1
|
The nuclear hormone receptor gene Nr2c1 (Tr2) is a critical regulator of early retina cell patterning. Dev Biol 2017; 429:343-355. [DOI: 10.1016/j.ydbio.2017.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
|
2
|
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α) and PGC-1β have been shown to be intimately involved in the transcriptional regulation of cellular energy metabolism as well as other biological processes, but both coactivator proteins are expressed in many other tissues and organs in which their function is, in essence, unexplored. Here, we found that both PGC-1 proteins are abundantly expressed in maturing erythroid cells. PGC-1α and PGC-1β compound null mutant (Pgc-1(c)) animals express less β-like globin mRNAs throughout development; consequently, neonatal Pgc-1(c) mice exhibit growth retardation and profound anemia. Flow cytometry shows that the number of mature erythrocytes is markedly reduced in neonatal Pgc-1(c) pups, indicating that erythropoiesis is severely compromised. Furthermore, hematoxylin and eosin staining revealed necrotic cell death and cell loss in Pgc-1(c) livers and spleen. Chromatin immunoprecipitation studies revealed that both PGC-1α and -1β, as well as two nuclear receptors, TR2 and TR4, coordinately bind to the various globin gene promoters. In addition, PGC-1α and -1β can interact with TR4 to potentiate transcriptional activation. These data provide new insights into our understanding of globin gene regulation and raise the interesting possibility that the PGC-1 coactivators can interact with TR4 to elicit differential stage-specific effects on globin gene transcription.
Collapse
|
3
|
Gupta P, Ho PC, Ha SG, Lin YW, Wei LN. HDAC3 as a molecular chaperone for shuttling phosphorylated TR2 to PML: a novel deacetylase activity-independent function of HDAC3. PLoS One 2009; 4:e4363. [PMID: 19204783 PMCID: PMC2634961 DOI: 10.1371/journal.pone.0004363] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/23/2008] [Indexed: 11/30/2022] Open
Abstract
TR2 is an orphan nuclear receptor specifically expressed in early embryos (Wei and Hsu, 1994), and a transcription factor for transcriptional regulation of important genes in stem cells including the gate keeper Oct4 (Park et al. 2007). TR2 is known to function as an activator (Wei et al. 2000), or a repressor (Chinpaisal et al., 1998, Gupta et al. 2007). Due to the lack of specific ligands, mechanisms triggering its activator or repressor function have remained puzzling for decades. Recently, we found that all-trans retinoic acid (atRA) triggers the activation of extracellular-signal-regulated kinase 2 (ERK2), which phosphorylates TR2 and stimulates its partitioning to promyelocytic leukemia (PML) nuclear bodies, thereby converting the activator function of TR2 into repression (Gupta et al. 2008; Park et al. 2007). Recruitment of TR2 to PML is a crucial step in the conversion of TR2 from an activator to a repressor. However, it is unclear how phosphorylated TR2 is recruited to PML, an essential step in converting TR2 from an activator to a repressor. In the present study, we use both in vitro and in vivo systems to address the problem of recruiting TR2 to PML nuclear bodies. First, we identify histone deacetylase 3 (HDAC3) as an effector molecule. HDAC3 is known to interact with TR2 (Franco et al. 2001) and this interaction is enhanced by the atRA-stimulated phosphorylation of TR2 at Thr-210 (Gupta et al. 2008). Secondly, in this study, we also find that the carrier function of HDAC3 is independent of its deacetylase activity. Thirdly, we find another novel activity of atRA that stimulates nuclear enrichment of HDAC3 to form nuclear complex with PML, which is ERK2 independent. This is the first report identifying a deacetylase-independent function for HDAC3, which serves as a specific carrier molecule that targets a specifically phosphorylated protein to PML NBs. This is also the first study delineating how protein recruitment to PML nuclear bodies occurs, which can be stimulated by atRA in an ERK2-independent manner. These findings could provide new insights into the development of potential therapeutics and in understanding how orphan nuclear receptor activities can be regulated without ligands.
