C281 and C367) that are conserved in the mammalian HAS family. Previous studies of single Cys-to-Ser and all possible Cys-to-Ala mutants of SeHAS found that: the Cys-null mutant is active, Cys modification inhibits HAS activity and the conserved cysteines are clustered at the membrane-enzyme interface in substrate-binding sites (Kumari K, Weigel PH. 2005. Identification of a membrane-localized cysteine cluster near the substrate binding sites of the Streptococcus equisimilis hyaluronan synthase. Glycobiology. 15:529-539). We re-examined these Cys mutants using a single technique (size exclusion chromatography-multi-angle laser light scattering) that allows simultaneous assays on the same sample for both HA synthesis activity and HA product size. Among 18 mutants compared with wild type, 4 showed no change in either function and 3 showed changes in both (decreased activity and HA size). Only one of the two functions was altered in 11 other mutants, which showed either decreased polymerizing activity or product size. No mutants made larger HA, 8 made smaller HA and 10 showed no change in HA size. Nine mutants showed no change in activity and nine were less active. The mutants fell into four of nine possible groups in terms of changes in HA size or synthesis rate (i.e. none, increased or decreased). Specific Cys residues were associated with each mutant group and the pattern of effects on both functions. Thus, the four conserved Cys residues, individually and in specific combinations, influence the rate of sugar assembly by HAS and HA product size, but their participation in one function is independent of the other.
Collapse
Affiliation(s)
- Paul H Weigel
- Department of Biochemistry and Molecular Biology, The Oklahoma Center for Medical Glycobiology, The University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA.
| | | |
Collapse
|
36
|
Hubbard C, McNamara JT, Azumaya C, Patel MS, Zimmer J. The Hyaluronan Synthase Catalyzes the Synthesis and Membrane Translocation of Hyaluronan. J Mol Biol 2012; 418:21-31. [DOI: 10.1016/j.jmb.2012.01.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 12/25/2022]
|
37
|
Tlapak-Simmons VL, Medina AP, Baggenstoss BA, Nguyen L, Baron CA, Weigel PH. Clustered Conserved Cysteines in Hyaluronan Synthase Mediate Cooperative Activation by Mg 2+ Ions and Severe Inhibitory Effects of Divalent Cations. ACTA ACUST UNITED AC 2012; Suppl 1:001. [PMID: 25267933 DOI: 10.4172/2153-0637.s1-001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyaluronan synthase (HAS) uses UDP-GlcUA and UDP-GlcNAc to make hyaluronan (HA). Streptococcus equisimilis HAS (SeHAS) contains four conserved cysteines clustered near the membrane, and requires phospholipids and Mg2+ for activity. Activity of membrane-bound or purified enzyme displayed a sigmoidal saturation profile for Mg2+ with a Hill coefficient of 2. To assess if Cys residues are important for cooperativity we examined the Mg2+ dependence of mutants with various combinations of Cys-to-Ala mutations. All Cys-mutants lost the cooperative response to Mg2+. In the presence of Mg2+, other divalent cations inhibited SeHAS with different potencies (Cu2+~Zn2+ >Co2+ >Ni2+ >Mn2+ >Ba2+ Sr2+ Ca2+). Some divalent metal ions likely inhibit by displacement of Mg2+-UDP-Sugar complexes (e.g. Ca2+, Sr2+ and Ba2+ had apparent Ki values of 2-5 mM). In contrast, Zn2+ and Cu2+ inhibited more potently (apparent Ki ≤ 0.2 mM). Inhibition of Cys-null SeHAS by Cu2+, but not Zn2+, was greatly attenuated compared to wildtype. Double and triple Cys-mutants showed differing sensitivities to Zn2+ or Cu2+. Wildtype SeHAS allowed to make HA prior to exposure to Zn2+ or Cu2+ was protected from inhibition, indicating that access of metal ions to sensitive functional groups was hindered in processively acting HA•HAS complexes. We conclude that clustered Cys residues mediate cooperative interactions with Mg2+ and that transition metal ions inhibit SeHAS very potently by interacting with one or more of these -SH groups.