Collapse
Affiliation(s)
- Pawan Gupta
- Institute of Microbial Technology, Chandigarh, India
| | - Ping-Chih Ho
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Sung Gil Ha
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Yi-Wei Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
4
|
Wei LN. Post-translational modifications of orphan nuclear receptor TR2 - new insights into drug targets for stem cell therapy and the effect of retinoic acid. Proteomics Clin Appl 2009; 3:279-285. [DOI: 10.1002/prca.200800100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
5
|
Gupta P, Ho PC, Huq MDM, Ha SG, Park SW, Khan AA, Tsai NP, Wei LN. Retinoic acid-stimulated sequential phosphorylation, PML recruitment, and SUMOylation of nuclear receptor TR2 to suppress Oct4 expression. Proc Natl Acad Sci U S A 2008; 105:11424-9. [PMID: 18682553 PMCID: PMC2516243 DOI: 10.1073/pnas.0710561105] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Indexed: 11/18/2022] Open
Abstract
We previously reported an intricate mechanism underlying the homeostasis of Oct4 expression in normally proliferating stem cell culture of P19, mediated by SUMOylation of orphan nuclear receptor TR2. In the present study, we identify a signaling pathway initiated from the nongenomic activity of all-trans retinoic acid (atRA) to stimulate complex formation of extracellular signal-regulated kinase 2 (ERK2) with its upstream kinase, mitogen-activated protein kinase kinase (MEK). The activated ERK2 phosphorylates threonine-210 (Thr-210) of TR2, stimulating its subsequent SUMOylation. Dephosphorylated TR2 recruits coactivator PCAF and functions as an activator for its target gene Oct4. Upon phosphorylation at Thr-210, TR2 increasingly associates with promyelocytic leukemia (PML) nuclear bodies, becomes SUMOylated, and recruits corepressor RIP140 to act as a repressor for its target, Oct4. To normally proliferating P19 stem cell culture, exposure to a physiological concentration of atRA triggers a rapid nongenomic signaling cascade to suppress Oct4 gene and regulate cell proliferation.
Collapse
Affiliation(s)
- Pawan Gupta
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Ping-Chih Ho
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - MD Mostaqul Huq
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Sung Gil Ha
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Amjad Ali Khan
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Nien-Pei Tsai
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
6
|
Khan SA, Nelson MS, Pan C, Gaffney PM, Gupta P. Endogenous heparan sulfate and heparin modulate bone morphogenetic protein-4 signaling and activity. Am J Physiol Cell Physiol 2008; 294:C1387-97. [DOI: 10.1152/ajpcell.00346.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) and their endogenous antagonists are important for brain and bone development and tumor initiation and progression. Heparan sulfate (HS) proteoglycans (HSPG) modulate the activities of BMPs and their antagonists. How glycosaminoglycans (GAGs) influence BMP activity in various malignancies and in inherited abnormalities of GAG metabolism, and the structural features of GAGs essential for modulation of BMP signaling, remain incompletely defined. We examined whether chemically modified soluble heparins, the endogenous HS in malignant cells and the HS accumulated in Hurler syndrome cells influence BMP-4 signaling and activity. We show that both exogenous (soluble) and endogenous GAGs modulate BMP-4 signaling and activity, and that this effect is dependent on specific sulfate residues of GAGs. Our studies suggest that endogenous sulfated GAGs promote the proliferation and impair differentiation of malignant human cells, providing the rationale for investigating whether pharmacological agents that inhibit GAG synthesis or function might reverse this effect. Our demonstration of impairment of BMP-4 signaling by GAGs in multipotent stem cells in human Hurler syndrome identifies a mechanism that might contribute to the progressive neurological and skeletal abnormalities in Hurler syndrome and related mucopolysaccharidoses.
Collapse
|
7
|
Park SW, Hu X, Gupta P, Lin YP, Ha SG, Wei LN. SUMOylation of Tr2 orphan receptor involves Pml and fine-tunes Oct4 expression in stem cells. Nat Struct Mol Biol 2006; 14:68-75. [PMID: 17187077 DOI: 10.1038/nsmb1185] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 11/29/2006] [Indexed: 11/08/2022]
Abstract
The Tr2 orphan nuclear receptor can be SUMOylated, resulting in the replacement of coregulators recruited to the regulatory region of its endogenous target gene, Oct4. UnSUMOylated Tr2 activates Oct4, enhancing embryonal carcinoma-cell proliferation, and is localized to the promyelocytic leukemia (Pml) nuclear bodies. When its abundance is elevated, Tr2 is SUMOylated at Lys238 and seems to be released from the nuclear bodies to act as a repressor. SUMOylation of Tr2 induces an exchange of its coregulators: corepressor Rip140 replaces coactivator Pcaf, which switches Tr2 from an activator to a repressor. This involves dynamic partitioning of Tr2 into Pml-containing and Pml-free pools. These results support a model where SUMOylation-dependent partitioning and differential coregulator recruitment contribute to the maintenance of a homeostatic supply of activating, as opposed to repressive, Tr2, thus fine-tuning Oct4 expression and regulating stem-cell proliferation.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
8
|
Hu R, Wu W, Niles EG, LoVerde PT. SmTR2/4, a Schistosoma mansoni homologue of TR2/TR4 orphan nuclear receptor. Int J Parasitol 2006; 36:1113-22. [PMID: 16839558 DOI: 10.1016/j.ijpara.2006.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 05/24/2006] [Accepted: 06/01/2006] [Indexed: 11/18/2022]
Abstract
cDNA clones encoding a Schistosoma mansoni homologue of the TR2/TR4 group of nuclear receptors, SmTR2/4, were identified by screening an adult female worm cDNA library. SmTR2/4 is a 1,943 amino acid protein, the largest member of the TR2/TR4 group of nuclear receptors and also the largest nuclear receptor reported to date. SmTR2/4 retains a typical domain organisation of nuclear receptors exhibiting 69-77% sequence identity in the DNA binding domain and 16-22% sequence identity in the ligand binding domain compared with its orthologues. SmTR2/4 contains a large A/B domain and hinge region. SmTR2/4 also contains a 100 amino acid F domain, which is absent from its orthologues. SmTR2/4 mRNA is expressed in every stage of the S. mansoni life cycle, exhibiting an elevated expression level in cercariae. Western blot analysis identified two forms of SmTR2/4 protein in adult worms. Our in vitro DNA binding assay showed that SmTR2/4 binds to the DR-3 consensus hormone response element, suggesting a functional conservation among the TR2/TR4 group members in terms of DNA binding specificity. A yeast-based transactivation assay demonstrated that the A/B domain, F domain and N-terminal part of the hinge region in SmTR2/4, when tethered to a GAL4 DNA binding domain, exhibited an autonomous transcription activation function.
Collapse
Affiliation(s)
- Rong Hu
- Department of Microbiology and Immunology, School of Medicine, State University of New York, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
9
|
Hu R, Niles EG, LoVerde PT. DNA binding and transactivation properties of the Schistosoma mansoni constitutive androstane receptor homologue. Mol Biochem Parasitol 2006; 150:174-85. [PMID: 16962182 DOI: 10.1016/j.molbiopara.2006.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/21/2006] [Accepted: 07/25/2006] [Indexed: 11/21/2022]
Abstract
SmCAR (Schistosoma mansoni constitutive androstane receptor) is a schistosome homologue of the CAR/PXR/VDR group of nuclear receptors. The P box sequence in the DNA binding domain (DBD) of SmCAR, which is essential in determining the DNA binding specificity of nuclear receptors, is different from its vertebrate homologues. Previous data demonstrates that SmCAR binds to a hormone response element containing a single half site AGTGCA as a monomer. SmRXR1 and SmRXR2 are two S. mansoni homologues of vertebrate retinoid X receptors (RXRs). RXRs usually heterodimerize with various nuclear receptors. Yeast-two hybrid analyses, in vitro pull-down and co-immunoprecipitation assays demonstrated that SmCAR interacts with SmRXR1 but not SmRXR2. Using chimeras consisting of the DBD of SmCAR and the ligand binding domain (LBD) of mouse (m) CAR, we show that despite a different P box, SmCAR DBD shares DNA binding specificity with mCAR. However, the SmCAR DBD does exhibit some of the DNA binding properties specific to SmCAR. Studies of the chimeras also demonstrated that the SmCAR DBD is able to heterodimerize with the DBD of human RXR, allowing high affinity DNA binding. Based on this study and previous results, we conclude that SmCAR may recognize its cognate hormone response element via two mechanisms: binding to DNA monomerically or heterodimerizing with SmRXR1. We also demonstrate that a transcription activation function-1 (AF-1) is located in the SmCAR A/B domain.