Collapse
Affiliation(s)
- Valarie L Tlapak-Simmons
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Andria P Medina
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Bruce A Baggenstoss
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Long Nguyen
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Christina A Baron
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Paul H Weigel
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| |
Collapse
|
38
|
Izawa N, Serata M, Sone T, Omasa T, Ohtake H. Hyaluronic acid production by recombinant Streptococcus thermophilus. J Biosci Bioeng 2011; 111:665-70. [DOI: 10.1016/j.jbiosc.2011.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 11/25/2022]
|
39
|
Oliveira JT, Reis RL. Polysaccharide-based materials for cartilage tissue engineering applications. J Tissue Eng Regen Med 2010; 5:421-36. [DOI: 10.1002/term.335] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/18/2010] [Indexed: 12/12/2022]
|
40
|
Chen WY, Marcellin E, Hung J, Nielsen LK. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. J Biol Chem 2009; 284:18007-14. [PMID: 19451654 DOI: 10.1074/jbc.m109.011999] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The molecular weight of hyaluronan is important for its rheological and biological function. The molecular mechanisms underlying chain termination and hence molecular weight control remain poorly understood, not only for hyaluronan synthases but also for other beta-polysaccharide synthases, e.g. cellulose, chitin, and 1,3-betaglucan synthases. In this work, we manipulated metabolite concentrations in the hyaluronan pathway by overexpressing the five genes of the hyaluronan synthesis operon in Streptococcus equi subsp. zooepidemicus. Overexpression of genes involved in UDP-glucuronic acid biosynthesis decreased molecular weight, whereas overexpression of genes involved in UDP-N-acetylglucosamine biosynthesis increased molecular weight. The highest molecular mass observed was at 3.4 +/- 0.1 MDa twice that observed in the wild-type strain, 1.8 +/- 0.1 MDa. The data indicate that (a) high molecular weight is achieved when an appropriate balance of UDP-N-acetylglucosamine and UDP-glucuronic acid is achieved, (b) UDP-N-acetylglucosamine exerts the dominant effect on molecular weight, and (c) the wild-type strain has suboptimal levels of UDP-N-acetylglucosamine. Consistent herewith molecular weight correlated strongly (rho = 0.84, p = 3 x 10(-5)) with the concentration of UDP-N-acetylglucosamine. Data presented in this paper represent the first model for hyaluronan molecular weight control based on the concentration of activated sugar precursors. These results can be used to engineer strains producing high molecular weight hyaluronan and may provide insight into similar polymerization mechanisms in other polysaccharides.
Collapse
Affiliation(s)
- Wendy Yiting Chen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Queensland 4072, Australia
| | | | | | | |
Collapse
|
41
|
Marcellin E, Gruber CW, Archer C, Craik DJ, Nielsen LK. Proteome analysis of the hyaluronic acid-producing bacterium, Streptococcus zooepidemicus. Proteome Sci 2009; 7:13. [PMID: 19327162 PMCID: PMC2670282 DOI: 10.1186/1477-5956-7-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 03/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is a commensal of horses and an opportunistic pathogen in many animals and humans. Some strains produce copious amounts of hyaluronic acid, making S. zooepidemicus an important industrial microorganism for the production of this valuable biopolymer used in the pharmaceutical and cosmetic industry. Encapsulation by hyaluronic acid is considered an important virulence factor in other streptococci, though the importance in S. zooepidemicus remains poorly understood. Proteomics may provide a better understanding of virulence factors in S. zooepidemicus, facilitate the design of better diagnostics and treatments, and guide engineering of superior production strains. RESULTS Using hyaluronidase to remove the capsule and by optimising cellular lysis, a reference map for S. zooepidemicus was completed. This protocol significantly increased protein recovery, allowing for visualisation of 682 spots and the identification of 86 proteins using mass spectrometry (LC-ESI-MS/MS and MALDI-TOF/TOF); of which 16 were membrane proteins. CONCLUSION The data presented constitute the first reference map for S. zooepidemicus and provide new information on the identity and characteristics of the more abundantly expressed proteins.