Collapse
Affiliation(s)
- Rong Hu
- Department of Microbiology and Immunology, School of Medicine, State University of New York, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
10
|
Khan SA, Park SW, Huq MDM, Wei LN. Ligand-independent orphan receptor TR2 activation by phosphorylation at the DNA-binding domain. Proteomics 2006; 6:123-30. [PMID: 16317770 DOI: 10.1002/pmic.200500068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In a previous report we demonstrated protein kinase C (PKC)-mediated phosphorylation of the ligand-binding domain (LBD) of orphan nuclear receptor TR2. In this report, we provide the evidence of PKC-mediated phosphorylation of the DNA-binding domain (DBD) of TR2. Two PKC target sites were predicted within the DBD, at Ser-170 and Ser-185, but only Ser-185 was confirmed by MS. Phosphorylation of DBD facilitated DNA binding of the TR2 receptor and its recruiting of coactivator p300/CBP-associated factor (P/CAF). Ser-185 was required for DNA binding, whereas both Ser-170 and Ser-185 were necessary for receptor interaction with P/CAF. The P/CAF-interacting domain of TR2 was located in its DBD. A double mutant (Ser-170 and Ser-185) of TR2 significantly lowered the activation of its target gene RARbeta2. This study provides the first evidence for ligand-independent activation of TR2 orphan receptor through PTM at the DBD, which enhanced its DNA-binding ability and interaction with coactivator P/CAF.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Blotting, Western
- Chromatography, Liquid
- DNA/metabolism
- DNA Primers
- Electrophoretic Mobility Shift Assay
- Immunoprecipitation
- Ligands
- Mutagenesis, Site-Directed
- Phosphorylation
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Member 14
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Serine/metabolism
- Spectrometry, Mass, Electrospray Ionization
- Transcription, Genetic
Collapse
Affiliation(s)
- Shaukat Ali Khan
- Department of Pharmacology, University of Minnesota Medical School, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
11
|
Khan SA, Park SW, Huq M, Wei LN. Protein kinase C-mediated phosphorylation of orphan nuclear receptor TR2: Effects on receptor stability and activity. Proteomics 2005; 5:3885-94. [PMID: 16130175 DOI: 10.1002/pmic.200402062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In vivo metabolic labeling showed that orphan nuclear receptor TR2 could be phosphorylated. Systematic studies were conducted using specific kinases/phosphatase inhibitors to determine the enzymes responsible for TR2 phosphorylation and the effects of TR2 phosphorylation on its protein stability and activation of its target gene. The data showed that protein kinase C (PKC)-mediated phosphorylation enhanced the activating ability of TR2 on target gene RARbeta as well as its stability through protection from proteosome-mediated degradation. Several PKC-mediated potential serine/threonine phosphorylation sites on TR2 protein were predicted from the computer analysis using NetPhos software (http://us.expasy.org) and were commensurate by in vitro phosphorylation of purified TR2 protein using PKC enzyme. Two phosphorylation sites at Ser-461 and Ser-568 were identified by LC-ESI-MS/MS. Point mutations at Ser-568 or Ser-461 were prepared and evaluated for their biological activity. Ser-568, but not Ser-461, mutation significantly reduced PKC-mediated TR2 protein stability and its transcriptional activity.
Collapse
Affiliation(s)
- Shaukat Ali Khan
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
12
|
Li G, Franco PJ, Wei LN. Identification of histone deacetylase-3 domains that interact with the orphan nuclear receptor TR2. Biochem Biophys Res Commun 2003; 310:384-90. [PMID: 14521922 DOI: 10.1016/j.bbrc.2003.08.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The orphan nuclear receptor TR2 interacts directly with histone deacetylase HDAC3 and HDAC4. We now report that two domains of HDAC3 are involved in its interaction with TR2. GST pull-down assays show that both the N-terminal (residues 1-135) and the C-terminal (residues 210-428) segments of HDAC3 directly interact with TR2. The interaction is also demonstrated in coimmunoprecipitation experiments. The two TR2-binding sites of HDAC3 compete with each other for binding to TR2. The two receptor-interacting domains (RIDs) of HDAC3 were further dissected and mapped to amino acid residues 1-70 and 270-320. In vivo studies demonstrate that HDAC3 and TR2 can form a complex on the TR2 DNA target and this complex exhibits histone deacetylase activity. These data identify two RIDs of HDAC3 and the biological activity of the complex formed by TR2 and HDAC3 on the TR2 DNA target.