Collapse
Affiliation(s)
- Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia.
| | | | | | | | | |
Collapse
|
42
|
Kyossev Z, Weigel PH. An enzyme capture assay for analysis of active hyaluronan synthases. Anal Biochem 2007; 371:62-70. [PMID: 17904513 DOI: 10.1016/j.ab.2007.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/14/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
Abstract
We describe a sensitive assay for detection of active hyaluronan synthases (HASs) capable of synthesizing hyaluronan (HA) without use of radioactive uridine 5'-diphosphate sugar precursors. The HAS capture assay is based on the binding of a biotinylated HA binding protein (bHABP) to HA chains that are associated with HAS and the subsequent capture of bHABP-HA-HAS complexes with streptavidin-agarose. Specific HAS proteins (e.g., HAS1, not HAS2 or HAS3) captured in this pull-down approach are readily immunodetected by Western blot analysis using appropriate antibodies. The assay was used to detect active HAS proteins in cell membranes, purified recombinant Streptococcus equisimilis HAS (SeHAS), and in vitro translated human HAS1 or SeHAS. The HAS capture assay was also used to assess the fraction of HAS molecules that were active, which cannot be done using standard assays for synthase activity. Assay sensitivity for detection of purified SeHAS is <1 pmol.
Collapse
Affiliation(s)
- Zhetcho Kyossev
- Department of Biochemistry & Molecular Biology and The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | |
Collapse
|
43
|
Jong A, Wu CH, Chen HM, Luo F, Kwon-Chung KJ, Chang YC, Lamunyon CW, Plaas A, Huang SH. Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection. EUKARYOTIC CELL 2007; 6:1486-96. [PMID: 17545316 PMCID: PMC1951127 DOI: 10.1128/ec.00120-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans is a pathogenic yeast that often causes devastating meningoencephalitis in immunocompromised individuals. We have previously identified the C. neoformans CPS1 gene, which is required for a capsular layer on the outer cell wall. In this report, we investigate the function of the CPS1 gene and its pathogenesis. We demonstrated that treatment of yeast with either 4-methylumbelliferone or hyaluronidase resulted in a reduction of the level of C. neoformans binding to human brain microvascular endothelial cells (HBMEC). Yeast extracellular structures were also altered accordingly in hyaluronidase-treated cells. Furthermore, observation of yeast strains with different hyaluronic acid contents showed that the ability to bind to HBMEC is proportional to the hyaluronic acid content. A killing assay with Caenorhabditis elegans demonstrated that the CPS1 wild-type strain is more virulent than the cps1Delta strain. When CPS1 is expressed in Saccharomyces cerevisiae and Escherichia coli, hyaluronic acid can be detected in the cells. Additionally, we determined by fluorophore-assisted carbohydrate electrophoretic analysis that hyaluronic acid is a component of the C. neoformans capsule. The size of hyaluronic acid molecules is evaluated by gel filtration and transmission electron microscopy studies. Together, our results support that C. neoformans CPS1 encodes hyaluronic acid synthase and that its product, hyaluronic acid, plays a role as an adhesion molecule during the association of endothelial cells with yeast.
Collapse
Affiliation(s)
- Ambrose Jong
- Division of Hematology-Oncology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Weigel PH, Kyossev Z, Torres LC. Phospholipid Dependence and Liposome Reconstitution of Purified Hyaluronan Synthase. J Biol Chem 2006; 281:36542-51. [PMID: 16984914 DOI: 10.1074/jbc.m606529200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous radiation inactivation and enzyme characterization studies demonstrated that the Streptococcus equisimilis hyaluronan synthase (seHAS) is phospholipid-dependent and that cardiolipin (CL) is the best phospholipid for enzyme activation. Here we investigated the ability of seHAS, purified in the absence of added lipid, to be activated by synthetic phosphatidic acid (PA), phosphatidylserine, or CL lipids containing fatty acyl chains of different length or different numbers of double bonds. The most effective lipid was tetraoleoyl CL (TO-CL), whereas tetramyristoyl CL (TM-CL) was ineffective. None of the phosphatidylserine species tested gave significant activation. PAs containing C10 to C18 saturated acyl chains were not effective activators, and neither were oleoyl lyso PA, dilinoleoyl PA, or PA containing one oleoyl chain and either a palmitoyl or stearoyl chain. In contrast, dioleoyl PA stimulated seHAS approximately 10-fold, to approximately 20% of the activity observed with TO-CL. The tested acidic lipids such as PA and CL activated the enzyme most efficiently if they contained only oleic acid. Mixing experiments showed that the enzyme interacts preferentially with TO-CL in the presence of TM-CL. Similarly, seHAS incorporated into phosphotidylcholine-based liposomes showed increasing activity with increasing TO-CL, but not TM-CL, content. Inactivation of membrane-bound seHAS by solubilization with Nonidet P-40 was prevented by TO-CL, but not TM-CL. The pH dependence of seHAS in the presence of synthetic or naturally occurring CLs showed the same pattern of lipid preference between pH 6 and 10.5. Unexpectedly, HAS showed lipid-independent activity at pH 11.5. The results suggest that Class I HAS enzymes are lipid-dependent and that assembly of active seHAS-lipid complexes has high specificity for the phospholipid head group and the nature of the fatty acyl chains.
Collapse
Affiliation(s)
- Paul H Weigel
- Department of Biochemistry and Molecular Biology, the Oklahoma Center for Medical Glycobiology, Oklahoma City, Oklahoma 73190, USA.
| | | | | |
Collapse
|
45
|
Krupa JC, Shaya D, Chi L, Linhardt RJ, Cygler M, Withers SG, Mort JS. Quantitative continuous assay for hyaluronan synthase. Anal Biochem 2006; 361:218-25. [PMID: 17173853 PMCID: PMC4114249 DOI: 10.1016/j.ab.2006.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 10/20/2006] [Accepted: 11/03/2006] [Indexed: 01/15/2023]
Abstract
A rapid, continuous, and convenient three-enzyme coupled UV absorption assay was developed to quantitate the glucuronic acid and N-acetylglucosamine transferase activities of hyaluronan synthase from Pasteurella multocida (PmHAS). Activity was measured by coupling the UDP produced from the PmHAS-catalyzed transfer of UDP-GlcNAc and UDP-GlcUA to a hyaluronic acid tetrasaccharide primer with the oxidation of NADH. Using a fluorescently labeled primer, the products were characterized by gel electrophoresis. Our results show that a truncated soluble form of recombinant PmHAS (residues 1-703) can catalyze the glycosyl transfers in a time- and concentration-dependent manner. The assay can be used to determine kinetic parameters, inhibition constants, and mechanistic aspects of this enzyme. In addition, it can be used to quantify PmHAS during purification of the enzyme from culture media.
Collapse
Affiliation(s)
- Joanne C. Krupa
- Joint Diseases Laboratory, Shriners Hospital for Children, Montreal, Que., Canada H3G 1A6
| | - David Shaya
- Department of Biochemistry, McGill University, Montreal, Que., Canada H3G 1Y6
| | - Lianli Chi
- Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA
| | - Miroslaw Cygler
- Department of Biochemistry, McGill University, Montreal, Que., Canada H3G 1Y6
- Biotechnology Research Institute, NRC, Montreal, Que., Canada H4P 2R2
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - John S. Mort
- Joint Diseases Laboratory, Shriners Hospital for Children, Montreal, Que., Canada H3G 1A6
- Department of Surgery, McGill University, Montreal, Que., Canada H3G 1A4
- Corresponding author. Fax: +1 514 842 5581. (J.S. Mort)
| |
Collapse
|
46
|
Kumari K, Baggenstoss BA, Parker AL, Weigel PH. Mutation of Two Intramembrane Polar Residues Conserved within the Hyaluronan Synthase Family Alters Hyaluronan Product Size. J Biol Chem 2006; 281:11755-60. [PMID: 16505475 DOI: 10.1074/jbc.m600727200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified two conserved polar amino acids within different membrane domains (MD) of Streptococcus equisimilis hyaluronan synthase (seHAS), Lys48 in MD2 and Glu327 in MD4. In eukaryotic HASs, the position of the Glu is very similar and the Lys is replaced by a conserved polar Gln. To assess whether Lys48 and Glu327 interact or influence seHAS activity, we investigated the effects of changing Lys48 to Arg or Glu and Glu327 to Lys, Asp, or Gln. Mutants, including a double switch variant with Lys48 and Glu327 exchanged, were expressed and assayed in Escherichia coli membranes. SeHASE327Q and seHASE327K were expressed at low levels, whereas seHASE327D and the Lys48 mutants were expressed well. The specific enzyme activities (relative to wild type) were 17 and 7% for the K48R and K48E mutants and 26 and 38% for the E327Q and E327D mutants, respectively. In contrast, seHAS(E327K) showed only 0.16% of wild-type activity but was rescued over 46-fold by changing Lys48 to Glu. Expression of the seHASE327K,K48E protein was also rescued to near wild-type levels. Based on size exclusion chromatography coupled to multiangle laser light scattering analysis, all the variants synthesized hyaluronan (HA) of smaller weight-average molar mass than wild-type enzyme (3.6 MDa); the smallest HA (approximately 0.6 MDa) was made by seHASE327K,K48E and seHASK48E. The results indicate that Glu327 within MD4 is a critical residue for the stability of seHAS, that it may interact with Lys48 within MD2, and that these residues are involved in the ability of HAS to synthesize very large HA.