Collapse
Affiliation(s)
- Guangjin Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
13
|
Mu X, Chang C. TR2 orphan receptor functions as negative modulator for androgen receptor in prostate cancer cells PC-3. Prostate 2003; 57:129-33. [PMID: 12949936 DOI: 10.1002/pros.10282] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Both androgen receptor (AR) and orphan receptor TR2 (TR2) belong to the steroid nuclear receptor superfamily and are expressed in prostate cancer tissue and cell lines. AR has been known to be involved in prostate proliferation and prostate cancer progression. AR binds to androgen response elements and regulates target gene expression via a mechanism involving coregulators. However, the function of TR2 in prostate and prostate cancer and the relationship between TR2 and AR in the prostate cancer is unclear. METHODS Transient transfection and CAT reporter gene assays were employed to assess AR-mediated transactivation. The expression level of prostate specific antigen (PSA) was measured by Northern blot analysis. The interaction between AR and TR2 was assessed by glutathione-S-transferase (GST) pull-down assay and mammalian two-hybrid system assay. RESULTS Orphan nuclear receptor TR2 suppressed androgen-mediated transactivation in prostate cancer PC-3 cells, and over-expression of TR2 suppressed PSA expression. The suppression of AR mediated transactivation by TR2 is not due to competition for the limited coregulator availability by these two receptors, but possibly through the interaction between TR2 and AR nuclear receptors. CONCLUSIONS TR2 may function as a negative modulator to suppress AR function in prostate cancer. Further studies on how to control TR2 function may result in the ability to modulate AR function in prostate cancer.
Collapse
Affiliation(s)
- Xiaomin Mu
- Department of Pathology, George Whipple Laboratory for Cancer Research, Urology, Radiation Oncology, New York, NY, USA
| | | |
Collapse
|
14
|
Abstract
A direct interaction between the nuclear receptor TR2 and histone deacetylases (HDACs) 3 and 4 is mediated by the DNA binding domain (DBD) of TR2. To test if this interaction is common to members of the nuclear receptor family, the Cys2-Cys2 type zinc finger (ZF) DBDs were subcloned from several nuclear receptors (mRARalpha, mRXRbeta, mTR2, mTR4, RAR, mPPARdelta, and mPPARgamma2). Using GST pull-downs, both HDACs 3 and 4 were found to interact directly with the core DBD from each receptor. The three-dimensional structure of the ZF domains was essential for this interaction as disruption by zinc chelation precluded interaction with HDACs. The results suggest that the ZFs of nuclear receptors provide a general interaction interface for HDACs 3 and 4. Functional significance of this interaction was demonstrated using ChIP assays where a truncated TR2 protein (lacking the LBD) recruited HDACs 3 and 4 to the target DNA causing demonstrable histone deacetylation. GST pull-downs and mammalian two-hybrid interaction tests were then used to define the interaction domains of HDAC3 with TR2. Both the N- and C-terminal portions of HDAC3 showed interaction with the TR2 DBD. Thus, multiple domains of HDAC3 form the interaction surface for the DBD of nuclear receptors.
Collapse
Affiliation(s)
- Peter J Franco
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
15
|
Sanyal S, Handschin C, Podvinec M, Song KH, Kim HJ, Kim JY, Seo YW, Kim SA, Kwon HB, Lee K, Kim WS, Meyer UA, Choi HS. Molecular cloning and characterization of chicken orphan nuclear receptor cTR2. Gen Comp Endocrinol 2003; 132:474-84. [PMID: 12849971 DOI: 10.1016/s0016-6480(03)00116-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Orphan nuclear receptors belong to the nuclear receptor superfamily of liganded transcription factors, whose ligands either do not exist or remain to be identified. We report here the cloning and characterization of the chicken orphan nuclear receptor, cTR2 (chicken testicular receptor 2). The cTR2 gene encodes a protein of 569 amino acids which shows approximately 72% overall identity with TR2 (NR2C1) and 95% identity in the DNA-binding domain (DBD). The cTR2 gene is expressed in almost all adult tissues and embryonic stages examined unlike its mammalian relative TR2, which is specifically expressed in testis. Electrophoretic mobility shift assays demonstrate that cTR2 binds the canonical direct repeat DNA recognition sequences spaced by one, four, and five nucleotides (DR1, DR4, and DR5), and in consistence with the results with canonical DNA-binding sequences, cTR2 forms specific DNA-protein complex with chicken phenobarbital response elements containing DR4 motifs. Both in vitro and in vivo interaction studies demonstrate that cTR2 forms homodimer. Moreover, transient transfection studies reveal its capability to transactivate canonical DR1, DR4, and DR5 sequences and the constitutive activity of cTR2 is mapped to the N-terminal region of this orphan receptor. Finally, cTR2 represses transactivation of estrogen receptor in a dose-dependent manner.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chick Embryo
- Chickens/genetics
- Chickens/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Developmental
- Molecular Sequence Data
- Nuclear Receptor Subfamily 2, Group C, Member 1
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Tissue Distribution
- Transcriptional Activation
Collapse
Affiliation(s)
- Sabyasachi Sanyal
- Hormone Research Center, Chonnam National University, 500-757 Kwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee YF, Lee HJ, Chang C. Recent advances in the TR2 and TR4 orphan receptors of the nuclear receptor superfamily. J Steroid Biochem Mol Biol 2002; 81:291-308. [PMID: 12361719 DOI: 10.1016/s0960-0760(02)00118-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The human testicular receptor 2 (TR2) and TR4 orphan receptors are two evolutionarily related proteins belonging to the nuclear receptor superfamily. Numerous TR2 and TR4 variants and homologs have been identified from different species, including vertebrates (e.g. human, murine, rabbit, fish, and amphibian) and invertebrates (e.g. Drosophila, sea urchin, and nematode) since TR2 was initially isolated over a decade ago. Specific tissue distribution, genomic organization, and chromosomal assignment of both orphan receptors have been investigated. In order to reveal the physiological functions played by both TR2 and TR4, upstream modulators of TR2 and TR4 gene expression, their downstream target gene regulation, feedback mechanisms, and differential modulation mediated by the recruitment of other nuclear receptors and coregulators have been investigated. Studies summarized in the present report have provided unexpected insights into the TR2 and TR4 functions in a variety of biological processes. The essential and difficult tasks of identifying orphan receptor ligands, agonist/antagonist assignment, their physiological functions, and mechanisms of action will continue to challenge nuclear receptor researchers in the future.
Collapse
Affiliation(s)
- Yi-Fen Lee
- George Whipple Laboratory for Cancer Research, Department of Urology, University of Rochester, NY 14642, USA
| | | | | |
Collapse
|
17
|
Escriva H, Holland ND, Gronemeyer H, Laudet V, Holland LZ. The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest. Development 2002; 129:2905-16. [PMID: 12050138 DOI: 10.1242/dev.129.12.2905] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amphioxus, the closest living invertebrate relative of the vertebrates, has a notochord, segmental axial musculature, pharyngeal gill slits and dorsal hollow nerve cord, but lacks neural crest. In amphioxus, as in vertebrates, exogenous retinoic acid (RA) posteriorizes the embryo. The mouth and gill slits never form, AmphiPax1, which is normally downregulated where gill slits form, remains upregulated and AmphiHox1 expression shifts anteriorly in the nerve cord. To dissect the role of RA signaling in