Collapse
Affiliation(s)
- Kshama Kumari
- Department of Biochemistry and Molecular Biology and The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
47
|
Baggenstoss BA, Weigel PH. Size exclusion chromatography-multiangle laser light scattering analysis of hyaluronan size distributions made by membrane-bound hyaluronan synthase. Anal Biochem 2006; 352:243-51. [PMID: 16476403 PMCID: PMC1586112 DOI: 10.1016/j.ab.2006.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 01/09/2006] [Accepted: 01/11/2006] [Indexed: 10/25/2022]
Abstract
Size exclusion chromatography-multiangle laser light scattering (SEC-MALLS) analyses of Escherichia coli membranes expressing Streptococcus equisimilis hyaluronan synthase (seHAS) demonstrated an inherent artifact (10-100 MDa) that coeluted with hyaluronan (HA) and skewed the apparent weight-average mass of HA to erroneously high values. Briefly heating samples to 65-75 degrees C eliminated this artifact and increased the yield of recovered HA due to the release of HA chains that were attached to membrane-bound HAS. Inclusion of alkaline phosphatase, which removed uridine 5'-diphosphate (UDP) produced during the reaction, improved the linearity of HA synthesis-even at high substrate use. Surprisingly, the addition of EDTA, to chelate Mg(2+) ions, did not completely stop the HAS reaction at 30 degrees C or at 4 degrees C. The best conditions for stopping the reaction without altering SEC-MALLS profiles of the product HA were to chill samples on ice in the presence of both EDTA and UDP. Even with excess substrate, the maximum size of product HA decreased as the enzyme concentration increased. Therefore, the maximum HA size made by HAS was determined by extrapolation to zero enzyme concentration. Using the above conditions, membrane-bound seHAS synthesized a cohort of HA products that steadily increased in weight-average molar mass, reaching a final maximal steady-state size of 4 to 6 MDa within 2-4 h.
Collapse
Affiliation(s)
| | - Paul H. Weigel
- The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Corresponding author: ; Tel: 405 271-1288; FAX: 405 271-3092
| |
Collapse
|
48
|
Forsee WT, Cartee RT, Yother J. Role of the carbohydrate binding site of the Streptococcus pneumoniae capsular polysaccharide type 3 synthase in the transition from oligosaccharide to polysaccharide synthesis. J Biol Chem 2006; 281:6283-9. [PMID: 16410247 DOI: 10.1074/jbc.m511124200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type 3 synthase catalyzes the formation of the Streptococcus pneumoniae type 3 capsular polysaccharide [-3)-beta-D-GlcUA-(1, 4)-beta-D-Glc-(1-]n. Synthesis is comprised of two distinct catalytic phases separated by a transition step whereby an oligosaccharylphosphatidylglycerol primer becomes tightly bound to the carbohydrate acceptor recognition site of the synthase. Using the recombinant synthase in Escherichia coli membranes, we determined that a critical oligosaccharide length of approximately 8 monosaccharides was required for recognition of the growing chain by the synthase. Upon binding of the oligosaccharide-lipid to the carbohydrate recognition site, the polymerization reaction entered a highly processive phase to produce polymer of high molecular weight. The initial oligosaccharide-synthetic phase also appeared to be processive, the duration of which was enhanced by the concentration of UDP-GlcUA and diminished by an increase in temperature. The overall reaction approached a steady state equilibrium between the polymer- and oligosaccharide-forming phases that was shifted toward the former by higher UDP-GlcUA levels or lower temperatures and toward the latter by lower concentrations of UDP-GlcUA or higher temperatures. The transition step between the two enzymatic phases demonstrated cooperative kinetics, which is predicted to reflect a possible reorientation of the oligosaccharide-lipid in conjunction with the formation of a tight binding complex.
Collapse
Affiliation(s)
- W Thomas Forsee
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
49
|
Bodevin-Authelet S, Kusche-Gullberg M, Pummill PE, DeAngelis PL, Lindahl U. Biosynthesis of Hyaluronan. J Biol Chem 2005; 280:8813-8. [PMID: 15623518 DOI: 10.1074/jbc.m412803200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan (HA), a functionally essential glycosaminoglycan in vertebrate tissues and a putative virulence factor in certain pathogenic bacteria, is an extended linear polymer composed of alternating units of glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc). Uncertainty regarding the mechanism of HA biosynthesis has included the directionality of chain elongation, i.e. whether addition of monosaccharide units occurs at the reducing or non-reducing terminus of nascent chains. We have investigated this problem using yeast-derived recombinant HA synthases from Xenopus laevis (xlHAS1) and from Streptococcus pyogenes (spHAS). The enzymes were incubated with UDP-[3H]GlcUA and UDP-[14C]GlcNAc, under experimental conditions designed to yield HA chains with differentially labeled reducing-terminal and non-reducing terminal domains. Digestion of the products with a mixture of beta-glucuronidase and beta-N-acetylglucosaminidase exoenzymes resulted in truncation of the HA chain strictly from the non-reducing end and release of labeled monosaccharides. The change in 3H/14C ratio of the monosaccharide fraction, during the course of exoglycosidase digestion, was interpreted to indicate whether sugar units had been added at the reducing or non-reducing end. The results demonstrate that the vertebrate xlHAS1 and the bacterial spHAS extend HA in opposite directions. Chain elongation catalyzed by xlHAS1 occurs at the non-reducing end of the HA chain, whereas elongation catalyzed by spHAS occurs at the reducing end. The spHAS is the first glycosyltransferase that has been unanimously demonstrated to function at the reducing end of a growing glycosaminoglycan chain.
Collapse
Affiliation(s)
- Sabrina Bodevin-Authelet
- Department of Medical Biochemistry and Microbiology, University of Uppsala, The Biomedical Center, SE-75123 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
50
|
Tlapak-Simmons VL, Baron CA, Gotschall R, Haque D, Canfield WM, Weigel PH. Hyaluronan biosynthesis by class I streptococcal hyaluronan synthases occurs at the reducing end. J Biol Chem 2005; 280:13012-8. [PMID: 15668242 PMCID: PMC1592226 DOI: 10.1074/jbc.m409788200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies reached different conclusions about whether class I hyaluronan synthases (HASs) elongate hyaluronic acid (HA) by addition to the reducing or the nonreducing end. Here we used two strategies to determine the direction of HA synthesis by purified class I HASs from Streptococcus equisimilis and Streptococcus pyogenes. In the first strategy we used each of the two UDP-sugar substrates separately to pulse label either the beginning or the end of HA chains. We then quantified the relative rates of radioactive HA degradation by treatment with beta-glycosidases that act at the nonreducing end. The results with both purified HASs demonstrated that HA elongation occurred at the reducing end. In the second strategy, we used purified S. equisimilis HAS, UDP-glucuronic acid, and UDP[beta-32P]-Glc-NAc to radiolabel nascent HA chains. Under conditions of limiting substrate, the 32P-labeled products were separated from the substrates by paper chromatography and identified as HA-[32P]UDP saccharides based on their degradation by snake venom phosphodiesterase or hyaluronidase and by their binding to a specific HA-binding protein. The 32P radioactivity was chased (released) by incubation with unlabeled UDP-sugars, showing that the HA-UDP linkages turn over during HA biosynthesis. In contrast, HA-[32P]UDP products made by the purified class II Pasteurella multocida HAS were not released by adding unlabeled UDP-sugars, consistent with growth at the nonreducing end for this enzyme. The results demonstrate that the streptococcal class I HAS enzymes polymerize HA chains at the reducing end.
Collapse
Affiliation(s)
- Valarie L Tlapak-Simmons
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|