patterning chordate embryos, we have cloned the single retinoic acid receptor (AmphiRAR), retinoid X receptor (AmphiRXR) and an orphan receptor (AmphiTR2/4) from amphioxus. AmphiTR2/4 inhibits AmphiRAR-AmphiRXR-mediated transactivation in the presence of RA by competing for DR5 or IR7 retinoic acid response elements (RAREs). The 5′ untranslated region of AmphiTR2/4 contains an IR7 element, suggesting possible auto- and RA-regulation. The patterns of AmphiTR2/4 and AmphiRAR expression during embryogenesis are largely complementary: AmphiTR2/4 is strongly expressed in the cerebral vesicle (homologous to the diencephalon plus anterior midbrain), while AmphiRAR expression is high in the equivalent of the hindbrain and spinal cord. Similarly, while AmphiTR2/4 is expressed most strongly in the anterior and posterior thirds of the endoderm, the highest AmphiRAR expression is in the middle third. Expression of AmphiRAR is upregulated by exogenous RA and completely downregulated by the RA antagonist BMS009. Moreover, BMS009 expands the pharynx posteriorly; the first three gill slit primordia are elongated and shifted posteriorly, but do not penetrate, and additional, non-penetrating gill slit primordia are induced. Thus, in an organism without neural crest, initiation and penetration of gill slits appear to be separate events mediated by distinct levels of RA signaling in the pharyngeal endoderm. Although these compounds have little effect on levels of AmphiTR2/4 expression, RA shifts pharyngeal expression of AmphiTR2/4 anteriorly, while BMS009 extends it posteriorly. Collectively, our results suggest a model for anteroposterior patterning of the amphioxus nerve cord and pharynx, which is probably applicable to vertebrates as well, in which a low anterior level of AmphiRAR (caused, at least in part, by competitive inhibition by AmphiTR2/4) is necessary for patterning the forebrain and formation of gill slits, the posterior extent of both being set by a sharp increase in the level of AmphiRAR.
Supplemental data available on-line
Collapse
MESH Headings
- Animals
- Body Patterning
- Chordata, Nonvertebrate/embryology
- Chordata, Nonvertebrate/genetics
- Chordata, Nonvertebrate/metabolism
- Cloning, Molecular
- Embryo, Nonmammalian/drug effects
- Female
- Gene Expression Regulation, Developmental
- Gills/embryology
- Mouth/embryology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neural Crest/metabolism
- Nuclear Receptor Subfamily 2, Group C, Member 1
- Pharynx/embryology
- Pharynx/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Retinoid X Receptors
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tretinoin/metabolism
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Hector Escriva
- Laboratoire de Biologie Moleculaire et Cellulaire, CNRS-UMR 49, Ecole Normale Supérieure de Lyon, 46, Allée d'Italie, 69364 Lyon, France
| | | | | | | | | |
Collapse
|
18
|
Franco PJ, Farooqui M, Seto E, Wei LN. The orphan nuclear receptor TR2 interacts directly with both class I and class II histone deacetylases. Mol Endocrinol 2001; 15:1318-28. [PMID: 11463856 DOI: 10.1210/mend.15.8.0682] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A combination of in vivo and in vitro assays was employed to describe the ligand-independent interaction of the orphan nuclear receptor TR2 and histone deacetylase proteins. The repressive effect of TR2 on transcription of a luciferase reporter driven by a promoter containing a direct repeat-5 (DR5) derived from the human RARbeta gene was suppressed by the addition of the histone deacetylase inhibitor trichostatin A. Immunoprecipitation with FLAG-epitope (MDYKDDDDK)-tagged histone deacetylase proteins was used to demonstrate that TR2 and histone deacetylases 3 or 4 are present in the same immunoprecipitated complex. Deacetylase activity was demonstrated for these coimmunoprecipitates, further confirming the in vivo interaction of TR2 and histone deacetylases. Immunoprecipitation with anti-TR2 antibody was used to demonstrate interaction of TR2 with endogenously expressed histone deacetylases 3 and 4 in COS-1 cells. Dissection of TR2 domains showed that the DNA binding domain of the receptor was responsible for interaction with both histone deacetylases 3 and 4 in glutathione-S-transferase pull-down assays, while the ligand binding domain did not interact. The pull-down data were confirmed with far Western blots that also showed a direct interaction between labeled histone deacetylase proteins and TR2. It is suggested that repression mediated by unliganded TR2 is mediated, in part, by a direct interaction of this receptor with histone deacetylase proteins.
Collapse
Affiliation(s)
- P J Franco
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|